KVM: arm64: Handle data and instruction external aborts the same way
[linux-block.git] / arch / arm64 / kvm / mmu.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7#include <linux/mman.h>
8#include <linux/kvm_host.h>
9#include <linux/io.h>
10#include <linux/hugetlb.h>
11#include <linux/sched/signal.h>
12#include <trace/events/kvm.h>
13#include <asm/pgalloc.h>
14#include <asm/cacheflush.h>
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
17#include <asm/kvm_ras.h>
18#include <asm/kvm_asm.h>
19#include <asm/kvm_emulate.h>
20#include <asm/virt.h>
21
22#include "trace.h"
23
24static pgd_t *boot_hyp_pgd;
25static pgd_t *hyp_pgd;
26static pgd_t *merged_hyp_pgd;
27static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28
29static unsigned long hyp_idmap_start;
30static unsigned long hyp_idmap_end;
31static phys_addr_t hyp_idmap_vector;
32
33static unsigned long io_map_base;
34
35#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36
37#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
38#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
39
40static bool is_iomap(unsigned long flags)
41{
42 return flags & KVM_S2PTE_FLAG_IS_IOMAP;
43}
44
45static bool memslot_is_logging(struct kvm_memory_slot *memslot)
46{
47 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48}
49
50/**
51 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
52 * @kvm: pointer to kvm structure.
53 *
54 * Interface to HYP function to flush all VM TLB entries
55 */
56void kvm_flush_remote_tlbs(struct kvm *kvm)
57{
58 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
59}
60
61static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
62{
63 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
64}
65
66/*
67 * D-Cache management functions. They take the page table entries by
68 * value, as they are flushing the cache using the kernel mapping (or
69 * kmap on 32bit).
70 */
71static void kvm_flush_dcache_pte(pte_t pte)
72{
73 __kvm_flush_dcache_pte(pte);
74}
75
76static void kvm_flush_dcache_pmd(pmd_t pmd)
77{
78 __kvm_flush_dcache_pmd(pmd);
79}
80
81static void kvm_flush_dcache_pud(pud_t pud)
82{
83 __kvm_flush_dcache_pud(pud);
84}
85
86static bool kvm_is_device_pfn(unsigned long pfn)
87{
88 return !pfn_valid(pfn);
89}
90
91/**
92 * stage2_dissolve_pmd() - clear and flush huge PMD entry
93 * @kvm: pointer to kvm structure.
94 * @addr: IPA
95 * @pmd: pmd pointer for IPA
96 *
97 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
98 */
99static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
100{
101 if (!pmd_thp_or_huge(*pmd))
102 return;
103
104 pmd_clear(pmd);
105 kvm_tlb_flush_vmid_ipa(kvm, addr);
106 put_page(virt_to_page(pmd));
107}
108
109/**
110 * stage2_dissolve_pud() - clear and flush huge PUD entry
111 * @kvm: pointer to kvm structure.
112 * @addr: IPA
113 * @pud: pud pointer for IPA
114 *
115 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
116 */
117static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
118{
119 if (!stage2_pud_huge(kvm, *pudp))
120 return;
121
122 stage2_pud_clear(kvm, pudp);
123 kvm_tlb_flush_vmid_ipa(kvm, addr);
124 put_page(virt_to_page(pudp));
125}
126
127static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
128 int min, int max)
129{
130 void *page;
131
132 BUG_ON(max > KVM_NR_MEM_OBJS);
133 if (cache->nobjs >= min)
134 return 0;
135 while (cache->nobjs < max) {
136 page = (void *)__get_free_page(GFP_PGTABLE_USER);
137 if (!page)
138 return -ENOMEM;
139 cache->objects[cache->nobjs++] = page;
140 }
141 return 0;
142}
143
144static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
145{
146 while (mc->nobjs)
147 free_page((unsigned long)mc->objects[--mc->nobjs]);
148}
149
150static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
151{
152 void *p;
153
154 BUG_ON(!mc || !mc->nobjs);
155 p = mc->objects[--mc->nobjs];
156 return p;
157}
158
159static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
160{
161 p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
162 stage2_pgd_clear(kvm, pgd);
163 kvm_tlb_flush_vmid_ipa(kvm, addr);
164 stage2_p4d_free(kvm, p4d_table);
165 put_page(virt_to_page(pgd));
166}
167
168static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr)
169{
170 pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
171 stage2_p4d_clear(kvm, p4d);
172 kvm_tlb_flush_vmid_ipa(kvm, addr);
173 stage2_pud_free(kvm, pud_table);
174 put_page(virt_to_page(p4d));
175}
176
177static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
178{
179 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
180 VM_BUG_ON(stage2_pud_huge(kvm, *pud));
181 stage2_pud_clear(kvm, pud);
182 kvm_tlb_flush_vmid_ipa(kvm, addr);
183 stage2_pmd_free(kvm, pmd_table);
184 put_page(virt_to_page(pud));
185}
186
187static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
188{
189 pte_t *pte_table = pte_offset_kernel(pmd, 0);
190 VM_BUG_ON(pmd_thp_or_huge(*pmd));
191 pmd_clear(pmd);
192 kvm_tlb_flush_vmid_ipa(kvm, addr);
193 free_page((unsigned long)pte_table);
194 put_page(virt_to_page(pmd));
195}
196
197static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
198{
199 WRITE_ONCE(*ptep, new_pte);
200 dsb(ishst);
201}
202
203static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
204{
205 WRITE_ONCE(*pmdp, new_pmd);
206 dsb(ishst);
207}
208
209static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
210{
211 kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
212}
213
214static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
215{
216 WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
217 dsb(ishst);
218}
219
220static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
221{
222 WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
223 dsb(ishst);
224}
225
226static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
227{
228#ifndef __PAGETABLE_P4D_FOLDED
229 WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
230 dsb(ishst);
231#endif
232}
233
234/*
235 * Unmapping vs dcache management:
236 *
237 * If a guest maps certain memory pages as uncached, all writes will
238 * bypass the data cache and go directly to RAM. However, the CPUs
239 * can still speculate reads (not writes) and fill cache lines with
240 * data.
241 *
242 * Those cache lines will be *clean* cache lines though, so a
243 * clean+invalidate operation is equivalent to an invalidate
244 * operation, because no cache lines are marked dirty.
245 *
246 * Those clean cache lines could be filled prior to an uncached write
247 * by the guest, and the cache coherent IO subsystem would therefore
248 * end up writing old data to disk.
249 *
250 * This is why right after unmapping a page/section and invalidating
251 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
252 * the IO subsystem will never hit in the cache.
253 *
254 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
255 * we then fully enforce cacheability of RAM, no matter what the guest
256 * does.
257 */
258static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
259 phys_addr_t addr, phys_addr_t end)
260{
261 phys_addr_t start_addr = addr;
262 pte_t *pte, *start_pte;
263
264 start_pte = pte = pte_offset_kernel(pmd, addr);
265 do {
266 if (!pte_none(*pte)) {
267 pte_t old_pte = *pte;
268
269 kvm_set_pte(pte, __pte(0));
270 kvm_tlb_flush_vmid_ipa(kvm, addr);
271
272 /* No need to invalidate the cache for device mappings */
273 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
274 kvm_flush_dcache_pte(old_pte);
275
276 put_page(virt_to_page(pte));
277 }
278 } while (pte++, addr += PAGE_SIZE, addr != end);
279
280 if (stage2_pte_table_empty(kvm, start_pte))
281 clear_stage2_pmd_entry(kvm, pmd, start_addr);
282}
283
284static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
285 phys_addr_t addr, phys_addr_t end)
286{
287 phys_addr_t next, start_addr = addr;
288 pmd_t *pmd, *start_pmd;
289
290 start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
291 do {
292 next = stage2_pmd_addr_end(kvm, addr, end);
293 if (!pmd_none(*pmd)) {
294 if (pmd_thp_or_huge(*pmd)) {
295 pmd_t old_pmd = *pmd;
296
297 pmd_clear(pmd);
298 kvm_tlb_flush_vmid_ipa(kvm, addr);
299
300 kvm_flush_dcache_pmd(old_pmd);
301
302 put_page(virt_to_page(pmd));
303 } else {
304 unmap_stage2_ptes(kvm, pmd, addr, next);
305 }
306 }
307 } while (pmd++, addr = next, addr != end);
308
309 if (stage2_pmd_table_empty(kvm, start_pmd))
310 clear_stage2_pud_entry(kvm, pud, start_addr);
311}
312
313static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
314 phys_addr_t addr, phys_addr_t end)
315{
316 phys_addr_t next, start_addr = addr;
317 pud_t *pud, *start_pud;
318
319 start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
320 do {
321 next = stage2_pud_addr_end(kvm, addr, end);
322 if (!stage2_pud_none(kvm, *pud)) {
323 if (stage2_pud_huge(kvm, *pud)) {
324 pud_t old_pud = *pud;
325
326 stage2_pud_clear(kvm, pud);
327 kvm_tlb_flush_vmid_ipa(kvm, addr);
328 kvm_flush_dcache_pud(old_pud);
329 put_page(virt_to_page(pud));
330 } else {
331 unmap_stage2_pmds(kvm, pud, addr, next);
332 }
333 }
334 } while (pud++, addr = next, addr != end);
335
336 if (stage2_pud_table_empty(kvm, start_pud))
337 clear_stage2_p4d_entry(kvm, p4d, start_addr);
338}
339
340static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
341 phys_addr_t addr, phys_addr_t end)
342{
343 phys_addr_t next, start_addr = addr;
344 p4d_t *p4d, *start_p4d;
345
346 start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
347 do {
348 next = stage2_p4d_addr_end(kvm, addr, end);
349 if (!stage2_p4d_none(kvm, *p4d))
350 unmap_stage2_puds(kvm, p4d, addr, next);
351 } while (p4d++, addr = next, addr != end);
352
353 if (stage2_p4d_table_empty(kvm, start_p4d))
354 clear_stage2_pgd_entry(kvm, pgd, start_addr);
355}
356
357/**
358 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
359 * @kvm: The VM pointer
360 * @start: The intermediate physical base address of the range to unmap
361 * @size: The size of the area to unmap
362 *
363 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
364 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
365 * destroying the VM), otherwise another faulting VCPU may come in and mess
366 * with things behind our backs.
