KVM: nSVM: implement KVM_GET_NESTED_STATE and KVM_SET_NESTED_STATE
[linux-2.6-block.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
6aa8b732 54
e495606d 55#include <asm/processor.h>
2ea75be3 56#include <asm/ioctl.h>
7c0f6ba6 57#include <linux/uaccess.h>
3e021bf5 58#include <asm/pgtable.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
3c3c29fd 62#include "vfio.h"
5f94c174 63
229456fc
MT
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
536a6f88
JF
67/* Worst case buffer size needed for holding an integer. */
68#define ITOA_MAX_LEN 12
69
6aa8b732
AK
70MODULE_AUTHOR("Qumranet");
71MODULE_LICENSE("GPL");
72
920552b2 73/* Architectures should define their poll value according to the halt latency */
ec76d819 74unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 75module_param(halt_poll_ns, uint, 0644);
ec76d819 76EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 77
aca6ff29 78/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 79unsigned int halt_poll_ns_grow = 2;
039c5d1b 80module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 81EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 82
49113d36
NW
83/* The start value to grow halt_poll_ns from */
84unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85module_param(halt_poll_ns_grow_start, uint, 0644);
86EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
aca6ff29 88/* Default resets per-vcpu halt_poll_ns . */
ec76d819 89unsigned int halt_poll_ns_shrink;
039c5d1b 90module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 91EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 92
fa40a821
MT
93/*
94 * Ordering of locks:
95 *
b7d409de 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
97 */
98
0d9ce162 99DEFINE_MUTEX(kvm_lock);
4a937f96 100static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 101LIST_HEAD(vm_list);
133de902 102
7f59f492 103static cpumask_var_t cpus_hardware_enabled;
f4fee932 104static int kvm_usage_count;
10474ae8 105static atomic_t hardware_enable_failed;
1b6c0168 106
aaba298c 107static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 108
15ad7146 109static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 110static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 111
76f7c879 112struct dentry *kvm_debugfs_dir;
e23a808b 113EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 114
536a6f88 115static int kvm_debugfs_num_entries;
09cbcef6 116static const struct file_operations stat_fops_per_vm;
536a6f88 117
bccf2150
AK
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
de8e5d74 120#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
7ddfd3e0
MZ
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
9cb09e7c
MZ
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
7ddfd3e0
MZ
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
1dda606c 141#endif
10474ae8
AG
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
bccf2150 144
e93f8a0f 145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 146
bc009e43 147static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
e93f8a0f 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
286de8f6
CI
152#define KVM_EVENT_CREATE_VM 0
153#define KVM_EVENT_DESTROY_VM 1
154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155static unsigned long long kvm_createvm_count;
156static unsigned long long kvm_active_vms;
157
93065ac7
MH
158__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end, bool blockable)
b1394e74 160{
93065ac7 161 return 0;
b1394e74
RK
162}
163
a78986aa
SC
164bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165{
166 /*
167 * The metadata used by is_zone_device_page() to determine whether or
168 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 * the device has been pinned, e.g. by get_user_pages(). WARN if the
170 * page_count() is zero to help detect bad usage of this helper.
171 */
172 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 return false;
174
175 return is_zone_device_page(pfn_to_page(pfn));
176}
177
ba049e93 178bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 179{
a78986aa
SC
180 /*
181 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 * perspective they are "normal" pages, albeit with slightly different
183 * usage rules.
184 */
11feeb49 185 if (pfn_valid(pfn))
a78986aa 186 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 187 !is_zero_pfn(pfn) &&
a78986aa 188 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
189
190 return true;
191}
192
005ba37c
SC
193bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194{
195 struct page *page = pfn_to_page(pfn);
196
197 if (!PageTransCompoundMap(page))
198 return false;
199
200 return is_transparent_hugepage(compound_head(page));
201}
202
bccf2150
AK
203/*
204 * Switches to specified vcpu, until a matching vcpu_put()
205 */
ec7660cc 206void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 207{
ec7660cc 208 int cpu = get_cpu();
7495e22b
PB
209
210 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 211 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 212 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 213 put_cpu();
6aa8b732 214}
2f1fe811 215EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 216
313a3dc7 217void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 218{
15ad7146 219 preempt_disable();
313a3dc7 220 kvm_arch_vcpu_put(vcpu);
15ad7146 221 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 222 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 223 preempt_enable();
6aa8b732 224}
2f1fe811 225EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 226
7a97cec2
PB
227/* TODO: merge with kvm_arch_vcpu_should_kick */
228static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229{
230 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232 /*
233 * We need to wait for the VCPU to reenable interrupts and get out of
234 * READING_SHADOW_PAGE_TABLES mode.
235 */
236 if (req & KVM_REQUEST_WAIT)
237 return mode != OUTSIDE_GUEST_MODE;
238
239 /*
240 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 */
242 return mode == IN_GUEST_MODE;
243}
244
d9e368d6
AK
245static void ack_flush(void *_completed)
246{
d9e368d6
AK
247}
248
b49defe8
PB
249static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250{
251 if (unlikely(!cpus))
252 cpus = cpu_online_mask;
253
254 if (cpumask_empty(cpus))
255 return false;
256
257 smp_call_function_many(cpus, ack_flush, NULL, wait);
258 return true;
259}
260
7053df4e 261bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
54163a34 262 struct kvm_vcpu *except,
7053df4e 263 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 264{
597a5f55 265 int i, cpu, me;
d9e368d6 266 struct kvm_vcpu *vcpu;
7053df4e 267 bool called;
6ef7a1bc 268
3cba4130 269 me = get_cpu();
7053df4e 270
988a2cae 271 kvm_for_each_vcpu(i, vcpu, kvm) {
54163a34
SS
272 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
273 vcpu == except)
7053df4e
VK
274 continue;
275
3cba4130 276 kvm_make_request(req, vcpu);
d9e368d6 277 cpu = vcpu->cpu;
6b7e2d09 278
178f02ff
RK
279 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 continue;
6c6e8360 281
7053df4e 282 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 283 kvm_request_needs_ipi(vcpu, req))
7053df4e 284 __cpumask_set_cpu(cpu, tmp);
49846896 285 }
7053df4e
VK
286
287 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 288 put_cpu();
7053df4e
VK
289
290 return called;
291}
292
54163a34
SS
293bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
294 struct kvm_vcpu *except)
7053df4e
VK
295{
296 cpumask_var_t cpus;
297 bool called;
7053df4e
VK
298
299 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300
54163a34 301 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
7053df4e 302
6ef7a1bc 303 free_cpumask_var(cpus);
49846896 304 return called;
d9e368d6
AK
305}
306
54163a34
SS
307bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308{
309 return kvm_make_all_cpus_request_except(kvm, req, NULL);
310}
311
a6d51016 312#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 313void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 314{
4ae3cb3a
LT
315 /*
316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 * kvm_make_all_cpus_request.
318 */
319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321 /*
322 * We want to publish modifications to the page tables before reading
323 * mode. Pairs with a memory barrier in arch-specific code.
324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 *
328 * There is already an smp_mb__after_atomic() before
329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 * barrier here.
331 */
b08660e5
TL
332 if (!kvm_arch_flush_remote_tlb(kvm)
333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 334 ++kvm->stat.remote_tlb_flush;
a086f6a1 335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 336}
2ba9f0d8 337EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 338#endif
2e53d63a 339
49846896
RR
340void kvm_reload_remote_mmus(struct kvm *kvm)
341{
445b8236 342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 343}
2e53d63a 344
8bd826d6 345static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 346{
fb3f0f51
RR
347 mutex_init(&vcpu->mutex);
348 vcpu->cpu = -1;
fb3f0f51
RR
349 vcpu->kvm = kvm;
350 vcpu->vcpu_id = id;
34bb10b7 351 vcpu->pid = NULL;
da4ad88c 352 rcuwait_init(&vcpu->wait);
af585b92 353 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 354
bf9f6ac8
FW
355 vcpu->pre_pcpu = -1;
356 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
357
4c088493
R
358 kvm_vcpu_set_in_spin_loop(vcpu, false);
359 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 360 vcpu->preempted = false;
d73eb57b 361 vcpu->ready = false;
d5c48deb 362 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fb3f0f51 363}
fb3f0f51 364
4543bdc0
SC
365void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
366{
367 kvm_arch_vcpu_destroy(vcpu);
e529ef66 368
9941d224
SC
369 /*
370 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
371 * the vcpu->pid pointer, and at destruction time all file descriptors
372 * are already gone.
373 */
374 put_pid(rcu_dereference_protected(vcpu->pid, 1));
375
8bd826d6 376 free_page((unsigned long)vcpu->run);
e529ef66 377 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
378}
379EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
380
e930bffe
AA
381#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
382static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
383{
384 return container_of(mn, struct kvm, mmu_notifier);
385}
386
3da0dd43
IE
387static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
388 struct mm_struct *mm,
389 unsigned long address,
390 pte_t pte)
391{
392 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 393 int idx;
3da0dd43 394
bc6678a3 395 idx = srcu_read_lock(&kvm->srcu);
3da0dd43
IE
396 spin_lock(&kvm->mmu_lock);
397 kvm->mmu_notifier_seq++;
0cf853c5
LT
398
399 if (kvm_set_spte_hva(kvm, address, pte))
400 kvm_flush_remote_tlbs(kvm);
401
3da0dd43 402 spin_unlock(&kvm->mmu_lock);
bc6678a3 403 srcu_read_unlock(&kvm->srcu, idx);
3da0dd43
IE
404}
405
93065ac7 406static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
5d6527a7 407 const struct mmu_notifier_range *range)
e930bffe
AA
408{
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 410 int need_tlb_flush = 0, idx;
93065ac7 411 int ret;
e930bffe 412
bc6678a3 413 idx = srcu_read_lock(&kvm->srcu);
e930bffe
AA
414 spin_lock(&kvm->mmu_lock);
415 /*
416 * The count increase must become visible at unlock time as no
417 * spte can be established without taking the mmu_lock and
418 * count is also read inside the mmu_lock critical section.
419 */
420 kvm->mmu_notifier_count++;
5d6527a7 421 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
a4ee1ca4 422 need_tlb_flush |= kvm->tlbs_dirty;
e930bffe
AA
423 /* we've to flush the tlb before the pages can be freed */
424 if (need_tlb_flush)
425 kvm_flush_remote_tlbs(kvm);
565f3be2
TY
426
427 spin_unlock(&kvm->mmu_lock);
b1394e74 428
5d6527a7 429 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
dfcd6660
JG
430 range->end,
431 mmu_notifier_range_blockable(range));
b1394e74 432
565f3be2 433 srcu_read_unlock(&kvm->srcu, idx);
93065ac7
MH
434
435 return ret;
e930bffe
AA
436}
437
438static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
5d6527a7 439 const struct mmu_notifier_range *range)
e930bffe
AA
440{
441 struct kvm *kvm = mmu_notifier_to_kvm(mn);
442
443 spin_lock(&kvm->mmu_lock);
444 /*
445 * This sequence increase will notify the kvm page fault that
446 * the page that is going to be mapped in the spte could have
447 * been freed.
448 */
449 kvm->mmu_notifier_seq++;
a355aa54 450 smp_wmb();
e930bffe
AA
451 /*
452 * The above sequence increase must be visible before the
a355aa54
PM
453 * below count decrease, which is ensured by the smp_wmb above
454 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
455 */
456 kvm->mmu_notifier_count--;
457 spin_unlock(&kvm->mmu_lock);
458
459 BUG_ON(kvm->mmu_notifier_count < 0);
460}
461
462static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
463 struct mm_struct *mm,
57128468
ALC
464 unsigned long start,
465 unsigned long end)
e930bffe
AA
466{
467 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 468 int young, idx;
e930bffe 469
bc6678a3 470 idx = srcu_read_lock(&kvm->srcu);
e930bffe 471 spin_lock(&kvm->mmu_lock);
e930bffe 472
57128468 473 young = kvm_age_hva(kvm, start, end);
e930bffe
AA
474 if (young)
475 kvm_flush_remote_tlbs(kvm);
476
565f3be2
TY
477 spin_unlock(&kvm->mmu_lock);
478 srcu_read_unlock(&kvm->srcu, idx);
479
e930bffe
AA
480 return young;
481}
482
1d7715c6
VD
483static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
484 struct mm_struct *mm,
485 unsigned long start,
486 unsigned long end)
487{
488 struct kvm *kvm = mmu_notifier_to_kvm(mn);
489 int young, idx;
490
491 idx = srcu_read_lock(&kvm->srcu);
492 spin_lock(&kvm->mmu_lock);
493 /*
494 * Even though we do not flush TLB, this will still adversely
495 * affect performance on pre-Haswell Intel EPT, where there is
496 * no EPT Access Bit to clear so that we have to tear down EPT
497 * tables instead. If we find this unacceptable, we can always
498 * add a parameter to kvm_age_hva so that it effectively doesn't
499 * do anything on clear_young.
500 *
501 * Also note that currently we never issue secondary TLB flushes
502 * from clear_young, leaving this job up to the regular system
503 * cadence. If we find this inaccurate, we might come up with a
504 * more sophisticated heuristic later.
505 */
506 young = kvm_age_hva(kvm, start, end);
507 spin_unlock(&kvm->mmu_lock);
508 srcu_read_unlock(&kvm->srcu, idx);
509
510 return young;
511}
512
8ee53820
AA
513static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
514 struct mm_struct *mm,
515 unsigned long address)
516{
517 struct kvm *kvm = mmu_notifier_to_kvm(mn);
518 int young, idx;
519
520 idx = srcu_read_lock(&kvm->srcu);
521 spin_lock(&kvm->mmu_lock);
522 young = kvm_test_age_hva(kvm, address);
523 spin_unlock(&kvm->mmu_lock);
524 srcu_read_unlock(&kvm->srcu, idx);
525
526 return young;
527}
528
85db06e5
MT
529static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
530 struct mm_struct *mm)
531{
532 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
533 int idx;
534
535 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 536 kvm_arch_flush_shadow_all(kvm);
eda2beda 537 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
538}
539
e930bffe 540static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
541 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
542 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
543 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 544 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 545 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 546 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 547 .release = kvm_mmu_notifier_release,
e930bffe 548};
4c07b0a4
AK
549
550static int kvm_init_mmu_notifier(struct kvm *kvm)
551{
552 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
553 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
554}
555
556#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
557
558static int kvm_init_mmu_notifier(struct kvm *kvm)
559{
560 return 0;
561}
562
e930bffe
AA
563#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564
a47d2b07 565static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
566{
567 int i;
a47d2b07 568 struct kvm_memslots *slots;
bf3e05bc 569
b12ce36a 570 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
571 if (!slots)
572 return NULL;
573
bf3e05bc 574 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
36947254 575 slots->id_to_index[i] = -1;
a47d2b07
PB
576
577 return slots;
578}
579
580static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
581{
582 if (!memslot->dirty_bitmap)
583 return;
584
585 kvfree(memslot->dirty_bitmap);
586 memslot->dirty_bitmap = NULL;
587}
588
e96c81ee 589static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 590{
e96c81ee 591 kvm_destroy_dirty_bitmap(slot);
a47d2b07 592
e96c81ee 593 kvm_arch_free_memslot(kvm, slot);
a47d2b07 594
e96c81ee
SC
595 slot->flags = 0;
596 slot->npages = 0;
a47d2b07
PB
597}
598
599static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
600{
601 struct kvm_memory_slot *memslot;
602
603 if (!slots)
604 return;
605
606 kvm_for_each_memslot(memslot, slots)
e96c81ee 607 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
608
609 kvfree(slots);
bf3e05bc
XG
610}
611
536a6f88
JF
612static void kvm_destroy_vm_debugfs(struct kvm *kvm)
613{
614 int i;
615
616 if (!kvm->debugfs_dentry)
617 return;
618
619 debugfs_remove_recursive(kvm->debugfs_dentry);
620
9d5a1dce
LC
621 if (kvm->debugfs_stat_data) {
622 for (i = 0; i < kvm_debugfs_num_entries; i++)
623 kfree(kvm->debugfs_stat_data[i]);
624 kfree(kvm->debugfs_stat_data);
625 }
536a6f88
JF
626}
627
628static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
629{
630 char dir_name[ITOA_MAX_LEN * 2];
631 struct kvm_stat_data *stat_data;
632 struct kvm_stats_debugfs_item *p;
633
634 if (!debugfs_initialized())
635 return 0;
636
637 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 638 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
639
640 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
641 sizeof(*kvm->debugfs_stat_data),
b12ce36a 642 GFP_KERNEL_ACCOUNT);
536a6f88
JF
643 if (!kvm->debugfs_stat_data)
644 return -ENOMEM;
645
646 for (p = debugfs_entries; p->name; p++) {
b12ce36a 647 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
648 if (!stat_data)
649 return -ENOMEM;
650
651 stat_data->kvm = kvm;
09cbcef6 652 stat_data->dbgfs_item = p;
536a6f88 653 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
09cbcef6
MP
654 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
655 kvm->debugfs_dentry, stat_data,
656 &stat_fops_per_vm);
536a6f88
JF
657 }
658 return 0;
659}
660
1aa9b957
JS
661/*
662 * Called after the VM is otherwise initialized, but just before adding it to
663 * the vm_list.
664 */
665int __weak kvm_arch_post_init_vm(struct kvm *kvm)
666{
667 return 0;
668}
669
670/*
671 * Called just after removing the VM from the vm_list, but before doing any
672 * other destruction.
