| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4 |
| 4 | * |
| 5 | * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| 6 | * |
| 7 | */ |
| 8 | |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/bug.h> |
| 11 | #include <linux/mm_types.h> |
| 12 | |
| 13 | #include <asm/arcregs.h> |
| 14 | #include <asm/setup.h> |
| 15 | #include <asm/mmu_context.h> |
| 16 | #include <asm/mmu.h> |
| 17 | |
| 18 | /* A copy of the ASID from the PID reg is kept in asid_cache */ |
| 19 | DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; |
| 20 | |
| 21 | static struct cpuinfo_arc_mmu { |
| 22 | unsigned int ver, pg_sz_k, s_pg_sz_m, pae, sets, ways; |
| 23 | } mmuinfo; |
| 24 | |
| 25 | /* |
| 26 | * Utility Routine to erase a J-TLB entry |
| 27 | * Caller needs to setup Index Reg (manually or via getIndex) |
| 28 | */ |
| 29 | static inline void __tlb_entry_erase(void) |
| 30 | { |
| 31 | write_aux_reg(ARC_REG_TLBPD1, 0); |
| 32 | |
| 33 | if (is_pae40_enabled()) |
| 34 | write_aux_reg(ARC_REG_TLBPD1HI, 0); |
| 35 | |
| 36 | write_aux_reg(ARC_REG_TLBPD0, 0); |
| 37 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); |
| 38 | } |
| 39 | |
| 40 | static void utlb_invalidate(void) |
| 41 | { |
| 42 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); |
| 43 | } |
| 44 | |
| 45 | #ifdef CONFIG_ARC_MMU_V3 |
| 46 | |
| 47 | static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) |
| 48 | { |
| 49 | unsigned int idx; |
| 50 | |
| 51 | write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); |
| 52 | |
| 53 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); |
| 54 | idx = read_aux_reg(ARC_REG_TLBINDEX); |
| 55 | |
| 56 | return idx; |
| 57 | } |
| 58 | |
| 59 | static void tlb_entry_erase(unsigned int vaddr_n_asid) |
| 60 | { |
| 61 | unsigned int idx; |
| 62 | |
| 63 | /* Locate the TLB entry for this vaddr + ASID */ |
| 64 | idx = tlb_entry_lkup(vaddr_n_asid); |
| 65 | |
| 66 | /* No error means entry found, zero it out */ |
| 67 | if (likely(!(idx & TLB_LKUP_ERR))) { |
| 68 | __tlb_entry_erase(); |
| 69 | } else { |
| 70 | /* Duplicate entry error */ |
| 71 | WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", |
| 72 | vaddr_n_asid); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) |
| 77 | { |
| 78 | unsigned int idx; |
| 79 | |
| 80 | /* |
| 81 | * First verify if entry for this vaddr+ASID already exists |
| 82 | * This also sets up PD0 (vaddr, ASID..) for final commit |
| 83 | */ |
| 84 | idx = tlb_entry_lkup(pd0); |
| 85 | |
| 86 | /* |
| 87 | * If Not already present get a free slot from MMU. |
| 88 | * Otherwise, Probe would have located the entry and set INDEX Reg |
| 89 | * with existing location. This will cause Write CMD to over-write |
| 90 | * existing entry with new PD0 and PD1 |
| 91 | */ |
| 92 | if (likely(idx & TLB_LKUP_ERR)) |
| 93 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); |
| 94 | |
| 95 | /* setup the other half of TLB entry (pfn, rwx..) */ |
| 96 | write_aux_reg(ARC_REG_TLBPD1, pd1); |
| 97 | |
| 98 | /* |
| 99 | * Commit the Entry to MMU |
| 100 | * It doesn't sound safe to use the TLBWriteNI cmd here |
| 101 | * which doesn't flush uTLBs. I'd rather be safe than sorry. |
| 102 | */ |
| 103 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); |
| 104 | } |
| 105 | |
| 106 | #else /* MMUv4 */ |
| 107 | |
| 108 | static void tlb_entry_erase(unsigned int vaddr_n_asid) |
| 109 | { |
| 110 | write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); |
| 111 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); |
| 112 | } |
| 113 | |
| 114 | static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) |
| 115 | { |
| 116 | write_aux_reg(ARC_REG_TLBPD0, pd0); |
| 117 | |
| 118 | if (!is_pae40_enabled()) { |
| 119 | write_aux_reg(ARC_REG_TLBPD1, pd1); |
| 120 | } else { |
