| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Based on arch/arm/kernel/process.c |
| 4 | * |
| 5 | * Original Copyright (C) 1995 Linus Torvalds |
| 6 | * Copyright (C) 1996-2000 Russell King - Converted to ARM. |
| 7 | * Copyright (C) 2012 ARM Ltd. |
| 8 | */ |
| 9 | #include <linux/compat.h> |
| 10 | #include <linux/efi.h> |
| 11 | #include <linux/elf.h> |
| 12 | #include <linux/export.h> |
| 13 | #include <linux/sched.h> |
| 14 | #include <linux/sched/debug.h> |
| 15 | #include <linux/sched/task.h> |
| 16 | #include <linux/sched/task_stack.h> |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/mman.h> |
| 19 | #include <linux/mm.h> |
| 20 | #include <linux/nospec.h> |
| 21 | #include <linux/stddef.h> |
| 22 | #include <linux/sysctl.h> |
| 23 | #include <linux/unistd.h> |
| 24 | #include <linux/user.h> |
| 25 | #include <linux/delay.h> |
| 26 | #include <linux/reboot.h> |
| 27 | #include <linux/interrupt.h> |
| 28 | #include <linux/init.h> |
| 29 | #include <linux/cpu.h> |
| 30 | #include <linux/elfcore.h> |
| 31 | #include <linux/pm.h> |
| 32 | #include <linux/tick.h> |
| 33 | #include <linux/utsname.h> |
| 34 | #include <linux/uaccess.h> |
| 35 | #include <linux/random.h> |
| 36 | #include <linux/hw_breakpoint.h> |
| 37 | #include <linux/personality.h> |
| 38 | #include <linux/notifier.h> |
| 39 | #include <trace/events/power.h> |
| 40 | #include <linux/percpu.h> |
| 41 | #include <linux/thread_info.h> |
| 42 | #include <linux/prctl.h> |
| 43 | #include <linux/stacktrace.h> |
| 44 | |
| 45 | #include <asm/alternative.h> |
| 46 | #include <asm/arch_timer.h> |
| 47 | #include <asm/compat.h> |
| 48 | #include <asm/cpufeature.h> |
| 49 | #include <asm/cacheflush.h> |
| 50 | #include <asm/exec.h> |
| 51 | #include <asm/fpsimd.h> |
| 52 | #include <asm/gcs.h> |
| 53 | #include <asm/mmu_context.h> |
| 54 | #include <asm/mte.h> |
| 55 | #include <asm/processor.h> |
| 56 | #include <asm/pointer_auth.h> |
| 57 | #include <asm/stacktrace.h> |
| 58 | #include <asm/switch_to.h> |
| 59 | #include <asm/system_misc.h> |
| 60 | |
| 61 | #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) |
| 62 | #include <linux/stackprotector.h> |
| 63 | unsigned long __stack_chk_guard __ro_after_init; |
| 64 | EXPORT_SYMBOL(__stack_chk_guard); |
| 65 | #endif |
| 66 | |
| 67 | /* |
| 68 | * Function pointers to optional machine specific functions |
| 69 | */ |
| 70 | void (*pm_power_off)(void); |
| 71 | EXPORT_SYMBOL_GPL(pm_power_off); |
| 72 | |
| 73 | #ifdef CONFIG_HOTPLUG_CPU |
| 74 | void __noreturn arch_cpu_idle_dead(void) |
| 75 | { |
| 76 | cpu_die(); |
| 77 | } |
| 78 | #endif |
| 79 | |
| 80 | /* |
| 81 | * Called by kexec, immediately prior to machine_kexec(). |
| 82 | * |
| 83 | * This must completely disable all secondary CPUs; simply causing those CPUs |
| 84 | * to execute e.g. a RAM-based pin loop is not sufficient. This allows the |
| 85 | * kexec'd kernel to use any and all RAM as it sees fit, without having to |
| 86 | * avoid any code or data used by any SW CPU pin loop. The CPU hotplug |
| 87 | * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. |
| 88 | */ |
| 89 | void machine_shutdown(void) |
| 90 | { |
| 91 | smp_shutdown_nonboot_cpus(reboot_cpu); |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * Halting simply requires that the secondary CPUs stop performing any |
| 96 | * activity (executing tasks, handling interrupts). smp_send_stop() |
| 97 | * achieves this. |
| 98 | */ |
| 99 | void machine_halt(void) |
| 100 | { |
| 101 | local_irq_disable(); |
| 102 | smp_send_stop(); |
| 103 | while (1); |
| 104 | } |
| 105 | |
| 106 | /* |
| 107 | * Power-off simply requires that the secondary CPUs stop performing any |
| 108 | * activity (executing tasks, handling interrupts). smp_send_stop() |
| 109 | * achieves this. When the system power is turned off, it will take all CPUs |
| 110 | * with it. |
| 111 | */ |
| 112 | void machine_power_off(void) |
| 113 | { |
| 114 | local_irq_disable(); |
| 115 | smp_send_stop(); |
| 116 | do_kernel_power_off(); |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Restart requires that the secondary CPUs stop performing any activity |
