| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/arch/arm/mm/flush.c |
| 4 | * |
| 5 | * Copyright (C) 1995-2002 Russell King |
| 6 | */ |
| 7 | #include <linux/module.h> |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/pagemap.h> |
| 10 | #include <linux/highmem.h> |
| 11 | |
| 12 | #include <asm/cacheflush.h> |
| 13 | #include <asm/cachetype.h> |
| 14 | #include <asm/highmem.h> |
| 15 | #include <asm/smp_plat.h> |
| 16 | #include <asm/tlbflush.h> |
| 17 | #include <linux/hugetlb.h> |
| 18 | |
| 19 | #include "mm.h" |
| 20 | |
| 21 | #ifdef CONFIG_ARM_HEAVY_MB |
| 22 | void (*soc_mb)(void); |
| 23 | |
| 24 | void arm_heavy_mb(void) |
| 25 | { |
| 26 | #ifdef CONFIG_OUTER_CACHE_SYNC |
| 27 | if (outer_cache.sync) |
| 28 | outer_cache.sync(); |
| 29 | #endif |
| 30 | if (soc_mb) |
| 31 | soc_mb(); |
| 32 | } |
| 33 | EXPORT_SYMBOL(arm_heavy_mb); |
| 34 | #endif |
| 35 | |
| 36 | #ifdef CONFIG_CPU_CACHE_VIPT |
| 37 | |
| 38 | static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr) |
| 39 | { |
| 40 | unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT); |
| 41 | const int zero = 0; |
| 42 | |
| 43 | set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL)); |
| 44 | |
| 45 | asm( "mcrr p15, 0, %1, %0, c14\n" |
| 46 | " mcr p15, 0, %2, c7, c10, 4" |
| 47 | : |
| 48 | : "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero) |
| 49 | : "cc"); |
| 50 | } |
| 51 | |
| 52 | static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len) |
| 53 | { |
| 54 | unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT); |
| 55 | unsigned long offset = vaddr & (PAGE_SIZE - 1); |
| 56 | unsigned long to; |
| 57 | |
| 58 | set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL)); |
| 59 | to = va + offset; |
| 60 | flush_icache_range(to, to + len); |
| 61 | } |
| 62 | |
| 63 | void flush_cache_mm(struct mm_struct *mm) |
| 64 | { |
| 65 | if (cache_is_vivt()) { |
| 66 | vivt_flush_cache_mm(mm); |
| 67 | return; |
| 68 | } |
| 69 | |
| 70 | if (cache_is_vipt_aliasing()) { |
| 71 | asm( "mcr p15, 0, %0, c7, c14, 0\n" |
| 72 | " mcr p15, 0, %0, c7, c10, 4" |
| 73 | : |
| 74 | : "r" (0) |
| 75 | : "cc"); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 80 | { |
| 81 | if (cache_is_vivt()) { |
| 82 | vivt_flush_cache_range(vma, start, end); |
| 83 | return; |
| 84 | } |
| 85 | |
| 86 | if (cache_is_vipt_aliasing()) { |
| 87 | asm( "mcr p15, 0, %0, c7, c14, 0\n" |
| 88 | " mcr p15, 0, %0, c7, c10, 4" |
| 89 | : |
| 90 | : "r" (0) |
| 91 | : "cc"); |
| 92 | } |
| 93 | |
| 94 | if (vma->vm_flags & VM_EXEC) |
| 95 | __flush_icache_all(); |
| 96 | } |
| 97 | |
| 98 | void flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr) |
| 99 | { |
| 100 | if (cache_is_vivt()) { |
| 101 | vivt_flush_cache_pages(vma, user_addr, pfn, nr); |
| 102 | return; |
| 103 | } |
| 104 | |
| 105 | if (cache_is_vipt_aliasing()) { |
| 106 | flush_pfn_alias(pfn, user_addr); |
| 107 | __flush_icache_all(); |
| 108 | } |
| 109 | |
| 110 | if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged()) |
| 111 | __flush_icache_all(); |
| 112 | } |
| 113 | |
| 114 | #else |
| 115 | #define flush_pfn_alias(pfn,vaddr) do { } while (0) |
| 116 | #define flush_icache_alias(pfn,vaddr,len) do { } while (0) |
| 117 | #endif |
| 118 | |
| 119 | #define FLAG_PA_IS_EXEC 1 |
| 120 | #define FLAG_PA_CORE_IN_MM 2 |
| 121 | |
| 122 | static void flush_ptrace_access_other(void *args) |