| 121 | write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF); |
| 122 | write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); |
| 123 | } |
| 124 | |
| 125 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); |
| 126 | } |
| 127 | |
| 128 | #endif |
| 129 | |
| 130 | /* |
| 131 | * Un-conditionally (without lookup) erase the entire MMU contents |
| 132 | */ |
| 133 | |
| 134 | noinline void local_flush_tlb_all(void) |
| 135 | { |
| 136 | struct cpuinfo_arc_mmu *mmu = &mmuinfo; |
| 137 | unsigned long flags; |
| 138 | unsigned int entry; |
| 139 | int num_tlb = mmu->sets * mmu->ways; |
| 140 | |
| 141 | local_irq_save(flags); |
| 142 | |
| 143 | /* Load PD0 and PD1 with template for a Blank Entry */ |
| 144 | write_aux_reg(ARC_REG_TLBPD1, 0); |
| 145 | |
| 146 | if (is_pae40_enabled()) |
| 147 | write_aux_reg(ARC_REG_TLBPD1HI, 0); |
| 148 | |
| 149 | write_aux_reg(ARC_REG_TLBPD0, 0); |
| 150 | |
| 151 | for (entry = 0; entry < num_tlb; entry++) { |
| 152 | /* write this entry to the TLB */ |
| 153 | write_aux_reg(ARC_REG_TLBINDEX, entry); |
| 154 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); |
| 155 | } |
| 156 | |
| 157 | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { |
| 158 | const int stlb_idx = 0x800; |
| 159 | |
| 160 | /* Blank sTLB entry */ |
| 161 | write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); |
| 162 | |
| 163 | for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { |
| 164 | write_aux_reg(ARC_REG_TLBINDEX, entry); |
| 165 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | utlb_invalidate(); |
| 170 | |
| 171 | local_irq_restore(flags); |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Flush the entire MM for userland. The fastest way is to move to Next ASID |
| 176 | */ |
| 177 | noinline void local_flush_tlb_mm(struct mm_struct *mm) |
| 178 | { |
| 179 | /* |
| 180 | * Small optimisation courtesy IA64 |
| 181 | * flush_mm called during fork,exit,munmap etc, multiple times as well. |
| 182 | * Only for fork( ) do we need to move parent to a new MMU ctxt, |
| 183 | * all other cases are NOPs, hence this check. |
| 184 | */ |
| 185 | if (atomic_read(&mm->mm_users) == 0) |
| 186 | return; |
| 187 | |
| 188 | /* |
| 189 | * - Move to a new ASID, but only if the mm is still wired in |
| 190 | * (Android Binder ended up calling this for vma->mm != tsk->mm, |
| 191 | * causing h/w - s/w ASID to get out of sync) |
| 192 | * - Also get_new_mmu_context() new implementation allocates a new |
| 193 | * ASID only if it is not allocated already - so unallocate first |
| 194 | */ |
| 195 | destroy_context(mm); |
| 196 | if (current->mm == mm) |
| 197 | get_new_mmu_context(mm); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Flush a Range of TLB entries for userland. |
| 202 | * @start is inclusive, while @end is exclusive |
| 203 | * Difference between this and Kernel Range Flush is |
| 204 | * -Here the fastest way (if range is too large) is to move to next ASID |
| 205 | * without doing any explicit Shootdown |
| 206 | * -In case of kernel Flush, entry has to be shot down explicitly |
| 207 | */ |
| 208 | void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 209 | unsigned long end) |
| 210 | { |
| 211 | const unsigned int cpu = smp_processor_id(); |
| 212 | unsigned long flags; |
| 213 | |
| 214 | /* If range @start to @end is more than 32 TLB entries deep, |
| 215 | * it's better to move to a new ASID rather than searching for |
| 216 | * individual entries and then shooting them down |
| 217 | * |
| 218 | * The calc above is rough, doesn't account for unaligned parts, |
| 219 | * since this is heuristics based anyways |
| 220 | */ |
| 221 | if (unlikely((end - start) >= PAGE_SIZE * 32)) { |
| 222 | local_flush_tlb_mm(vma->vm_mm); |