367 */
368static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
369{
370 pgd_t *pgd;
371 phys_addr_t addr = start, end = start + size;
372 phys_addr_t next;
373
374 assert_spin_locked(&kvm->mmu_lock);
375 WARN_ON(size & ~PAGE_MASK);
376
377 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
378 do {
379 /*
380 * Make sure the page table is still active, as another thread
381 * could have possibly freed the page table, while we released
382 * the lock.
383 */
384 if (!READ_ONCE(kvm->arch.pgd))
385 break;
386 next = stage2_pgd_addr_end(kvm, addr, end);
387 if (!stage2_pgd_none(kvm, *pgd))
388 unmap_stage2_p4ds(kvm, pgd, addr, next);
389 /*
390 * If the range is too large, release the kvm->mmu_lock
391 * to prevent starvation and lockup detector warnings.
392 */
393 if (next != end)
394 cond_resched_lock(&kvm->mmu_lock);
395 } while (pgd++, addr = next, addr != end);
396}
397
398static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
399 phys_addr_t addr, phys_addr_t end)
400{
401 pte_t *pte;
402
403 pte = pte_offset_kernel(pmd, addr);
404 do {
405 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
406 kvm_flush_dcache_pte(*pte);
407 } while (pte++, addr += PAGE_SIZE, addr != end);
408}
409
410static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
411 phys_addr_t addr, phys_addr_t end)
412{
413 pmd_t *pmd;
414 phys_addr_t next;
415
416 pmd = stage2_pmd_offset(kvm, pud, addr);
417 do {
418 next = stage2_pmd_addr_end(kvm, addr, end);
419 if (!pmd_none(*pmd)) {
420 if (pmd_thp_or_huge(*pmd))
421 kvm_flush_dcache_pmd(*pmd);
422 else
423 stage2_flush_ptes(kvm, pmd, addr, next);
424 }
425 } while (pmd++, addr = next, addr != end);
426}
427
428static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
429 phys_addr_t addr, phys_addr_t end)
430{
431 pud_t *pud;
432 phys_addr_t next;
433
434 pud = stage2_pud_offset(kvm, p4d, addr);
435 do {
436 next = stage2_pud_addr_end(kvm, addr, end);
437 if (!stage2_pud_none(kvm, *pud)) {
438 if (stage2_pud_huge(kvm, *pud))
439 kvm_flush_dcache_pud(*pud);
440 else
441 stage2_flush_pmds(kvm, pud, addr, next);
442 }
443 } while (pud++, addr = next, addr != end);
444}
445
446static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
447 phys_addr_t addr, phys_addr_t end)
448{
449 p4d_t *p4d;
450 phys_addr_t next;
451
452 p4d = stage2_p4d_offset(kvm, pgd, addr);
453 do {
454 next = stage2_p4d_addr_end(kvm, addr, end);
455 if (!stage2_p4d_none(kvm, *p4d))
456 stage2_flush_puds(kvm, p4d, addr, next);
457 } while (p4d++, addr = next, addr != end);
458}
459
460static void stage2_flush_memslot(struct kvm *kvm,
461 struct kvm_memory_slot *memslot)
462{
463 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
464 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
465 phys_addr_t next;
466 pgd_t *pgd;
467
468 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
469 do {
470 next = stage2_pgd_addr_end(kvm, addr, end);
471 if (!stage2_pgd_none(kvm, *pgd))
472 stage2_flush_p4ds(kvm, pgd, addr, next);
473
474 if (next != end)
475 cond_resched_lock(&kvm->mmu_lock);
476 } while (pgd++, addr = next, addr != end);
477}
478
479/**
480 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
481 * @kvm: The struct kvm pointer
482 *
483 * Go through the stage 2 page tables and invalidate any cache lines
484 * backing memory already mapped to the VM.
485 */
486static void stage2_flush_vm(struct kvm *kvm)
487{
488 struct kvm_memslots *slots;
489 struct kvm_memory_slot *memslot;
490 int idx;
491
492 idx = srcu_read_lock(&kvm->srcu);
493 spin_lock(&kvm->mmu_lock);
494
495 slots = kvm_memslots(kvm);
496 kvm_for_each_memslot(memslot, slots)
497 stage2_flush_memslot(kvm, memslot);
498
499 spin_unlock(&kvm->mmu_lock);
500 srcu_read_unlock(&kvm->srcu, idx);
501}
502
503static void clear_hyp_pgd_entry(pgd_t *pgd)
504{
505 p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
506 pgd_clear(pgd);
507 p4d_free(NULL, p4d_table);
508 put_page(virt_to_page(pgd));
509}
510
511static void clear_hyp_p4d_entry(p4d_t *p4d)
512{
513 pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
514 VM_BUG_ON(p4d_huge(*p4d));
515 p4d_clear(p4d);
516 pud_free(NULL, pud_table);
517 put_page(virt_to_page(p4d));
518}
519
520static void clear_hyp_pud_entry(pud_t *pud)
521{
522 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
523 VM_BUG_ON(pud_huge(*pud));
524 pud_clear(pud);
525 pmd_free(NULL, pmd_table);
526 put_page(virt_to_page(pud));
527}
528
529static void clear_hyp_pmd_entry(pmd_t *pmd)
530{
531 pte_t *pte_table = pte_offset_kernel(pmd, 0);
532 VM_BUG_ON(pmd_thp_or_huge(*pmd));
533 pmd_clear(pmd);
534 pte_free_kernel(NULL, pte_table);
535 put_page(virt_to_page(pmd));
536}
537
538static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
539{
540 pte_t *pte, *start_pte;
541
542 start_pte = pte = pte_offset_kernel(pmd, addr);
543 do {
544 if (!pte_none(*pte)) {
545 kvm_set_pte(pte, __pte(0));
546 put_page(virt_to_page(pte));
547 }
548 } while (pte++, addr += PAGE_SIZE, addr != end);
549
550 if (hyp_pte_table_empty(start_pte))
551 clear_hyp_pmd_entry(pmd);
552}
553
554static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
555{
556 phys_addr_t next;
557 pmd_t *pmd, *start_pmd;
558
559 start_pmd = pmd = pmd_offset(pud, addr);
560 do {
561 next = pmd_addr_end(addr, end);
562 /* Hyp doesn't use huge pmds */
563 if (!pmd_none(*pmd))
564 unmap_hyp_ptes(pmd, addr, next);
565 } while (pmd++, addr = next, addr != end);
566
567 if (hyp_pmd_table_empty(start_pmd))
568 clear_hyp_pud_entry(pud);
569}
570
571static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
572{
573 phys_addr_t next;
574 pud_t *pud, *start_pud;
575
576 start_pud = pud = pud_offset(p4d, addr);
577 do {
578 next = pud_addr_end(addr, end);
579 /* Hyp doesn't use huge puds */
580 if (!pud_none(*pud))
581 unmap_hyp_pmds(pud, addr, next);
582 } while (pud++, addr = next, addr != end);
583
584 if (hyp_pud_table_empty(start_pud))
585 clear_hyp_p4d_entry(p4d);
586}
587
588static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
589{
590 phys_addr_t next;
591 p4d_t *p4d, *start_p4d;
592
593 start_p4d = p4d = p4d_offset(pgd, addr);
594 do {
595 next = p4d_addr_end(addr, end);
596 /* Hyp doesn't use huge p4ds */
597 if (!p4d_none(*p4d))
598 unmap_hyp_puds(p4d, addr, next);
599 } while (p4d++, addr = next, addr != end);
600
601 if (hyp_p4d_table_empty(start_p4d))
602 clear_hyp_pgd_entry(pgd);
603}
604
605static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
606{
607 return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
608}
609
610static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
611 phys_addr_t start, u64 size)
612{
613 pgd_t *pgd;
614 phys_addr_t addr = start, end = start + size;
615 phys_addr_t next;
616
617 /*
618 * We don't unmap anything from HYP, except at the hyp tear down.
619 * Hence, we don't have to invalidate the TLBs here.
620 */
621 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
622 do {
623 next = pgd_addr_end(addr, end);
624 if (!pgd_none(*pgd))
625 unmap_hyp_p4ds(pgd, addr, next);
626 } while (pgd++, addr = next, addr != end);
627}
628
629static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
630{
631 __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
632}
633
634static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
635{
636 __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
637}
638
639/**
640 * free_hyp_pgds - free Hyp-mode page tables
641 *
642 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
643 * therefore contains either mappings in the kernel memory area (above
644 * PAGE_OFFSET), or device mappings in the idmap range.
645 *
646 * boot_hyp_pgd should only map the idmap range, and is only used in
647 * the extended idmap case.