673 */
674void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
675{
676}
677
e08b9637 678static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 679{
d89f5eff 680 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
681 int r = -ENOMEM;
682 int i;
6aa8b732 683
d89f5eff
JK
684 if (!kvm)
685 return ERR_PTR(-ENOMEM);
686
e9ad4ec8 687 spin_lock_init(&kvm->mmu_lock);
f1f10076 688 mmgrab(current->mm);
e9ad4ec8
PB
689 kvm->mm = current->mm;
690 kvm_eventfd_init(kvm);
691 mutex_init(&kvm->lock);
692 mutex_init(&kvm->irq_lock);
693 mutex_init(&kvm->slots_lock);
e9ad4ec8
PB
694 INIT_LIST_HEAD(&kvm->devices);
695
1e702d9a
AW
696 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697
8a44119a
PB
698 if (init_srcu_struct(&kvm->srcu))
699 goto out_err_no_srcu;
700 if (init_srcu_struct(&kvm->irq_srcu))
701 goto out_err_no_irq_srcu;
702
e2d3fcaf 703 refcount_set(&kvm->users_count, 1);
f481b069 704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 705 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 706
4bd518f1 707 if (!slots)
a97b0e77 708 goto out_err_no_arch_destroy_vm;
0e32958e 709 /* Generations must be different for each address space. */
164bf7e5 710 slots->generation = i;
4bd518f1 711 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 712 }
00f034a1 713
e93f8a0f 714 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 715 rcu_assign_pointer(kvm->buses[i],
b12ce36a 716 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 717 if (!kvm->buses[i])
a97b0e77 718 goto out_err_no_arch_destroy_vm;
e93f8a0f 719 }
e930bffe 720
acd05785
DM
721 kvm->max_halt_poll_ns = halt_poll_ns;
722
e08b9637 723 r = kvm_arch_init_vm(kvm, type);
d89f5eff 724 if (r)
a97b0e77 725 goto out_err_no_arch_destroy_vm;
10474ae8
AG
726
727 r = hardware_enable_all();
728 if (r)
719d93cd 729 goto out_err_no_disable;
10474ae8 730
c77dcacb 731#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 732 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 733#endif
6aa8b732 734
74b5c5bf 735 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
736 if (r)
737 goto out_err_no_mmu_notifier;
738
739 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
740 if (r)
741 goto out_err;
742
0d9ce162 743 mutex_lock(&kvm_lock);
5e58cfe4 744 list_add(&kvm->vm_list, &vm_list);
0d9ce162 745 mutex_unlock(&kvm_lock);
d89f5eff 746
2ecd9d29
PZ
747 preempt_notifier_inc();
748
f17abe9a 749 return kvm;
10474ae8
AG
750
751out_err:
1aa9b957
JS
752#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
753 if (kvm->mmu_notifier.ops)
754 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
755#endif
756out_err_no_mmu_notifier:
10474ae8 757 hardware_disable_all();
719d93cd 758out_err_no_disable:
a97b0e77 759 kvm_arch_destroy_vm(kvm);
a97b0e77 760out_err_no_arch_destroy_vm:
e2d3fcaf 761 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 762 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 763 kfree(kvm_get_bus(kvm, i));
f481b069 764 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 765 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
766 cleanup_srcu_struct(&kvm->irq_srcu);
767out_err_no_irq_srcu:
768 cleanup_srcu_struct(&kvm->srcu);
769out_err_no_srcu:
d89f5eff 770 kvm_arch_free_vm(kvm);
e9ad4ec8 771 mmdrop(current->mm);
10474ae8 772 return ERR_PTR(r);
f17abe9a
AK
773}
774
07f0a7bd
SW
775static void kvm_destroy_devices(struct kvm *kvm)
776{
e6e3b5a6 777 struct kvm_device *dev, *tmp;
07f0a7bd 778
a28ebea2
CD
779 /*
780 * We do not need to take the kvm->lock here, because nobody else
781 * has a reference to the struct kvm at this point and therefore
782 * cannot access the devices list anyhow.
783 */
e6e3b5a6
GT
784 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
785 list_del(&dev->vm_node);
07f0a7bd
SW
786 dev->ops->destroy(dev);
787 }
788}
789
f17abe9a
AK
790static void kvm_destroy_vm(struct kvm *kvm)
791{
e93f8a0f 792 int i;
6d4e4c4f
AK
793 struct mm_struct *mm = kvm->mm;
794
286de8f6 795 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 796 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 797 kvm_arch_sync_events(kvm);
0d9ce162 798 mutex_lock(&kvm_lock);
133de902 799 list_del(&kvm->vm_list);
0d9ce162 800 mutex_unlock(&kvm_lock);
1aa9b957
JS
801 kvm_arch_pre_destroy_vm(kvm);
802
399ec807 803 kvm_free_irq_routing(kvm);
df630b8c 804 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 805 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 806
4a12f951
CB
807 if (bus)
808 kvm_io_bus_destroy(bus);
df630b8c
PX
809 kvm->buses[i] = NULL;
810 }
980da6ce 811 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
812#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 814#else
2df72e9b 815 kvm_arch_flush_shadow_all(kvm);
5f94c174 816#endif
d19a9cd2 817 kvm_arch_destroy_vm(kvm);
07f0a7bd 818 kvm_destroy_devices(kvm);
f481b069 819 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 820 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 821 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
822 cleanup_srcu_struct(&kvm->srcu);
823 kvm_arch_free_vm(kvm);
2ecd9d29 824 preempt_notifier_dec();
10474ae8 825 hardware_disable_all();
6d4e4c4f 826 mmdrop(mm);
f17abe9a
AK
827}
828
d39f13b0
IE
829void kvm_get_kvm(struct kvm *kvm)
830{
e3736c3e 831 refcount_inc(&kvm->users_count);
d39f13b0
IE
832}
833EXPORT_SYMBOL_GPL(kvm_get_kvm);
834
835void kvm_put_kvm(struct kvm *kvm)
836{
e3736c3e 837 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
838 kvm_destroy_vm(kvm);
839}
840EXPORT_SYMBOL_GPL(kvm_put_kvm);
841
149487bd
SC
842/*
843 * Used to put a reference that was taken on behalf of an object associated
844 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
845 * of the new file descriptor fails and the reference cannot be transferred to
846 * its final owner. In such cases, the caller is still actively using @kvm and
847 * will fail miserably if the refcount unexpectedly hits zero.
848 */
849void kvm_put_kvm_no_destroy(struct kvm *kvm)
850{
851 WARN_ON(refcount_dec_and_test(&kvm->users_count));
852}
853EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 854
f17abe9a
AK
855static int kvm_vm_release(struct inode *inode, struct file *filp)
856{
857 struct kvm *kvm = filp->private_data;
858
721eecbf
GH
859 kvm_irqfd_release(kvm);
860
d39f13b0 861 kvm_put_kvm(kvm);
6aa8b732
AK
862 return 0;
863}
864
515a0127
TY
865/*
866 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 867 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 868 */
3c9bd400 869static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 870{
515a0127 871 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 872
b12ce36a 873 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
874 if (!memslot->dirty_bitmap)
875 return -ENOMEM;
876
a36a57b1
TY
877 return 0;
878}
879
bf3e05bc 880/*
0577d1ab
SC
881 * Delete a memslot by decrementing the number of used slots and shifting all
882 * other entries in the array forward one spot.
bf3e05bc 883 */
0577d1ab
SC
884static inline void kvm_memslot_delete(struct kvm_memslots *slots,
885 struct kvm_memory_slot *memslot)
bf3e05bc 886{
063584d4 887 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 888 int i;
f85e2cb5 889
0577d1ab
SC
890 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
891 return;
0e60b079 892
0577d1ab
SC
893 slots->used_slots--;
894
0774a964
SC
895 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
896 atomic_set(&slots->lru_slot, 0);
897
0577d1ab 898 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
899 mslots[i] = mslots[i + 1];
900 slots->id_to_index[mslots[i].id] = i;
7f379cff 901 }
0577d1ab
SC
902 mslots[i] = *memslot;
903 slots->id_to_index[memslot->id] = -1;
904}
905
906/*
907 * "Insert" a new memslot by incrementing the number of used slots. Returns
908 * the new slot's initial index into the memslots array.
909 */
910static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
911{
912 return slots->used_slots++;
913}
914
915/*
916 * Move a changed memslot backwards in the array by shifting existing slots
917 * with a higher GFN toward the front of the array. Note, the changed memslot
918 * itself is not preserved in the array, i.e. not swapped at this time, only
919 * its new index into the array is tracked. Returns the changed memslot's
920 * current index into the memslots array.
921 */
922static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
923 struct kvm_memory_slot *memslot)
924{
925 struct kvm_memory_slot *mslots = slots->memslots;
926 int i;
927
928 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
929 WARN_ON_ONCE(!slots->used_slots))
930 return -1;
efbeec70
PB
931
932 /*
0577d1ab
SC
933 * Move the target memslot backward in the array by shifting existing
934 * memslots with a higher GFN (than the target memslot) towards the
935 * front of the array.
efbeec70 936 */
0577d1ab
SC
937 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
938 if (memslot->base_gfn > mslots[i + 1].base_gfn)
939 break;
940
941 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 942
0577d1ab
SC
943 /* Shift the next memslot forward one and update its index. */
944 mslots[i] = mslots[i + 1];
945 slots->id_to_index[mslots[i].id] = i;
946 }
947 return i;
948}
949
950/*
951 * Move a changed memslot forwards in the array by shifting existing slots with
952 * a lower GFN toward the back of the array. Note, the changed memslot itself
953 * is not preserved in the array, i.e. not swapped at this time, only its new
954 * index into the array is tracked. Returns the changed memslot's final index
955 * into the memslots array.
956 */
957static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
958 struct kvm_memory_slot *memslot,
959 int start)
960{
961 struct kvm_memory_slot *mslots = slots->memslots;
962 int i;
963
964 for (i = start; i > 0; i--) {
965 if (memslot->base_gfn < mslots[i - 1].base_gfn)
966 break;
967
968 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
969
970 /* Shift the next memslot back one and update its index. */
971 mslots[i] = mslots[i - 1];
972 slots->id_to_index[mslots[i].id] = i;
973 }
974 return i;
975}
976
977/*
978 * Re-sort memslots based on their GFN to account for an added, deleted, or
979 * moved memslot. Sorting memslots by GFN allows using a binary search during
980 * memslot lookup.
981 *
982 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
983 * at memslots[0] has the highest GFN.
984 *
985 * The sorting algorithm takes advantage of having initially sorted memslots
986 * and knowing the position of the changed memslot. Sorting is also optimized
987 * by not swapping the updated memslot and instead only shifting other memslots
988 * and tracking the new index for the update memslot. Only once its final
989 * index is known is the updated memslot copied into its position in the array.
990 *
991 * - When deleting a memslot, the deleted memslot simply needs to be moved to
992 * the end of the array.
993 *
994 * - When creating a memslot, the algorithm "inserts" the new memslot at the
995 * end of the array and then it forward to its correct location.
996 *
997 * - When moving a memslot, the algorithm first moves the updated memslot
998 * backward to handle the scenario where the memslot's GFN was changed to a
999 * lower value. update_memslots() then falls through and runs the same flow
1000 * as creating a memslot to move the memslot forward to handle the scenario
1001 * where its GFN was changed to a higher value.
1002 *
1003 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1004 * historical reasons. Originally, invalid memslots where denoted by having
1005 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1006 * to the end of the array. The current algorithm uses dedicated logic to
1007 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1008 *
1009 * The other historical motiviation for highest->lowest was to improve the
1010 * performance of memslot lookup. KVM originally used a linear search starting
1011 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1012 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1013 * single memslot above the 4gb boundary. As the largest memslot is also the
1014 * most likely to be referenced, sorting it to the front of the array was
1015 * advantageous. The current binary search starts from the middle of the array
1016 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1017 */
1018static void update_memslots(struct kvm_memslots *slots,
1019 struct kvm_memory_slot *memslot,
1020 enum kvm_mr_change change)
1021{
1022 int i;
1023
1024 if (change == KVM_MR_DELETE) {
1025 kvm_memslot_delete(slots, memslot);
1026 } else {
1027 if (change == KVM_MR_CREATE)
1028 i = kvm_memslot_insert_back(slots);
1029 else
1030 i = kvm_memslot_move_backward(slots, memslot);
1031 i = kvm_memslot_move_forward(slots, memslot, i);
1032
1033 /*
1034 * Copy the memslot to its new position in memslots and update
1035 * its index accordingly.
1036 */
1037 slots->memslots[i] = *memslot;
1038 slots->id_to_index[memslot->id] = i;
1039 }
bf3e05bc
XG
1040}
1041
09170a49 1042static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1043{
4d8b81ab
XG
1044 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1045
0f8a4de3 1046#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1047 valid_flags |= KVM_MEM_READONLY;
1048#endif
1049
1050 if (mem->flags & ~valid_flags)
a50d64d6
XG
1051 return -EINVAL;
1052
1053 return 0;
1054}
1055
7ec4fb44 1056static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1057 int as_id, struct kvm_memslots *slots)
7ec4fb44 1058{
f481b069 1059 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1060 u64 gen = old_memslots->generation;
7ec4fb44 1061
361209e0
SC
1062 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1063 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1064
f481b069 1065 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 1066 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1067
ee3d1570 1068 /*
361209e0 1069 * Increment the new memslot generation a second time, dropping the
00116795 1070 * update in-progress flag and incrementing the generation based on
361209e0
SC
1071 * the number of address spaces. This provides a unique and easily
1072 * identifiable generation number while the memslots are in flux.
1073 */
1074 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1075
1076 /*
4bd518f1
PB
1077 * Generations must be unique even across address spaces. We do not need
1078 * a global counter for that, instead the generation space is evenly split
1079 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1080 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1081 * use generations 1, 3, 5, ...
ee3d1570 1082 */
164bf7e5 1083 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1084
15248258 1085 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1086
15248258 1087 slots->generation = gen;
e59dbe09
TY
1088
1089 return old_memslots;
7ec4fb44
GN
1090}
1091
36947254
SC
1092/*
1093 * Note, at a minimum, the current number of used slots must be allocated, even
1094 * when deleting a memslot, as we need a complete duplicate of the memslots for
1095 * use when invalidating a memslot prior to deleting/moving the memslot.
1096 */
1097static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1098 enum kvm_mr_change change)
1099{
1100 struct kvm_memslots *slots;
1101 size_t old_size, new_size;
1102
1103 old_size = sizeof(struct kvm_memslots) +
1104 (sizeof(struct kvm_memory_slot) * old->used_slots);
1105
1106 if (change == KVM_MR_CREATE)
1107 new_size = old_size + sizeof(struct kvm_memory_slot);
1108 else
1109 new_size = old_size;
1110
1111 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1112 if (likely(slots))
1113 memcpy(slots, old, old_size);
1114
1115 return slots;
1116}
1117
cf47f50b
SC
1118static int kvm_set_memslot(struct kvm *kvm,
1119 const struct kvm_userspace_memory_region *mem,
9d4c197c 1120 struct kvm_memory_slot *old,
cf47f50b
SC
1121 struct kvm_memory_slot *new, int as_id,
1122 enum kvm_mr_change change)
1123{
1124 struct kvm_memory_slot *slot;
1125 struct kvm_memslots *slots;
1126 int r;
1127
36947254 1128 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
cf47f50b
SC
1129 if (!slots)
1130 return -ENOMEM;
cf47f50b
SC
1131
1132 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1133 /*
1134 * Note, the INVALID flag needs to be in the appropriate entry
1135 * in the freshly allocated memslots, not in @old or @new.
1136 */
1137 slot = id_to_memslot(slots, old->id);
1138 slot->flags |= KVM_MEMSLOT_INVALID;
1139
1140 /*
1141 * We can re-use the old memslots, the only difference from the
1142 * newly installed memslots is the invalid flag, which will get
1143 * dropped by update_memslots anyway. We'll also revert to the
1144 * old memslots if preparing the new memory region fails.
1145 */
1146 slots = install_new_memslots(kvm, as_id, slots);
1147
1148 /* From this point no new shadow pages pointing to a deleted,
1149 * or moved, memslot will be created.
1150 *
1151 * validation of sp->gfn happens in:
1152 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1153 * - kvm_is_visible_gfn (mmu_check_root)
1154 */
1155 kvm_arch_flush_shadow_memslot(kvm, slot);
1156 }
1157
1158 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1159 if (r)
1160 goto out_slots;
1161
1162 update_memslots(slots, new, change);
1163 slots = install_new_memslots(kvm, as_id, slots);
1164
1165 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1166
1167 kvfree(slots);
1168 return 0;
1169
1170out_slots:
1171 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1172 slots = install_new_memslots(kvm, as_id, slots);
1173 kvfree(slots);
1174 return r;
1175}
1176
5c0b4f3d
SC
1177static int kvm_delete_memslot(struct kvm *kvm,
1178 const struct kvm_userspace_memory_region *mem,
1179 struct kvm_memory_slot *old, int as_id)
1180{
1181 struct kvm_memory_slot new;
1182 int r;
1183
1184 if (!old->npages)
1185 return -EINVAL;
1186
1187 memset(&new, 0, sizeof(new));
1188 new.id = old->id;
1189
1190 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1191 if (r)
1192 return r;
1193
e96c81ee 1194 kvm_free_memslot(kvm, old);
5c0b4f3d
SC
1195 return 0;
1196}
1197
6aa8b732
AK
1198/*
1199 * Allocate some memory and give it an address in the guest physical address
1200 * space.
1201 *
1202 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1203 *
02d5d55b 1204 * Must be called holding kvm->slots_lock for write.