| 223 | return; |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * @start moved to page start: this alone suffices for checking |
| 228 | * loop end condition below, w/o need for aligning @end to end |
| 229 | * e.g. 2000 to 4001 will anyhow loop twice |
| 230 | */ |
| 231 | start &= PAGE_MASK; |
| 232 | |
| 233 | local_irq_save(flags); |
| 234 | |
| 235 | if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { |
| 236 | while (start < end) { |
| 237 | tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); |
| 238 | start += PAGE_SIZE; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | local_irq_restore(flags); |
| 243 | } |
| 244 | |
| 245 | /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) |
| 246 | * @start, @end interpreted as kvaddr |
| 247 | * Interestingly, shared TLB entries can also be flushed using just |
| 248 | * @start,@end alone (interpreted as user vaddr), although technically SASID |
| 249 | * is also needed. However our smart TLbProbe lookup takes care of that. |
| 250 | */ |
| 251 | void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| 252 | { |
| 253 | unsigned long flags; |
| 254 | |
| 255 | /* exactly same as above, except for TLB entry not taking ASID */ |
| 256 | |
| 257 | if (unlikely((end - start) >= PAGE_SIZE * 32)) { |
| 258 | local_flush_tlb_all(); |
| 259 | return; |
| 260 | } |
| 261 | |
| 262 | start &= PAGE_MASK; |
| 263 | |
| 264 | local_irq_save(flags); |
| 265 | while (start < end) { |
| 266 | tlb_entry_erase(start); |
| 267 | start += PAGE_SIZE; |
| 268 | } |
| 269 | |
| 270 | local_irq_restore(flags); |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * Delete TLB entry in MMU for a given page (??? address) |
| 275 | * NOTE One TLB entry contains translation for single PAGE |
| 276 | */ |
| 277 | |
| 278 | void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 279 | { |
| 280 | const unsigned int cpu = smp_processor_id(); |
| 281 | unsigned long flags; |
| 282 | |
| 283 | /* Note that it is critical that interrupts are DISABLED between |
| 284 | * checking the ASID and using it flush the TLB entry |
| 285 | */ |
| 286 | local_irq_save(flags); |
| 287 | |
| 288 | if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { |
| 289 | tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); |
| 290 | } |
| 291 | |
| 292 | local_irq_restore(flags); |
| 293 | } |
| 294 | |
| 295 | #ifdef CONFIG_SMP |
| 296 | |
| 297 | struct tlb_args { |
| 298 | struct vm_area_struct *ta_vma; |
| 299 | unsigned long ta_start; |
| 300 | unsigned long ta_end; |
| 301 | }; |
| 302 | |
| 303 | static inline void ipi_flush_tlb_page(void *arg) |
| 304 | { |
| 305 | struct tlb_args *ta = arg; |
| 306 | |
| 307 | local_flush_tlb_page(ta->ta_vma, ta->ta_start); |
| 308 | } |
| 309 | |
| 310 | static inline void ipi_flush_tlb_range(void *arg) |
| 311 | { |
| 312 | struct tlb_args *ta = arg; |
| 313 | |
| 314 | local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); |
| 315 | } |
| 316 | |
| 317 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 318 | static inline void ipi_flush_pmd_tlb_range(void *arg) |
| 319 | { |
| 320 | struct tlb_args *ta = arg; |
| 321 | |
| 322 | local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); |
| 323 | } |
| 324 | #endif |
| 325 | |
| 326 | static inline void ipi_flush_tlb_kernel_range(void *arg) |
| 327 | { |
| 328 | struct tlb_args *ta = (struct tlb_args *)arg; |
| 329 | |
| 330 | local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); |
| 331 | } |
| 332 | |
| 333 | void flush_tlb_all(void) |
| 334 | { |
| 335 | on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); |
| 336 | } |
| 337 | |
| 338 | void flush_tlb_mm(struct mm_struct *mm) |
| 339 | { |
| 340 | on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, |
| 341 | mm, 1); |
| 342 | } |
| 343 | |