648 */
649void free_hyp_pgds(void)
650{
651 pgd_t *id_pgd;
652
653 mutex_lock(&kvm_hyp_pgd_mutex);
654
655 id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
656
657 if (id_pgd) {
658 /* In case we never called hyp_mmu_init() */
659 if (!io_map_base)
660 io_map_base = hyp_idmap_start;
661 unmap_hyp_idmap_range(id_pgd, io_map_base,
662 hyp_idmap_start + PAGE_SIZE - io_map_base);
663 }
664
665 if (boot_hyp_pgd) {
666 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
667 boot_hyp_pgd = NULL;
668 }
669
670 if (hyp_pgd) {
671 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
672 (uintptr_t)high_memory - PAGE_OFFSET);
673
674 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
675 hyp_pgd = NULL;
676 }
677 if (merged_hyp_pgd) {
678 clear_page(merged_hyp_pgd);
679 free_page((unsigned long)merged_hyp_pgd);
680 merged_hyp_pgd = NULL;
681 }
682
683 mutex_unlock(&kvm_hyp_pgd_mutex);
684}
685
686static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
687 unsigned long end, unsigned long pfn,
688 pgprot_t prot)
689{
690 pte_t *pte;
691 unsigned long addr;
692
693 addr = start;
694 do {
695 pte = pte_offset_kernel(pmd, addr);
696 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
697 get_page(virt_to_page(pte));
698 pfn++;
699 } while (addr += PAGE_SIZE, addr != end);
700}
701
702static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
703 unsigned long end, unsigned long pfn,
704 pgprot_t prot)
705{
706 pmd_t *pmd;
707 pte_t *pte;
708 unsigned long addr, next;
709
710 addr = start;
711 do {
712 pmd = pmd_offset(pud, addr);
713
714 BUG_ON(pmd_sect(*pmd));
715
716 if (pmd_none(*pmd)) {
717 pte = pte_alloc_one_kernel(NULL);
718 if (!pte) {
719 kvm_err("Cannot allocate Hyp pte\n");
720 return -ENOMEM;
721 }
722 kvm_pmd_populate(pmd, pte);
723 get_page(virt_to_page(pmd));
724 }
725
726 next = pmd_addr_end(addr, end);
727
728 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
729 pfn += (next - addr) >> PAGE_SHIFT;
730 } while (addr = next, addr != end);
731
732 return 0;
733}
734
735static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
736 unsigned long end, unsigned long pfn,
737 pgprot_t prot)
738{
739 pud_t *pud;
740 pmd_t *pmd;
741 unsigned long addr, next;
742 int ret;
743
744 addr = start;
745 do {
746 pud = pud_offset(p4d, addr);
747
748 if (pud_none_or_clear_bad(pud)) {
749 pmd = pmd_alloc_one(NULL, addr);
750 if (!pmd) {
751 kvm_err("Cannot allocate Hyp pmd\n");
752 return -ENOMEM;
753 }
754 kvm_pud_populate(pud, pmd);
755 get_page(virt_to_page(pud));
756 }
757
758 next = pud_addr_end(addr, end);
759 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
760 if (ret)
761 return ret;
762 pfn += (next - addr) >> PAGE_SHIFT;
763 } while (addr = next, addr != end);
764
765 return 0;
766}
767
768static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
769 unsigned long end, unsigned long pfn,
770 pgprot_t prot)
771{
772 p4d_t *p4d;
773 pud_t *pud;
774 unsigned long addr, next;
775 int ret;
776
777 addr = start;
778 do {
779 p4d = p4d_offset(pgd, addr);
780
781 if (p4d_none(*p4d)) {
782 pud = pud_alloc_one(NULL, addr);
783 if (!pud) {
784 kvm_err("Cannot allocate Hyp pud\n");
785 return -ENOMEM;
786 }
787 kvm_p4d_populate(p4d, pud);
788 get_page(virt_to_page(p4d));
789 }
790
791 next = p4d_addr_end(addr, end);
792 ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
793 if (ret)
794 return ret;
795 pfn += (next - addr) >> PAGE_SHIFT;
796 } while (addr = next, addr != end);
797
798 return 0;
799}
800
801static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
802 unsigned long start, unsigned long end,
803 unsigned long pfn, pgprot_t prot)
804{
805 pgd_t *pgd;
806 p4d_t *p4d;
807 unsigned long addr, next;
808 int err = 0;
809
810 mutex_lock(&kvm_hyp_pgd_mutex);
811 addr = start & PAGE_MASK;
812 end = PAGE_ALIGN(end);
813 do {
814 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
815
816 if (pgd_none(*pgd)) {
817 p4d = p4d_alloc_one(NULL, addr);
818 if (!p4d) {
819 kvm_err("Cannot allocate Hyp p4d\n");
820 err = -ENOMEM;
821 goto out;
822 }
823 kvm_pgd_populate(pgd, p4d);
824 get_page(virt_to_page(pgd));
825 }
826
827 next = pgd_addr_end(addr, end);
828 err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
829 if (err)
830 goto out;
831 pfn += (next - addr) >> PAGE_SHIFT;
832 } while (addr = next, addr != end);
833out:
834 mutex_unlock(&kvm_hyp_pgd_mutex);
835 return err;
836}
837
838static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
839{
840 if (!is_vmalloc_addr(kaddr)) {
841 BUG_ON(!virt_addr_valid(kaddr));
842 return __pa(kaddr);
843 } else {
844 return page_to_phys(vmalloc_to_page(kaddr)) +
845 offset_in_page(kaddr);
846 }
847}
848
849/**
850 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
851 * @from: The virtual kernel start address of the range
852 * @to: The virtual kernel end address of the range (exclusive)
853 * @prot: The protection to be applied to this range
854 *
855 * The same virtual address as the kernel virtual address is also used
856 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
857 * physical pages.
858 */
859int create_hyp_mappings(void *from, void *to, pgprot_t prot)
860{
861 phys_addr_t phys_addr;
862 unsigned long virt_addr;
863 unsigned long start = kern_hyp_va((unsigned long)from);
864 unsigned long end = kern_hyp_va((unsigned long)to);
865
866 if (is_kernel_in_hyp_mode())
867 return 0;
868
869 start = start & PAGE_MASK;
870 end = PAGE_ALIGN(end);
871
872 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
873 int err;
874
875 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
876 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
877 virt_addr, virt_addr + PAGE_SIZE,
878 __phys_to_pfn(phys_addr),
879 prot);
880 if (err)
881 return err;
882 }
883
884 return 0;
885}
886
887static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
888 unsigned long *haddr, pgprot_t prot)
889{
890 pgd_t *pgd = hyp_pgd;
891 unsigned long base;
892 int ret = 0;
893
894 mutex_lock(&kvm_hyp_pgd_mutex);
895
896 /*
897 * This assumes that we have enough space below the idmap
898 * page to allocate our VAs. If not, the check below will
899 * kick. A potential alternative would be to detect that
900 * overflow and switch to an allocation above the idmap.
901 *
902 * The allocated size is always a multiple of PAGE_SIZE.
903 */
904 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
905 base = io_map_base - size;
906
907 /*
908 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
909 * allocating the new area, as it would indicate we've
910 * overflowed the idmap/IO address range.
911 */
912 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
913 ret = -ENOMEM;
914 else
915 io_map_base = base;
916
917 mutex_unlock(&kvm_hyp_pgd_mutex);
918
919 if (ret)
920 goto out;
921
922 if (__kvm_cpu_uses_extended_idmap())
923 pgd = boot_hyp_pgd;
924
925 ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
926 base, base + size,
927 __phys_to_pfn(phys_addr), prot);
928 if (ret)
929 goto out;
930
931 *haddr = base + offset_in_page(phys_addr);
932
933out:
934 return ret;
935}
936
937/**
938 * create_hyp_io_mappings - Map IO into both kernel and HYP
939 * @phys_addr: The physical start address which gets mapped
940 * @size: Size of the region being mapped
941 * @kaddr: Kernel VA for this mapping
942 * @haddr: HYP VA for this mapping
943 */
944int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
945 void __iomem **kaddr,
946 void __iomem **haddr)
947{
948 unsigned long addr;
949 int ret;
950
951 *kaddr = ioremap(phys_addr, size);
952 if (!*kaddr)
953 return -ENOMEM;
954
955 if (is_kernel_in_hyp_mode()) {
956 *haddr = *kaddr;
957 return 0;
958 }
959
960 ret = __create_hyp_private_mapping(phys_addr, size,
961 &addr, PAGE_HYP_DEVICE);
962 if (ret) {
963 iounmap(*kaddr);
964 *kaddr = NULL;
965 *haddr = NULL;
966 return ret;
967 }
968
969 *haddr = (void __iomem *)addr;
970 return 0;
971}
972
973/**
974 * create_hyp_exec_mappings - Map an executable range into HYP
975 * @phys_addr: The physical start address which gets mapped
976 * @size: Size of the region being mapped
977 * @haddr: HYP VA for this mapping
978 */
979int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
980 void **haddr)
981{
982 unsigned long addr;
983 int ret;
984
985 BUG_ON(is_kernel_in_hyp_mode());
986
987 ret = __create_hyp_private_mapping(phys_addr, size,
988 &addr, PAGE_HYP_EXEC);
989 if (ret) {
990 *haddr = NULL;
991 return ret;
992 }
993
994 *haddr = (void *)addr;
995 return 0;
996}
997
998/**
999 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
1000 * @kvm: The KVM struct pointer for the VM.
1001 *
1002 * Allocates only the stage-2 HW PGD level table(s) of size defined by
1003 * stage2_pgd_size(kvm).
1004 *
1005 * Note we don't need locking here as this is only called when the VM is
1006 * created, which can only be done once.