| 123 | { |
| 124 | __flush_icache_all(); |
| 125 | } |
| 126 | |
| 127 | static inline |
| 128 | void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr, |
| 129 | unsigned long len, unsigned int flags) |
| 130 | { |
| 131 | if (cache_is_vivt()) { |
| 132 | if (flags & FLAG_PA_CORE_IN_MM) { |
| 133 | unsigned long addr = (unsigned long)kaddr; |
| 134 | __cpuc_coherent_kern_range(addr, addr + len); |
| 135 | } |
| 136 | return; |
| 137 | } |
| 138 | |
| 139 | if (cache_is_vipt_aliasing()) { |
| 140 | flush_pfn_alias(page_to_pfn(page), uaddr); |
| 141 | __flush_icache_all(); |
| 142 | return; |
| 143 | } |
| 144 | |
| 145 | /* VIPT non-aliasing D-cache */ |
| 146 | if (flags & FLAG_PA_IS_EXEC) { |
| 147 | unsigned long addr = (unsigned long)kaddr; |
| 148 | if (icache_is_vipt_aliasing()) |
| 149 | flush_icache_alias(page_to_pfn(page), uaddr, len); |
| 150 | else |
| 151 | __cpuc_coherent_kern_range(addr, addr + len); |
| 152 | if (cache_ops_need_broadcast()) |
| 153 | smp_call_function(flush_ptrace_access_other, |
| 154 | NULL, 1); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | static |
| 159 | void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, |
| 160 | unsigned long uaddr, void *kaddr, unsigned long len) |
| 161 | { |
| 162 | unsigned int flags = 0; |
| 163 | if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) |
| 164 | flags |= FLAG_PA_CORE_IN_MM; |
| 165 | if (vma->vm_flags & VM_EXEC) |
| 166 | flags |= FLAG_PA_IS_EXEC; |
| 167 | __flush_ptrace_access(page, uaddr, kaddr, len, flags); |
| 168 | } |
| 169 | |
| 170 | void flush_uprobe_xol_access(struct page *page, unsigned long uaddr, |
| 171 | void *kaddr, unsigned long len) |
| 172 | { |
| 173 | unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC; |
| 174 | |
| 175 | __flush_ptrace_access(page, uaddr, kaddr, len, flags); |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Copy user data from/to a page which is mapped into a different |
| 180 | * processes address space. Really, we want to allow our "user |
| 181 | * space" model to handle this. |
| 182 | * |
| 183 | * Note that this code needs to run on the current CPU. |
| 184 | */ |
| 185 | void copy_to_user_page(struct vm_area_struct *vma, struct page *page, |
| 186 | unsigned long uaddr, void *dst, const void *src, |
| 187 | unsigned long len) |
| 188 | { |
| 189 | #ifdef CONFIG_SMP |
| 190 | preempt_disable(); |
| 191 | #endif |
| 192 | memcpy(dst, src, len); |
| 193 | flush_ptrace_access(vma, page, uaddr, dst, len); |
| 194 | #ifdef CONFIG_SMP |
| 195 | preempt_enable(); |
| 196 | #endif |
| 197 | } |
| 198 | |
| 199 | void __flush_dcache_folio(struct address_space *mapping, struct folio *folio) |
| 200 | { |
| 201 | /* |
| 202 | * Writeback any data associated with the kernel mapping of this |
| 203 | * page. This ensures that data in the physical page is mutually |
| 204 | * coherent with the kernels mapping. |
| 205 | */ |
| 206 | if (!folio_test_highmem(folio)) { |
| 207 | __cpuc_flush_dcache_area(folio_address(folio), |
| 208 | folio_size(folio)); |
| 209 | } else { |
| 210 | unsigned long i; |
| 211 | if (cache_is_vipt_nonaliasing()) { |
| 212 | for (i = 0; i < folio_nr_pages(folio); i++) { |
| 213 | void *addr = kmap_local_folio(folio, |
| 214 | i * PAGE_SIZE); |
| 215 | __cpuc_flush_dcache_area(addr, PAGE_SIZE); |
| 216 | kunmap_local(addr); |
| 217 | } |
| 218 | } else { |