| 121 | * while the primary CPU resets the system. Systems with multiple CPUs must |
| 122 | * provide a HW restart implementation, to ensure that all CPUs reset at once. |
| 123 | * This is required so that any code running after reset on the primary CPU |
| 124 | * doesn't have to co-ordinate with other CPUs to ensure they aren't still |
| 125 | * executing pre-reset code, and using RAM that the primary CPU's code wishes |
| 126 | * to use. Implementing such co-ordination would be essentially impossible. |
| 127 | */ |
| 128 | void machine_restart(char *cmd) |
| 129 | { |
| 130 | /* Disable interrupts first */ |
| 131 | local_irq_disable(); |
| 132 | smp_send_stop(); |
| 133 | |
| 134 | /* |
| 135 | * UpdateCapsule() depends on the system being reset via |
| 136 | * ResetSystem(). |
| 137 | */ |
| 138 | if (efi_enabled(EFI_RUNTIME_SERVICES)) |
| 139 | efi_reboot(reboot_mode, NULL); |
| 140 | |
| 141 | /* Now call the architecture specific reboot code. */ |
| 142 | do_kernel_restart(cmd); |
| 143 | |
| 144 | /* |
| 145 | * Whoops - the architecture was unable to reboot. |
| 146 | */ |
| 147 | printk("Reboot failed -- System halted\n"); |
| 148 | while (1); |
| 149 | } |
| 150 | |
| 151 | #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str |
| 152 | static const char *const btypes[] = { |
| 153 | bstr(NONE, "--"), |
| 154 | bstr( JC, "jc"), |
| 155 | bstr( C, "-c"), |
| 156 | bstr( J , "j-") |
| 157 | }; |
| 158 | #undef bstr |
| 159 | |
| 160 | static void print_pstate(struct pt_regs *regs) |
| 161 | { |
| 162 | u64 pstate = regs->pstate; |
| 163 | |
| 164 | if (compat_user_mode(regs)) { |
| 165 | printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", |
| 166 | pstate, |
| 167 | pstate & PSR_AA32_N_BIT ? 'N' : 'n', |
| 168 | pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', |
| 169 | pstate & PSR_AA32_C_BIT ? 'C' : 'c', |
| 170 | pstate & PSR_AA32_V_BIT ? 'V' : 'v', |
| 171 | pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', |
| 172 | pstate & PSR_AA32_T_BIT ? "T32" : "A32", |
| 173 | pstate & PSR_AA32_E_BIT ? "BE" : "LE", |
| 174 | pstate & PSR_AA32_A_BIT ? 'A' : 'a', |
| 175 | pstate & PSR_AA32_I_BIT ? 'I' : 'i', |
| 176 | pstate & PSR_AA32_F_BIT ? 'F' : 'f', |
| 177 | pstate & PSR_AA32_DIT_BIT ? '+' : '-', |
| 178 | pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); |
| 179 | } else { |
| 180 | const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> |
| 181 | PSR_BTYPE_SHIFT]; |
| 182 | |
| 183 | printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", |
| 184 | pstate, |
| 185 | pstate & PSR_N_BIT ? 'N' : 'n', |
| 186 | pstate & PSR_Z_BIT ? 'Z' : 'z', |
| 187 | pstate & PSR_C_BIT ? 'C' : 'c', |
| 188 | pstate & PSR_V_BIT ? 'V' : 'v', |
| 189 | pstate & PSR_D_BIT ? 'D' : 'd', |
| 190 | pstate & PSR_A_BIT ? 'A' : 'a', |
| 191 | pstate & PSR_I_BIT ? 'I' : 'i', |
| 192 | pstate & PSR_F_BIT ? 'F' : 'f', |
| 193 | pstate & PSR_PAN_BIT ? '+' : '-', |
| 194 | pstate & PSR_UAO_BIT ? '+' : '-', |
| 195 | pstate & PSR_TCO_BIT ? '+' : '-', |
| 196 | pstate & PSR_DIT_BIT ? '+' : '-', |
| 197 | pstate & PSR_SSBS_BIT ? '+' : '-', |
| 198 | btype_str); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | void __show_regs(struct pt_regs *regs) |
| 203 | { |
| 204 | int i, top_reg; |
| 205 | u64 lr, sp; |
| 206 | |
| 207 | if (compat_user_mode(regs)) { |
| 208 | lr = regs->compat_lr; |
| 209 | sp = regs->compat_sp; |
| 210 | top_reg = 12; |
| 211 | } else { |
| 212 | lr = regs->regs[30]; |
| 213 | sp = regs->sp; |
| 214 | top_reg = 29; |
| 215 | } |
| 216 | |
| 217 | show_regs_print_info(KERN_DEFAULT); |
| 218 | print_pstate(regs); |
| 219 | |
| 220 | if (!user_mode(regs)) { |
| 221 | printk("pc : %pS\n", (void *)regs->pc); |
| 222 | printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); |
| 223 | } else { |
| 224 | printk("pc : %016llx\n", regs->pc); |
| 225 | printk("lr : %016llx\n", lr); |
| 226 | } |
| 227 | |
| 228 | printk("sp : %016llx\n", sp); |
| 229 | |
| 230 | if (system_uses_irq_prio_masking()) |
| 231 | printk("pmr: %08x\n", regs->pmr); |