1007 */
1008int kvm_alloc_stage2_pgd(struct kvm *kvm)
1009{
1010 phys_addr_t pgd_phys;
1011 pgd_t *pgd;
1012
1013 if (kvm->arch.pgd != NULL) {
1014 kvm_err("kvm_arch already initialized?\n");
1015 return -EINVAL;
1016 }
1017
1018 /* Allocate the HW PGD, making sure that each page gets its own refcount */
1019 pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
1020 if (!pgd)
1021 return -ENOMEM;
1022
1023 pgd_phys = virt_to_phys(pgd);
1024 if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
1025 return -EINVAL;
1026
1027 kvm->arch.pgd = pgd;
1028 kvm->arch.pgd_phys = pgd_phys;
1029 return 0;
1030}
1031
1032static void stage2_unmap_memslot(struct kvm *kvm,
1033 struct kvm_memory_slot *memslot)
1034{
1035 hva_t hva = memslot->userspace_addr;
1036 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1037 phys_addr_t size = PAGE_SIZE * memslot->npages;
1038 hva_t reg_end = hva + size;
1039
1040 /*
1041 * A memory region could potentially cover multiple VMAs, and any holes
1042 * between them, so iterate over all of them to find out if we should
1043 * unmap any of them.
1044 *
1045 * +--------------------------------------------+
1046 * +---------------+----------------+ +----------------+
1047 * | : VMA 1 | VMA 2 | | VMA 3 : |
1048 * +---------------+----------------+ +----------------+
1049 * | memory region |
1050 * +--------------------------------------------+
1051 */
1052 do {
1053 struct vm_area_struct *vma = find_vma(current->mm, hva);
1054 hva_t vm_start, vm_end;
1055
1056 if (!vma || vma->vm_start >= reg_end)
1057 break;
1058
1059 /*
1060 * Take the intersection of this VMA with the memory region
1061 */
1062 vm_start = max(hva, vma->vm_start);
1063 vm_end = min(reg_end, vma->vm_end);
1064
1065 if (!(vma->vm_flags & VM_PFNMAP)) {
1066 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1067 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
1068 }
1069 hva = vm_end;
1070 } while (hva < reg_end);
1071}
1072
1073/**
1074 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1075 * @kvm: The struct kvm pointer
1076 *
1077 * Go through the memregions and unmap any regular RAM
1078 * backing memory already mapped to the VM.
1079 */
1080void stage2_unmap_vm(struct kvm *kvm)
1081{
1082 struct kvm_memslots *slots;
1083 struct kvm_memory_slot *memslot;
1084 int idx;
1085
1086 idx = srcu_read_lock(&kvm->srcu);
1087 mmap_read_lock(current->mm);
1088 spin_lock(&kvm->mmu_lock);
1089
1090 slots = kvm_memslots(kvm);
1091 kvm_for_each_memslot(memslot, slots)
1092 stage2_unmap_memslot(kvm, memslot);
1093
1094 spin_unlock(&kvm->mmu_lock);
1095 mmap_read_unlock(current->mm);
1096 srcu_read_unlock(&kvm->srcu, idx);
1097}
1098
1099/**
1100 * kvm_free_stage2_pgd - free all stage-2 tables
1101 * @kvm: The KVM struct pointer for the VM.
1102 *
1103 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
1104 * underlying level-2 and level-3 tables before freeing the actual level-1 table
1105 * and setting the struct pointer to NULL.
1106 */
1107void kvm_free_stage2_pgd(struct kvm *kvm)
1108{
1109 void *pgd = NULL;
1110
1111 spin_lock(&kvm->mmu_lock);
1112 if (kvm->arch.pgd) {
1113 unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1114 pgd = READ_ONCE(kvm->arch.pgd);
1115 kvm->arch.pgd = NULL;
1116 kvm->arch.pgd_phys = 0;
1117 }
1118 spin_unlock(&kvm->mmu_lock);
1119
1120 /* Free the HW pgd, one page at a time */
1121 if (pgd)
1122 free_pages_exact(pgd, stage2_pgd_size(kvm));
1123}
1124
1125static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1126 phys_addr_t addr)
1127{
1128 pgd_t *pgd;
1129 p4d_t *p4d;
1130
1131 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1132 if (stage2_pgd_none(kvm, *pgd)) {
1133 if (!cache)
1134 return NULL;
1135 p4d = mmu_memory_cache_alloc(cache);
1136 stage2_pgd_populate(kvm, pgd, p4d);
1137 get_page(virt_to_page(pgd));
1138 }
1139
1140 return stage2_p4d_offset(kvm, pgd, addr);
1141}
1142
1143static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1144 phys_addr_t addr)
1145{
1146 p4d_t *p4d;
1147 pud_t *pud;
1148
1149 p4d = stage2_get_p4d(kvm, cache, addr);
1150 if (stage2_p4d_none(kvm, *p4d)) {
1151 if (!cache)
1152 return NULL;
1153 pud = mmu_memory_cache_alloc(cache);
1154 stage2_p4d_populate(kvm, p4d, pud);
1155 get_page(virt_to_page(p4d));
1156 }
1157
1158 return stage2_pud_offset(kvm, p4d, addr);
1159}
1160
1161static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1162 phys_addr_t addr)
1163{
1164 pud_t *pud;
1165 pmd_t *pmd;
1166
1167 pud = stage2_get_pud(kvm, cache, addr);
1168 if (!pud || stage2_pud_huge(kvm, *pud))
1169 return NULL;
1170
1171 if (stage2_pud_none(kvm, *pud)) {
1172 if (!cache)
1173 return NULL;
1174 pmd = mmu_memory_cache_alloc(cache);
1175 stage2_pud_populate(kvm, pud, pmd);
1176 get_page(virt_to_page(pud));
1177 }
1178
1179 return stage2_pmd_offset(kvm, pud, addr);
1180}
1181
1182static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1183 *cache, phys_addr_t addr, const pmd_t *new_pmd)
1184{
1185 pmd_t *pmd, old_pmd;
1186
1187retry:
1188 pmd = stage2_get_pmd(kvm, cache, addr);
1189 VM_BUG_ON(!pmd);
1190
1191 old_pmd = *pmd;
1192 /*
1193 * Multiple vcpus faulting on the same PMD entry, can
1194 * lead to them sequentially updating the PMD with the
1195 * same value. Following the break-before-make
1196 * (pmd_clear() followed by tlb_flush()) process can
1197 * hinder forward progress due to refaults generated
1198 * on missing translations.
1199 *
1200 * Skip updating the page table if the entry is
1201 * unchanged.
1202 */
1203 if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1204 return 0;
1205
1206 if (pmd_present(old_pmd)) {
1207 /*
1208 * If we already have PTE level mapping for this block,
1209 * we must unmap it to avoid inconsistent TLB state and
1210 * leaking the table page. We could end up in this situation
1211 * if the memory slot was marked for dirty logging and was
1212 * reverted, leaving PTE level mappings for the pages accessed
1213 * during the period. So, unmap the PTE level mapping for this
1214 * block and retry, as we could have released the upper level
1215 * table in the process.
1216 *
1217 * Normal THP split/merge follows mmu_notifier callbacks and do
1218 * get handled accordingly.
1219 */
1220 if (!pmd_thp_or_huge(old_pmd)) {
1221 unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1222 goto retry;
1223 }
1224 /*
1225 * Mapping in huge pages should only happen through a
1226 * fault. If a page is merged into a transparent huge
1227 * page, the individual subpages of that huge page
1228 * should be unmapped through MMU notifiers before we
1229 * get here.
1230 *
1231 * Merging of CompoundPages is not supported; they
1232 * should become splitting first, unmapped, merged,
1233 * and mapped back in on-demand.
1234 */
1235 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1236 pmd_clear(pmd);
1237 kvm_tlb_flush_vmid_ipa(kvm, addr);
1238 } else {
1239 get_page(virt_to_page(pmd));
1240 }
1241
1242 kvm_set_pmd(pmd, *new_pmd);
1243 return 0;
1244}
1245
1246static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1247 phys_addr_t addr, const pud_t *new_pudp)
1248{
1249 pud_t *pudp, old_pud;
1250
1251retry:
1252 pudp = stage2_get_pud(kvm, cache, addr);
1253 VM_BUG_ON(!pudp);
1254
1255 old_pud = *pudp;
1256
1257 /*
1258 * A large number of vcpus faulting on the same stage 2 entry,
1259 * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1260 * Skip updating the page tables if there is no change.
1261 */
1262 if (pud_val(old_pud) == pud_val(*new_pudp))
1263 return 0;
1264
1265 if (stage2_pud_present(kvm, old_pud)) {
1266 /*
1267 * If we already have table level mapping for this block, unmap
1268 * the range for this block and retry.
1269 */
1270 if (!stage2_pud_huge(kvm, old_pud)) {
1271 unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1272 goto retry;
1273 }
1274
1275 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1276 stage2_pud_clear(kvm, pudp);
1277 kvm_tlb_flush_vmid_ipa(kvm, addr);
1278 } else {
1279 get_page(virt_to_page(pudp));
1280 }
1281
1282 kvm_set_pud(pudp, *new_pudp);
1283 return 0;
1284}
1285
1286/*
1287 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1288 * true if a valid and present leaf-entry is found. A pointer to the
1289 * leaf-entry is returned in the appropriate level variable - pudpp,
1290 * pmdpp, ptepp.