6aa8b732 1205 */
f78e0e2e 1206int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1207 const struct kvm_userspace_memory_region *mem)
6aa8b732 1208{
6aa8b732 1209 struct kvm_memory_slot old, new;
163da372 1210 struct kvm_memory_slot *tmp;
f64c0398 1211 enum kvm_mr_change change;
163da372
SC
1212 int as_id, id;
1213 int r;
6aa8b732 1214
a50d64d6
XG
1215 r = check_memory_region_flags(mem);
1216 if (r)
71a4c30b 1217 return r;
a50d64d6 1218
f481b069
PB
1219 as_id = mem->slot >> 16;
1220 id = (u16)mem->slot;
1221
6aa8b732
AK
1222 /* General sanity checks */
1223 if (mem->memory_size & (PAGE_SIZE - 1))
71a4c30b 1224 return -EINVAL;
6aa8b732 1225 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1226 return -EINVAL;
fa3d315a 1227 /* We can read the guest memory with __xxx_user() later on. */
f481b069 1228 if ((id < KVM_USER_MEM_SLOTS) &&
fa3d315a 1229 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
96d4f267 1230 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
9e3bb6b6 1231 mem->memory_size)))
71a4c30b 1232 return -EINVAL;
f481b069 1233 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1234 return -EINVAL;
6aa8b732 1235 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1236 return -EINVAL;
6aa8b732 1237
5c0b4f3d
SC
1238 /*
1239 * Make a full copy of the old memslot, the pointer will become stale
1240 * when the memslots are re-sorted by update_memslots(), and the old
1241 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1242 * to free its resources and for arch specific behavior.
5c0b4f3d 1243 */
0577d1ab
SC
1244 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1245 if (tmp) {
1246 old = *tmp;
1247 tmp = NULL;
1248 } else {
1249 memset(&old, 0, sizeof(old));
1250 old.id = id;
1251 }
163da372 1252
5c0b4f3d
SC
1253 if (!mem->memory_size)
1254 return kvm_delete_memslot(kvm, mem, &old, as_id);
1255
f481b069 1256 new.id = id;
163da372
SC
1257 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1258 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1259 new.flags = mem->flags;
414de7ab 1260 new.userspace_addr = mem->userspace_addr;
6aa8b732 1261
163da372
SC
1262 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1263 return -EINVAL;
1264
5c0b4f3d
SC
1265 if (!old.npages) {
1266 change = KVM_MR_CREATE;
163da372
SC
1267 new.dirty_bitmap = NULL;
1268 memset(&new.arch, 0, sizeof(new.arch));
5c0b4f3d
SC
1269 } else { /* Modify an existing slot. */
1270 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1271 (new.npages != old.npages) ||
5c0b4f3d 1272 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1273 return -EINVAL;
09170a49 1274
163da372 1275 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1276 change = KVM_MR_MOVE;
1277 else if (new.flags != old.flags)
1278 change = KVM_MR_FLAGS_ONLY;
1279 else /* Nothing to change. */
1280 return 0;
163da372
SC
1281
1282 /* Copy dirty_bitmap and arch from the current memslot. */
1283 new.dirty_bitmap = old.dirty_bitmap;
1284 memcpy(&new.arch, &old.arch, sizeof(new.arch));
09170a49 1285 }
6aa8b732 1286
f64c0398 1287 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1288 /* Check for overlaps */
163da372
SC
1289 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1290 if (tmp->id == id)
0a706bee 1291 continue;
163da372
SC
1292 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1293 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1294 return -EEXIST;
0a706bee 1295 }
6aa8b732 1296 }
6aa8b732 1297
414de7ab
SC
1298 /* Allocate/free page dirty bitmap as needed */
1299 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1300 new.dirty_bitmap = NULL;
1301 else if (!new.dirty_bitmap) {
3c9bd400 1302 r = kvm_alloc_dirty_bitmap(&new);
71a4c30b
SC
1303 if (r)
1304 return r;
3c9bd400
JZ
1305
1306 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1307 bitmap_set(new.dirty_bitmap, 0, new.npages);
6aa8b732
AK
1308 }
1309
cf47f50b
SC
1310 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1311 if (r)
1312 goto out_bitmap;
82ce2c96 1313
5c0b4f3d
SC
1314 if (old.dirty_bitmap && !new.dirty_bitmap)
1315 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1316 return 0;
1317
bd0e96fd
SC
1318out_bitmap:
1319 if (new.dirty_bitmap && !old.dirty_bitmap)
1320 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1321 return r;
210c7c4d 1322}
f78e0e2e
SY
1323EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1324
1325int kvm_set_memory_region(struct kvm *kvm,
09170a49 1326 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1327{
1328 int r;
1329
79fac95e 1330 mutex_lock(&kvm->slots_lock);
47ae31e2 1331 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1332 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1333 return r;
1334}
210c7c4d
IE
1335EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1336
7940876e
SH
1337static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1338 struct kvm_userspace_memory_region *mem)
210c7c4d 1339{
f481b069 1340 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1341 return -EINVAL;
09170a49 1342
47ae31e2 1343 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1344}
1345
0dff0846 1346#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1347/**
1348 * kvm_get_dirty_log - get a snapshot of dirty pages
1349 * @kvm: pointer to kvm instance
1350 * @log: slot id and address to which we copy the log
1351 * @is_dirty: set to '1' if any dirty pages were found
1352 * @memslot: set to the associated memslot, always valid on success
1353 */
1354int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1355 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1356{
9f6b8029 1357 struct kvm_memslots *slots;
843574a3 1358 int i, as_id, id;
87bf6e7d 1359 unsigned long n;
6aa8b732
AK
1360 unsigned long any = 0;
1361
2a49f61d
SC
1362 *memslot = NULL;
1363 *is_dirty = 0;
1364
f481b069
PB
1365 as_id = log->slot >> 16;
1366 id = (u16)log->slot;
1367 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1368 return -EINVAL;
6aa8b732 1369
f481b069 1370 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1371 *memslot = id_to_memslot(slots, id);
0577d1ab 1372 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1373 return -ENOENT;
6aa8b732 1374
2a49f61d
SC
1375 kvm_arch_sync_dirty_log(kvm, *memslot);
1376
1377 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1378
cd1a4a98 1379 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1380 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1381
2a49f61d 1382 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1383 return -EFAULT;
6aa8b732 1384
5bb064dc
ZX
1385 if (any)
1386 *is_dirty = 1;
843574a3 1387 return 0;
6aa8b732 1388}
2ba9f0d8 1389EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1390
0dff0846 1391#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1392/**
b8b00220 1393 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1394 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1395 * @kvm: pointer to kvm instance
1396 * @log: slot id and address to which we copy the log
ba0513b5
MS
1397 *
1398 * We need to keep it in mind that VCPU threads can write to the bitmap
1399 * concurrently. So, to avoid losing track of dirty pages we keep the
1400 * following order:
1401 *
1402 * 1. Take a snapshot of the bit and clear it if needed.
1403 * 2. Write protect the corresponding page.
1404 * 3. Copy the snapshot to the userspace.
1405 * 4. Upon return caller flushes TLB's if needed.
1406 *
1407 * Between 2 and 4, the guest may write to the page using the remaining TLB
1408 * entry. This is not a problem because the page is reported dirty using
1409 * the snapshot taken before and step 4 ensures that writes done after
1410 * exiting to userspace will be logged for the next call.
1411 *
1412 */
0dff0846 1413static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1414{
9f6b8029 1415 struct kvm_memslots *slots;
ba0513b5 1416 struct kvm_memory_slot *memslot;
58d6db34 1417 int i, as_id, id;
ba0513b5
MS
1418 unsigned long n;
1419 unsigned long *dirty_bitmap;
1420 unsigned long *dirty_bitmap_buffer;
0dff0846 1421 bool flush;
ba0513b5 1422
f481b069
PB
1423 as_id = log->slot >> 16;
1424 id = (u16)log->slot;
1425 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1426 return -EINVAL;
ba0513b5 1427
f481b069
PB
1428 slots = __kvm_memslots(kvm, as_id);
1429 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1430 if (!memslot || !memslot->dirty_bitmap)
1431 return -ENOENT;
ba0513b5
MS
1432
1433 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1434
0dff0846
SC
1435 kvm_arch_sync_dirty_log(kvm, memslot);
1436
ba0513b5 1437 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1438 flush = false;
2a31b9db
PB
1439 if (kvm->manual_dirty_log_protect) {
1440 /*
1441 * Unlike kvm_get_dirty_log, we always return false in *flush,
1442 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1443 * is some code duplication between this function and
1444 * kvm_get_dirty_log, but hopefully all architecture
1445 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1446 * can be eliminated.
1447 */
1448 dirty_bitmap_buffer = dirty_bitmap;
1449 } else {
1450 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1451 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1452
2a31b9db
PB
1453 spin_lock(&kvm->mmu_lock);
1454 for (i = 0; i < n / sizeof(long); i++) {
1455 unsigned long mask;
1456 gfn_t offset;
ba0513b5 1457
2a31b9db
PB
1458 if (!dirty_bitmap[i])
1459 continue;
1460
0dff0846 1461 flush = true;
2a31b9db
PB
1462 mask = xchg(&dirty_bitmap[i], 0);
1463 dirty_bitmap_buffer[i] = mask;
1464
a67794ca
LT
1465 offset = i * BITS_PER_LONG;
1466 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1467 offset, mask);
2a31b9db
PB
1468 }
1469 spin_unlock(&kvm->mmu_lock);
1470 }
1471
0dff0846
SC
1472 if (flush)
1473 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1474
2a31b9db
PB
1475 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1476 return -EFAULT;
1477 return 0;
1478}
0dff0846
SC
1479
1480
1481/**
1482 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1483 * @kvm: kvm instance
1484 * @log: slot id and address to which we copy the log
1485 *
1486 * Steps 1-4 below provide general overview of dirty page logging. See
1487 * kvm_get_dirty_log_protect() function description for additional details.
1488 *
1489 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1490 * always flush the TLB (step 4) even if previous step failed and the dirty
1491 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1492 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1493 * writes will be marked dirty for next log read.
1494 *
1495 * 1. Take a snapshot of the bit and clear it if needed.
1496 * 2. Write protect the corresponding page.
1497 * 3. Copy the snapshot to the userspace.
1498 * 4. Flush TLB's if needed.
1499 */
1500static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1501 struct kvm_dirty_log *log)
1502{
1503 int r;
1504
1505 mutex_lock(&kvm->slots_lock);
1506
1507 r = kvm_get_dirty_log_protect(kvm, log);
1508
1509 mutex_unlock(&kvm->slots_lock);
1510 return r;
1511}
2a31b9db
PB
1512
1513/**
1514 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1515 * and reenable dirty page tracking for the corresponding pages.
1516 * @kvm: pointer to kvm instance
1517 * @log: slot id and address from which to fetch the bitmap of dirty pages
1518 */
0dff0846
SC
1519static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1520 struct kvm_clear_dirty_log *log)
2a31b9db
PB
1521{
1522 struct kvm_memslots *slots;
1523 struct kvm_memory_slot *memslot;
98938aa8 1524 int as_id, id;
2a31b9db 1525 gfn_t offset;
98938aa8 1526 unsigned long i, n;
2a31b9db
PB
1527 unsigned long *dirty_bitmap;
1528 unsigned long *dirty_bitmap_buffer;
0dff0846 1529 bool flush;
2a31b9db
PB
1530
1531 as_id = log->slot >> 16;
1532 id = (u16)log->slot;
1533 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1534 return -EINVAL;
1535
76d58e0f 1536 if (log->first_page & 63)
2a31b9db
PB
1537 return -EINVAL;
1538
1539 slots = __kvm_memslots(kvm, as_id);
1540 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1541 if (!memslot || !memslot->dirty_bitmap)
1542 return -ENOENT;
2a31b9db
PB
1543
1544 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 1545
4ddc9204 1546 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
1547
1548 if (log->first_page > memslot->npages ||
76d58e0f
PB
1549 log->num_pages > memslot->npages - log->first_page ||
1550 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1551 return -EINVAL;
98938aa8 1552
0dff0846
SC
1553 kvm_arch_sync_dirty_log(kvm, memslot);
1554
1555 flush = false;
2a31b9db
PB
1556 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1557 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1558 return -EFAULT;
ba0513b5 1559
2a31b9db 1560 spin_lock(&kvm->mmu_lock);
53eac7a8
PX
1561 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1562 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
1563 i++, offset += BITS_PER_LONG) {
1564 unsigned long mask = *dirty_bitmap_buffer++;
1565 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1566 if (!mask)
ba0513b5
MS
1567 continue;
1568
2a31b9db 1569 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1570
2a31b9db
PB
1571 /*
1572 * mask contains the bits that really have been cleared. This
1573 * never includes any bits beyond the length of the memslot (if
1574 * the length is not aligned to 64 pages), therefore it is not
1575 * a problem if userspace sets them in log->dirty_bitmap.
1576 */
58d2930f 1577 if (mask) {
0dff0846 1578 flush = true;
58d2930f
TY
1579 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1580 offset, mask);
1581 }
ba0513b5 1582 }
ba0513b5 1583 spin_unlock(&kvm->mmu_lock);
2a31b9db 1584
0dff0846
SC
1585 if (flush)
1586 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1587
58d6db34 1588 return 0;
ba0513b5 1589}
0dff0846
SC
1590
1591static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1592 struct kvm_clear_dirty_log *log)
1593{
1594 int r;
1595
1596 mutex_lock(&kvm->slots_lock);
1597
1598 r = kvm_clear_dirty_log_protect(kvm, log);
1599
1600 mutex_unlock(&kvm->slots_lock);
1601 return r;
1602}
1603#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1604
49c7754c
GN
1605struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1606{
1607 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1608}
a1f4d395 1609EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1610
8e73485c
PB
1611struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1612{
1613 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1614}
e72436bc 1615EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
8e73485c 1616
33e94154 1617bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1618{
bf3e05bc 1619 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1620
c36b7150 1621 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
1622}
1623EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1624
f9b84e19 1625unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
1626{
1627 struct vm_area_struct *vma;
1628 unsigned long addr, size;
1629
1630 size = PAGE_SIZE;
1631
42cde48b 1632 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
1633 if (kvm_is_error_hva(addr))
1634 return PAGE_SIZE;
1635
1636 down_read(&current->mm->mmap_sem);
1637 vma = find_vma(current->mm, addr);
1638 if (!vma)
1639 goto out;
1640
1641 size = vma_kernel_pagesize(vma);
1642
1643out:
1644 up_read(&current->mm->mmap_sem);
1645
1646 return size;
1647}
1648
4d8b81ab
XG
1649static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1650{
1651 return slot->flags & KVM_MEM_READONLY;
1652}
1653
4d8b81ab
XG
1654static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1655 gfn_t *nr_pages, bool write)
539cb660 1656{
bc6678a3 1657 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1658 return KVM_HVA_ERR_BAD;
48987781 1659
4d8b81ab
XG
1660 if (memslot_is_readonly(slot) && write)
1661 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1662
1663 if (nr_pages)
1664 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1665
4d8b81ab 1666 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1667}
48987781 1668
4d8b81ab
XG
1669static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1670 gfn_t *nr_pages)
1671{
1672 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1673}
48987781 1674
4d8b81ab 1675unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1676 gfn_t gfn)
4d8b81ab
XG
1677{
1678 return gfn_to_hva_many(slot, gfn, NULL);
1679}
1680EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1681
48987781
XG
1682unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1683{
49c7754c 1684 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1685}
0d150298 1686EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1687
8e73485c
PB
1688unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1689{
1690 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1691}
1692EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1693
86ab8cff 1694/*
970c0d4b
WY
1695 * Return the hva of a @gfn and the R/W attribute if possible.
1696 *
1697 * @slot: the kvm_memory_slot which contains @gfn
1698 * @gfn: the gfn to be translated
1699 * @writable: used to return the read/write attribute of the @slot if the hva
1700 * is valid and @writable is not NULL
86ab8cff 1701 */
64d83126
CD
1702unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1703 gfn_t gfn, bool *writable)
86ab8cff 1704{
a2ac07fe
GN
1705 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1706
1707 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1708 *writable = !memslot_is_readonly(slot);
1709
a2ac07fe 1710 return hva;
86ab8cff
XG
1711}
1712
64d83126
CD
1713unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1714{
1715 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1716
1717 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1718}
1719
8e73485c
PB
1720unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1721{
1722 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1723
1724 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1725}
1726
fafc3dba
HY
1727static inline int check_user_page_hwpoison(unsigned long addr)
1728{
0d731759 1729 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1730
0d731759 1731 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1732 return rc == -EHWPOISON;
1733}
1734
2fc84311 1735/*
b9b33da2
PB
1736 * The fast path to get the writable pfn which will be stored in @pfn,
1737 * true indicates success, otherwise false is returned. It's also the
311497e0 1738 * only part that runs if we can in atomic context.
2fc84311 1739 */
b9b33da2
PB
1740static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1741 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1742{
8d4e1288 1743 struct page *page[1];
2fc84311 1744 int npages;
954bbbc2 1745
12ce13fe
XG
1746 /*
1747 * Fast pin a writable pfn only if it is a write fault request
1748 * or the caller allows to map a writable pfn for a read fault
1749 * request.
1750 */
1751 if (!(write_fault || writable))
1752 return false;
612819c3 1753
2fc84311
XG
1754 npages = __get_user_pages_fast(addr, 1, 1, page);
1755 if (npages == 1) {
1756 *pfn = page_to_pfn(page[0]);
612819c3 1757
2fc84311
XG
1758 if (writable)
1759 *writable = true;
1760 return true;
1761 }
af585b92 1762
2fc84311
XG
1763 return false;
1764}
612819c3 1765
2fc84311
XG
1766/*
1767 * The slow path to get the pfn of the specified host virtual address,
1768 * 1 indicates success, -errno is returned if error is detected.