| 232 | |
| 233 | i = top_reg; |
| 234 | |
| 235 | while (i >= 0) { |
| 236 | printk("x%-2d: %016llx", i, regs->regs[i]); |
| 237 | |
| 238 | while (i-- % 3) |
| 239 | pr_cont(" x%-2d: %016llx", i, regs->regs[i]); |
| 240 | |
| 241 | pr_cont("\n"); |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | void show_regs(struct pt_regs *regs) |
| 246 | { |
| 247 | __show_regs(regs); |
| 248 | dump_backtrace(regs, NULL, KERN_DEFAULT); |
| 249 | } |
| 250 | |
| 251 | static void tls_thread_flush(void) |
| 252 | { |
| 253 | write_sysreg(0, tpidr_el0); |
| 254 | if (system_supports_tpidr2()) |
| 255 | write_sysreg_s(0, SYS_TPIDR2_EL0); |
| 256 | |
| 257 | if (is_compat_task()) { |
| 258 | current->thread.uw.tp_value = 0; |
| 259 | |
| 260 | /* |
| 261 | * We need to ensure ordering between the shadow state and the |
| 262 | * hardware state, so that we don't corrupt the hardware state |
| 263 | * with a stale shadow state during context switch. |
| 264 | */ |
| 265 | barrier(); |
| 266 | write_sysreg(0, tpidrro_el0); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | static void flush_tagged_addr_state(void) |
| 271 | { |
| 272 | if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) |
| 273 | clear_thread_flag(TIF_TAGGED_ADDR); |
| 274 | } |
| 275 | |
| 276 | static void flush_poe(void) |
| 277 | { |
| 278 | if (!system_supports_poe()) |
| 279 | return; |
| 280 | |
| 281 | write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); |
| 282 | } |
| 283 | |
| 284 | #ifdef CONFIG_ARM64_GCS |
| 285 | |
| 286 | static void flush_gcs(void) |
| 287 | { |
| 288 | if (!system_supports_gcs()) |
| 289 | return; |
| 290 | |
| 291 | current->thread.gcspr_el0 = 0; |
| 292 | current->thread.gcs_base = 0; |
| 293 | current->thread.gcs_size = 0; |
| 294 | current->thread.gcs_el0_mode = 0; |
| 295 | write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1); |
| 296 | write_sysreg_s(0, SYS_GCSPR_EL0); |
| 297 | } |
| 298 | |
| 299 | static int copy_thread_gcs(struct task_struct *p, |
| 300 | const struct kernel_clone_args *args) |
| 301 | { |
| 302 | unsigned long gcs; |
| 303 | |
| 304 | if (!system_supports_gcs()) |
| 305 | return 0; |
| 306 | |
| 307 | p->thread.gcs_base = 0; |
| 308 | p->thread.gcs_size = 0; |
| 309 | |
| 310 | gcs = gcs_alloc_thread_stack(p, args); |
| 311 | if (IS_ERR_VALUE(gcs)) |
| 312 | return PTR_ERR((void *)gcs); |
| 313 | |
| 314 | p->thread.gcs_el0_mode = current->thread.gcs_el0_mode; |
| 315 | p->thread.gcs_el0_locked = current->thread.gcs_el0_locked; |
| 316 | |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | #else |
| 321 | |
| 322 | static void flush_gcs(void) { } |
| 323 | static int copy_thread_gcs(struct task_struct *p, |
| 324 | const struct kernel_clone_args *args) |
| 325 | { |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | #endif |
| 330 | |
| 331 | void flush_thread(void) |
| 332 | { |
| 333 | fpsimd_flush_thread(); |
| 334 | tls_thread_flush(); |
| 335 | flush_ptrace_hw_breakpoint(current); |
| 336 | flush_tagged_addr_state(); |
| 337 | flush_poe(); |
| 338 | flush_gcs(); |
| 339 | } |
| 340 | |
| 341 | void arch_release_task_struct(struct task_struct *tsk) |
| 342 | { |
| 343 | fpsimd_release_task(tsk); |
| 344 | gcs_free(tsk); |
| 345 | } |
| 346 | |
| 347 | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| 348 | { |
| 349 | /* |
| 350 | * The current/src task's FPSIMD state may or may not be live, and may |
| 351 | * have been altered by ptrace after entry to the kernel. Save the |
| 352 | * effective FPSIMD state so that this will be copied into dst. |
| 353 | */ |
| 354 | fpsimd_save_and_flush_current_state(); |
| 355 | fpsimd_sync_from_effective_state(src); |
| 356 | |
| 357 | *dst = *src; |
| 358 | |
| 359 | /* |
| 360 | * Drop stale reference to src's sve_state and convert dst to |
| 361 | * non-streaming FPSIMD mode. |
| 362 | */ |
| 363 | dst->thread.fp_type = FP_STATE_FPSIMD; |
| 364 | dst->thread.sve_state = NULL; |
| 365 | clear_tsk_thread_flag(dst, TIF_SVE); |
| 366 | task_smstop_sm(dst); |
| 367 | |
| 368 | /* |
| 369 | * Drop stale reference to src's sme_state and ensure dst has ZA |
