| 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
| 2 | /* |
| 3 | * Copyright (C) 2012,2013 - ARM Ltd |
| 4 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 5 | */ |
| 6 | |
| 7 | #ifndef __ARM64_KVM_MMU_H__ |
| 8 | #define __ARM64_KVM_MMU_H__ |
| 9 | |
| 10 | #include <asm/page.h> |
| 11 | #include <asm/memory.h> |
| 12 | #include <asm/mmu.h> |
| 13 | #include <asm/cpufeature.h> |
| 14 | |
| 15 | /* |
| 16 | * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express |
| 17 | * "negative" addresses. This makes it impossible to directly share |
| 18 | * mappings with the kernel. |
| 19 | * |
| 20 | * Instead, give the HYP mode its own VA region at a fixed offset from |
| 21 | * the kernel by just masking the top bits (which are all ones for a |
| 22 | * kernel address). We need to find out how many bits to mask. |
| 23 | * |
| 24 | * We want to build a set of page tables that cover both parts of the |
| 25 | * idmap (the trampoline page used to initialize EL2), and our normal |
| 26 | * runtime VA space, at the same time. |
| 27 | * |
| 28 | * Given that the kernel uses VA_BITS for its entire address space, |
| 29 | * and that half of that space (VA_BITS - 1) is used for the linear |
| 30 | * mapping, we can also limit the EL2 space to (VA_BITS - 1). |
| 31 | * |
| 32 | * The main question is "Within the VA_BITS space, does EL2 use the |
| 33 | * top or the bottom half of that space to shadow the kernel's linear |
| 34 | * mapping?". As we need to idmap the trampoline page, this is |
| 35 | * determined by the range in which this page lives. |
| 36 | * |
| 37 | * If the page is in the bottom half, we have to use the top half. If |
| 38 | * the page is in the top half, we have to use the bottom half: |
| 39 | * |
| 40 | * T = __pa_symbol(__hyp_idmap_text_start) |
| 41 | * if (T & BIT(VA_BITS - 1)) |
| 42 | * HYP_VA_MIN = 0 //idmap in upper half |
| 43 | * else |
| 44 | * HYP_VA_MIN = 1 << (VA_BITS - 1) |
| 45 | * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 |
| 46 | * |
| 47 | * When using VHE, there are no separate hyp mappings and all KVM |
| 48 | * functionality is already mapped as part of the main kernel |
| 49 | * mappings, and none of this applies in that case. |
| 50 | */ |
| 51 | |
| 52 | #ifdef __ASSEMBLY__ |
| 53 | |
| 54 | #include <asm/alternative.h> |
| 55 | |
| 56 | /* |
| 57 | * Convert a hypervisor VA to a PA |
| 58 | * reg: hypervisor address to be converted in place |
| 59 | * tmp: temporary register |
| 60 | */ |
| 61 | .macro hyp_pa reg, tmp |
| 62 | ldr_l \tmp, hyp_physvirt_offset |
| 63 | add \reg, \reg, \tmp |
| 64 | .endm |
| 65 | |
| 66 | /* |
| 67 | * Convert a hypervisor VA to a kernel image address |
| 68 | * reg: hypervisor address to be converted in place |
| 69 | * tmp: temporary register |
| 70 | * |
| 71 | * The actual code generation takes place in kvm_get_kimage_voffset, and |
| 72 | * the instructions below are only there to reserve the space and |
| 73 | * perform the register allocation (kvm_get_kimage_voffset uses the |
| 74 | * specific registers encoded in the instructions). |
| 75 | */ |
| 76 | .macro hyp_kimg_va reg, tmp |
| 77 | /* Convert hyp VA -> PA. */ |
| 78 | hyp_pa \reg, \tmp |
| 79 | |
| 80 | /* Load kimage_voffset. */ |
| 81 | alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset |
| 82 | movz \tmp, #0 |
| 83 | movk \tmp, #0, lsl #16 |
| 84 | movk \tmp, #0, lsl #32 |
| 85 | movk \tmp, #0, lsl #48 |
| 86 | alternative_cb_end |
| 87 | |
| 88 | /* Convert PA -> kimg VA. */ |
| 89 | add \reg, \reg, \tmp |
| 90 | .endm |
| 91 | |
| 92 | #else |
| 93 | |
| 94 | #include <linux/pgtable.h> |