1769 */
1770static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 1771 bool *writable, kvm_pfn_t *pfn)
2fc84311 1772{
ce53053c
AV
1773 unsigned int flags = FOLL_HWPOISON;
1774 struct page *page;
2fc84311 1775 int npages = 0;
612819c3 1776
2fc84311
XG
1777 might_sleep();
1778
1779 if (writable)
1780 *writable = write_fault;
1781
ce53053c
AV
1782 if (write_fault)
1783 flags |= FOLL_WRITE;
1784 if (async)
1785 flags |= FOLL_NOWAIT;
d4944b0e 1786
ce53053c 1787 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
1788 if (npages != 1)
1789 return npages;
1790
1791 /* map read fault as writable if possible */
12ce13fe 1792 if (unlikely(!write_fault) && writable) {
ce53053c 1793 struct page *wpage;
2fc84311 1794
ce53053c 1795 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
2fc84311 1796 *writable = true;
ce53053c
AV
1797 put_page(page);
1798 page = wpage;
612819c3 1799 }
887c08ac 1800 }
ce53053c 1801 *pfn = page_to_pfn(page);
2fc84311
XG
1802 return npages;
1803}
539cb660 1804
4d8b81ab
XG
1805static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1806{
1807 if (unlikely(!(vma->vm_flags & VM_READ)))
1808 return false;
2e2e3738 1809
4d8b81ab
XG
1810 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1811 return false;
887c08ac 1812
4d8b81ab
XG
1813 return true;
1814}
bf998156 1815
92176a8e
PB
1816static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1817 unsigned long addr, bool *async,
a340b3e2
KA
1818 bool write_fault, bool *writable,
1819 kvm_pfn_t *p_pfn)
92176a8e 1820{
add6a0cd
PB
1821 unsigned long pfn;
1822 int r;
1823
1824 r = follow_pfn(vma, addr, &pfn);
1825 if (r) {
1826 /*
1827 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1828 * not call the fault handler, so do it here.
1829 */
1830 bool unlocked = false;
1831 r = fixup_user_fault(current, current->mm, addr,
1832 (write_fault ? FAULT_FLAG_WRITE : 0),
1833 &unlocked);
add6a0cd
PB
1834 if (r)
1835 return r;
1836
1837 r = follow_pfn(vma, addr, &pfn);
1838 if (r)
1839 return r;
1840
1841 }
1842
a340b3e2
KA
1843 if (writable)
1844 *writable = true;
add6a0cd
PB
1845
1846 /*
1847 * Get a reference here because callers of *hva_to_pfn* and
1848 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1849 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1850 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1851 * simply do nothing for reserved pfns.
1852 *
1853 * Whoever called remap_pfn_range is also going to call e.g.
1854 * unmap_mapping_range before the underlying pages are freed,
1855 * causing a call to our MMU notifier.
1856 */
1857 kvm_get_pfn(pfn);
1858
1859 *p_pfn = pfn;
92176a8e
PB
1860 return 0;
1861}
1862
12ce13fe
XG
1863/*
1864 * Pin guest page in memory and return its pfn.
1865 * @addr: host virtual address which maps memory to the guest
1866 * @atomic: whether this function can sleep
1867 * @async: whether this function need to wait IO complete if the
1868 * host page is not in the memory
1869 * @write_fault: whether we should get a writable host page
1870 * @writable: whether it allows to map a writable host page for !@write_fault
1871 *
1872 * The function will map a writable host page for these two cases:
1873 * 1): @write_fault = true
1874 * 2): @write_fault = false && @writable, @writable will tell the caller
1875 * whether the mapping is writable.
1876 */
ba049e93 1877static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
1878 bool write_fault, bool *writable)
1879{
1880 struct vm_area_struct *vma;
ba049e93 1881 kvm_pfn_t pfn = 0;
92176a8e 1882 int npages, r;
2e2e3738 1883
2fc84311
XG
1884 /* we can do it either atomically or asynchronously, not both */
1885 BUG_ON(atomic && async);
8d4e1288 1886
b9b33da2 1887 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
1888 return pfn;
1889
1890 if (atomic)
1891 return KVM_PFN_ERR_FAULT;
1892
1893 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1894 if (npages == 1)
1895 return pfn;
8d4e1288 1896
2fc84311
XG
1897 down_read(&current->mm->mmap_sem);
1898 if (npages == -EHWPOISON ||
1899 (!async && check_user_page_hwpoison(addr))) {
1900 pfn = KVM_PFN_ERR_HWPOISON;
1901 goto exit;
1902 }
1903
1904 vma = find_vma_intersection(current->mm, addr, addr + 1);
1905
1906 if (vma == NULL)
1907 pfn = KVM_PFN_ERR_FAULT;
92176a8e 1908 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 1909 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
92176a8e
PB
1910 if (r < 0)
1911 pfn = KVM_PFN_ERR_FAULT;
2fc84311 1912 } else {
4d8b81ab 1913 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
1914 *async = true;
1915 pfn = KVM_PFN_ERR_FAULT;
1916 }
1917exit:
1918 up_read(&current->mm->mmap_sem);
2e2e3738 1919 return pfn;
35149e21
AL
1920}
1921
ba049e93
DW
1922kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1923 bool atomic, bool *async, bool write_fault,
1924 bool *writable)
887c08ac 1925{
4d8b81ab
XG
1926 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1927
b2740d35
PB
1928 if (addr == KVM_HVA_ERR_RO_BAD) {
1929 if (writable)
1930 *writable = false;
4d8b81ab 1931 return KVM_PFN_ERR_RO_FAULT;
b2740d35 1932 }
4d8b81ab 1933
b2740d35
PB
1934 if (kvm_is_error_hva(addr)) {
1935 if (writable)
1936 *writable = false;
81c52c56 1937 return KVM_PFN_NOSLOT;
b2740d35 1938 }
4d8b81ab
XG
1939
1940 /* Do not map writable pfn in the readonly memslot. */
1941 if (writable && memslot_is_readonly(slot)) {
1942 *writable = false;
1943 writable = NULL;
1944 }
1945
1946 return hva_to_pfn(addr, atomic, async, write_fault,
1947 writable);
887c08ac 1948}
3520469d 1949EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 1950
ba049e93 1951kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
1952 bool *writable)
1953{
e37afc6e
PB
1954 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1955 write_fault, writable);
612819c3
MT
1956}
1957EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1958
ba049e93 1959kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1960{
4d8b81ab 1961 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
506f0d6f 1962}
e37afc6e 1963EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 1964
ba049e93 1965kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1966{
4d8b81ab 1967 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
506f0d6f 1968}
037d92dc 1969EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 1970
ba049e93 1971kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1972{
1973 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1974}
1975EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1976
ba049e93 1977kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1978{
1979 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1980}
1981EXPORT_SYMBOL_GPL(gfn_to_pfn);
1982
ba049e93 1983kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1984{
1985 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1986}
1987EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1988
d9ef13c2
PB
1989int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1990 struct page **pages, int nr_pages)
48987781
XG
1991{
1992 unsigned long addr;
076b925d 1993 gfn_t entry = 0;
48987781 1994
d9ef13c2 1995 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
1996 if (kvm_is_error_hva(addr))
1997 return -1;
1998
1999 if (entry < nr_pages)
2000 return 0;
2001
2002 return __get_user_pages_fast(addr, nr_pages, 1, pages);
2003}
2004EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2005
ba049e93 2006static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 2007{
81c52c56 2008 if (is_error_noslot_pfn(pfn))
cb9aaa30 2009 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2010
bf4bea8e 2011 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 2012 WARN_ON(1);
6cede2e6 2013 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2014 }
a2766325
XG
2015
2016 return pfn_to_page(pfn);
2017}
2018
35149e21
AL
2019struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2020{
ba049e93 2021 kvm_pfn_t pfn;
2e2e3738
AL
2022
2023 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2024
a2766325 2025 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2026}
2027EXPORT_SYMBOL_GPL(gfn_to_page);
2028
91724814
BO
2029void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2030{
2031 if (pfn == 0)
2032 return;
2033
2034 if (cache)
2035 cache->pfn = cache->gfn = 0;
2036
2037 if (dirty)
2038 kvm_release_pfn_dirty(pfn);
2039 else
2040 kvm_release_pfn_clean(pfn);
2041}
2042
2043static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2044 struct gfn_to_pfn_cache *cache, u64 gen)
2045{
2046 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2047
2048 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2049 cache->gfn = gfn;
2050 cache->dirty = false;
2051 cache->generation = gen;
2052}
2053
1eff70a9 2054static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
2055 struct kvm_host_map *map,
2056 struct gfn_to_pfn_cache *cache,
2057 bool atomic)
e45adf66
KA
2058{
2059 kvm_pfn_t pfn;
2060 void *hva = NULL;
2061 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 2062 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 2063 u64 gen = slots->generation;
e45adf66
KA
2064
2065 if (!map)
2066 return -EINVAL;
2067
91724814
BO
2068 if (cache) {
2069 if (!cache->pfn || cache->gfn != gfn ||
2070 cache->generation != gen) {
2071 if (atomic)
2072 return -EAGAIN;
2073 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2074 }
2075 pfn = cache->pfn;
2076 } else {
2077 if (atomic)
2078 return -EAGAIN;
2079 pfn = gfn_to_pfn_memslot(slot, gfn);
2080 }
e45adf66
KA
2081 if (is_error_noslot_pfn(pfn))
2082 return -EINVAL;
2083
2084 if (pfn_valid(pfn)) {
2085 page = pfn_to_page(pfn);
91724814
BO
2086 if (atomic)
2087 hva = kmap_atomic(page);
2088 else
2089 hva = kmap(page);
d30b214d 2090#ifdef CONFIG_HAS_IOMEM
91724814 2091 } else if (!atomic) {
e45adf66 2092 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
2093 } else {
2094 return -EINVAL;
d30b214d 2095#endif
e45adf66
KA
2096 }
2097
2098 if (!hva)
2099 return -EFAULT;
2100
2101 map->page = page;
2102 map->hva = hva;
2103 map->pfn = pfn;
2104 map->gfn = gfn;
2105
2106 return 0;
2107}
2108
91724814
BO
2109int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2110 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 2111{
91724814
BO
2112 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2113 cache, atomic);
1eff70a9
BO
2114}
2115EXPORT_SYMBOL_GPL(kvm_map_gfn);
2116
e45adf66
KA
2117int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2118{
91724814
BO
2119 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2120 NULL, false);
e45adf66
KA
2121}
2122EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2123
1eff70a9 2124static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
91724814
BO
2125 struct kvm_host_map *map,
2126 struct gfn_to_pfn_cache *cache,
2127 bool dirty, bool atomic)
e45adf66
KA
2128{
2129 if (!map)
2130 return;
2131
2132 if (!map->hva)
2133 return;
2134
91724814
BO
2135 if (map->page != KVM_UNMAPPED_PAGE) {
2136 if (atomic)
2137 kunmap_atomic(map->hva);
2138 else
2139 kunmap(map->page);
2140 }
eb1f2f38 2141#ifdef CONFIG_HAS_IOMEM
91724814 2142 else if (!atomic)
e45adf66 2143 memunmap(map->hva);
91724814
BO
2144 else
2145 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 2146#endif
e45adf66 2147
91724814 2148 if (dirty)
1eff70a9 2149 mark_page_dirty_in_slot(memslot, map->gfn);
91724814
BO
2150
2151 if (cache)
2152 cache->dirty |= dirty;
2153 else
2154 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
2155
2156 map->hva = NULL;
2157 map->page = NULL;
2158}
1eff70a9 2159
91724814
BO
2160int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2161 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 2162{
91724814
BO
2163 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2164 cache, dirty, atomic);
1eff70a9
BO
2165 return 0;
2166}
2167EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2168
2169void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2170{
91724814
BO
2171 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2172 dirty, false);
1eff70a9 2173}
e45adf66
KA
2174EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2175
8e73485c
PB
2176struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2177{
ba049e93 2178 kvm_pfn_t pfn;
8e73485c
PB
2179
2180 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2181
2182 return kvm_pfn_to_page(pfn);
2183}
2184EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2185
b4231d61
IE
2186void kvm_release_page_clean(struct page *page)
2187{
32cad84f
XG
2188 WARN_ON(is_error_page(page));
2189
35149e21 2190 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2191}
2192EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2193
ba049e93 2194void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2195{
bf4bea8e 2196 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2197 put_page(pfn_to_page(pfn));
35149e21
AL
2198}
2199EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2200
b4231d61 2201void kvm_release_page_dirty(struct page *page)
8a7ae055 2202{
a2766325
XG
2203 WARN_ON(is_error_page(page));
2204
35149e21
AL
2205 kvm_release_pfn_dirty(page_to_pfn(page));
2206}
2207EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2208
f7a6509f 2209void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2210{
2211 kvm_set_pfn_dirty(pfn);
2212 kvm_release_pfn_clean(pfn);
2213}
f7a6509f 2214EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2215
ba049e93 2216void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2217{
d29c03a5
ML
2218 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2219 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2220}
35149e21
AL
2221EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2222
ba049e93 2223void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2224{
a78986aa 2225 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2226 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2227}
2228EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2229
ba049e93 2230void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 2231{
bf4bea8e 2232 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 2233 get_page(pfn_to_page(pfn));
35149e21
AL
2234}
2235EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 2236
195aefde
IE
2237static int next_segment(unsigned long len, int offset)
2238{
2239 if (len > PAGE_SIZE - offset)
2240 return PAGE_SIZE - offset;
2241 else
2242 return len;
2243}
2244
8e73485c
PB
2245static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2246 void *data, int offset, int len)
195aefde 2247{
e0506bcb
IE
2248 int r;
2249 unsigned long addr;
195aefde 2250
8e73485c 2251 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2252 if (kvm_is_error_hva(addr))
2253 return -EFAULT;
3180a7fc 2254 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2255 if (r)
195aefde 2256 return -EFAULT;
195aefde
IE
2257 return 0;
2258}
8e73485c
PB
2259
2260int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2261 int len)
2262{
2263 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2264
2265 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2266}
195aefde
IE
2267EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2268
8e73485c
PB
2269int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2270 int offset, int len)
2271{
2272 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2273
2274 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2275}
2276EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2277
195aefde
IE
2278int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2279{
2280 gfn_t gfn = gpa >> PAGE_SHIFT;
2281 int seg;
2282 int offset = offset_in_page(gpa);
2283 int ret;
2284
2285 while ((seg = next_segment(len, offset)) != 0) {
2286 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2287 if (ret < 0)
2288 return ret;
2289 offset = 0;
2290 len -= seg;
2291 data += seg;
2292 ++gfn;
2293 }
2294 return 0;
2295}
2296EXPORT_SYMBOL_GPL(kvm_read_guest);
2297
8e73485c 2298int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2299{
7ec54588 2300 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2301 int seg;
7ec54588 2302 int offset = offset_in_page(gpa);
8e73485c
PB
2303 int ret;
2304
2305 while ((seg = next_segment(len, offset)) != 0) {
2306 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2307 if (ret < 0)
2308 return ret;
2309 offset = 0;
2310 len -= seg;
2311 data += seg;
2312 ++gfn;
2313 }
2314 return 0;
2315}
2316EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2317
8e73485c
PB
2318static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2319 void *data, int offset, unsigned long len)
2320{
2321 int r;
2322 unsigned long addr;
2323
2324 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2325 if (kvm_is_error_hva(addr))
2326 return -EFAULT;
0aac03f0 2327 pagefault_disable();
3180a7fc 2328 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2329 pagefault_enable();
7ec54588
MT
2330 if (r)
2331 return -EFAULT;
2332 return 0;
2333}
7ec54588 2334
8e73485c
PB
2335int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2336 void *data, unsigned long len)
2337{
2338 gfn_t gfn = gpa >> PAGE_SHIFT;
2339 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2340 int offset = offset_in_page(gpa);
2341
2342 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2343}
2344EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2345
2346static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2347 const void *data, int offset, int len)
195aefde 2348{
e0506bcb
IE
2349 int r;
2350 unsigned long addr;
195aefde 2351
251eb841 2352 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2353 if (kvm_is_error_hva(addr))
2354 return -EFAULT;
8b0cedff 2355 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2356 if (r)
195aefde 2357 return -EFAULT;
bc009e43 2358 mark_page_dirty_in_slot(memslot, gfn);
195aefde
IE
2359 return 0;
2360}
8e73485c
PB
2361
2362int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2363 const void *data, int offset, int len)
2364{
2365 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2366
2367 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2368}
195aefde
IE
2369EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2370
8e73485c
PB
2371int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2372 const void *data, int offset, int len)
2373{
2374 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2375
2376 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2377}
2378EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2379
195aefde
IE
2380int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2381 unsigned long len)
2382{
2383 gfn_t gfn = gpa >> PAGE_SHIFT;
2384 int seg;
2385 int offset = offset_in_page(gpa);
2386 int ret;
2387
2388 while ((seg = next_segment(len, offset)) != 0) {
2389 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2390 if (ret < 0)
2391 return ret;
2392 offset = 0;
2393 len -= seg;
2394 data += seg;
2395 ++gfn;
2396 }
2397 return 0;
2398}
ff651cb6 2399EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2400
8e73485c
PB
2401int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2402 unsigned long len)
2403{
2404 gfn_t gfn = gpa >> PAGE_SHIFT;
2405 int seg;
2406 int offset = offset_in_page(gpa);
2407 int ret;
2408
2409 while ((seg = next_segment(len, offset)) != 0) {
2410 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2411 if (ret < 0)
2412 return ret;
2413 offset = 0;
2414 len -= seg;
2415 data += seg;
2416 ++gfn;
2417 }
2418 return 0;
2419}
2420EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2421
5a2d4365
PB
2422static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2423 struct gfn_to_hva_cache *ghc,
2424 gpa_t gpa, unsigned long len)
49c7754c 2425{
49c7754c 2426 int offset = offset_in_page(gpa);
8f964525
AH
2427 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2428 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2429 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2430 gfn_t nr_pages_avail;
49c7754c 2431
6ad1e29f 2432 /* Update ghc->generation before performing any error checks. */
49c7754c 2433 ghc->generation = slots->generation;
6ad1e29f
SC
2434
2435 if (start_gfn > end_gfn) {
2436 ghc->hva = KVM_HVA_ERR_BAD;
2437 return -EINVAL;
2438 }
f1b9dd5e
JM
2439
2440 /*
2441 * If the requested region crosses two memslots, we still
2442 * verify that the entire region is valid here.