| 370 | * disabled. |
| 371 | * |
| 372 | * When necessary, ZA will be inherited later in copy_thread_za(). |
| 373 | */ |
| 374 | dst->thread.sme_state = NULL; |
| 375 | clear_tsk_thread_flag(dst, TIF_SME); |
| 376 | dst->thread.svcr &= ~SVCR_ZA_MASK; |
| 377 | |
| 378 | /* clear any pending asynchronous tag fault raised by the parent */ |
| 379 | clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); |
| 380 | |
| 381 | return 0; |
| 382 | } |
| 383 | |
| 384 | static int copy_thread_za(struct task_struct *dst, struct task_struct *src) |
| 385 | { |
| 386 | if (!thread_za_enabled(&src->thread)) |
| 387 | return 0; |
| 388 | |
| 389 | dst->thread.sve_state = kzalloc(sve_state_size(src), |
| 390 | GFP_KERNEL); |
| 391 | if (!dst->thread.sve_state) |
| 392 | return -ENOMEM; |
| 393 | |
| 394 | dst->thread.sme_state = kmemdup(src->thread.sme_state, |
| 395 | sme_state_size(src), |
| 396 | GFP_KERNEL); |
| 397 | if (!dst->thread.sme_state) { |
| 398 | kfree(dst->thread.sve_state); |
| 399 | dst->thread.sve_state = NULL; |
| 400 | return -ENOMEM; |
| 401 | } |
| 402 | |
| 403 | set_tsk_thread_flag(dst, TIF_SME); |
| 404 | dst->thread.svcr |= SVCR_ZA_MASK; |
| 405 | |
| 406 | return 0; |
| 407 | } |
| 408 | |
| 409 | asmlinkage void ret_from_fork(void) asm("ret_from_fork"); |
| 410 | |
| 411 | int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) |
| 412 | { |
| 413 | unsigned long clone_flags = args->flags; |
| 414 | unsigned long stack_start = args->stack; |
| 415 | unsigned long tls = args->tls; |
| 416 | struct pt_regs *childregs = task_pt_regs(p); |
| 417 | int ret; |
| 418 | |
| 419 | memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); |
| 420 | |
| 421 | /* |
| 422 | * In case p was allocated the same task_struct pointer as some |
| 423 | * other recently-exited task, make sure p is disassociated from |
| 424 | * any cpu that may have run that now-exited task recently. |
| 425 | * Otherwise we could erroneously skip reloading the FPSIMD |
| 426 | * registers for p. |
| 427 | */ |
| 428 | fpsimd_flush_task_state(p); |
| 429 | |
| 430 | ptrauth_thread_init_kernel(p); |
| 431 | |
| 432 | if (likely(!args->fn)) { |
| 433 | *childregs = *current_pt_regs(); |
| 434 | childregs->regs[0] = 0; |
| 435 | |
| 436 | /* |
| 437 | * Read the current TLS pointer from tpidr_el0 as it may be |
| 438 | * out-of-sync with the saved value. |
| 439 | */ |
| 440 | *task_user_tls(p) = read_sysreg(tpidr_el0); |
| 441 | |
| 442 | if (system_supports_poe()) |
| 443 | p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); |
| 444 | |
| 445 | if (stack_start) { |
| 446 | if (is_compat_thread(task_thread_info(p))) |
| 447 | childregs->compat_sp = stack_start; |
| 448 | else |
| 449 | childregs->sp = stack_start; |
| 450 | } |
| 451 | |
| 452 | /* |
| 453 | * Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and |
| 454 | * TPIDR2 need to be manipulated as a pair, and either both |
| 455 | * need to be inherited or both need to be reset. |
| 456 | * |
| 457 | * Within a process, child threads must not inherit their |
| 458 | * parent's TPIDR2 value or they may clobber their parent's |
| 459 | * stack at some later point. |
| 460 | * |
| 461 | * When a process is fork()'d, the child must inherit ZA and |
| 462 | * TPIDR2 from its parent in case there was dormant ZA state. |
| 463 | * |
| 464 | * Use CLONE_VM to determine when the child will share the |
| 465 | * address space with the parent, and cannot safely inherit the |
| 466 | * state. |
| 467 | */ |
| 468 | if (system_supports_sme()) { |
| 469 | if (!(clone_flags & CLONE_VM)) { |
| 470 | p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); |
| 471 | ret = copy_thread_za(p, current); |
| 472 | if (ret) |
| 473 | return ret; |
| 474 | } else { |
| 475 | p->thread.tpidr2_el0 = 0; |
| 476 | WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK); |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * If a TLS pointer was passed to clone, use it for the new |
| 482 | * thread. |
| 483 | */ |
| 484 | if (clone_flags & CLONE_SETTLS) |
| 485 | p->thread.uw.tp_value = tls; |