1291 */
1292static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1293 pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1294{
1295 pud_t *pudp;
1296 pmd_t *pmdp;
1297 pte_t *ptep;
1298
1299 *pudpp = NULL;
1300 *pmdpp = NULL;
1301 *ptepp = NULL;
1302
1303 pudp = stage2_get_pud(kvm, NULL, addr);
1304 if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1305 return false;
1306
1307 if (stage2_pud_huge(kvm, *pudp)) {
1308 *pudpp = pudp;
1309 return true;
1310 }
1311
1312 pmdp = stage2_pmd_offset(kvm, pudp, addr);
1313 if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1314 return false;
1315
1316 if (pmd_thp_or_huge(*pmdp)) {
1317 *pmdpp = pmdp;
1318 return true;
1319 }
1320
1321 ptep = pte_offset_kernel(pmdp, addr);
1322 if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1323 return false;
1324
1325 *ptepp = ptep;
1326 return true;
1327}
1328
1329static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1330{
1331 pud_t *pudp;
1332 pmd_t *pmdp;
1333 pte_t *ptep;
1334 bool found;
1335
1336 found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1337 if (!found)
1338 return false;
1339
1340 if (pudp)
1341 return kvm_s2pud_exec(pudp);
1342 else if (pmdp)
1343 return kvm_s2pmd_exec(pmdp);
1344 else
1345 return kvm_s2pte_exec(ptep);
1346}
1347
1348static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1349 phys_addr_t addr, const pte_t *new_pte,
1350 unsigned long flags)
1351{
1352 pud_t *pud;
1353 pmd_t *pmd;
1354 pte_t *pte, old_pte;
1355 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1356 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1357
1358 VM_BUG_ON(logging_active && !cache);
1359
1360 /* Create stage-2 page table mapping - Levels 0 and 1 */
1361 pud = stage2_get_pud(kvm, cache, addr);
1362 if (!pud) {
1363 /*
1364 * Ignore calls from kvm_set_spte_hva for unallocated
1365 * address ranges.
1366 */
1367 return 0;
1368 }
1369
1370 /*
1371 * While dirty page logging - dissolve huge PUD, then continue
1372 * on to allocate page.
1373 */
1374 if (logging_active)
1375 stage2_dissolve_pud(kvm, addr, pud);
1376
1377 if (stage2_pud_none(kvm, *pud)) {
1378 if (!cache)
1379 return 0; /* ignore calls from kvm_set_spte_hva */
1380 pmd = mmu_memory_cache_alloc(cache);
1381 stage2_pud_populate(kvm, pud, pmd);
1382 get_page(virt_to_page(pud));
1383 }
1384
1385 pmd = stage2_pmd_offset(kvm, pud, addr);
1386 if (!pmd) {
1387 /*
1388 * Ignore calls from kvm_set_spte_hva for unallocated
1389 * address ranges.
1390 */
1391 return 0;
1392 }
1393
1394 /*
1395 * While dirty page logging - dissolve huge PMD, then continue on to
1396 * allocate page.
1397 */
1398 if (logging_active)
1399 stage2_dissolve_pmd(kvm, addr, pmd);
1400
1401 /* Create stage-2 page mappings - Level 2 */
1402 if (pmd_none(*pmd)) {
1403 if (!cache)
1404 return 0; /* ignore calls from kvm_set_spte_hva */
1405 pte = mmu_memory_cache_alloc(cache);
1406 kvm_pmd_populate(pmd, pte);
1407 get_page(virt_to_page(pmd));
1408 }
1409
1410 pte = pte_offset_kernel(pmd, addr);
1411
1412 if (iomap && pte_present(*pte))
1413 return -EFAULT;
1414
1415 /* Create 2nd stage page table mapping - Level 3 */
1416 old_pte = *pte;
1417 if (pte_present(old_pte)) {
1418 /* Skip page table update if there is no change */
1419 if (pte_val(old_pte) == pte_val(*new_pte))
1420 return 0;
1421
1422 kvm_set_pte(pte, __pte(0));
1423 kvm_tlb_flush_vmid_ipa(kvm, addr);
1424 } else {
1425 get_page(virt_to_page(pte));
1426 }
1427
1428 kvm_set_pte(pte, *new_pte);
1429 return 0;
1430}
1431
1432#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1433static int stage2_ptep_test_and_clear_young(pte_t *pte)
1434{
1435 if (pte_young(*pte)) {
1436 *pte = pte_mkold(*pte);
1437 return 1;
1438 }
1439 return 0;
1440}
1441#else
1442static int stage2_ptep_test_and_clear_young(pte_t *pte)
1443{
1444 return __ptep_test_and_clear_young(pte);
1445}
1446#endif
1447
1448static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1449{
1450 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1451}
1452
1453static int stage2_pudp_test_and_clear_young(pud_t *pud)
1454{
1455 return stage2_ptep_test_and_clear_young((pte_t *)pud);
1456}
1457
1458/**
1459 * kvm_phys_addr_ioremap - map a device range to guest IPA
1460 *
1461 * @kvm: The KVM pointer
1462 * @guest_ipa: The IPA at which to insert the mapping
1463 * @pa: The physical address of the device
1464 * @size: The size of the mapping
1465 */
1466int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1467 phys_addr_t pa, unsigned long size, bool writable)
1468{
1469 phys_addr_t addr, end;
1470 int ret = 0;
1471 unsigned long pfn;
1472 struct kvm_mmu_memory_cache cache = { 0, };
1473
1474 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1475 pfn = __phys_to_pfn(pa);
1476
1477 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1478 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1479
1480 if (writable)
1481 pte = kvm_s2pte_mkwrite(pte);
1482
1483 ret = mmu_topup_memory_cache(&cache,
1484 kvm_mmu_cache_min_pages(kvm),
1485 KVM_NR_MEM_OBJS);
1486 if (ret)
1487 goto out;
1488 spin_lock(&kvm->mmu_lock);
1489 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1490 KVM_S2PTE_FLAG_IS_IOMAP);
1491 spin_unlock(&kvm->mmu_lock);
1492 if (ret)
1493 goto out;
1494
1495 pfn++;
1496 }
1497
1498out:
1499 mmu_free_memory_cache(&cache);
1500 return ret;
1501}
1502
1503/**
1504 * stage2_wp_ptes - write protect PMD range
1505 * @pmd: pointer to pmd entry
1506 * @addr: range start address
1507 * @end: range end address
1508 */
1509static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1510{
1511 pte_t *pte;
1512
1513 pte = pte_offset_kernel(pmd, addr);
1514 do {
1515 if (!pte_none(*pte)) {
1516 if (!kvm_s2pte_readonly(pte))
1517 kvm_set_s2pte_readonly(pte);
1518 }
1519 } while (pte++, addr += PAGE_SIZE, addr != end);
1520}
1521
1522/**
1523 * stage2_wp_pmds - write protect PUD range
1524 * kvm: kvm instance for the VM
1525 * @pud: pointer to pud entry
1526 * @addr: range start address
1527 * @end: range end address
1528 */
1529static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1530 phys_addr_t addr, phys_addr_t end)
1531{
1532 pmd_t *pmd;
1533 phys_addr_t next;
1534
1535 pmd = stage2_pmd_offset(kvm, pud, addr);
1536
1537 do {
1538 next = stage2_pmd_addr_end(kvm, addr, end);
1539 if (!pmd_none(*pmd)) {
1540 if (pmd_thp_or_huge(*pmd)) {
1541 if (!kvm_s2pmd_readonly(pmd))
1542 kvm_set_s2pmd_readonly(pmd);
1543 } else {
1544 stage2_wp_ptes(pmd, addr, next);
1545 }
1546 }
1547 } while (pmd++, addr = next, addr != end);
1548}
1549
1550/**
1551 * stage2_wp_puds - write protect P4D range
1552 * @pgd: pointer to pgd entry
1553 * @addr: range start address
1554 * @end: range end address
1555 */
1556static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
1557 phys_addr_t addr, phys_addr_t end)
1558{
1559 pud_t *pud;
1560 phys_addr_t next;
1561
1562 pud = stage2_pud_offset(kvm, p4d, addr);
1563 do {
1564 next = stage2_pud_addr_end(kvm, addr, end);
1565 if (!stage2_pud_none(kvm, *pud)) {
1566 if (stage2_pud_huge(kvm, *pud)) {
1567 if (!kvm_s2pud_readonly(pud))
1568 kvm_set_s2pud_readonly(pud);
1569 } else {
1570 stage2_wp_pmds(kvm, pud, addr, next);
1571 }
1572 }
1573 } while (pud++, addr = next, addr != end);
1574}
1575
1576/**
1577 * stage2_wp_p4ds - write protect PGD range
1578 * @pgd: pointer to pgd entry
1579 * @addr: range start address
1580 * @end: range end address
1581 */
1582static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
1583 phys_addr_t addr, phys_addr_t end)
1584{
1585 p4d_t *p4d;
1586 phys_addr_t next;
1587
1588 p4d = stage2_p4d_offset(kvm, pgd, addr);
1589 do {
1590 next = stage2_p4d_addr_end(kvm, addr, end);
1591 if (!stage2_p4d_none(kvm, *p4d))
1592 stage2_wp_puds(kvm, p4d, addr, next);
1593 } while (p4d++, addr = next, addr != end);
1594}
1595
1596/**
1597 * stage2_wp_range() - write protect stage2 memory region range
1598 * @kvm: The KVM pointer
1599 * @addr: Start address of range
1600 * @end: End address of range
1601 */
1602static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1603{
1604 pgd_t *pgd;
1605 phys_addr_t next;
1606
1607 pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1608 do {
1609 /*
1610 * Release kvm_mmu_lock periodically if the memory region is
1611 * large. Otherwise, we may see kernel panics with
1612 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1613 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1614 * will also starve other vCPUs. We have to also make sure
1615 * that the page tables are not freed while we released
1616 * the lock.
1617 */
1618 cond_resched_lock(&kvm->mmu_lock);
1619 if (!READ_ONCE(kvm->arch.pgd))
1620 break;
1621 next = stage2_pgd_addr_end(kvm, addr, end);
1622 if (stage2_pgd_present(kvm, *pgd))
1623 stage2_wp_p4ds(kvm, pgd, addr, next);
1624 } while (pgd++, addr = next, addr != end);
1625}
1626
1627/**
1628 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1629 * @kvm: The KVM pointer
1630 * @slot: The memory slot to write protect
1631 *
1632 * Called to start logging dirty pages after memory region
1633 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1634 * all present PUD, PMD and PTEs are write protected in the memory region.