2443 */
6ad1e29f 2444 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2445 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2446 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2447 &nr_pages_avail);
2448 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2449 return -EFAULT;
f1b9dd5e
JM
2450 }
2451
2452 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2453 if (nr_pages_needed == 1)
49c7754c 2454 ghc->hva += offset;
f1b9dd5e 2455 else
8f964525 2456 ghc->memslot = NULL;
f1b9dd5e 2457
6ad1e29f
SC
2458 ghc->gpa = gpa;
2459 ghc->len = len;
2460 return 0;
49c7754c 2461}
5a2d4365 2462
4e335d9e 2463int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2464 gpa_t gpa, unsigned long len)
2465{
4e335d9e 2466 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2467 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2468}
4e335d9e 2469EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2470
4e335d9e 2471int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2472 void *data, unsigned int offset,
2473 unsigned long len)
49c7754c 2474{
4e335d9e 2475 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2476 int r;
4ec6e863 2477 gpa_t gpa = ghc->gpa + offset;
49c7754c 2478
4ec6e863 2479 BUG_ON(len + offset > ghc->len);
8f964525 2480
dc9ce71e
SC
2481 if (slots->generation != ghc->generation) {
2482 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2483 return -EFAULT;
2484 }
8f964525 2485
49c7754c
GN
2486 if (kvm_is_error_hva(ghc->hva))
2487 return -EFAULT;
2488
fcfbc617
SC
2489 if (unlikely(!ghc->memslot))
2490 return kvm_write_guest(kvm, gpa, data, len);
2491
4ec6e863 2492 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2493 if (r)
2494 return -EFAULT;
4ec6e863 2495 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2496
2497 return 0;
2498}
4e335d9e 2499EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2500
4e335d9e
PB
2501int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2502 void *data, unsigned long len)
4ec6e863 2503{
4e335d9e 2504 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2505}
4e335d9e 2506EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2507
4e335d9e
PB
2508int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2509 void *data, unsigned long len)
e03b644f 2510{
4e335d9e 2511 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f
GN
2512 int r;
2513
8f964525
AH
2514 BUG_ON(len > ghc->len);
2515
dc9ce71e
SC
2516 if (slots->generation != ghc->generation) {
2517 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2518 return -EFAULT;
2519 }
8f964525 2520
e03b644f
GN
2521 if (kvm_is_error_hva(ghc->hva))
2522 return -EFAULT;
2523
fcfbc617
SC
2524 if (unlikely(!ghc->memslot))
2525 return kvm_read_guest(kvm, ghc->gpa, data, len);
2526
e03b644f
GN
2527 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2528 if (r)
2529 return -EFAULT;
2530
2531 return 0;
2532}
4e335d9e 2533EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2534
195aefde
IE
2535int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2536{
8a3caa6d
HC
2537 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2538
2539 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2540}
2541EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2542
2543int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2544{
2545 gfn_t gfn = gpa >> PAGE_SHIFT;
2546 int seg;
2547 int offset = offset_in_page(gpa);
2548 int ret;
2549
bfda0e84 2550 while ((seg = next_segment(len, offset)) != 0) {
195aefde
IE
2551 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2552 if (ret < 0)
2553 return ret;
2554 offset = 0;
2555 len -= seg;
2556 ++gfn;
2557 }
2558 return 0;
2559}
2560EXPORT_SYMBOL_GPL(kvm_clear_guest);
2561
bc009e43 2562static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
7940876e 2563 gfn_t gfn)
6aa8b732 2564{
7e9d619d
RR
2565 if (memslot && memslot->dirty_bitmap) {
2566 unsigned long rel_gfn = gfn - memslot->base_gfn;
6aa8b732 2567
b74ca3b3 2568 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2569 }
2570}
2571
49c7754c
GN
2572void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2573{
2574 struct kvm_memory_slot *memslot;
2575
2576 memslot = gfn_to_memslot(kvm, gfn);
bc009e43 2577 mark_page_dirty_in_slot(memslot, gfn);
49c7754c 2578}
2ba9f0d8 2579EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2580
8e73485c
PB
2581void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2582{
2583 struct kvm_memory_slot *memslot;
2584
2585 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2586 mark_page_dirty_in_slot(memslot, gfn);
2587}
2588EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2589
20b7035c
JS
2590void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2591{
2592 if (!vcpu->sigset_active)
2593 return;
2594
2595 /*
2596 * This does a lockless modification of ->real_blocked, which is fine
2597 * because, only current can change ->real_blocked and all readers of
2598 * ->real_blocked don't care as long ->real_blocked is always a subset
2599 * of ->blocked.
2600 */
2601 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2602}
2603
2604void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2605{
2606 if (!vcpu->sigset_active)
2607 return;
2608
2609 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2610 sigemptyset(&current->real_blocked);
2611}
2612
aca6ff29
WL
2613static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2614{
dee339b5 2615 unsigned int old, val, grow, grow_start;
aca6ff29 2616
2cbd7824 2617 old = val = vcpu->halt_poll_ns;
dee339b5 2618 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 2619 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
2620 if (!grow)
2621 goto out;
2622
dee339b5
NW
2623 val *= grow;
2624 if (val < grow_start)
2625 val = grow_start;
aca6ff29 2626
313f636d
DM
2627 if (val > halt_poll_ns)
2628 val = halt_poll_ns;
2629
aca6ff29 2630 vcpu->halt_poll_ns = val;
7fa08e71 2631out:
2cbd7824 2632 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2633}
2634
2635static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2636{
6b6de68c 2637 unsigned int old, val, shrink;
aca6ff29 2638
2cbd7824 2639 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2640 shrink = READ_ONCE(halt_poll_ns_shrink);
2641 if (shrink == 0)
aca6ff29
WL
2642 val = 0;
2643 else
6b6de68c 2644 val /= shrink;
aca6ff29
WL
2645
2646 vcpu->halt_poll_ns = val;
2cbd7824 2647 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2648}
2649
f7819512
PB
2650static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2651{
50c28f21
JS
2652 int ret = -EINTR;
2653 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2654
f7819512
PB
2655 if (kvm_arch_vcpu_runnable(vcpu)) {
2656 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2657 goto out;
f7819512
PB
2658 }
2659 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2660 goto out;
f7819512 2661 if (signal_pending(current))
50c28f21 2662 goto out;
f7819512 2663
50c28f21
JS
2664 ret = 0;
2665out:
2666 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2667 return ret;
f7819512
PB
2668}
2669
cb953129
DM
2670static inline void
2671update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2672{
2673 if (waited)
2674 vcpu->stat.halt_poll_fail_ns += poll_ns;
2675 else
2676 vcpu->stat.halt_poll_success_ns += poll_ns;
2677}
2678
b6958ce4
ED
2679/*
2680 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2681 */
8776e519 2682void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2683{
cb953129 2684 ktime_t start, cur, poll_end;
f7819512 2685 bool waited = false;
aca6ff29 2686 u64 block_ns;
f7819512 2687
07ab0f8d
MZ
2688 kvm_arch_vcpu_blocking(vcpu);
2689
cb953129 2690 start = cur = poll_end = ktime_get();
cdd6ad3a 2691 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 2692 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2693
62bea5bf 2694 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2695 do {
2696 /*
2697 * This sets KVM_REQ_UNHALT if an interrupt
2698 * arrives.
2699 */
2700 if (kvm_vcpu_check_block(vcpu) < 0) {
2701 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2702 if (!vcpu_valid_wakeup(vcpu))
2703 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2704 goto out;
2705 }
cb953129 2706 poll_end = cur = ktime_get();
f7819512
PB
2707 } while (single_task_running() && ktime_before(cur, stop));
2708 }
e5c239cf 2709
da4ad88c 2710 prepare_to_rcuwait(&vcpu->wait);
e5c239cf 2711 for (;;) {
da4ad88c 2712 set_current_state(TASK_INTERRUPTIBLE);
e5c239cf 2713
f7819512 2714 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2715 break;
2716
f7819512 2717 waited = true;
b6958ce4 2718 schedule();
b6958ce4 2719 }
da4ad88c 2720 finish_rcuwait(&vcpu->wait);
f7819512 2721 cur = ktime_get();
f7819512 2722out:
07ab0f8d 2723 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
2724 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2725
cb953129
DM
2726 update_halt_poll_stats(
2727 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2728
44551b2f
WL
2729 if (!kvm_arch_no_poll(vcpu)) {
2730 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 2731 shrink_halt_poll_ns(vcpu);
acd05785 2732 } else if (vcpu->kvm->max_halt_poll_ns) {
44551b2f
WL
2733 if (block_ns <= vcpu->halt_poll_ns)
2734 ;
2735 /* we had a long block, shrink polling */
acd05785
DM
2736 else if (vcpu->halt_poll_ns &&
2737 block_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
2738 shrink_halt_poll_ns(vcpu);
2739 /* we had a short halt and our poll time is too small */
acd05785
DM
2740 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2741 block_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
2742 grow_halt_poll_ns(vcpu);
2743 } else {
2744 vcpu->halt_poll_ns = 0;
2745 }
2746 }
aca6ff29 2747
3491caf2
CB
2748 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2749 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 2750}
2ba9f0d8 2751EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 2752
178f02ff 2753bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 2754{
da4ad88c 2755 struct rcuwait *waitp;
b6d33834 2756
da4ad88c
DB
2757 waitp = kvm_arch_vcpu_get_wait(vcpu);
2758 if (rcuwait_wake_up(waitp)) {
d73eb57b 2759 WRITE_ONCE(vcpu->ready, true);
b6d33834 2760 ++vcpu->stat.halt_wakeup;
178f02ff 2761 return true;
b6d33834
CD
2762 }
2763
178f02ff 2764 return false;
dd1a4cc1
RK
2765}
2766EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2767
0266c894 2768#ifndef CONFIG_S390
dd1a4cc1
RK
2769/*
2770 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2771 */
2772void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2773{
2774 int me;
2775 int cpu = vcpu->cpu;
2776
178f02ff
RK
2777 if (kvm_vcpu_wake_up(vcpu))
2778 return;
2779
b6d33834
CD
2780 me = get_cpu();
2781 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2782 if (kvm_arch_vcpu_should_kick(vcpu))
2783 smp_send_reschedule(cpu);
2784 put_cpu();
2785}
a20ed54d 2786EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 2787#endif /* !CONFIG_S390 */
b6d33834 2788
fa93384f 2789int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
2790{
2791 struct pid *pid;
2792 struct task_struct *task = NULL;
fa93384f 2793 int ret = 0;
41628d33
KW
2794
2795 rcu_read_lock();
2796 pid = rcu_dereference(target->pid);
2797 if (pid)
27fbe64b 2798 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
2799 rcu_read_unlock();
2800 if (!task)
c45c528e 2801 return ret;
c45c528e 2802 ret = yield_to(task, 1);
41628d33 2803 put_task_struct(task);
c45c528e
R
2804
2805 return ret;
41628d33
KW
2806}
2807EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2808
06e48c51
R
2809/*
2810 * Helper that checks whether a VCPU is eligible for directed yield.
2811 * Most eligible candidate to yield is decided by following heuristics:
2812 *
2813 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2814 * (preempted lock holder), indicated by @in_spin_loop.
2815 * Set at the beiginning and cleared at the end of interception/PLE handler.
2816 *
2817 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2818 * chance last time (mostly it has become eligible now since we have probably
2819 * yielded to lockholder in last iteration. This is done by toggling
2820 * @dy_eligible each time a VCPU checked for eligibility.)
2821 *
2822 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2823 * to preempted lock-holder could result in wrong VCPU selection and CPU
2824 * burning. Giving priority for a potential lock-holder increases lock
2825 * progress.
2826 *
2827 * Since algorithm is based on heuristics, accessing another VCPU data without
2828 * locking does not harm. It may result in trying to yield to same VCPU, fail
2829 * and continue with next VCPU and so on.
2830 */
7940876e 2831static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 2832{
4a55dd72 2833#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
2834 bool eligible;
2835
2836 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 2837 vcpu->spin_loop.dy_eligible;
06e48c51
R
2838
2839 if (vcpu->spin_loop.in_spin_loop)
2840 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2841
2842 return eligible;
4a55dd72
SW
2843#else
2844 return true;
06e48c51 2845#endif
4a55dd72 2846}
c45c528e 2847
17e433b5
WL
2848/*
2849 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2850 * a vcpu_load/vcpu_put pair. However, for most architectures
2851 * kvm_arch_vcpu_runnable does not require vcpu_load.
2852 */
2853bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2854{
2855 return kvm_arch_vcpu_runnable(vcpu);
2856}
2857
2858static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2859{
2860 if (kvm_arch_dy_runnable(vcpu))
2861 return true;
2862
2863#ifdef CONFIG_KVM_ASYNC_PF
2864 if (!list_empty_careful(&vcpu->async_pf.done))
2865 return true;
2866#endif
2867
2868 return false;
2869}
2870
199b5763 2871void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 2872{
217ece61
RR
2873 struct kvm *kvm = me->kvm;
2874 struct kvm_vcpu *vcpu;
2875 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2876 int yielded = 0;
c45c528e 2877 int try = 3;
217ece61
RR
2878 int pass;
2879 int i;
d255f4f2 2880
4c088493 2881 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
2882 /*
2883 * We boost the priority of a VCPU that is runnable but not
2884 * currently running, because it got preempted by something
2885 * else and called schedule in __vcpu_run. Hopefully that
2886 * VCPU is holding the lock that we need and will release it.
2887 * We approximate round-robin by starting at the last boosted VCPU.
2888 */
c45c528e 2889 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 2890 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 2891 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
2892 i = last_boosted_vcpu;
2893 continue;
2894 } else if (pass && i > last_boosted_vcpu)
2895 break;
d73eb57b 2896 if (!READ_ONCE(vcpu->ready))
7bc7ae25 2897 continue;
217ece61
RR
2898 if (vcpu == me)
2899 continue;
da4ad88c
DB
2900 if (rcuwait_active(&vcpu->wait) &&
2901 !vcpu_dy_runnable(vcpu))
217ece61 2902 continue;
046ddeed
WL
2903 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2904 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 2905 continue;
06e48c51
R
2906 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2907 continue;
c45c528e
R
2908
2909 yielded = kvm_vcpu_yield_to(vcpu);
2910 if (yielded > 0) {
217ece61 2911 kvm->last_boosted_vcpu = i;
217ece61 2912 break;
c45c528e
R
2913 } else if (yielded < 0) {
2914 try--;
2915 if (!try)
2916 break;
217ece61 2917 }
217ece61
RR
2918 }
2919 }
4c088493 2920 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
2921
2922 /* Ensure vcpu is not eligible during next spinloop */
2923 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
2924}
2925EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2926
1499fa80 2927static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 2928{
11bac800 2929 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
2930 struct page *page;
2931
e4a533a4 2932 if (vmf->pgoff == 0)
039576c0 2933 page = virt_to_page(vcpu->run);
09566765 2934#ifdef CONFIG_X86
e4a533a4 2935 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 2936 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 2937#endif
4b4357e0 2938#ifdef CONFIG_KVM_MMIO
5f94c174
LV
2939 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2940 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 2941#endif
039576c0 2942 else
5b1c1493 2943 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 2944 get_page(page);
e4a533a4 2945 vmf->page = page;
2946 return 0;
9a2bb7f4
AK
2947}
2948
f0f37e2f 2949static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 2950 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
2951};
2952
2953static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2954{
2955 vma->vm_ops = &kvm_vcpu_vm_ops;
2956 return 0;
2957}
2958
bccf2150
AK
2959static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2960{
2961 struct kvm_vcpu *vcpu = filp->private_data;
2962
45b5939e 2963 debugfs_remove_recursive(vcpu->debugfs_dentry);
66c0b394 2964 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
2965 return 0;
2966}
2967
3d3aab1b 2968static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
2969 .release = kvm_vcpu_release,
2970 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 2971 .mmap = kvm_vcpu_mmap,
6038f373 2972 .llseek = noop_llseek,
7ddfd3e0 2973 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
2974};
2975
2976/*
2977 * Allocates an inode for the vcpu.
2978 */
2979static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2980{
e46b4692
MY
2981 char name[8 + 1 + ITOA_MAX_LEN + 1];
2982
2983 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2984 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
2985}
2986
3e7093d0 2987static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 2988{
741cbbae 2989#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
45b5939e 2990 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 2991
45b5939e 2992 if (!debugfs_initialized())
3e7093d0 2993 return;
45b5939e
LC
2994
2995 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2996 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3e7093d0 2997 vcpu->kvm->debugfs_dentry);
45b5939e 2998
3e7093d0 2999 kvm_arch_create_vcpu_debugfs(vcpu);
741cbbae 3000#endif
45b5939e
LC
3001}
3002
c5ea7660
AK
3003/*
3004 * Creates some virtual cpus. Good luck creating more than one.