| 486 | |
| 487 | ret = copy_thread_gcs(p, args); |
| 488 | if (ret != 0) |
| 489 | return ret; |
| 490 | } else { |
| 491 | /* |
| 492 | * A kthread has no context to ERET to, so ensure any buggy |
| 493 | * ERET is treated as an illegal exception return. |
| 494 | * |
| 495 | * When a user task is created from a kthread, childregs will |
| 496 | * be initialized by start_thread() or start_compat_thread(). |
| 497 | */ |
| 498 | memset(childregs, 0, sizeof(struct pt_regs)); |
| 499 | childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; |
| 500 | childregs->stackframe.type = FRAME_META_TYPE_FINAL; |
| 501 | |
| 502 | p->thread.cpu_context.x19 = (unsigned long)args->fn; |
| 503 | p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; |
| 504 | |
| 505 | if (system_supports_poe()) |
| 506 | p->thread.por_el0 = POR_EL0_INIT; |
| 507 | } |
| 508 | p->thread.cpu_context.pc = (unsigned long)ret_from_fork; |
| 509 | p->thread.cpu_context.sp = (unsigned long)childregs; |
| 510 | /* |
| 511 | * For the benefit of the unwinder, set up childregs->stackframe |
| 512 | * as the final frame for the new task. |
| 513 | */ |
| 514 | p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe; |
| 515 | |
| 516 | ptrace_hw_copy_thread(p); |
| 517 | |
| 518 | return 0; |
| 519 | } |
| 520 | |
| 521 | void tls_preserve_current_state(void) |
| 522 | { |
| 523 | *task_user_tls(current) = read_sysreg(tpidr_el0); |
| 524 | if (system_supports_tpidr2() && !is_compat_task()) |
| 525 | current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); |
| 526 | } |
| 527 | |
| 528 | static void tls_thread_switch(struct task_struct *next) |
| 529 | { |
| 530 | tls_preserve_current_state(); |
| 531 | |
| 532 | if (is_compat_thread(task_thread_info(next))) |
| 533 | write_sysreg(next->thread.uw.tp_value, tpidrro_el0); |
| 534 | else |
| 535 | write_sysreg(0, tpidrro_el0); |
| 536 | |
| 537 | write_sysreg(*task_user_tls(next), tpidr_el0); |
| 538 | if (system_supports_tpidr2()) |
| 539 | write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); |
| 540 | } |
| 541 | |
| 542 | /* |
| 543 | * Force SSBS state on context-switch, since it may be lost after migrating |
| 544 | * from a CPU which treats the bit as RES0 in a heterogeneous system. |
| 545 | */ |
| 546 | static void ssbs_thread_switch(struct task_struct *next) |
| 547 | { |
| 548 | /* |
| 549 | * Nothing to do for kernel threads, but 'regs' may be junk |
| 550 | * (e.g. idle task) so check the flags and bail early. |
| 551 | */ |
| 552 | if (unlikely(next->flags & PF_KTHREAD)) |
| 553 | return; |
| 554 | |
| 555 | /* |
| 556 | * If all CPUs implement the SSBS extension, then we just need to |
| 557 | * context-switch the PSTATE field. |
| 558 | */ |
| 559 | if (alternative_has_cap_unlikely(ARM64_SSBS)) |
| 560 | return; |
| 561 | |
| 562 | spectre_v4_enable_task_mitigation(next); |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * We store our current task in sp_el0, which is clobbered by userspace. Keep a |
| 567 | * shadow copy so that we can restore this upon entry from userspace. |
| 568 | * |
| 569 | * This is *only* for exception entry from EL0, and is not valid until we |
| 570 | * __switch_to() a user task. |
| 571 | */ |
| 572 | DEFINE_PER_CPU(struct task_struct *, __entry_task); |
| 573 | |
| 574 | static void entry_task_switch(struct task_struct *next) |
| 575 | { |
| 576 | __this_cpu_write(__entry_task, next); |
| 577 | } |
| 578 | |
| 579 | #ifdef CONFIG_ARM64_GCS |
| 580 | |
| 581 | void gcs_preserve_current_state(void) |
| 582 | { |
| 583 | current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0); |
| 584 | } |
| 585 | |
| 586 | static void gcs_thread_switch(struct task_struct *next) |
| 587 | { |
| 588 | if (!system_supports_gcs()) |
| 589 | return; |
| 590 | |
| 591 | /* GCSPR_EL0 is always readable */ |
| 592 | gcs_preserve_current_state(); |
| 593 | write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0); |
| 594 | |
| 595 | if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode) |
| 596 | gcs_set_el0_mode(next); |
| 597 | |
| 598 | /* |