| 344 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) |
| 345 | { |
| 346 | struct tlb_args ta = { |
| 347 | .ta_vma = vma, |
| 348 | .ta_start = uaddr |
| 349 | }; |
| 350 | |
| 351 | on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); |
| 352 | } |
| 353 | |
| 354 | void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 355 | unsigned long end) |
| 356 | { |
| 357 | struct tlb_args ta = { |
| 358 | .ta_vma = vma, |
| 359 | .ta_start = start, |
| 360 | .ta_end = end |
| 361 | }; |
| 362 | |
| 363 | on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); |
| 364 | } |
| 365 | |
| 366 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 367 | void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 368 | unsigned long end) |
| 369 | { |
| 370 | struct tlb_args ta = { |
| 371 | .ta_vma = vma, |
| 372 | .ta_start = start, |
| 373 | .ta_end = end |
| 374 | }; |
| 375 | |
| 376 | on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); |
| 377 | } |
| 378 | #endif |
| 379 | |
| 380 | void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| 381 | { |
| 382 | struct tlb_args ta = { |
| 383 | .ta_start = start, |
| 384 | .ta_end = end |
| 385 | }; |
| 386 | |
| 387 | on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); |
| 388 | } |
| 389 | #endif |
| 390 | |
| 391 | /* |
| 392 | * Routine to create a TLB entry |
| 393 | */ |
| 394 | static void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) |
| 395 | { |
| 396 | unsigned long flags; |
| 397 | unsigned int asid_or_sasid, rwx; |
| 398 | unsigned long pd0; |
| 399 | phys_addr_t pd1; |
| 400 | |
| 401 | /* |
| 402 | * create_tlb() assumes that current->mm == vma->mm, since |
| 403 | * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) |
| 404 | * -completes the lazy write to SASID reg (again valid for curr tsk) |
| 405 | * |
| 406 | * Removing the assumption involves |
| 407 | * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. |
| 408 | * -More importantly it makes this handler inconsistent with fast-path |
| 409 | * TLB Refill handler which always deals with "current" |
| 410 | * |
| 411 | * Let's see the use cases when current->mm != vma->mm and we land here |
| 412 | * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault |
| 413 | * Here VM wants to pre-install a TLB entry for user stack while |
| 414 | * current->mm still points to pre-execve mm (hence the condition). |
| 415 | * However the stack vaddr is soon relocated (randomization) and |
| 416 | * move_page_tables() tries to undo that TLB entry. |
| 417 | * Thus not creating TLB entry is not any worse. |
| 418 | * |
| 419 | * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a |
| 420 | * breakpoint in debugged task. Not creating a TLB now is not |
| 421 | * performance critical. |
| 422 | * |
| 423 | * Both the cases above are not good enough for code churn. |
| 424 | */ |
| 425 | if (current->active_mm != vma->vm_mm) |
| 426 | return; |
| 427 | |
| 428 | local_irq_save(flags); |
| 429 | |
| 430 | vaddr &= PAGE_MASK; |
| 431 | |
| 432 | /* update this PTE credentials */ |
| 433 | pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); |
| 434 | |
| 435 | /* Create HW TLB(PD0,PD1) from PTE */ |
| 436 | |
| 437 | /* ASID for this task */ |
| 438 | asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; |
| 439 | |
| 440 | pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); |
| 441 | |
| 442 | /* |
| 443 | * ARC MMU provides fully orthogonal access bits for K/U mode, |
| 444 | * however Linux only saves 1 set to save PTE real-estate |
| 445 | * Here we convert 3 PTE bits into 6 MMU bits: |
| 446 | * -Kernel only entries have Kr Kw Kx 0 0 0 |
| 447 | * -User entries have mirrored K and U bits |
| 448 | */ |
| 449 | rwx = pte_val(*ptep) & PTE_BITS_RWX; |
| 450 | |
| 451 | if (pte_val(*ptep) & _PAGE_GLOBAL) |