1635 * Afterwards read of dirty page log can be called.
1636 *
1637 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1638 * serializing operations for VM memory regions.
1639 */
1640void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1641{
1642 struct kvm_memslots *slots = kvm_memslots(kvm);
1643 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1644 phys_addr_t start, end;
1645
1646 if (WARN_ON_ONCE(!memslot))
1647 return;
1648
1649 start = memslot->base_gfn << PAGE_SHIFT;
1650 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1651
1652 spin_lock(&kvm->mmu_lock);
1653 stage2_wp_range(kvm, start, end);
1654 spin_unlock(&kvm->mmu_lock);
1655 kvm_flush_remote_tlbs(kvm);
1656}
1657
1658/**
1659 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1660 * @kvm: The KVM pointer
1661 * @slot: The memory slot associated with mask
1662 * @gfn_offset: The gfn offset in memory slot
1663 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1664 * slot to be write protected
1665 *
1666 * Walks bits set in mask write protects the associated pte's. Caller must
1667 * acquire kvm_mmu_lock.
1668 */
1669static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1670 struct kvm_memory_slot *slot,
1671 gfn_t gfn_offset, unsigned long mask)
1672{
1673 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1674 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1675 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1676
1677 stage2_wp_range(kvm, start, end);
1678}
1679
1680/*
1681 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1682 * dirty pages.
1683 *
1684 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1685 * enable dirty logging for them.
1686 */
1687void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1688 struct kvm_memory_slot *slot,
1689 gfn_t gfn_offset, unsigned long mask)
1690{
1691 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1692}
1693
1694static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1695{
1696 __clean_dcache_guest_page(pfn, size);
1697}
1698
1699static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1700{
1701 __invalidate_icache_guest_page(pfn, size);
1702}
1703
1704static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1705{
1706 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1707}
1708
1709static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1710 unsigned long hva,
1711 unsigned long map_size)
1712{
1713 gpa_t gpa_start;
1714 hva_t uaddr_start, uaddr_end;
1715 size_t size;
1716
1717 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1718 if (map_size == PAGE_SIZE)
1719 return true;
1720
1721 size = memslot->npages * PAGE_SIZE;
1722
1723 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1724
1725 uaddr_start = memslot->userspace_addr;
1726 uaddr_end = uaddr_start + size;
1727
1728 /*
1729 * Pages belonging to memslots that don't have the same alignment
1730 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1731 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1732 *
1733 * Consider a layout like the following:
1734 *
1735 * memslot->userspace_addr:
1736 * +-----+--------------------+--------------------+---+
1737 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1738 * +-----+--------------------+--------------------+---+
1739 *
1740 * memslot->base_gfn << PAGE_SHIFT:
1741 * +---+--------------------+--------------------+-----+
1742 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1743 * +---+--------------------+--------------------+-----+
1744 *
1745 * If we create those stage-2 blocks, we'll end up with this incorrect
1746 * mapping:
1747 * d -> f
1748 * e -> g
1749 * f -> h
1750 */
1751 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1752 return false;
1753
1754 /*
1755 * Next, let's make sure we're not trying to map anything not covered
1756 * by the memslot. This means we have to prohibit block size mappings
1757 * for the beginning and end of a non-block aligned and non-block sized
1758 * memory slot (illustrated by the head and tail parts of the
1759 * userspace view above containing pages 'abcde' and 'xyz',
1760 * respectively).
1761 *
1762 * Note that it doesn't matter if we do the check using the
1763 * userspace_addr or the base_gfn, as both are equally aligned (per
1764 * the check above) and equally sized.
1765 */
1766 return (hva & ~(map_size - 1)) >= uaddr_start &&
1767 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1768}
1769
1770/*
1771 * Check if the given hva is backed by a transparent huge page (THP) and
1772 * whether it can be mapped using block mapping in stage2. If so, adjust
1773 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1774 * supported. This will need to be updated to support other THP sizes.
1775 *
1776 * Returns the size of the mapping.
1777 */
1778static unsigned long
1779transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
1780 unsigned long hva, kvm_pfn_t *pfnp,
1781 phys_addr_t *ipap)
1782{
1783 kvm_pfn_t pfn = *pfnp;
1784
1785 /*
1786 * Make sure the adjustment is done only for THP pages. Also make
1787 * sure that the HVA and IPA are sufficiently aligned and that the
1788 * block map is contained within the memslot.
1789 */
1790 if (kvm_is_transparent_hugepage(pfn) &&
1791 fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1792 /*
1793 * The address we faulted on is backed by a transparent huge
1794 * page. However, because we map the compound huge page and
1795 * not the individual tail page, we need to transfer the
1796 * refcount to the head page. We have to be careful that the
1797 * THP doesn't start to split while we are adjusting the
1798 * refcounts.
1799 *
1800 * We are sure this doesn't happen, because mmu_notifier_retry
1801 * was successful and we are holding the mmu_lock, so if this
1802 * THP is trying to split, it will be blocked in the mmu
1803 * notifier before touching any of the pages, specifically
1804 * before being able to call __split_huge_page_refcount().
1805 *
1806 * We can therefore safely transfer the refcount from PG_tail
1807 * to PG_head and switch the pfn from a tail page to the head
1808 * page accordingly.
1809 */
1810 *ipap &= PMD_MASK;
1811 kvm_release_pfn_clean(pfn);
1812 pfn &= ~(PTRS_PER_PMD - 1);
1813 kvm_get_pfn(pfn);
1814 *pfnp = pfn;
1815
1816 return PMD_SIZE;
1817 }
1818
1819 /* Use page mapping if we cannot use block mapping. */
1820 return PAGE_SIZE;
1821}
1822
1823static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1824 struct kvm_memory_slot *memslot, unsigned long hva,
1825 unsigned long fault_status)
1826{
1827 int ret;
1828 bool write_fault, writable, force_pte = false;
1829 bool exec_fault, needs_exec;
1830 unsigned long mmu_seq;
1831 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1832 struct kvm *kvm = vcpu->kvm;
1833 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1834 struct vm_area_struct *vma;
1835 short vma_shift;
1836 kvm_pfn_t pfn;
1837 pgprot_t mem_type = PAGE_S2;
1838 bool logging_active = memslot_is_logging(memslot);
1839 unsigned long vma_pagesize, flags = 0;
1840
1841 write_fault = kvm_is_write_fault(vcpu);
1842 exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1843 VM_BUG_ON(write_fault && exec_fault);
1844
1845 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1846 kvm_err("Unexpected L2 read permission error\n");
1847 return -EFAULT;
1848 }
1849
1850 /* Let's check if we will get back a huge page backed by hugetlbfs */
1851 mmap_read_lock(current->mm);
1852 vma = find_vma_intersection(current->mm, hva, hva + 1);
1853 if (unlikely(!vma)) {
1854 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1855 mmap_read_unlock(current->mm);
1856 return -EFAULT;
1857 }
1858
1859 if (is_vm_hugetlb_page(vma))
1860 vma_shift = huge_page_shift(hstate_vma(vma));
1861 else
1862 vma_shift = PAGE_SHIFT;
1863
1864 vma_pagesize = 1ULL << vma_shift;
1865 if (logging_active ||
1866 (vma->vm_flags & VM_PFNMAP) ||
1867 !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1868 force_pte = true;
1869 vma_pagesize = PAGE_SIZE;
1870 }
1871
1872 /*
1873 * The stage2 has a minimum of 2 level table (For arm64 see
1874 * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1875 * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1876 * As for PUD huge maps, we must make sure that we have at least
1877 * 3 levels, i.e, PMD is not folded.
1878 */
1879 if (vma_pagesize == PMD_SIZE ||
1880 (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1881 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1882 mmap_read_unlock(current->mm);
1883
1884 /* We need minimum second+third level pages */
1885 ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1886 KVM_NR_MEM_OBJS);
1887 if (ret)
1888 return ret;
1889
1890 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1891 /*
1892 * Ensure the read of mmu_notifier_seq happens before we call
1893 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1894 * the page we just got a reference to gets unmapped before we have a
1895 * chance to grab the mmu_lock, which ensure that if the page gets
1896 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1897 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1898 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1899 */
1900 smp_rmb();
1901
1902 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1903 if (pfn == KVM_PFN_ERR_HWPOISON) {
1904 kvm_send_hwpoison_signal(hva, vma_shift);
1905 return 0;
1906 }
1907 if (is_error_noslot_pfn(pfn))
1908 return -EFAULT;
1909
1910 if (kvm_is_device_pfn(pfn)) {
1911 mem_type = PAGE_S2_DEVICE;
1912 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1913 } else if (logging_active) {
1914 /*
1915 * Faults on pages in a memslot with logging enabled
1916 * should not be mapped with huge pages (it introduces churn
1917 * and performance degradation), so force a pte mapping.
1918 */
1919 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1920
1921 /*
1922 * Only actually map the page as writable if this was a write
1923 * fault.
1924 */
1925 if (!write_fault)
1926 writable = false;
1927 }
1928
1929 if (exec_fault && is_iomap(flags))
1930 return -ENOEXEC;
1931
1932 spin_lock(&kvm->mmu_lock);
1933 if (mmu_notifier_retry(kvm, mmu_seq))
1934 goto out_unlock;
1935
1936 /*
1937 * If we are not forced to use page mapping, check if we are
1938 * backed by a THP and thus use block mapping if possible.
1939 */
1940 if (vma_pagesize == PAGE_SIZE && !force_pte)
1941 vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1942 &pfn, &fault_ipa);
1943 if (writable)
1944 kvm_set_pfn_dirty(pfn);
1945
1946 if (fault_status != FSC_PERM && !is_iomap(flags))
1947 clean_dcache_guest_page(pfn, vma_pagesize);
1948
1949 if (exec_fault)
1950 invalidate_icache_guest_page(pfn, vma_pagesize);
1951
1952 /*
1953 * If we took an execution fault we have made the
1954 * icache/dcache coherent above and should now let the s2
1955 * mapping be executable.