| 599 | * Ensure that GCS memory effects of the 'prev' thread are |
| 600 | * ordered before other memory accesses with release semantics |
| 601 | * (or preceded by a DMB) on the current PE. In addition, any |
| 602 | * memory accesses with acquire semantics (or succeeded by a |
| 603 | * DMB) are ordered before GCS memory effects of the 'next' |
| 604 | * thread. This will ensure that the GCS memory effects are |
| 605 | * visible to other PEs in case of migration. |
| 606 | */ |
| 607 | if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next)) |
| 608 | gcsb_dsync(); |
| 609 | } |
| 610 | |
| 611 | #else |
| 612 | |
| 613 | static void gcs_thread_switch(struct task_struct *next) |
| 614 | { |
| 615 | } |
| 616 | |
| 617 | #endif |
| 618 | |
| 619 | /* |
| 620 | * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of |
| 621 | * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} |
| 622 | * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is |
| 623 | * required or PR_TSC_SIGSEGV is set. |
| 624 | */ |
| 625 | static void update_cntkctl_el1(struct task_struct *next) |
| 626 | { |
| 627 | struct thread_info *ti = task_thread_info(next); |
| 628 | |
| 629 | if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || |
| 630 | has_erratum_handler(read_cntvct_el0) || |
| 631 | (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && |
| 632 | this_cpu_has_cap(ARM64_WORKAROUND_1418040) && |
| 633 | is_compat_thread(ti))) |
| 634 | sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); |
| 635 | else |
| 636 | sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); |
| 637 | } |
| 638 | |
| 639 | static void cntkctl_thread_switch(struct task_struct *prev, |
| 640 | struct task_struct *next) |
| 641 | { |
| 642 | if ((read_ti_thread_flags(task_thread_info(prev)) & |
| 643 | (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != |
| 644 | (read_ti_thread_flags(task_thread_info(next)) & |
| 645 | (_TIF_32BIT | _TIF_TSC_SIGSEGV))) |
| 646 | update_cntkctl_el1(next); |
| 647 | } |
| 648 | |
| 649 | static int do_set_tsc_mode(unsigned int val) |
| 650 | { |
| 651 | bool tsc_sigsegv; |
| 652 | |
| 653 | if (val == PR_TSC_SIGSEGV) |
| 654 | tsc_sigsegv = true; |
| 655 | else if (val == PR_TSC_ENABLE) |
| 656 | tsc_sigsegv = false; |
| 657 | else |
| 658 | return -EINVAL; |
| 659 | |
| 660 | preempt_disable(); |
| 661 | update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); |
| 662 | update_cntkctl_el1(current); |
| 663 | preempt_enable(); |
| 664 | |
| 665 | return 0; |
| 666 | } |
| 667 | |
| 668 | static void permission_overlay_switch(struct task_struct *next) |
| 669 | { |
| 670 | if (!system_supports_poe()) |
| 671 | return; |
| 672 | |
| 673 | current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); |
| 674 | if (current->thread.por_el0 != next->thread.por_el0) { |
| 675 | write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); |
| 676 | /* |
| 677 | * No ISB required as we can tolerate spurious Overlay faults - |
| 678 | * the fault handler will check again based on the new value |
| 679 | * of POR_EL0. |
| 680 | */ |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore |
| 686 | * this function must be called with preemption disabled and the update to |
| 687 | * sctlr_user must be made in the same preemption disabled block so that |
| 688 | * __switch_to() does not see the variable update before the SCTLR_EL1 one. |
| 689 | */ |
| 690 | void update_sctlr_el1(u64 sctlr) |
| 691 | { |
| 692 | /* |
| 693 | * EnIA must not be cleared while in the kernel as this is necessary for |
| 694 | * in-kernel PAC. It will be cleared on kernel exit if needed. |
| 695 | */ |
| 696 | sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); |
| 697 | |
| 698 | /* ISB required for the kernel uaccess routines when setting TCF0. */ |
| 699 | isb(); |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * Thread switching. |
| 704 | */ |
| 705 | __notrace_funcgraph __sched |
| 706 | struct task_struct *__switch_to(struct task_struct *prev, |
| 707 | struct task_struct *next) |
| 708 | { |
| 709 | struct task_struct *last; |
| 710 | |