| 452 | rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ |
| 453 | else |
| 454 | rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ |
| 455 | |
| 456 | pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); |
| 457 | |
| 458 | tlb_entry_insert(pd0, pd1); |
| 459 | |
| 460 | local_irq_restore(flags); |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * Called at the end of pagefault, for a userspace mapped page |
| 465 | * -pre-install the corresponding TLB entry into MMU |
| 466 | * -Finalize the delayed D-cache flush of kernel mapping of page due to |
| 467 | * flush_dcache_page(), copy_user_page() |
| 468 | * |
| 469 | * Note that flush (when done) involves both WBACK - so physical page is |
| 470 | * in sync as well as INV - so any non-congruent aliases don't remain |
| 471 | */ |
| 472 | void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, |
| 473 | unsigned long vaddr_unaligned, pte_t *ptep, unsigned int nr) |
| 474 | { |
| 475 | unsigned long vaddr = vaddr_unaligned & PAGE_MASK; |
| 476 | phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS; |
| 477 | struct page *page = pfn_to_page(pte_pfn(*ptep)); |
| 478 | |
| 479 | create_tlb(vma, vaddr, ptep); |
| 480 | |
| 481 | if (page == ZERO_PAGE(0)) |
| 482 | return; |
| 483 | |
| 484 | /* |
| 485 | * For executable pages, since icache doesn't snoop dcache, any |
| 486 | * dirty K-mapping of a code page needs to be wback+inv so that |
| 487 | * icache fetch by userspace sees code correctly. |
| 488 | */ |
| 489 | if (vma->vm_flags & VM_EXEC) { |
| 490 | struct folio *folio = page_folio(page); |
| 491 | int dirty = !test_and_set_bit(PG_dc_clean, &folio->flags); |
| 492 | if (dirty) { |
| 493 | unsigned long offset = offset_in_folio(folio, paddr); |
| 494 | nr = folio_nr_pages(folio); |
| 495 | paddr -= offset; |
| 496 | vaddr -= offset; |
| 497 | /* wback + inv dcache lines (K-mapping) */ |
| 498 | __flush_dcache_pages(paddr, paddr, nr); |
| 499 | |
| 500 | /* invalidate any existing icache lines (U-mapping) */ |
| 501 | if (vma->vm_flags & VM_EXEC) |
| 502 | __inv_icache_pages(paddr, vaddr, nr); |
| 503 | } |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 508 | |
| 509 | /* |
| 510 | * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP |
| 511 | * support. |
| 512 | * |
| 513 | * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a |
| 514 | * new bit "SZ" in TLB page descriptor to distinguish between them. |
| 515 | * Super Page size is configurable in hardware (4K to 16M), but fixed once |
| 516 | * RTL builds. |
| 517 | * |
| 518 | * The exact THP size a Linux configuration will support is a function of: |
| 519 | * - MMU page size (typical 8K, RTL fixed) |
| 520 | * - software page walker address split between PGD:PTE:PFN (typical |
| 521 | * 11:8:13, but can be changed with 1 line) |
| 522 | * So for above default, THP size supported is 8K * (2^8) = 2M |
| 523 | * |
| 524 | * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime |
| 525 | * reduces to 1 level (as PTE is folded into PGD and canonically referred |
| 526 | * to as PMD). |
| 527 | * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) |
| 528 | */ |
| 529 | |
| 530 | void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 531 | pmd_t *pmd) |
| 532 | { |
| 533 | pte_t pte = __pte(pmd_val(*pmd)); |
| 534 | update_mmu_cache_range(NULL, vma, addr, &pte, HPAGE_PMD_NR); |
| 535 | } |
| 536 | |
| 537 | void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| 538 | unsigned long end) |
| 539 | { |
| 540 | unsigned int cpu; |
| 541 | unsigned long flags; |
| 542 | |
| 543 | local_irq_save(flags); |
| 544 | |
| 545 | cpu = smp_processor_id(); |
| 546 | |
| 547 | if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { |
| 548 | unsigned int asid = hw_pid(vma->vm_mm, cpu); |