1956 *
1957 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1958 * execute permissions, and we preserve whatever we have.
1959 */
1960 needs_exec = exec_fault ||
1961 (fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1962
1963 if (vma_pagesize == PUD_SIZE) {
1964 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1965
1966 new_pud = kvm_pud_mkhuge(new_pud);
1967 if (writable)
1968 new_pud = kvm_s2pud_mkwrite(new_pud);
1969
1970 if (needs_exec)
1971 new_pud = kvm_s2pud_mkexec(new_pud);
1972
1973 ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1974 } else if (vma_pagesize == PMD_SIZE) {
1975 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1976
1977 new_pmd = kvm_pmd_mkhuge(new_pmd);
1978
1979 if (writable)
1980 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1981
1982 if (needs_exec)
1983 new_pmd = kvm_s2pmd_mkexec(new_pmd);
1984
1985 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1986 } else {
1987 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1988
1989 if (writable) {
1990 new_pte = kvm_s2pte_mkwrite(new_pte);
1991 mark_page_dirty(kvm, gfn);
1992 }
1993
1994 if (needs_exec)
1995 new_pte = kvm_s2pte_mkexec(new_pte);
1996
1997 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1998 }
1999
2000out_unlock:
2001 spin_unlock(&kvm->mmu_lock);
2002 kvm_set_pfn_accessed(pfn);
2003 kvm_release_pfn_clean(pfn);
2004 return ret;
2005}
2006
2007/*
2008 * Resolve the access fault by making the page young again.
2009 * Note that because the faulting entry is guaranteed not to be
2010 * cached in the TLB, we don't need to invalidate anything.
2011 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
2012 * so there is no need for atomic (pte|pmd)_mkyoung operations.
2013 */
2014static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
2015{
2016 pud_t *pud;
2017 pmd_t *pmd;
2018 pte_t *pte;
2019 kvm_pfn_t pfn;
2020 bool pfn_valid = false;
2021
2022 trace_kvm_access_fault(fault_ipa);
2023
2024 spin_lock(&vcpu->kvm->mmu_lock);
2025
2026 if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
2027 goto out;
2028
2029 if (pud) { /* HugeTLB */
2030 *pud = kvm_s2pud_mkyoung(*pud);
2031 pfn = kvm_pud_pfn(*pud);
2032 pfn_valid = true;
2033 } else if (pmd) { /* THP, HugeTLB */
2034 *pmd = pmd_mkyoung(*pmd);
2035 pfn = pmd_pfn(*pmd);
2036 pfn_valid = true;
2037 } else {
2038 *pte = pte_mkyoung(*pte); /* Just a page... */
2039 pfn = pte_pfn(*pte);
2040 pfn_valid = true;
2041 }
2042
2043out:
2044 spin_unlock(&vcpu->kvm->mmu_lock);
2045 if (pfn_valid)
2046 kvm_set_pfn_accessed(pfn);
2047}
2048
2049/**
2050 * kvm_handle_guest_abort - handles all 2nd stage aborts
2051 * @vcpu: the VCPU pointer
2052 * @run: the kvm_run structure
2053 *
2054 * Any abort that gets to the host is almost guaranteed to be caused by a
2055 * missing second stage translation table entry, which can mean that either the
2056 * guest simply needs more memory and we must allocate an appropriate page or it
2057 * can mean that the guest tried to access I/O memory, which is emulated by user
2058 * space. The distinction is based on the IPA causing the fault and whether this
2059 * memory region has been registered as standard RAM by user space.
2060 */
2061int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
2062{
2063 unsigned long fault_status;
2064 phys_addr_t fault_ipa;
2065 struct kvm_memory_slot *memslot;
2066 unsigned long hva;
2067 bool is_iabt, write_fault, writable;
2068 gfn_t gfn;
2069 int ret, idx;
2070
2071 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
2072
2073 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2074 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2075
2076 /* Synchronous External Abort? */
2077 if (kvm_vcpu_abt_issea(vcpu)) {
2078 /*
2079 * For RAS the host kernel may handle this abort.
2080 * There is no need to pass the error into the guest.
2081 */
2082 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
2083 kvm_inject_vabt(vcpu);
2084
2085 return 1;
2086 }
2087
2088 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2089 kvm_vcpu_get_hfar(vcpu), fault_ipa);
2090
2091 /* Check the stage-2 fault is trans. fault or write fault */
2092 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
2093 fault_status != FSC_ACCESS) {
2094 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2095 kvm_vcpu_trap_get_class(vcpu),
2096 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2097 (unsigned long)kvm_vcpu_get_esr(vcpu));
2098 return -EFAULT;
2099 }
2100
2101 idx = srcu_read_lock(&vcpu->kvm->srcu);
2102
2103 gfn = fault_ipa >> PAGE_SHIFT;
2104 memslot = gfn_to_memslot(vcpu->kvm, gfn);
2105 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2106 write_fault = kvm_is_write_fault(vcpu);
2107 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2108 if (is_iabt) {
2109 /* Prefetch Abort on I/O address */
2110 ret = -ENOEXEC;
2111 goto out;
2112 }
2113
2114 /*
2115 * Check for a cache maintenance operation. Since we
2116 * ended-up here, we know it is outside of any memory
2117 * slot. But we can't find out if that is for a device,
2118 * or if the guest is just being stupid. The only thing
2119 * we know for sure is that this range cannot be cached.
2120 *
2121 * So let's assume that the guest is just being
2122 * cautious, and skip the instruction.
2123 */
2124 if (kvm_vcpu_dabt_is_cm(vcpu)) {
2125 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2126 ret = 1;
2127 goto out_unlock;
2128 }
2129
2130 /*
2131 * The IPA is reported as [MAX:12], so we need to
2132 * complement it with the bottom 12 bits from the
2133 * faulting VA. This is always 12 bits, irrespective
2134 * of the page size.
2135 */
2136 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
2137 ret = io_mem_abort(vcpu, run, fault_ipa);
2138 goto out_unlock;
2139 }
2140
2141 /* Userspace should not be able to register out-of-bounds IPAs */
2142 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2143
2144 if (fault_status == FSC_ACCESS) {
2145 handle_access_fault(vcpu, fault_ipa);
2146 ret = 1;
2147 goto out_unlock;
2148 }
2149
2150 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2151 if (ret == 0)
2152 ret = 1;
2153out:
2154 if (ret == -ENOEXEC) {
2155 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2156 ret = 1;
2157 }
2158out_unlock:
2159 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2160 return ret;
2161}
2162
2163static int handle_hva_to_gpa(struct kvm *kvm,
2164 unsigned long start,
2165 unsigned long end,
2166 int (*handler)(struct kvm *kvm,
2167 gpa_t gpa, u64 size,
2168 void *data),
2169 void *data)
2170{
2171 struct kvm_memslots *slots;
2172 struct kvm_memory_slot *memslot;
2173 int ret = 0;
2174
2175 slots = kvm_memslots(kvm);
2176
2177 /* we only care about the pages that the guest sees */
2178 kvm_for_each_memslot(memslot, slots) {
2179 unsigned long hva_start, hva_end;
2180 gfn_t gpa;
2181
2182 hva_start = max(start, memslot->userspace_addr);
2183 hva_end = min(end, memslot->userspace_addr +
2184 (memslot->npages << PAGE_SHIFT));
2185 if (hva_start >= hva_end)
2186 continue;
2187
2188 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2189 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2190 }
2191
2192 return ret;
2193}
2194
2195static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2196{
2197 unmap_stage2_range(kvm, gpa, size);
2198 return 0;
2199}
2200
2201int kvm_unmap_hva_range(struct kvm *kvm,
2202 unsigned long start, unsigned long end)
2203{
2204 if (!kvm->arch.pgd)
2205 return 0;
2206
2207 trace_kvm_unmap_hva_range(start, end);
2208 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2209 return 0;
2210}
2211
2212static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2213{
2214 pte_t *pte = (pte_t *)data;
2215
2216 WARN_ON(size != PAGE_SIZE);
2217 /*
2218 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2219 * flag clear because MMU notifiers will have unmapped a huge PMD before
2220 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2221 * therefore stage2_set_pte() never needs to clear out a huge PMD
2222 * through this calling path.
2223 */
2224 stage2_set_pte(kvm, NULL, gpa, pte, 0);
2225 return 0;
2226}
2227
2228
2229int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2230{
2231 unsigned long end = hva + PAGE_SIZE;
2232 kvm_pfn_t pfn = pte_pfn(pte);
2233 pte_t stage2_pte;
2234
2235 if (!kvm->arch.pgd)
2236 return 0;
2237
2238 trace_kvm_set_spte_hva(hva);
2239
2240 /*
2241 * We've moved a page around, probably through CoW, so let's treat it
2242 * just like a translation fault and clean the cache to the PoC.