| 711 | fpsimd_thread_switch(next); |
| 712 | tls_thread_switch(next); |
| 713 | hw_breakpoint_thread_switch(next); |
| 714 | contextidr_thread_switch(next); |
| 715 | entry_task_switch(next); |
| 716 | ssbs_thread_switch(next); |
| 717 | cntkctl_thread_switch(prev, next); |
| 718 | ptrauth_thread_switch_user(next); |
| 719 | permission_overlay_switch(next); |
| 720 | gcs_thread_switch(next); |
| 721 | |
| 722 | /* |
| 723 | * Complete any pending TLB or cache maintenance on this CPU in case the |
| 724 | * thread migrates to a different CPU. This full barrier is also |
| 725 | * required by the membarrier system call. Additionally it makes any |
| 726 | * in-progress pgtable writes visible to the table walker; See |
| 727 | * emit_pte_barriers(). |
| 728 | */ |
| 729 | dsb(ish); |
| 730 | |
| 731 | /* |
| 732 | * MTE thread switching must happen after the DSB above to ensure that |
| 733 | * any asynchronous tag check faults have been logged in the TFSR*_EL1 |
| 734 | * registers. |
| 735 | */ |
| 736 | mte_thread_switch(next); |
| 737 | /* avoid expensive SCTLR_EL1 accesses if no change */ |
| 738 | if (prev->thread.sctlr_user != next->thread.sctlr_user) |
| 739 | update_sctlr_el1(next->thread.sctlr_user); |
| 740 | |
| 741 | /* the actual thread switch */ |
| 742 | last = cpu_switch_to(prev, next); |
| 743 | |
| 744 | return last; |
| 745 | } |
| 746 | |
| 747 | struct wchan_info { |
| 748 | unsigned long pc; |
| 749 | int count; |
| 750 | }; |
| 751 | |
| 752 | static bool get_wchan_cb(void *arg, unsigned long pc) |
| 753 | { |
| 754 | struct wchan_info *wchan_info = arg; |
| 755 | |
| 756 | if (!in_sched_functions(pc)) { |
| 757 | wchan_info->pc = pc; |
| 758 | return false; |
| 759 | } |
| 760 | return wchan_info->count++ < 16; |
| 761 | } |
| 762 | |
| 763 | unsigned long __get_wchan(struct task_struct *p) |
| 764 | { |
| 765 | struct wchan_info wchan_info = { |
| 766 | .pc = 0, |
| 767 | .count = 0, |
| 768 | }; |
| 769 | |
| 770 | if (!try_get_task_stack(p)) |
| 771 | return 0; |
| 772 | |
| 773 | arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); |
| 774 | |
| 775 | put_task_stack(p); |
| 776 | |
| 777 | return wchan_info.pc; |
| 778 | } |
| 779 | |
| 780 | unsigned long arch_align_stack(unsigned long sp) |
| 781 | { |
| 782 | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| 783 | sp -= get_random_u32_below(PAGE_SIZE); |
| 784 | return sp & ~0xf; |
| 785 | } |
| 786 | |
| 787 | #ifdef CONFIG_COMPAT |
| 788 | int compat_elf_check_arch(const struct elf32_hdr *hdr) |
| 789 | { |
| 790 | if (!system_supports_32bit_el0()) |
| 791 | return false; |
| 792 | |
| 793 | if ((hdr)->e_machine != EM_ARM) |
| 794 | return false; |
| 795 | |
| 796 | if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) |
| 797 | return false; |
| 798 | |
| 799 | /* |
| 800 | * Prevent execve() of a 32-bit program from a deadline task |
| 801 | * if the restricted affinity mask would be inadmissible on an |
| 802 | * asymmetric system. |
| 803 | */ |
| 804 | return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || |
| 805 | !dl_task_check_affinity(current, system_32bit_el0_cpumask()); |
| 806 | } |
| 807 | #endif |
| 808 | |
| 809 | /* |
| 810 | * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. |
| 811 | */ |
| 812 | void arch_setup_new_exec(void) |
| 813 | { |
| 814 | unsigned long mmflags = 0; |
| 815 | |
| 816 | if (is_compat_task()) { |
| 817 | mmflags = MMCF_AARCH32; |
| 818 | |
| 819 | /* |
| 820 | * Restrict the CPU affinity mask for a 32-bit task so that |
| 821 | * it contains only 32-bit-capable CPUs. |
| 822 | * |
| 823 | * From the perspective of the task, this looks similar to |
| 824 | * what would happen if the 64-bit-only CPUs were hot-unplugged |
| 825 | * at the point of execve(), although we try a bit harder to |
| 826 | * honour the cpuset hierarchy. |
| 827 | */ |
| 828 | if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) |
| 829 | force_compatible_cpus_allowed_ptr(current); |
| 830 | } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { |
| 831 | relax_compatible_cpus_allowed_ptr(current); |
| 832 | } |
| 833 | |