| 549 | |
| 550 | /* No need to loop here: this will always be for 1 Huge Page */ |
| 551 | tlb_entry_erase(start | _PAGE_HW_SZ | asid); |
| 552 | } |
| 553 | |
| 554 | local_irq_restore(flags); |
| 555 | } |
| 556 | |
| 557 | #endif |
| 558 | |
| 559 | /* Read the Cache Build Configuration Registers, Decode them and save into |
| 560 | * the cpuinfo structure for later use. |
| 561 | * No Validation is done here, simply read/convert the BCRs |
| 562 | */ |
| 563 | int arc_mmu_mumbojumbo(int c, char *buf, int len) |
| 564 | { |
| 565 | struct cpuinfo_arc_mmu *mmu = &mmuinfo; |
| 566 | unsigned int bcr, u_dtlb, u_itlb, sasid; |
| 567 | struct bcr_mmu_3 *mmu3; |
| 568 | struct bcr_mmu_4 *mmu4; |
| 569 | char super_pg[64] = ""; |
| 570 | int n = 0; |
| 571 | |
| 572 | bcr = read_aux_reg(ARC_REG_MMU_BCR); |
| 573 | mmu->ver = (bcr >> 24); |
| 574 | |
| 575 | if (is_isa_arcompact() && mmu->ver == 3) { |
| 576 | mmu3 = (struct bcr_mmu_3 *)&bcr; |
| 577 | mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); |
| 578 | mmu->sets = 1 << mmu3->sets; |
| 579 | mmu->ways = 1 << mmu3->ways; |
| 580 | u_dtlb = mmu3->u_dtlb; |
| 581 | u_itlb = mmu3->u_itlb; |
| 582 | sasid = mmu3->sasid; |
| 583 | } else { |
| 584 | mmu4 = (struct bcr_mmu_4 *)&bcr; |
| 585 | mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); |
| 586 | mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); |
| 587 | mmu->sets = 64 << mmu4->n_entry; |
| 588 | mmu->ways = mmu4->n_ways * 2; |
| 589 | u_dtlb = mmu4->u_dtlb * 4; |
| 590 | u_itlb = mmu4->u_itlb * 4; |
| 591 | sasid = mmu4->sasid; |
| 592 | mmu->pae = mmu4->pae; |
| 593 | } |
| 594 | |
| 595 | if (mmu->s_pg_sz_m) |
| 596 | scnprintf(super_pg, 64, "/%dM%s", |
| 597 | mmu->s_pg_sz_m, |
| 598 | IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) ? " (THP enabled)":""); |
| 599 | |
| 600 | n += scnprintf(buf + n, len - n, |
| 601 | "MMU [v%x]\t: %dk%s, swalk %d lvl, JTLB %dx%d, uDTLB %d, uITLB %d%s%s%s\n", |
| 602 | mmu->ver, mmu->pg_sz_k, super_pg, CONFIG_PGTABLE_LEVELS, |
| 603 | mmu->sets, mmu->ways, |
| 604 | u_dtlb, u_itlb, |
| 605 | IS_AVAIL1(sasid, ", SASID"), |
| 606 | IS_AVAIL2(mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); |
| 607 | |
| 608 | return n; |
| 609 | } |
| 610 | |
| 611 | int pae40_exist_but_not_enab(void) |
| 612 | { |
| 613 | return mmuinfo.pae && !is_pae40_enabled(); |
| 614 | } |
| 615 | |
| 616 | void arc_mmu_init(void) |
| 617 | { |
| 618 | struct cpuinfo_arc_mmu *mmu = &mmuinfo; |
| 619 | int compat = 0; |
| 620 | |
| 621 | /* |
| 622 | * Can't be done in processor.h due to header include dependencies |
| 623 | */ |
| 624 | BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); |
| 625 | |
| 626 | /* |
| 627 | * stack top size sanity check, |
| 628 | * Can't be done in processor.h due to header include dependencies |
| 629 | */ |
| 630 | BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); |
| 631 | |
| 632 | /* |
| 633 | * Ensure that MMU features assumed by kernel exist in hardware. |
| 634 | * - For older ARC700 cpus, only v3 supported |
| 635 | * - For HS cpus, v4 was baseline and v5 is backwards compatible |
| 636 | * (will run older software). |
| 637 | */ |
| 638 | if (is_isa_arcompact() && mmu->ver == 3) |
| 639 | compat = 1; |
| 640 | else if (is_isa_arcv2() && mmu->ver >= 4) |
| 641 | compat = 1; |
| 642 | |
| 643 | if (!compat) |
| 644 | panic("MMU ver %d doesn't match kernel built for\n", mmu->ver); |
| 645 | |
| 646 | if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) |
| 647 | panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); |
| 648 | |
| 649 | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && |
| 650 | mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) |
| 651 | panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", |