2243 */
2244 clean_dcache_guest_page(pfn, PAGE_SIZE);
2245 stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2246 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2247
2248 return 0;
2249}
2250
2251static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2252{
2253 pud_t *pud;
2254 pmd_t *pmd;
2255 pte_t *pte;
2256
2257 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2258 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2259 return 0;
2260
2261 if (pud)
2262 return stage2_pudp_test_and_clear_young(pud);
2263 else if (pmd)
2264 return stage2_pmdp_test_and_clear_young(pmd);
2265 else
2266 return stage2_ptep_test_and_clear_young(pte);
2267}
2268
2269static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2270{
2271 pud_t *pud;
2272 pmd_t *pmd;
2273 pte_t *pte;
2274
2275 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2276 if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2277 return 0;
2278
2279 if (pud)
2280 return kvm_s2pud_young(*pud);
2281 else if (pmd)
2282 return pmd_young(*pmd);
2283 else
2284 return pte_young(*pte);
2285}
2286
2287int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2288{
2289 if (!kvm->arch.pgd)
2290 return 0;
2291 trace_kvm_age_hva(start, end);
2292 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2293}
2294
2295int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2296{
2297 if (!kvm->arch.pgd)
2298 return 0;
2299 trace_kvm_test_age_hva(hva);
2300 return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2301 kvm_test_age_hva_handler, NULL);
2302}
2303
2304void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2305{
2306 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2307}
2308
2309phys_addr_t kvm_mmu_get_httbr(void)
2310{
2311 if (__kvm_cpu_uses_extended_idmap())
2312 return virt_to_phys(merged_hyp_pgd);
2313 else
2314 return virt_to_phys(hyp_pgd);
2315}
2316
2317phys_addr_t kvm_get_idmap_vector(void)
2318{
2319 return hyp_idmap_vector;
2320}
2321
2322static int kvm_map_idmap_text(pgd_t *pgd)
2323{
2324 int err;
2325
2326 /* Create the idmap in the boot page tables */
2327 err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2328 hyp_idmap_start, hyp_idmap_end,
2329 __phys_to_pfn(hyp_idmap_start),
2330 PAGE_HYP_EXEC);
2331 if (err)
2332 kvm_err("Failed to idmap %lx-%lx\n",
2333 hyp_idmap_start, hyp_idmap_end);
2334
2335 return err;
2336}
2337
2338int kvm_mmu_init(void)
2339{
2340 int err;
2341
2342 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2343 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2344 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2345 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2346 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2347
2348 /*
2349 * We rely on the linker script to ensure at build time that the HYP
2350 * init code does not cross a page boundary.
2351 */
2352 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2353
2354 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2355 kvm_debug("HYP VA range: %lx:%lx\n",
2356 kern_hyp_va(PAGE_OFFSET),
2357 kern_hyp_va((unsigned long)high_memory - 1));
2358
2359 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2360 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
2361 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2362 /*
2363 * The idmap page is intersecting with the VA space,
2364 * it is not safe to continue further.
2365 */
2366 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2367 err = -EINVAL;
2368 goto out;
2369 }
2370
2371 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2372 if (!hyp_pgd) {
2373 kvm_err("Hyp mode PGD not allocated\n");
2374 err = -ENOMEM;
2375 goto out;
2376 }
2377
2378 if (__kvm_cpu_uses_extended_idmap()) {
2379 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2380 hyp_pgd_order);
2381 if (!boot_hyp_pgd) {
2382 kvm_err("Hyp boot PGD not allocated\n");
2383 err = -ENOMEM;
2384 goto out;
2385 }
2386
2387 err = kvm_map_idmap_text(boot_hyp_pgd);
2388 if (err)
2389 goto out;
2390
2391 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2392 if (!merged_hyp_pgd) {
2393 kvm_err("Failed to allocate extra HYP pgd\n");
2394 goto out;
2395 }
2396 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2397 hyp_idmap_start);
2398 } else {
2399 err = kvm_map_idmap_text(hyp_pgd);
2400 if (err)
2401 goto out;
2402 }
2403
2404 io_map_base = hyp_idmap_start;
2405 return 0;
2406out:
2407 free_hyp_pgds();
2408 return err;
2409}
2410
2411void kvm_arch_commit_memory_region(struct kvm *kvm,
2412 const struct kvm_userspace_memory_region *mem,
2413 struct kvm_memory_slot *old,
2414 const struct kvm_memory_slot *new,
2415 enum kvm_mr_change change)
2416{
2417 /*
2418 * At this point memslot has been committed and there is an
2419 * allocated dirty_bitmap[], dirty pages will be tracked while the
2420 * memory slot is write protected.
2421 */
2422 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2423 /*
2424 * If we're with initial-all-set, we don't need to write
2425 * protect any pages because they're all reported as dirty.
2426 * Huge pages and normal pages will be write protect gradually.
2427 */
2428 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
2429 kvm_mmu_wp_memory_region(kvm, mem->slot);
2430 }
2431 }
2432}
2433
2434int kvm_arch_prepare_memory_region(struct kvm *kvm,
2435 struct kvm_memory_slot *memslot,
2436 const struct kvm_userspace_memory_region *mem,
2437 enum kvm_mr_change change)
2438{
2439 hva_t hva = mem->userspace_addr;
2440 hva_t reg_end = hva + mem->memory_size;
2441 bool writable = !(mem->flags & KVM_MEM_READONLY);
2442 int ret = 0;
2443
2444 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2445 change != KVM_MR_FLAGS_ONLY)
2446 return 0;
2447
2448 /*
2449 * Prevent userspace from creating a memory region outside of the IPA
2450 * space addressable by the KVM guest IPA space.
2451 */
2452 if (memslot->base_gfn + memslot->npages >=
2453 (kvm_phys_size(kvm) >> PAGE_SHIFT))
2454 return -EFAULT;
2455
2456 mmap_read_lock(current->mm);
2457 /*
2458 * A memory region could potentially cover multiple VMAs, and any holes
2459 * between them, so iterate over all of them to find out if we can map
2460 * any of them right now.
2461 *
2462 * +--------------------------------------------+
2463 * +---------------+----------------+ +----------------+
2464 * | : VMA 1 | VMA 2 | | VMA 3 : |
2465 * +---------------+----------------+ +----------------+
2466 * | memory region |
2467 * +--------------------------------------------+
2468 */
2469 do {
2470 struct vm_area_struct *vma = find_vma(current->mm, hva);
2471 hva_t vm_start, vm_end;
2472
2473 if (!vma || vma->vm_start >= reg_end)
2474 break;
2475
2476 /*
2477 * Take the intersection of this VMA with the memory region
2478 */
2479 vm_start = max(hva, vma->vm_start);
2480 vm_end = min(reg_end, vma->vm_end);
2481
2482 if (vma->vm_flags & VM_PFNMAP) {
2483 gpa_t gpa = mem->guest_phys_addr +
2484 (vm_start - mem->userspace_addr);
2485 phys_addr_t pa;
2486
2487 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2488 pa += vm_start - vma->vm_start;
2489
2490 /* IO region dirty page logging not allowed */
2491 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2492 ret = -EINVAL;
2493 goto out;
2494 }
2495
2496 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2497 vm_end - vm_start,
2498 writable);
2499 if (ret)
2500 break;
2501 }
2502 hva = vm_end;
2503 } while (hva < reg_end);
2504
2505 if (change == KVM_MR_FLAGS_ONLY)
2506 goto out;
2507
2508 spin_lock(&kvm->mmu_lock);
2509 if (ret)
2510 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2511 else
2512 stage2_flush_memslot(kvm, memslot);
2513 spin_unlock(&kvm->mmu_lock);
2514out:
2515 mmap_read_unlock(current->mm);
2516 return ret;
2517}
2518
2519void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2520{
2521}
2522
2523void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2524{
2525}
2526
2527void kvm_arch_flush_shadow_all(struct kvm *kvm)
2528{
2529 kvm_free_stage2_pgd(kvm);
2530}
2531
2532void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2533 struct kvm_memory_slot *slot)
2534{
2535 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2536 phys_addr_t size = slot->npages << PAGE_SHIFT;
2537
2538 spin_lock(&kvm->mmu_lock);
2539 unmap_stage2_range(kvm, gpa, size);
2540 spin_unlock(&kvm->mmu_lock);
2541}
2542
2543/*
2544 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2545 *
2546 * Main problems:
2547 * - S/W ops are local to a CPU (not broadcast)
2548 * - We have line migration behind our back (speculation)
2549 * - System caches don't support S/W at all (damn!)
2550 *
2551 * In the face of the above, the best we can do is to try and convert
2552 * S/W ops to VA ops. Because the guest is not allowed to infer the
2553 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2554 * which is a rather good thing for us.
2555 *
2556 * Also, it is only used when turning caches on/off ("The expected
2557 * usage of the cache maintenance instructions that operate by set/way
2558 * is associated with the cache maintenance instructions associated
2559 * with the powerdown and powerup of caches, if this is required by
2560 * the implementation.").
2561 *
2562 * We use the following policy:
2563 *
2564 * - If we trap a S/W operation, we enable VM trapping to detect
2565 * caches being turned on/off, and do a full clean.
2566 *
2567 * - We flush the caches on both caches being turned on and off.
2568 *
2569 * - Once the caches are enabled, we stop trapping VM ops.
2570 */
2571void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2572{
2573 unsigned long hcr = *vcpu_hcr(vcpu);
2574
2575 /*
2576 * If this is the first time we do a S/W operation
2577 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2578 * VM trapping.
2579 *
2580 * Otherwise, rely on the VM trapping to wait for the MMU +
2581 * Caches to be turned off. At that point, we'll be able to
2582 * clean the caches again.
2583 */
2584 if (!(hcr & HCR_TVM)) {
2585 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2586 vcpu_has_cache_enabled(vcpu));
2587 stage2_flush_vm(vcpu->kvm);
2588 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2589 }
2590}
2591
2592void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2593{
2594 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2595
2596 /*
2597 * If switching the MMU+caches on, need to invalidate the caches.
2598 * If switching it off, need to clean the caches.
2599 * Clean + invalidate does the trick always.
2600 */
2601 if (now_enabled != was_enabled)
2602 stage2_flush_vm(vcpu->kvm);
2603
2604 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2605 if (now_enabled)
2606 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2607
2608 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2609}