| 219 | for (i = 0; i < folio_nr_pages(folio); i++) { |
| 220 | void *addr = kmap_high_get(folio_page(folio, i)); |
| 221 | if (addr) { |
| 222 | __cpuc_flush_dcache_area(addr, PAGE_SIZE); |
| 223 | kunmap_high(folio_page(folio, i)); |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * If this is a page cache folio, and we have an aliasing VIPT cache, |
| 231 | * we only need to do one flush - which would be at the relevant |
| 232 | * userspace colour, which is congruent with folio->index. |
| 233 | */ |
| 234 | if (mapping && cache_is_vipt_aliasing()) |
| 235 | flush_pfn_alias(folio_pfn(folio), folio_pos(folio)); |
| 236 | } |
| 237 | |
| 238 | static void __flush_dcache_aliases(struct address_space *mapping, struct folio *folio) |
| 239 | { |
| 240 | struct mm_struct *mm = current->active_mm; |
| 241 | struct vm_area_struct *vma; |
| 242 | pgoff_t pgoff, pgoff_end; |
| 243 | |
| 244 | /* |
| 245 | * There are possible user space mappings of this page: |
| 246 | * - VIVT cache: we need to also write back and invalidate all user |
| 247 | * data in the current VM view associated with this page. |
| 248 | * - aliasing VIPT: we only need to find one mapping of this page. |
| 249 | */ |
| 250 | pgoff = folio->index; |
| 251 | pgoff_end = pgoff + folio_nr_pages(folio) - 1; |
| 252 | |
| 253 | flush_dcache_mmap_lock(mapping); |
| 254 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff_end) { |
| 255 | unsigned long start, offset, pfn; |
| 256 | unsigned int nr; |
| 257 | |
| 258 | /* |
| 259 | * If this VMA is not in our MM, we can ignore it. |
| 260 | */ |
| 261 | if (vma->vm_mm != mm) |
| 262 | continue; |
| 263 | if (!(vma->vm_flags & VM_MAYSHARE)) |
| 264 | continue; |
| 265 | |
| 266 | start = vma->vm_start; |
| 267 | pfn = folio_pfn(folio); |
| 268 | nr = folio_nr_pages(folio); |
| 269 | offset = pgoff - vma->vm_pgoff; |
| 270 | if (offset > -nr) { |
| 271 | pfn -= offset; |
| 272 | nr += offset; |
| 273 | } else { |
| 274 | start += offset * PAGE_SIZE; |
| 275 | } |
| 276 | if (start + nr * PAGE_SIZE > vma->vm_end) |
| 277 | nr = (vma->vm_end - start) / PAGE_SIZE; |
| 278 | |
| 279 | flush_cache_pages(vma, start, pfn, nr); |
| 280 | } |
| 281 | flush_dcache_mmap_unlock(mapping); |
| 282 | } |
| 283 | |
| 284 | #if __LINUX_ARM_ARCH__ >= 6 |
| 285 | void __sync_icache_dcache(pte_t pteval) |
| 286 | { |
| 287 | unsigned long pfn; |
| 288 | struct folio *folio; |
| 289 | struct address_space *mapping; |
| 290 | |
| 291 | if (cache_is_vipt_nonaliasing() && !pte_exec(pteval)) |
| 292 | /* only flush non-aliasing VIPT caches for exec mappings */ |
| 293 | return; |
| 294 | pfn = pte_pfn(pteval); |
| 295 | if (!pfn_valid(pfn)) |
| 296 | return; |
| 297 | |
| 298 | folio = page_folio(pfn_to_page(pfn)); |
| 299 | if (folio_test_reserved(folio)) |
| 300 | return; |
| 301 | |
| 302 | if (cache_is_vipt_aliasing()) |
| 303 | mapping = folio_flush_mapping(folio); |
| 304 | else |
| 305 | mapping = NULL; |
| 306 | |
| 307 | if (!test_and_set_bit(PG_dcache_clean, &folio->flags)) |
| 308 | __flush_dcache_folio(mapping, folio); |
| 309 | |
| 310 | if (pte_exec(pteval)) |
| 311 | __flush_icache_all(); |
| 312 | } |
| 313 | #endif |
| 314 | |
| 315 | /* |
| 316 | * Ensure cache coherency between kernel mapping and userspace mapping |
| 317 | * of this page. |
| 318 | * |
| 319 | * We have three cases to consider: |