| 95 | #include <asm/pgalloc.h> |
| 96 | #include <asm/cache.h> |
| 97 | #include <asm/cacheflush.h> |
| 98 | #include <asm/mmu_context.h> |
| 99 | #include <asm/kvm_emulate.h> |
| 100 | #include <asm/kvm_host.h> |
| 101 | #include <asm/kvm_nested.h> |
| 102 | |
| 103 | void kvm_update_va_mask(struct alt_instr *alt, |
| 104 | __le32 *origptr, __le32 *updptr, int nr_inst); |
| 105 | void kvm_compute_layout(void); |
| 106 | void kvm_apply_hyp_relocations(void); |
| 107 | |
| 108 | #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset) |
| 109 | |
| 110 | /* |
| 111 | * Convert a kernel VA into a HYP VA. |
| 112 | * |
| 113 | * Can be called from hyp or non-hyp context. |
| 114 | * |
| 115 | * The actual code generation takes place in kvm_update_va_mask(), and |
| 116 | * the instructions below are only there to reserve the space and |
| 117 | * perform the register allocation (kvm_update_va_mask() uses the |
| 118 | * specific registers encoded in the instructions). |
| 119 | */ |
| 120 | static __always_inline unsigned long __kern_hyp_va(unsigned long v) |
| 121 | { |
| 122 | /* |
| 123 | * This #ifndef is an optimisation for when this is called from VHE hyp |
| 124 | * context. When called from a VHE non-hyp context, kvm_update_va_mask() will |
| 125 | * replace the instructions with `nop`s. |
| 126 | */ |
| 127 | #ifndef __KVM_VHE_HYPERVISOR__ |
| 128 | asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */ |
| 129 | "ror %0, %0, #1\n" /* rotate to the first tag bit */ |
| 130 | "add %0, %0, #0\n" /* insert the low 12 bits of the tag */ |
| 131 | "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */ |
| 132 | "ror %0, %0, #63\n", /* rotate back */ |
| 133 | ARM64_ALWAYS_SYSTEM, |
| 134 | kvm_update_va_mask) |
| 135 | : "+r" (v)); |
| 136 | #endif |
| 137 | return v; |
| 138 | } |
| 139 | |
| 140 | #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) |
| 141 | |
| 142 | extern u32 __hyp_va_bits; |
| 143 | |
| 144 | /* |
| 145 | * We currently support using a VM-specified IPA size. For backward |
| 146 | * compatibility, the default IPA size is fixed to 40bits. |
| 147 | */ |
| 148 | #define KVM_PHYS_SHIFT (40) |
| 149 | |
| 150 | #define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr) |
| 151 | #define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu)) |
| 152 | #define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL)) |
| 153 | |
| 154 | #include <asm/kvm_pgtable.h> |
| 155 | #include <asm/stage2_pgtable.h> |
| 156 | |
| 157 | int kvm_share_hyp(void *from, void *to); |
| 158 | void kvm_unshare_hyp(void *from, void *to); |
| 159 | int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot); |
| 160 | int __create_hyp_mappings(unsigned long start, unsigned long size, |
| 161 | unsigned long phys, enum kvm_pgtable_prot prot); |
| 162 | int hyp_alloc_private_va_range(size_t size, unsigned long *haddr); |
| 163 | int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, |
| 164 | void __iomem **kaddr, |
| 165 | void __iomem **haddr); |
| 166 | int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, |
| 167 | void **haddr); |
| 168 | int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr); |
| 169 | void __init free_hyp_pgds(void); |
| 170 | |
| 171 | void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, |
| 172 | u64 size, bool may_block); |
| 173 | void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); |
| 174 | void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); |
| 175 | |
| 176 | void stage2_unmap_vm(struct kvm *kvm); |
| 177 | int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type); |