3005 */
73880c80 3006static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3007{
3008 int r;
e09fefde 3009 struct kvm_vcpu *vcpu;
8bd826d6 3010 struct page *page;
c5ea7660 3011
0b1b1dfd 3012 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
3013 return -EINVAL;
3014
6c7caebc
PB
3015 mutex_lock(&kvm->lock);
3016 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3017 mutex_unlock(&kvm->lock);
3018 return -EINVAL;
3019 }
3020
3021 kvm->created_vcpus++;
3022 mutex_unlock(&kvm->lock);
3023
897cc38e
SC
3024 r = kvm_arch_vcpu_precreate(kvm, id);
3025 if (r)
3026 goto vcpu_decrement;
3027
e529ef66
SC
3028 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3029 if (!vcpu) {
3030 r = -ENOMEM;
6c7caebc
PB
3031 goto vcpu_decrement;
3032 }
c5ea7660 3033
fcd97ad5 3034 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
8bd826d6
SC
3035 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3036 if (!page) {
3037 r = -ENOMEM;
e529ef66 3038 goto vcpu_free;
8bd826d6
SC
3039 }
3040 vcpu->run = page_address(page);
3041
3042 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3043
3044 r = kvm_arch_vcpu_create(vcpu);
3045 if (r)
8bd826d6 3046 goto vcpu_free_run_page;
e529ef66 3047
11ec2804 3048 mutex_lock(&kvm->lock);
e09fefde
DH
3049 if (kvm_get_vcpu_by_id(kvm, id)) {
3050 r = -EEXIST;
3051 goto unlock_vcpu_destroy;
3052 }
73880c80 3053
8750e72a
RK
3054 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3055 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 3056
fb3f0f51 3057 /* Now it's all set up, let userspace reach it */
66c0b394 3058 kvm_get_kvm(kvm);
bccf2150 3059 r = create_vcpu_fd(vcpu);
73880c80 3060 if (r < 0) {
149487bd 3061 kvm_put_kvm_no_destroy(kvm);
d780592b 3062 goto unlock_vcpu_destroy;
73880c80
GN
3063 }
3064
8750e72a 3065 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
3066
3067 /*
3068 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3069 * before kvm->online_vcpu's incremented value.
3070 */
73880c80
GN
3071 smp_wmb();
3072 atomic_inc(&kvm->online_vcpus);
3073
73880c80 3074 mutex_unlock(&kvm->lock);
42897d86 3075 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3076 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3077 return r;
39c3b86e 3078
d780592b 3079unlock_vcpu_destroy:
7d8fece6 3080 mutex_unlock(&kvm->lock);
d40ccc62 3081 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3082vcpu_free_run_page:
3083 free_page((unsigned long)vcpu->run);
e529ef66
SC
3084vcpu_free:
3085 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3086vcpu_decrement:
3087 mutex_lock(&kvm->lock);
3088 kvm->created_vcpus--;
3089 mutex_unlock(&kvm->lock);
c5ea7660
AK
3090 return r;
3091}
3092
1961d276
AK
3093static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3094{
3095 if (sigset) {
3096 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3097 vcpu->sigset_active = 1;
3098 vcpu->sigset = *sigset;
3099 } else
3100 vcpu->sigset_active = 0;
3101 return 0;
3102}
3103
bccf2150
AK
3104static long kvm_vcpu_ioctl(struct file *filp,
3105 unsigned int ioctl, unsigned long arg)
6aa8b732 3106{
bccf2150 3107 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3108 void __user *argp = (void __user *)arg;
313a3dc7 3109 int r;
fa3795a7
DH
3110 struct kvm_fpu *fpu = NULL;
3111 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3112
6d4e4c4f
AK
3113 if (vcpu->kvm->mm != current->mm)
3114 return -EIO;
2122ff5e 3115
2ea75be3
DM
3116 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3117 return -EINVAL;
3118
2122ff5e 3119 /*
5cb0944c
PB
3120 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3121 * execution; mutex_lock() would break them.
2122ff5e 3122 */
5cb0944c
PB
3123 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3124 if (r != -ENOIOCTLCMD)
9fc77441 3125 return r;
2122ff5e 3126
ec7660cc
CD
3127 if (mutex_lock_killable(&vcpu->mutex))
3128 return -EINTR;
6aa8b732 3129 switch (ioctl) {
0e4524a5
CB
3130 case KVM_RUN: {
3131 struct pid *oldpid;
f0fe5108
AK
3132 r = -EINVAL;
3133 if (arg)
3134 goto out;
0e4524a5 3135 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3136 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3137 /* The thread running this VCPU changed. */
bd2a6394 3138 struct pid *newpid;
f95ef0cd 3139
bd2a6394
CD
3140 r = kvm_arch_vcpu_run_pid_change(vcpu);
3141 if (r)
3142 break;
3143
3144 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3145 rcu_assign_pointer(vcpu->pid, newpid);
3146 if (oldpid)
3147 synchronize_rcu();
3148 put_pid(oldpid);
3149 }
1b94f6f8 3150 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 3151 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3152 break;
0e4524a5 3153 }
6aa8b732 3154 case KVM_GET_REGS: {
3e4bb3ac 3155 struct kvm_regs *kvm_regs;
6aa8b732 3156
3e4bb3ac 3157 r = -ENOMEM;
b12ce36a 3158 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3159 if (!kvm_regs)
6aa8b732 3160 goto out;
3e4bb3ac
XZ
3161 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3162 if (r)
3163 goto out_free1;
6aa8b732 3164 r = -EFAULT;
3e4bb3ac
XZ
3165 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3166 goto out_free1;
6aa8b732 3167 r = 0;
3e4bb3ac
XZ
3168out_free1:
3169 kfree(kvm_regs);
6aa8b732
AK
3170 break;
3171 }
3172 case KVM_SET_REGS: {
3e4bb3ac 3173 struct kvm_regs *kvm_regs;
6aa8b732 3174
ff5c2c03
SL
3175 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3176 if (IS_ERR(kvm_regs)) {
3177 r = PTR_ERR(kvm_regs);
6aa8b732 3178 goto out;
ff5c2c03 3179 }
3e4bb3ac 3180 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3181 kfree(kvm_regs);
6aa8b732
AK
3182 break;
3183 }
3184 case KVM_GET_SREGS: {
b12ce36a
BG
3185 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3186 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3187 r = -ENOMEM;
3188 if (!kvm_sregs)
3189 goto out;
3190 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3191 if (r)
3192 goto out;
3193 r = -EFAULT;
fa3795a7 3194 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3195 goto out;
3196 r = 0;
3197 break;
3198 }
3199 case KVM_SET_SREGS: {
ff5c2c03
SL
3200 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3201 if (IS_ERR(kvm_sregs)) {
3202 r = PTR_ERR(kvm_sregs);
18595411 3203 kvm_sregs = NULL;
6aa8b732 3204 goto out;
ff5c2c03 3205 }
fa3795a7 3206 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3207 break;
3208 }
62d9f0db
MT
3209 case KVM_GET_MP_STATE: {
3210 struct kvm_mp_state mp_state;
3211
3212 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3213 if (r)
3214 goto out;
3215 r = -EFAULT;
893bdbf1 3216 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3217 goto out;
3218 r = 0;
3219 break;
3220 }
3221 case KVM_SET_MP_STATE: {
3222 struct kvm_mp_state mp_state;
3223
3224 r = -EFAULT;
893bdbf1 3225 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3226 goto out;
3227 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3228 break;
3229 }
6aa8b732
AK
3230 case KVM_TRANSLATE: {
3231 struct kvm_translation tr;
3232
3233 r = -EFAULT;
893bdbf1 3234 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3235 goto out;
8b006791 3236 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3237 if (r)
3238 goto out;
3239 r = -EFAULT;
893bdbf1 3240 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3241 goto out;
3242 r = 0;
3243 break;
3244 }
d0bfb940
JK
3245 case KVM_SET_GUEST_DEBUG: {
3246 struct kvm_guest_debug dbg;
6aa8b732
AK
3247
3248 r = -EFAULT;
893bdbf1 3249 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3250 goto out;
d0bfb940 3251 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3252 break;
3253 }
1961d276
AK
3254 case KVM_SET_SIGNAL_MASK: {
3255 struct kvm_signal_mask __user *sigmask_arg = argp;
3256 struct kvm_signal_mask kvm_sigmask;
3257 sigset_t sigset, *p;
3258
3259 p = NULL;
3260 if (argp) {
3261 r = -EFAULT;
3262 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3263 sizeof(kvm_sigmask)))
1961d276
AK
3264 goto out;
3265 r = -EINVAL;
893bdbf1 3266 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3267 goto out;
3268 r = -EFAULT;
3269 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3270 sizeof(sigset)))
1961d276
AK
3271 goto out;
3272 p = &sigset;
3273 }
376d41ff 3274 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3275 break;
3276 }
b8836737 3277 case KVM_GET_FPU: {
b12ce36a 3278 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3279 r = -ENOMEM;
3280 if (!fpu)
3281 goto out;
3282 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3283 if (r)
3284 goto out;
3285 r = -EFAULT;
fa3795a7 3286 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3287 goto out;
3288 r = 0;
3289 break;
3290 }
3291 case KVM_SET_FPU: {
ff5c2c03
SL
3292 fpu = memdup_user(argp, sizeof(*fpu));
3293 if (IS_ERR(fpu)) {
3294 r = PTR_ERR(fpu);
18595411 3295 fpu = NULL;
b8836737 3296 goto out;
ff5c2c03 3297 }
fa3795a7 3298 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3299 break;
3300 }
bccf2150 3301 default:
313a3dc7 3302 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3303 }
3304out:
ec7660cc 3305 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3306 kfree(fpu);
3307 kfree(kvm_sregs);
bccf2150
AK
3308 return r;
3309}
3310
de8e5d74 3311#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3312static long kvm_vcpu_compat_ioctl(struct file *filp,
3313 unsigned int ioctl, unsigned long arg)
3314{
3315 struct kvm_vcpu *vcpu = filp->private_data;
3316 void __user *argp = compat_ptr(arg);
3317 int r;
3318
3319 if (vcpu->kvm->mm != current->mm)
3320 return -EIO;
3321
3322 switch (ioctl) {
3323 case KVM_SET_SIGNAL_MASK: {
3324 struct kvm_signal_mask __user *sigmask_arg = argp;
3325 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3326 sigset_t sigset;
3327
3328 if (argp) {
3329 r = -EFAULT;
3330 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3331 sizeof(kvm_sigmask)))
1dda606c
AG
3332 goto out;
3333 r = -EINVAL;
3968cf62 3334 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3335 goto out;
3336 r = -EFAULT;
3968cf62 3337 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
1dda606c 3338 goto out;
760a9a30
AC
3339 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3340 } else
3341 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3342 break;
3343 }
3344 default:
3345 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3346 }
3347
3348out:
3349 return r;
3350}
3351#endif
3352
a1cd3f08
CLG
3353static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3354{
3355 struct kvm_device *dev = filp->private_data;
3356
3357 if (dev->ops->mmap)
3358 return dev->ops->mmap(dev, vma);
3359
3360 return -ENODEV;
3361}
3362
852b6d57
SW
3363static int kvm_device_ioctl_attr(struct kvm_device *dev,
3364 int (*accessor)(struct kvm_device *dev,
3365 struct kvm_device_attr *attr),
3366 unsigned long arg)
3367{
3368 struct kvm_device_attr attr;
3369
3370 if (!accessor)
3371 return -EPERM;
3372
3373 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3374 return -EFAULT;
3375
3376 return accessor(dev, &attr);
3377}
3378
3379static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3380 unsigned long arg)
3381{
3382 struct kvm_device *dev = filp->private_data;
3383
ddba9180
SC
3384 if (dev->kvm->mm != current->mm)
3385 return -EIO;
3386
852b6d57
SW
3387 switch (ioctl) {
3388 case KVM_SET_DEVICE_ATTR:
3389 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3390 case KVM_GET_DEVICE_ATTR:
3391 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3392 case KVM_HAS_DEVICE_ATTR:
3393 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3394 default:
3395 if (dev->ops->ioctl)
3396 return dev->ops->ioctl(dev, ioctl, arg);
3397
3398 return -ENOTTY;
3399 }
3400}
3401
852b6d57
SW
3402static int kvm_device_release(struct inode *inode, struct file *filp)
3403{
3404 struct kvm_device *dev = filp->private_data;
3405 struct kvm *kvm = dev->kvm;
3406
2bde9b3e
CLG
3407 if (dev->ops->release) {
3408 mutex_lock(&kvm->lock);
3409 list_del(&dev->vm_node);
3410 dev->ops->release(dev);
3411 mutex_unlock(&kvm->lock);
3412 }
3413
852b6d57
SW
3414 kvm_put_kvm(kvm);
3415 return 0;
3416}
3417
3418static const struct file_operations kvm_device_fops = {
3419 .unlocked_ioctl = kvm_device_ioctl,
3420 .release = kvm_device_release,
7ddfd3e0 3421 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 3422 .mmap = kvm_device_mmap,
852b6d57
SW
3423};
3424
3425struct kvm_device *kvm_device_from_filp(struct file *filp)
3426{
3427 if (filp->f_op != &kvm_device_fops)
3428 return NULL;
3429
3430 return filp->private_data;
3431}
3432
8538cb22 3433static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 3434#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
3435 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3436 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 3437#endif
d60eacb0
WD
3438};
3439
8538cb22 3440int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
3441{
3442 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3443 return -ENOSPC;
3444
3445 if (kvm_device_ops_table[type] != NULL)
3446 return -EEXIST;
3447
3448 kvm_device_ops_table[type] = ops;
3449 return 0;
3450}
3451
571ee1b6
WL
3452void kvm_unregister_device_ops(u32 type)
3453{
3454 if (kvm_device_ops_table[type] != NULL)
3455 kvm_device_ops_table[type] = NULL;
3456}
3457
852b6d57
SW
3458static int kvm_ioctl_create_device(struct kvm *kvm,
3459 struct kvm_create_device *cd)
3460{
8538cb22 3461 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
3462 struct kvm_device *dev;
3463 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 3464 int type;
852b6d57
SW
3465 int ret;
3466
d60eacb0
WD
3467 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3468 return -ENODEV;
3469
1d487e9b
PB
3470 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3471 ops = kvm_device_ops_table[type];
d60eacb0 3472 if (ops == NULL)
852b6d57 3473 return -ENODEV;
852b6d57
SW
3474
3475 if (test)
3476 return 0;
3477
b12ce36a 3478 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
3479 if (!dev)
3480 return -ENOMEM;
3481
3482 dev->ops = ops;
3483 dev->kvm = kvm;
852b6d57 3484
a28ebea2 3485 mutex_lock(&kvm->lock);
1d487e9b 3486 ret = ops->create(dev, type);
852b6d57 3487 if (ret < 0) {
a28ebea2 3488 mutex_unlock(&kvm->lock);
852b6d57
SW
3489 kfree(dev);
3490 return ret;
3491 }
a28ebea2
CD
3492 list_add(&dev->vm_node, &kvm->devices);
3493 mutex_unlock(&kvm->lock);
852b6d57 3494
023e9fdd
CD
3495 if (ops->init)
3496 ops->init(dev);
3497
cfa39381 3498 kvm_get_kvm(kvm);
24009b05 3499 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3500 if (ret < 0) {
149487bd 3501 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
3502 mutex_lock(&kvm->lock);
3503 list_del(&dev->vm_node);
3504 mutex_unlock(&kvm->lock);
a0f1d21c 3505 ops->destroy(dev);
852b6d57
SW
3506 return ret;
3507 }
3508
852b6d57
SW
3509 cd->fd = ret;
3510 return 0;
3511}
3512
92b591a4
AG
3513static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3514{
3515 switch (arg) {
3516 case KVM_CAP_USER_MEMORY:
3517 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3518 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3519 case KVM_CAP_INTERNAL_ERROR_DATA:
3520#ifdef CONFIG_HAVE_KVM_MSI
3521 case KVM_CAP_SIGNAL_MSI:
3522#endif
297e2105 3523#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3524 case KVM_CAP_IRQFD:
92b591a4
AG
3525 case KVM_CAP_IRQFD_RESAMPLE:
3526#endif
e9ea5069 3527 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3528 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3529 case KVM_CAP_ENABLE_CAP_VM:
acd05785 3530 case KVM_CAP_HALT_POLL:
92b591a4 3531 return 1;
4b4357e0 3532#ifdef CONFIG_KVM_MMIO
30422558
PB
3533 case KVM_CAP_COALESCED_MMIO:
3534 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3535 case KVM_CAP_COALESCED_PIO:
3536 return 1;
30422558 3537#endif
3c9bd400
JZ
3538#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3539 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3540 return KVM_DIRTY_LOG_MANUAL_CAPS;
3541#endif
92b591a4
AG
3542#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3543 case KVM_CAP_IRQ_ROUTING:
3544 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3545#endif
3546#if KVM_ADDRESS_SPACE_NUM > 1
3547 case KVM_CAP_MULTI_ADDRESS_SPACE:
3548 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3549#endif
c110ae57
PB
3550 case KVM_CAP_NR_MEMSLOTS:
3551 return KVM_USER_MEM_SLOTS;
92b591a4
AG
3552 default:
3553 break;
3554 }
3555 return kvm_vm_ioctl_check_extension(kvm, arg);
3556}
3557
e5d83c74
PB
3558int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3559 struct kvm_enable_cap *cap)
3560{
3561 return -EINVAL;
3562}
3563
3564static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3565 struct kvm_enable_cap *cap)
3566{
3567 switch (cap->cap) {
2a31b9db 3568#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
3569 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3570 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3571
3572 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3573 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3574