| 320 | * - VIPT non-aliasing cache: fully coherent so nothing required. |
| 321 | * - VIVT: fully aliasing, so we need to handle every alias in our |
| 322 | * current VM view. |
| 323 | * - VIPT aliasing: need to handle one alias in our current VM view. |
| 324 | * |
| 325 | * If we need to handle aliasing: |
| 326 | * If the page only exists in the page cache and there are no user |
| 327 | * space mappings, we can be lazy and remember that we may have dirty |
| 328 | * kernel cache lines for later. Otherwise, we assume we have |
| 329 | * aliasing mappings. |
| 330 | * |
| 331 | * Note that we disable the lazy flush for SMP configurations where |
| 332 | * the cache maintenance operations are not automatically broadcasted. |
| 333 | */ |
| 334 | void flush_dcache_folio(struct folio *folio) |
| 335 | { |
| 336 | struct address_space *mapping; |
| 337 | |
| 338 | /* |
| 339 | * The zero page is never written to, so never has any dirty |
| 340 | * cache lines, and therefore never needs to be flushed. |
| 341 | */ |
| 342 | if (is_zero_pfn(folio_pfn(folio))) |
| 343 | return; |
| 344 | |
| 345 | if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) { |
| 346 | if (test_bit(PG_dcache_clean, &folio->flags)) |
| 347 | clear_bit(PG_dcache_clean, &folio->flags); |
| 348 | return; |
| 349 | } |
| 350 | |
| 351 | mapping = folio_flush_mapping(folio); |
| 352 | |
| 353 | if (!cache_ops_need_broadcast() && |
| 354 | mapping && !folio_mapped(folio)) |
| 355 | clear_bit(PG_dcache_clean, &folio->flags); |
| 356 | else { |
| 357 | __flush_dcache_folio(mapping, folio); |
| 358 | if (mapping && cache_is_vivt()) |
| 359 | __flush_dcache_aliases(mapping, folio); |
| 360 | else if (mapping) |
| 361 | __flush_icache_all(); |
| 362 | set_bit(PG_dcache_clean, &folio->flags); |
| 363 | } |
| 364 | } |
| 365 | EXPORT_SYMBOL(flush_dcache_folio); |
| 366 | |
| 367 | void flush_dcache_page(struct page *page) |
| 368 | { |
| 369 | flush_dcache_folio(page_folio(page)); |
| 370 | } |
| 371 | EXPORT_SYMBOL(flush_dcache_page); |
| 372 | /* |
| 373 | * Flush an anonymous page so that users of get_user_pages() |
| 374 | * can safely access the data. The expected sequence is: |
| 375 | * |
| 376 | * get_user_pages() |
| 377 | * -> flush_anon_page |
| 378 | * memcpy() to/from page |
| 379 | * if written to page, flush_dcache_page() |
| 380 | */ |
| 381 | void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr); |
| 382 | void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) |
| 383 | { |
| 384 | unsigned long pfn; |
| 385 | |
| 386 | /* VIPT non-aliasing caches need do nothing */ |
| 387 | if (cache_is_vipt_nonaliasing()) |
| 388 | return; |
| 389 | |
| 390 | /* |
| 391 | * Write back and invalidate userspace mapping. |
| 392 | */ |
| 393 | pfn = page_to_pfn(page); |
| 394 | if (cache_is_vivt()) { |
| 395 | flush_cache_page(vma, vmaddr, pfn); |
| 396 | } else { |
| 397 | /* |
| 398 | * For aliasing VIPT, we can flush an alias of the |
| 399 | * userspace address only. |
| 400 | */ |
| 401 | flush_pfn_alias(pfn, vmaddr); |
| 402 | __flush_icache_all(); |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Invalidate kernel mapping. No data should be contained |
| 407 | * in this mapping of the page. FIXME: this is overkill |
| 408 | * since we actually ask for a write-back and invalidate. |
| 409 | */ |
| 410 | __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); |
| 411 | } |