| 652 | (unsigned long)TO_MB(HPAGE_PMD_SIZE)); |
| 653 | |
| 654 | if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) |
| 655 | panic("Hardware doesn't support PAE40\n"); |
| 656 | |
| 657 | /* Enable the MMU with ASID 0 */ |
| 658 | mmu_setup_asid(NULL, 0); |
| 659 | |
| 660 | /* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */ |
| 661 | mmu_setup_pgd(NULL, swapper_pg_dir); |
| 662 | |
| 663 | if (pae40_exist_but_not_enab()) |
| 664 | write_aux_reg(ARC_REG_TLBPD1HI, 0); |
| 665 | } |
| 666 | |
| 667 | /* |
| 668 | * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} |
| 669 | * The mapping is Column-first. |
| 670 | * --------------------- ----------- |
| 671 | * |way0|way1|way2|way3| |way0|way1| |
| 672 | * --------------------- ----------- |
| 673 | * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | |
| 674 | * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | |
| 675 | * ~ ~ ~ ~ |
| 676 | * [set127] | 508| 509| 510| 511| | 254| 255| |
| 677 | * --------------------- ----------- |
| 678 | * For normal operations we don't(must not) care how above works since |
| 679 | * MMU cmd getIndex(vaddr) abstracts that out. |
| 680 | * However for walking WAYS of a SET, we need to know this |
| 681 | */ |
| 682 | #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) |
| 683 | |
| 684 | /* Handling of Duplicate PD (TLB entry) in MMU. |
| 685 | * -Could be due to buggy customer tapeouts or obscure kernel bugs |
| 686 | * -MMU complaints not at the time of duplicate PD installation, but at the |
| 687 | * time of lookup matching multiple ways. |
| 688 | * -Ideally these should never happen - but if they do - workaround by deleting |
| 689 | * the duplicate one. |
| 690 | * -Knob to be verbose abt it.(TODO: hook them up to debugfs) |
| 691 | */ |
| 692 | volatile int dup_pd_silent; /* Be silent abt it or complain (default) */ |
| 693 | |
| 694 | void do_tlb_overlap_fault(unsigned long cause, unsigned long address, |
| 695 | struct pt_regs *regs) |
| 696 | { |
| 697 | struct cpuinfo_arc_mmu *mmu = &mmuinfo; |
| 698 | unsigned long flags; |
| 699 | int set, n_ways = mmu->ways; |
| 700 | |
| 701 | n_ways = min(n_ways, 4); |
| 702 | BUG_ON(mmu->ways > 4); |
| 703 | |
| 704 | local_irq_save(flags); |
| 705 | |
| 706 | /* loop thru all sets of TLB */ |
| 707 | for (set = 0; set < mmu->sets; set++) { |
| 708 | |
| 709 | int is_valid, way; |
| 710 | unsigned int pd0[4]; |
| 711 | |
| 712 | /* read out all the ways of current set */ |
| 713 | for (way = 0, is_valid = 0; way < n_ways; way++) { |
| 714 | write_aux_reg(ARC_REG_TLBINDEX, |
| 715 | SET_WAY_TO_IDX(mmu, set, way)); |
| 716 | write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); |
| 717 | pd0[way] = read_aux_reg(ARC_REG_TLBPD0); |
| 718 | is_valid |= pd0[way] & _PAGE_PRESENT; |
| 719 | pd0[way] &= PAGE_MASK; |
| 720 | } |
| 721 | |
| 722 | /* If all the WAYS in SET are empty, skip to next SET */ |
| 723 | if (!is_valid) |
| 724 | continue; |
| 725 | |
| 726 | /* Scan the set for duplicate ways: needs a nested loop */ |
| 727 | for (way = 0; way < n_ways - 1; way++) { |
| 728 | |
| 729 | int n; |
| 730 | |
| 731 | if (!pd0[way]) |
| 732 | continue; |
| 733 | |
| 734 | for (n = way + 1; n < n_ways; n++) { |
| 735 | if (pd0[way] != pd0[n]) |
| 736 | continue; |
| 737 | |
| 738 | if (!dup_pd_silent) |
| 739 | pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", |
| 740 | pd0[way], set, way, n); |
| 741 | |
| 742 | /* |
| 743 | * clear entry @way and not @n. |
| 744 | * This is critical to our optimised loop |
| 745 | */ |
| 746 | pd0[way] = 0; |
| 747 | write_aux_reg(ARC_REG_TLBINDEX, |
| 748 | SET_WAY_TO_IDX(mmu, set, way)); |
| 749 | __tlb_entry_erase(); |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | local_irq_restore(flags); |
| 755 | } |