3575 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
3576 return -EINVAL;
3577 kvm->manual_dirty_log_protect = cap->args[0];
3578 return 0;
3c9bd400 3579 }
2a31b9db 3580#endif
acd05785
DM
3581 case KVM_CAP_HALT_POLL: {
3582 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3583 return -EINVAL;
3584
3585 kvm->max_halt_poll_ns = cap->args[0];
3586 return 0;
3587 }
e5d83c74
PB
3588 default:
3589 return kvm_vm_ioctl_enable_cap(kvm, cap);
3590 }
3591}
3592
bccf2150
AK
3593static long kvm_vm_ioctl(struct file *filp,
3594 unsigned int ioctl, unsigned long arg)
3595{
3596 struct kvm *kvm = filp->private_data;
3597 void __user *argp = (void __user *)arg;
1fe779f8 3598 int r;
bccf2150 3599
6d4e4c4f
AK
3600 if (kvm->mm != current->mm)
3601 return -EIO;
bccf2150
AK
3602 switch (ioctl) {
3603 case KVM_CREATE_VCPU:
3604 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3605 break;
e5d83c74
PB
3606 case KVM_ENABLE_CAP: {
3607 struct kvm_enable_cap cap;
3608
3609 r = -EFAULT;
3610 if (copy_from_user(&cap, argp, sizeof(cap)))
3611 goto out;
3612 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3613 break;
3614 }
6fc138d2
IE
3615 case KVM_SET_USER_MEMORY_REGION: {
3616 struct kvm_userspace_memory_region kvm_userspace_mem;
3617
3618 r = -EFAULT;
3619 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3620 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3621 goto out;
3622
47ae31e2 3623 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
3624 break;
3625 }
3626 case KVM_GET_DIRTY_LOG: {
3627 struct kvm_dirty_log log;
3628
3629 r = -EFAULT;
893bdbf1 3630 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 3631 goto out;
2c6f5df9 3632 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
3633 break;
3634 }
2a31b9db
PB
3635#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3636 case KVM_CLEAR_DIRTY_LOG: {
3637 struct kvm_clear_dirty_log log;
3638
3639 r = -EFAULT;
3640 if (copy_from_user(&log, argp, sizeof(log)))
3641 goto out;
3642 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3643 break;
3644 }
3645#endif
4b4357e0 3646#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3647 case KVM_REGISTER_COALESCED_MMIO: {
3648 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3649
5f94c174 3650 r = -EFAULT;
893bdbf1 3651 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3652 goto out;
5f94c174 3653 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
3654 break;
3655 }
3656 case KVM_UNREGISTER_COALESCED_MMIO: {
3657 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3658
5f94c174 3659 r = -EFAULT;
893bdbf1 3660 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3661 goto out;
5f94c174 3662 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
3663 break;
3664 }
3665#endif
721eecbf
GH
3666 case KVM_IRQFD: {
3667 struct kvm_irqfd data;
3668
3669 r = -EFAULT;
893bdbf1 3670 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 3671 goto out;
d4db2935 3672 r = kvm_irqfd(kvm, &data);
721eecbf
GH
3673 break;
3674 }
d34e6b17
GH
3675 case KVM_IOEVENTFD: {
3676 struct kvm_ioeventfd data;
3677
3678 r = -EFAULT;
893bdbf1 3679 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
3680 goto out;
3681 r = kvm_ioeventfd(kvm, &data);
3682 break;
3683 }
07975ad3
JK
3684#ifdef CONFIG_HAVE_KVM_MSI
3685 case KVM_SIGNAL_MSI: {
3686 struct kvm_msi msi;
3687
3688 r = -EFAULT;
893bdbf1 3689 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
3690 goto out;
3691 r = kvm_send_userspace_msi(kvm, &msi);
3692 break;
3693 }
23d43cf9
CD
3694#endif
3695#ifdef __KVM_HAVE_IRQ_LINE
3696 case KVM_IRQ_LINE_STATUS:
3697 case KVM_IRQ_LINE: {
3698 struct kvm_irq_level irq_event;
3699
3700 r = -EFAULT;
893bdbf1 3701 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
3702 goto out;
3703
aa2fbe6d
YZ
3704 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3705 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
3706 if (r)
3707 goto out;
3708
3709 r = -EFAULT;
3710 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 3711 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
3712 goto out;
3713 }
3714
3715 r = 0;
3716 break;
3717 }
73880c80 3718#endif
aa8d5944
AG
3719#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3720 case KVM_SET_GSI_ROUTING: {
3721 struct kvm_irq_routing routing;
3722 struct kvm_irq_routing __user *urouting;
f8c1b85b 3723 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
3724
3725 r = -EFAULT;
3726 if (copy_from_user(&routing, argp, sizeof(routing)))
3727 goto out;
3728 r = -EINVAL;
5c0aea0e
DH
3729 if (!kvm_arch_can_set_irq_routing(kvm))
3730 goto out;
caf1ff26 3731 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
3732 goto out;
3733 if (routing.flags)
3734 goto out;
f8c1b85b
PB
3735 if (routing.nr) {
3736 r = -ENOMEM;
42bc47b3
KC
3737 entries = vmalloc(array_size(sizeof(*entries),
3738 routing.nr));
f8c1b85b
PB
3739 if (!entries)
3740 goto out;
3741 r = -EFAULT;
3742 urouting = argp;
3743 if (copy_from_user(entries, urouting->entries,
3744 routing.nr * sizeof(*entries)))
3745 goto out_free_irq_routing;
3746 }
aa8d5944
AG
3747 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3748 routing.flags);
a642a175 3749out_free_irq_routing:
aa8d5944
AG
3750 vfree(entries);
3751 break;
3752 }
3753#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
3754 case KVM_CREATE_DEVICE: {
3755 struct kvm_create_device cd;
3756
3757 r = -EFAULT;
3758 if (copy_from_user(&cd, argp, sizeof(cd)))
3759 goto out;
3760
3761 r = kvm_ioctl_create_device(kvm, &cd);
3762 if (r)
3763 goto out;
3764
3765 r = -EFAULT;
3766 if (copy_to_user(argp, &cd, sizeof(cd)))
3767 goto out;
3768
3769 r = 0;
3770 break;
3771 }
92b591a4
AG
3772 case KVM_CHECK_EXTENSION:
3773 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3774 break;
f17abe9a 3775 default:
1fe779f8 3776 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
3777 }
3778out:
3779 return r;
3780}
3781
de8e5d74 3782#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
3783struct compat_kvm_dirty_log {
3784 __u32 slot;
3785 __u32 padding1;
3786 union {
3787 compat_uptr_t dirty_bitmap; /* one bit per page */
3788 __u64 padding2;
3789 };
3790};
3791
3792static long kvm_vm_compat_ioctl(struct file *filp,
3793 unsigned int ioctl, unsigned long arg)
3794{
3795 struct kvm *kvm = filp->private_data;
3796 int r;
3797
3798 if (kvm->mm != current->mm)
3799 return -EIO;
3800 switch (ioctl) {
3801 case KVM_GET_DIRTY_LOG: {
3802 struct compat_kvm_dirty_log compat_log;
3803 struct kvm_dirty_log log;
3804
6ff5894c
AB
3805 if (copy_from_user(&compat_log, (void __user *)arg,
3806 sizeof(compat_log)))
f6a3b168 3807 return -EFAULT;
6ff5894c
AB
3808 log.slot = compat_log.slot;
3809 log.padding1 = compat_log.padding1;
3810 log.padding2 = compat_log.padding2;
3811 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3812
3813 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
3814 break;
3815 }
3816 default:
3817 r = kvm_vm_ioctl(filp, ioctl, arg);
3818 }
6ff5894c
AB
3819 return r;
3820}
3821#endif
3822
3d3aab1b 3823static struct file_operations kvm_vm_fops = {
f17abe9a
AK
3824 .release = kvm_vm_release,
3825 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 3826 .llseek = noop_llseek,
7ddfd3e0 3827 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
3828};
3829
e08b9637 3830static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 3831{
aac87636 3832 int r;
f17abe9a 3833 struct kvm *kvm;
506cfba9 3834 struct file *file;
f17abe9a 3835
e08b9637 3836 kvm = kvm_create_vm(type);
d6d28168
AK
3837 if (IS_ERR(kvm))
3838 return PTR_ERR(kvm);
4b4357e0 3839#ifdef CONFIG_KVM_MMIO
6ce5a090 3840 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
3841 if (r < 0)
3842 goto put_kvm;
6ce5a090 3843#endif
506cfba9 3844 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
3845 if (r < 0)
3846 goto put_kvm;
3847
506cfba9
AV
3848 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3849 if (IS_ERR(file)) {
3850 put_unused_fd(r);
78588335
ME
3851 r = PTR_ERR(file);
3852 goto put_kvm;
506cfba9 3853 }
536a6f88 3854
525df861
PB
3855 /*
3856 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3857 * already set, with ->release() being kvm_vm_release(). In error
3858 * cases it will be called by the final fput(file) and will take
3859 * care of doing kvm_put_kvm(kvm).
3860 */
536a6f88 3861 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
3862 put_unused_fd(r);
3863 fput(file);
536a6f88
JF
3864 return -ENOMEM;
3865 }
286de8f6 3866 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 3867
506cfba9 3868 fd_install(r, file);
aac87636 3869 return r;
78588335
ME
3870
3871put_kvm:
3872 kvm_put_kvm(kvm);
3873 return r;
f17abe9a
AK
3874}
3875
3876static long kvm_dev_ioctl(struct file *filp,
3877 unsigned int ioctl, unsigned long arg)
3878{
07c45a36 3879 long r = -EINVAL;
f17abe9a
AK
3880
3881 switch (ioctl) {
3882 case KVM_GET_API_VERSION:
f0fe5108
AK
3883 if (arg)
3884 goto out;
f17abe9a
AK
3885 r = KVM_API_VERSION;
3886 break;
3887 case KVM_CREATE_VM:
e08b9637 3888 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 3889 break;
018d00d2 3890 case KVM_CHECK_EXTENSION:
784aa3d7 3891 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 3892 break;
07c45a36 3893 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
3894 if (arg)
3895 goto out;
adb1ff46
AK
3896 r = PAGE_SIZE; /* struct kvm_run */
3897#ifdef CONFIG_X86
3898 r += PAGE_SIZE; /* pio data page */
5f94c174 3899#endif
4b4357e0 3900#ifdef CONFIG_KVM_MMIO
5f94c174 3901 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 3902#endif
07c45a36 3903 break;
d4c9ff2d
FEL
3904 case KVM_TRACE_ENABLE:
3905 case KVM_TRACE_PAUSE:
3906 case KVM_TRACE_DISABLE:
2023a29c 3907 r = -EOPNOTSUPP;
d4c9ff2d 3908 break;
6aa8b732 3909 default:
043405e1 3910 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
3911 }
3912out:
3913 return r;
3914}
3915
6aa8b732 3916static struct file_operations kvm_chardev_ops = {
6aa8b732 3917 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 3918 .llseek = noop_llseek,
7ddfd3e0 3919 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
3920};
3921
3922static struct miscdevice kvm_dev = {
bbe4432e 3923 KVM_MINOR,
6aa8b732
AK
3924 "kvm",
3925 &kvm_chardev_ops,
3926};
3927
75b7127c 3928static void hardware_enable_nolock(void *junk)
1b6c0168
AK
3929{
3930 int cpu = raw_smp_processor_id();
10474ae8 3931 int r;
1b6c0168 3932
7f59f492 3933 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3934 return;
10474ae8 3935
7f59f492 3936 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 3937
13a34e06 3938 r = kvm_arch_hardware_enable();
10474ae8
AG
3939
3940 if (r) {
3941 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3942 atomic_inc(&hardware_enable_failed);
1170adc6 3943 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 3944 }
1b6c0168
AK
3945}
3946
8c18b2d2 3947static int kvm_starting_cpu(unsigned int cpu)
75b7127c 3948{
4a937f96 3949 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3950 if (kvm_usage_count)
3951 hardware_enable_nolock(NULL);
4a937f96 3952 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3953 return 0;
75b7127c
TY
3954}
3955
3956static void hardware_disable_nolock(void *junk)
1b6c0168
AK
3957{
3958 int cpu = raw_smp_processor_id();
3959
7f59f492 3960 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3961 return;
7f59f492 3962 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 3963 kvm_arch_hardware_disable();
1b6c0168
AK
3964}
3965
8c18b2d2 3966static int kvm_dying_cpu(unsigned int cpu)
75b7127c 3967{
4a937f96 3968 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3969 if (kvm_usage_count)
3970 hardware_disable_nolock(NULL);
4a937f96 3971 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3972 return 0;
75b7127c
TY
3973}
3974
10474ae8
AG
3975static void hardware_disable_all_nolock(void)
3976{
3977 BUG_ON(!kvm_usage_count);
3978
3979 kvm_usage_count--;
3980 if (!kvm_usage_count)
75b7127c 3981 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
3982}
3983
3984static void hardware_disable_all(void)
3985{
4a937f96 3986 raw_spin_lock(&kvm_count_lock);
10474ae8 3987 hardware_disable_all_nolock();
4a937f96 3988 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3989}
3990
3991static int hardware_enable_all(void)
3992{
3993 int r = 0;
3994
4a937f96 3995 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
3996
3997 kvm_usage_count++;
3998 if (kvm_usage_count == 1) {
3999 atomic_set(&hardware_enable_failed, 0);
75b7127c 4000 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
4001
4002 if (atomic_read(&hardware_enable_failed)) {
4003 hardware_disable_all_nolock();
4004 r = -EBUSY;
4005 }
4006 }
4007
4a937f96 4008 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4009
4010 return r;
4011}
4012
9a2b85c6 4013static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 4014 void *v)
9a2b85c6 4015{
8e1c1815
SY
4016 /*
4017 * Some (well, at least mine) BIOSes hang on reboot if
4018 * in vmx root mode.
4019 *
4020 * And Intel TXT required VMX off for all cpu when system shutdown.
4021 */
1170adc6 4022 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 4023 kvm_rebooting = true;
75b7127c 4024 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
4025 return NOTIFY_OK;
4026}
4027
4028static struct notifier_block kvm_reboot_notifier = {
4029 .notifier_call = kvm_reboot,
4030 .priority = 0,
4031};
4032
e93f8a0f 4033static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
4034{
4035 int i;
4036
4037 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4038 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4039
4040 kvm_iodevice_destructor(pos);
4041 }
e93f8a0f 4042 kfree(bus);
2eeb2e94
GH
4043}
4044
c21fbff1 4045static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4046 const struct kvm_io_range *r2)
743eeb0b 4047{
8f4216c7
JW
4048 gpa_t addr1 = r1->addr;
4049 gpa_t addr2 = r2->addr;
4050
4051 if (addr1 < addr2)
743eeb0b 4052 return -1;
8f4216c7
JW
4053
4054 /* If r2->len == 0, match the exact address. If r2->len != 0,
4055 * accept any overlapping write. Any order is acceptable for
4056 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4057 * we process all of them.
4058 */
4059 if (r2->len) {
4060 addr1 += r1->len;
4061 addr2 += r2->len;
4062 }
4063
4064 if (addr1 > addr2)
743eeb0b 4065 return 1;
8f4216c7 4066
743eeb0b
SL
4067 return 0;
4068}
4069
a343c9b7
PB
4070static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4071{
c21fbff1 4072 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4073}
4074
39369f7a 4075static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4076 gpa_t addr, int len)
4077{
4078 struct kvm_io_range *range, key;
4079 int off;
4080
4081 key = (struct kvm_io_range) {
4082 .addr = addr,
4083 .len = len,
4084 };
4085
4086 range = bsearch(&key, bus->range, bus->dev_count,
4087 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4088 if (range == NULL)
4089 return -ENOENT;
4090
4091 off = range - bus->range;
4092
c21fbff1 4093 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4094 off--;
4095
4096 return off;
4097}
4098
e32edf4f 4099static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4100 struct kvm_io_range *range, const void *val)
4101{
4102 int idx;
4103
4104 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4105 if (idx < 0)
4106 return -EOPNOTSUPP;
4107
4108 while (idx < bus->dev_count &&
c21fbff1 4109 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4110 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4111 range->len, val))
4112 return idx;
4113 idx++;
4114 }
4115
4116 return -EOPNOTSUPP;
4117}
4118
bda9020e 4119/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4120int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4121 int len, const void *val)
2eeb2e94 4122{
90d83dc3 4123 struct kvm_io_bus *bus;
743eeb0b 4124 struct kvm_io_range range;
126a5af5 4125 int r;
743eeb0b
SL
4126
4127 range = (struct kvm_io_range) {
4128 .addr = addr,
4129 .len = len,
4130 };
90d83dc3 4131
e32edf4f 4132 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4133 if (!bus)
4134 return -ENOMEM;
e32edf4f 4135 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4136 return r < 0 ? r : 0;
4137}
a2420107 4138EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4139
4140/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4141int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4142 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4143{
4144 struct kvm_io_bus *bus;
4145 struct kvm_io_range range;
4146
4147 range = (struct kvm_io_range) {
4148 .addr = addr,
4149 .len = len,
4150 };
4151
e32edf4f 4152 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4153 if (!bus)
4154 return -ENOMEM;
126a5af5
CH
4155
4156 /* First try the device referenced by cookie. */
4157 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4158 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4159 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4160 val))
4161 return cookie;
4162
4163 /*
4164 * cookie contained garbage; fall back to search and return the
4165 * correct cookie value.