| 834 | current->mm->context.flags = mmflags; |
| 835 | ptrauth_thread_init_user(); |
| 836 | mte_thread_init_user(); |
| 837 | do_set_tsc_mode(PR_TSC_ENABLE); |
| 838 | |
| 839 | if (task_spec_ssb_noexec(current)) { |
| 840 | arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, |
| 841 | PR_SPEC_ENABLE); |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI |
| 846 | /* |
| 847 | * Control the relaxed ABI allowing tagged user addresses into the kernel. |
| 848 | */ |
| 849 | static unsigned int tagged_addr_disabled; |
| 850 | |
| 851 | long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) |
| 852 | { |
| 853 | unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; |
| 854 | struct thread_info *ti = task_thread_info(task); |
| 855 | |
| 856 | if (is_compat_thread(ti)) |
| 857 | return -EINVAL; |
| 858 | |
| 859 | if (system_supports_mte()) |
| 860 | valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ |
| 861 | | PR_MTE_TAG_MASK; |
| 862 | |
| 863 | if (arg & ~valid_mask) |
| 864 | return -EINVAL; |
| 865 | |
| 866 | /* |
| 867 | * Do not allow the enabling of the tagged address ABI if globally |
| 868 | * disabled via sysctl abi.tagged_addr_disabled. |
| 869 | */ |
| 870 | if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) |
| 871 | return -EINVAL; |
| 872 | |
| 873 | if (set_mte_ctrl(task, arg) != 0) |
| 874 | return -EINVAL; |
| 875 | |
| 876 | update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); |
| 877 | |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | long get_tagged_addr_ctrl(struct task_struct *task) |
| 882 | { |
| 883 | long ret = 0; |
| 884 | struct thread_info *ti = task_thread_info(task); |
| 885 | |
| 886 | if (is_compat_thread(ti)) |
| 887 | return -EINVAL; |
| 888 | |
| 889 | if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) |
| 890 | ret = PR_TAGGED_ADDR_ENABLE; |
| 891 | |
| 892 | ret |= get_mte_ctrl(task); |
| 893 | |
| 894 | return ret; |
| 895 | } |
| 896 | |
| 897 | /* |
| 898 | * Global sysctl to disable the tagged user addresses support. This control |
| 899 | * only prevents the tagged address ABI enabling via prctl() and does not |
| 900 | * disable it for tasks that already opted in to the relaxed ABI. |
| 901 | */ |
| 902 | |
| 903 | static const struct ctl_table tagged_addr_sysctl_table[] = { |
| 904 | { |
| 905 | .procname = "tagged_addr_disabled", |
| 906 | .mode = 0644, |
| 907 | .data = &tagged_addr_disabled, |
| 908 | .maxlen = sizeof(int), |
| 909 | .proc_handler = proc_dointvec_minmax, |
| 910 | .extra1 = SYSCTL_ZERO, |
| 911 | .extra2 = SYSCTL_ONE, |
| 912 | }, |
| 913 | }; |
| 914 | |
| 915 | static int __init tagged_addr_init(void) |
| 916 | { |
| 917 | if (!register_sysctl("abi", tagged_addr_sysctl_table)) |
| 918 | return -EINVAL; |
| 919 | return 0; |
| 920 | } |
| 921 | |
| 922 | core_initcall(tagged_addr_init); |
| 923 | #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ |
| 924 | |
| 925 | #ifdef CONFIG_BINFMT_ELF |
| 926 | int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, |
| 927 | bool has_interp, bool is_interp) |
| 928 | { |
| 929 | /* |
| 930 | * For dynamically linked executables the interpreter is |
| 931 | * responsible for setting PROT_BTI on everything except |
| 932 | * itself. |
| 933 | */ |
| 934 | if (is_interp != has_interp) |
| 935 | return prot; |
| 936 | |
| 937 | if (!(state->flags & ARM64_ELF_BTI)) |
| 938 | return prot; |
| 939 | |
| 940 | if (prot & PROT_EXEC) |
| 941 | prot |= PROT_BTI; |
| 942 | |
| 943 | return prot; |
| 944 | } |
| 945 | #endif |
| 946 | |
| 947 | int get_tsc_mode(unsigned long adr) |
| 948 | { |
| 949 | unsigned int val; |
| 950 | |
| 951 | if (is_compat_task()) |
| 952 | return -EINVAL; |
| 953 | |
| 954 | if (test_thread_flag(TIF_TSC_SIGSEGV)) |
| 955 | val = PR_TSC_SIGSEGV; |
| 956 | else |
| 957 | val = PR_TSC_ENABLE; |
| 958 | |
| 959 | return put_user(val, (unsigned int __user *)adr); |
| 960 | } |
| 961 | |
| 962 | int set_tsc_mode(unsigned int val) |
| 963 | { |
| 964 | if (is_compat_task()) |
| 965 | return -EINVAL; |
| 966 | |
| 967 | return do_set_tsc_mode(val); |
| 968 | } |