| 178 | void kvm_uninit_stage2_mmu(struct kvm *kvm); |
| 179 | void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu); |
| 180 | int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| 181 | phys_addr_t pa, unsigned long size, bool writable); |
| 182 | |
| 183 | int kvm_handle_guest_abort(struct kvm_vcpu *vcpu); |
| 184 | |
| 185 | phys_addr_t kvm_mmu_get_httbr(void); |
| 186 | phys_addr_t kvm_get_idmap_vector(void); |
| 187 | int __init kvm_mmu_init(u32 *hyp_va_bits); |
| 188 | |
| 189 | static inline void *__kvm_vector_slot2addr(void *base, |
| 190 | enum arm64_hyp_spectre_vector slot) |
| 191 | { |
| 192 | int idx = slot - (slot != HYP_VECTOR_DIRECT); |
| 193 | |
| 194 | return base + (idx * SZ_2K); |
| 195 | } |
| 196 | |
| 197 | struct kvm; |
| 198 | |
| 199 | #define kvm_flush_dcache_to_poc(a,l) \ |
| 200 | dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l)) |
| 201 | |
| 202 | static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) |
| 203 | { |
| 204 | u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C; |
| 205 | int reg; |
| 206 | |
| 207 | if (vcpu_is_el2(vcpu)) |
| 208 | reg = SCTLR_EL2; |
| 209 | else |
| 210 | reg = SCTLR_EL1; |
| 211 | |
| 212 | return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits; |
| 213 | } |
| 214 | |
| 215 | static inline void __clean_dcache_guest_page(void *va, size_t size) |
| 216 | { |
| 217 | /* |
| 218 | * With FWB, we ensure that the guest always accesses memory using |
| 219 | * cacheable attributes, and we don't have to clean to PoC when |
| 220 | * faulting in pages. Furthermore, FWB implies IDC, so cleaning to |
| 221 | * PoU is not required either in this case. |
| 222 | */ |
| 223 | if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
| 224 | return; |
| 225 | |
| 226 | kvm_flush_dcache_to_poc(va, size); |
| 227 | } |
| 228 | |
| 229 | static inline size_t __invalidate_icache_max_range(void) |
| 230 | { |
| 231 | u8 iminline; |
| 232 | u64 ctr; |
| 233 | |
| 234 | asm volatile(ALTERNATIVE_CB("movz %0, #0\n" |
| 235 | "movk %0, #0, lsl #16\n" |
| 236 | "movk %0, #0, lsl #32\n" |
| 237 | "movk %0, #0, lsl #48\n", |
| 238 | ARM64_ALWAYS_SYSTEM, |
| 239 | kvm_compute_final_ctr_el0) |
| 240 | : "=r" (ctr)); |
| 241 | |
| 242 | iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2; |
| 243 | return MAX_DVM_OPS << iminline; |
| 244 | } |
| 245 | |
| 246 | static inline void __invalidate_icache_guest_page(void *va, size_t size) |
| 247 | { |
| 248 | /* |
| 249 | * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the |
| 250 | * invalidation range exceeds our arbitrary limit on invadations by |
| 251 | * cache line. |
| 252 | */ |
| 253 | if (icache_is_aliasing() || size > __invalidate_icache_max_range()) |
| 254 | icache_inval_all_pou(); |
| 255 | else |
| 256 | icache_inval_pou((unsigned long)va, (unsigned long)va + size); |
| 257 | } |
| 258 | |
| 259 | void kvm_set_way_flush(struct kvm_vcpu *vcpu); |
| 260 | void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); |
| 261 | |
| 262 | static inline unsigned int kvm_get_vmid_bits(void) |
| 263 | { |
| 264 | int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| 265 | |
| 266 | return get_vmid_bits(reg); |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * We are not in the kvm->srcu critical section most of the time, so we take |
| 271 | * the SRCU read lock here. Since we copy the data from the user page, we |
| 272 | * can immediately drop the lock again. |
| 273 | */ |
| 274 | static inline int kvm_read_guest_lock(struct kvm *kvm, |
| 275 | gpa_t gpa, void *data, unsigned long len) |
| 276 | { |
| 277 | int srcu_idx = srcu_read_lock(&kvm->srcu); |
| 278 | int ret = kvm_read_guest(kvm, gpa, data, len); |
| 279 | |
| 280 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 281 | |
| 282 | return ret; |
| 283 | } |
| 284 | |
| 285 | static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, |
| 286 | const void *data, unsigned long len) |
| 287 | { |
| 288 | int srcu_idx = srcu_read_lock(&kvm->srcu); |
| 289 | int ret = kvm_write_guest(kvm, gpa, data, len); |
| 290 | |
| 291 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 292 | |
| 293 | return ret; |
| 294 | } |
| 295 | |
| 296 | #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) |
| 297 | |
| 298 | /* |
| 299 | * When this is (directly or indirectly) used on the TLB invalidation |
| 300 | * path, we rely on a previously issued DSB so that page table updates |
| 301 | * and VMID reads are correctly ordered. |
| 302 | */ |
| 303 | static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu) |
| 304 | { |
| 305 | struct kvm_vmid *vmid = &mmu->vmid; |
| 306 | u64 vmid_field, baddr; |
| 307 | u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; |
| 308 | |
| 309 | baddr = mmu->pgd_phys; |
| 310 | vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT; |
| 311 | vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits); |
| 312 | return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * Must be called from hyp code running at EL2 with an updated VTTBR |
| 317 | * and interrupts disabled. |
| 318 | */ |
| 319 | static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu, |
| 320 | struct kvm_arch *arch) |
| 321 | { |
| 322 | write_sysreg(mmu->vtcr, vtcr_el2); |
| 323 | write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); |
| 324 | |
| 325 | /* |
| 326 | * ARM errata 1165522 and 1530923 require the actual execution of the |
| 327 | * above before we can switch to the EL1/EL0 translation regime used by |
| 328 | * the guest. |
| 329 | */ |
| 330 | asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); |
| 331 | } |
| 332 | |
| 333 | static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu) |
| 334 | { |
| 335 | return container_of(mmu->arch, struct kvm, arch); |
| 336 | } |
| 337 | |
| 338 | static inline u64 get_vmid(u64 vttbr) |
| 339 | { |
| 340 | return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >> |
| 341 | VTTBR_VMID_SHIFT; |
| 342 | } |
| 343 | |
| 344 | static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu) |
| 345 | { |
| 346 | return !(mmu->tlb_vttbr & VTTBR_CNP_BIT); |
| 347 | } |
| 348 | |
| 349 | static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) |
| 350 | { |
| 351 | /* |
| 352 | * Be careful, mmu may not be fully initialised so do look at |
| 353 | * *any* of its fields. |
| 354 | */ |
| 355 | return &kvm->arch.mmu != mmu; |
| 356 | } |
| 357 | |
| 358 | static inline void kvm_fault_lock(struct kvm *kvm) |
| 359 | { |
| 360 | if (is_protected_kvm_enabled()) |
| 361 | write_lock(&kvm->mmu_lock); |
| 362 | else |
| 363 | read_lock(&kvm->mmu_lock); |
| 364 | } |
| 365 | |
| 366 | static inline void kvm_fault_unlock(struct kvm *kvm) |
| 367 | { |
| 368 | if (is_protected_kvm_enabled()) |
| 369 | write_unlock(&kvm->mmu_lock); |
| 370 | else |
| 371 | read_unlock(&kvm->mmu_lock); |
| 372 | } |
| 373 | |
| 374 | #ifdef CONFIG_PTDUMP_STAGE2_DEBUGFS |
| 375 | void kvm_s2_ptdump_create_debugfs(struct kvm *kvm); |
| 376 | #else |
| 377 | static inline void kvm_s2_ptdump_create_debugfs(struct kvm *kvm) {} |
| 378 | #endif /* CONFIG_PTDUMP_STAGE2_DEBUGFS */ |
| 379 | |
| 380 | #endif /* __ASSEMBLY__ */ |
| 381 | #endif /* __ARM64_KVM_MMU_H__ */ |