4166 */
e32edf4f 4167 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4168}
4169
e32edf4f
NN
4170static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4171 struct kvm_io_range *range, void *val)
126a5af5
CH
4172{
4173 int idx;
4174
4175 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4176 if (idx < 0)
4177 return -EOPNOTSUPP;
4178
4179 while (idx < bus->dev_count &&
c21fbff1 4180 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4181 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4182 range->len, val))
4183 return idx;
743eeb0b
SL
4184 idx++;
4185 }
4186
bda9020e
MT
4187 return -EOPNOTSUPP;
4188}
2eeb2e94 4189
bda9020e 4190/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4192 int len, void *val)
bda9020e 4193{
90d83dc3 4194 struct kvm_io_bus *bus;
743eeb0b 4195 struct kvm_io_range range;
126a5af5 4196 int r;
743eeb0b
SL
4197
4198 range = (struct kvm_io_range) {
4199 .addr = addr,
4200 .len = len,
4201 };
e93f8a0f 4202
e32edf4f 4203 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4204 if (!bus)
4205 return -ENOMEM;
e32edf4f 4206 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
4207 return r < 0 ? r : 0;
4208}
743eeb0b 4209
79fac95e 4210/* Caller must hold slots_lock. */
743eeb0b
SL
4211int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4212 int len, struct kvm_io_device *dev)
6c474694 4213{
d4c67a7a 4214 int i;
e93f8a0f 4215 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 4216 struct kvm_io_range range;
090b7aff 4217
4a12f951 4218 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
4219 if (!bus)
4220 return -ENOMEM;
4221
6ea34c9b
AK
4222 /* exclude ioeventfd which is limited by maximum fd */
4223 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 4224 return -ENOSPC;
2eeb2e94 4225
90952cd3 4226 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 4227 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
4228 if (!new_bus)
4229 return -ENOMEM;
d4c67a7a
GH
4230
4231 range = (struct kvm_io_range) {
4232 .addr = addr,
4233 .len = len,
4234 .dev = dev,
4235 };
4236
4237 for (i = 0; i < bus->dev_count; i++)
4238 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4239 break;
4240
4241 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4242 new_bus->dev_count++;
4243 new_bus->range[i] = range;
4244 memcpy(new_bus->range + i + 1, bus->range + i,
4245 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
4246 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4247 synchronize_srcu_expedited(&kvm->srcu);
4248 kfree(bus);
090b7aff
GH
4249
4250 return 0;
4251}
4252
79fac95e 4253/* Caller must hold slots_lock. */
90db1043
DH
4254void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4255 struct kvm_io_device *dev)
090b7aff 4256{
90db1043 4257 int i;
e93f8a0f 4258 struct kvm_io_bus *new_bus, *bus;
090b7aff 4259
4a12f951 4260 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 4261 if (!bus)
90db1043 4262 return;
df630b8c 4263
a1300716
AK
4264 for (i = 0; i < bus->dev_count; i++)
4265 if (bus->range[i].dev == dev) {
090b7aff
GH
4266 break;
4267 }
e93f8a0f 4268
90db1043
DH
4269 if (i == bus->dev_count)
4270 return;
a1300716 4271
90952cd3 4272 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 4273 GFP_KERNEL_ACCOUNT);
90db1043
DH
4274 if (!new_bus) {
4275 pr_err("kvm: failed to shrink bus, removing it completely\n");
4276 goto broken;
4277 }
a1300716
AK
4278
4279 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4280 new_bus->dev_count--;
4281 memcpy(new_bus->range + i, bus->range + i + 1,
4282 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f 4283
90db1043 4284broken:
e93f8a0f
MT
4285 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4286 synchronize_srcu_expedited(&kvm->srcu);
4287 kfree(bus);
90db1043 4288 return;
2eeb2e94
GH
4289}
4290
8a39d006
AP
4291struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4292 gpa_t addr)
4293{
4294 struct kvm_io_bus *bus;
4295 int dev_idx, srcu_idx;
4296 struct kvm_io_device *iodev = NULL;
4297
4298 srcu_idx = srcu_read_lock(&kvm->srcu);
4299
4300 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
4301 if (!bus)
4302 goto out_unlock;
8a39d006
AP
4303
4304 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4305 if (dev_idx < 0)
4306 goto out_unlock;
4307
4308 iodev = bus->range[dev_idx].dev;
4309
4310out_unlock:
4311 srcu_read_unlock(&kvm->srcu, srcu_idx);
4312
4313 return iodev;
4314}
4315EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4316
536a6f88
JF
4317static int kvm_debugfs_open(struct inode *inode, struct file *file,
4318 int (*get)(void *, u64 *), int (*set)(void *, u64),
4319 const char *fmt)
4320{
4321 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4322 inode->i_private;
4323
4324 /* The debugfs files are a reference to the kvm struct which
4325 * is still valid when kvm_destroy_vm is called.
4326 * To avoid the race between open and the removal of the debugfs
4327 * directory we test against the users count.
4328 */
e3736c3e 4329 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
4330 return -ENOENT;
4331
833b45de 4332 if (simple_attr_open(inode, file, get,
09cbcef6
MP
4333 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4334 ? set : NULL,
4335 fmt)) {
536a6f88
JF
4336 kvm_put_kvm(stat_data->kvm);
4337 return -ENOMEM;
4338 }
4339
4340 return 0;
4341}
4342
4343static int kvm_debugfs_release(struct inode *inode, struct file *file)
4344{
4345 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4346 inode->i_private;
4347
4348 simple_attr_release(inode, file);
4349 kvm_put_kvm(stat_data->kvm);
4350
4351 return 0;
4352}
4353
09cbcef6 4354static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 4355{
09cbcef6 4356 *val = *(ulong *)((void *)kvm + offset);
536a6f88 4357
09cbcef6
MP
4358 return 0;
4359}
4360
4361static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4362{
4363 *(ulong *)((void *)kvm + offset) = 0;
536a6f88
JF
4364
4365 return 0;
4366}
4367
09cbcef6 4368static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 4369{
09cbcef6
MP
4370 int i;
4371 struct kvm_vcpu *vcpu;
ce35ef27 4372
09cbcef6 4373 *val = 0;
ce35ef27 4374
09cbcef6
MP
4375 kvm_for_each_vcpu(i, vcpu, kvm)
4376 *val += *(u64 *)((void *)vcpu + offset);
ce35ef27
SJS
4377
4378 return 0;
4379}
4380
09cbcef6 4381static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 4382{
09cbcef6
MP
4383 int i;
4384 struct kvm_vcpu *vcpu;
536a6f88 4385
09cbcef6
MP
4386 kvm_for_each_vcpu(i, vcpu, kvm)
4387 *(u64 *)((void *)vcpu + offset) = 0;
4388
4389 return 0;
4390}
536a6f88 4391
09cbcef6 4392static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 4393{
09cbcef6 4394 int r = -EFAULT;
536a6f88 4395 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 4396
09cbcef6
MP
4397 switch (stat_data->dbgfs_item->kind) {
4398 case KVM_STAT_VM:
4399 r = kvm_get_stat_per_vm(stat_data->kvm,
4400 stat_data->dbgfs_item->offset, val);
4401 break;
4402 case KVM_STAT_VCPU:
4403 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4404 stat_data->dbgfs_item->offset, val);
4405 break;
4406 }
536a6f88 4407
09cbcef6 4408 return r;
536a6f88
JF
4409}
4410
09cbcef6 4411static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 4412{
09cbcef6 4413 int r = -EFAULT;
ce35ef27 4414 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
4415
4416 if (val)
4417 return -EINVAL;
4418
09cbcef6
MP
4419 switch (stat_data->dbgfs_item->kind) {
4420 case KVM_STAT_VM:
4421 r = kvm_clear_stat_per_vm(stat_data->kvm,
4422 stat_data->dbgfs_item->offset);
4423 break;
4424 case KVM_STAT_VCPU:
4425 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4426 stat_data->dbgfs_item->offset);
4427 break;
4428 }
ce35ef27 4429
09cbcef6 4430 return r;
ce35ef27
SJS
4431}
4432
09cbcef6 4433static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
4434{
4435 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
4436 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4437 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
4438}
4439
09cbcef6
MP
4440static const struct file_operations stat_fops_per_vm = {
4441 .owner = THIS_MODULE,
4442 .open = kvm_stat_data_open,
536a6f88 4443 .release = kvm_debugfs_release,
09cbcef6
MP
4444 .read = simple_attr_read,
4445 .write = simple_attr_write,
4446 .llseek = no_llseek,
536a6f88
JF
4447};
4448
8b88b099 4449static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
4450{
4451 unsigned offset = (long)_offset;
ba1389b7 4452 struct kvm *kvm;
536a6f88 4453 u64 tmp_val;
ba1389b7 4454
8b88b099 4455 *val = 0;
0d9ce162 4456 mutex_lock(&kvm_lock);
536a6f88 4457 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4458 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
4459 *val += tmp_val;
4460 }
0d9ce162 4461 mutex_unlock(&kvm_lock);
8b88b099 4462 return 0;
ba1389b7
AK
4463}
4464
ce35ef27
SJS
4465static int vm_stat_clear(void *_offset, u64 val)
4466{
4467 unsigned offset = (long)_offset;
4468 struct kvm *kvm;
ce35ef27
SJS
4469
4470 if (val)
4471 return -EINVAL;
4472
0d9ce162 4473 mutex_lock(&kvm_lock);
ce35ef27 4474 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4475 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 4476 }
0d9ce162 4477 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4478
4479 return 0;
4480}
4481
4482DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 4483
8b88b099 4484static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
4485{
4486 unsigned offset = (long)_offset;
1165f5fe 4487 struct kvm *kvm;
536a6f88 4488 u64 tmp_val;
1165f5fe 4489
8b88b099 4490 *val = 0;
0d9ce162 4491 mutex_lock(&kvm_lock);
536a6f88 4492 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4493 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
4494 *val += tmp_val;
4495 }
0d9ce162 4496 mutex_unlock(&kvm_lock);
8b88b099 4497 return 0;
1165f5fe
AK
4498}
4499
ce35ef27
SJS
4500static int vcpu_stat_clear(void *_offset, u64 val)
4501{
4502 unsigned offset = (long)_offset;
4503 struct kvm *kvm;
ce35ef27
SJS
4504
4505 if (val)
4506 return -EINVAL;
4507
0d9ce162 4508 mutex_lock(&kvm_lock);
ce35ef27 4509 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4510 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 4511 }
0d9ce162 4512 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4513
4514 return 0;
4515}
4516
4517DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4518 "%llu\n");
ba1389b7 4519
828c0950 4520static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4521 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4522 [KVM_STAT_VM] = &vm_stat_fops,
4523};
1165f5fe 4524
286de8f6
CI
4525static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4526{
4527 struct kobj_uevent_env *env;
286de8f6
CI
4528 unsigned long long created, active;
4529
4530 if (!kvm_dev.this_device || !kvm)
4531 return;
4532
0d9ce162 4533 mutex_lock(&kvm_lock);
286de8f6
CI
4534 if (type == KVM_EVENT_CREATE_VM) {
4535 kvm_createvm_count++;
4536 kvm_active_vms++;
4537 } else if (type == KVM_EVENT_DESTROY_VM) {
4538 kvm_active_vms--;
4539 }
4540 created = kvm_createvm_count;
4541 active = kvm_active_vms;
0d9ce162 4542 mutex_unlock(&kvm_lock);
286de8f6 4543
b12ce36a 4544 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
4545 if (!env)
4546 return;
4547
4548 add_uevent_var(env, "CREATED=%llu", created);
4549 add_uevent_var(env, "COUNT=%llu", active);
4550
fdeaf7e3 4551 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4552 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4553 kvm->userspace_pid = task_pid_nr(current);
4554 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4555 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4556 }
4557 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 4558
8ed0579c 4559 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 4560 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
4561
4562 if (p) {
4563 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4564 if (!IS_ERR(tmp))
4565 add_uevent_var(env, "STATS_PATH=%s", tmp);
4566 kfree(p);
286de8f6
CI
4567 }
4568 }
4569 /* no need for checks, since we are adding at most only 5 keys */
4570 env->envp[env->envp_idx++] = NULL;
4571 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4572 kfree(env);
286de8f6
CI
4573}
4574
929f45e3 4575static void kvm_init_debug(void)
6aa8b732
AK
4576{
4577 struct kvm_stats_debugfs_item *p;
4578
76f7c879 4579 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4580
536a6f88
JF
4581 kvm_debugfs_num_entries = 0;
4582 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
09cbcef6
MP
4583 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4584 kvm_debugfs_dir, (void *)(long)p->offset,
929f45e3 4585 stat_fops[p->kind]);
4f69b680 4586 }
6aa8b732
AK
4587}
4588
fb3600cc 4589static int kvm_suspend(void)
59ae6c6b 4590{
10474ae8 4591 if (kvm_usage_count)
75b7127c 4592 hardware_disable_nolock(NULL);
59ae6c6b
AK
4593 return 0;
4594}
4595
fb3600cc 4596static void kvm_resume(void)
59ae6c6b 4597{
ca84d1a2 4598 if (kvm_usage_count) {
2eb06c30
WL
4599#ifdef CONFIG_LOCKDEP
4600 WARN_ON(lockdep_is_held(&kvm_count_lock));
4601#endif
75b7127c 4602 hardware_enable_nolock(NULL);
ca84d1a2 4603 }
59ae6c6b
AK
4604}
4605
fb3600cc 4606static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4607 .suspend = kvm_suspend,
4608 .resume = kvm_resume,
4609};
4610
15ad7146
AK
4611static inline
4612struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4613{
4614 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4615}
4616
4617static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4618{
4619 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 4620
046ddeed 4621 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 4622 WRITE_ONCE(vcpu->ready, false);
15ad7146 4623
7495e22b 4624 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 4625 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 4626 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
4627}
4628
4629static void kvm_sched_out(struct preempt_notifier *pn,
4630 struct task_struct *next)
4631{
4632 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4633
d73eb57b 4634 if (current->state == TASK_RUNNING) {
046ddeed 4635 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
4636 WRITE_ONCE(vcpu->ready, true);
4637 }
e9b11c17 4638 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
4639 __this_cpu_write(kvm_running_vcpu, NULL);
4640}
4641
4642/**
4643 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
4644 *
4645 * We can disable preemption locally around accessing the per-CPU variable,
4646 * and use the resolved vcpu pointer after enabling preemption again,
4647 * because even if the current thread is migrated to another CPU, reading
4648 * the per-CPU value later will give us the same value as we update the
4649 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
4650 */
4651struct kvm_vcpu *kvm_get_running_vcpu(void)
4652{
1f03b2bc
MZ
4653 struct kvm_vcpu *vcpu;
4654
4655 preempt_disable();
4656 vcpu = __this_cpu_read(kvm_running_vcpu);
4657 preempt_enable();
4658
4659 return vcpu;
7495e22b 4660}
379a3c8e 4661EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
4662
4663/**
4664 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4665 */
4666struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4667{
4668 return &kvm_running_vcpu;
15ad7146
AK
4669}
4670
b9904085
SC
4671struct kvm_cpu_compat_check {
4672 void *opaque;
4673 int *ret;
4674};
4675
4676static void check_processor_compat(void *data)
f257d6dc 4677{
b9904085
SC
4678 struct kvm_cpu_compat_check *c = data;
4679
4680 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
4681}
4682
0ee75bea 4683int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 4684 struct module *module)
6aa8b732 4685{
b9904085 4686 struct kvm_cpu_compat_check c;
6aa8b732 4687 int r;
002c7f7c 4688 int cpu;
6aa8b732 4689
f8c16bba
ZX
4690 r = kvm_arch_init(opaque);
4691 if (r)
d2308784 4692 goto out_fail;
cb498ea2 4693
7dac16c3
AH
4694 /*
4695 * kvm_arch_init makes sure there's at most one caller
4696 * for architectures that support multiple implementations,
4697 * like intel and amd on x86.
36343f6e
PB
4698 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4699 * conflicts in case kvm is already setup for another implementation.
7dac16c3 4700 */
36343f6e
PB
4701 r = kvm_irqfd_init();
4702 if (r)
4703 goto out_irqfd;
7dac16c3 4704
8437a617 4705 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
4706 r = -ENOMEM;
4707 goto out_free_0;
4708 }
4709
b9904085 4710 r = kvm_arch_hardware_setup(opaque);
6aa8b732 4711 if (r < 0)
faf0be22 4712 goto out_free_1;
6aa8b732 4713
b9904085
SC
4714 c.ret = &r;
4715 c.opaque = opaque;
002c7f7c 4716 for_each_online_cpu(cpu) {
b9904085 4717 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 4718 if (r < 0)
faf0be22 4719 goto out_free_2;
002c7f7c
YS
4720 }
4721
73c1b41e 4722 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 4723 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 4724 if (r)
d2308784 4725 goto out_free_2;
6aa8b732
AK
4726 register_reboot_notifier(&kvm_reboot_notifier);
4727
c16f862d 4728 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
4729 if (!vcpu_align)
4730 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
4731 kvm_vcpu_cache =
4732 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4733 SLAB_ACCOUNT,
4734 offsetof(struct kvm_vcpu, arch),
4735 sizeof_field(struct kvm_vcpu, arch),
4736 NULL);
c16f862d
RR
4737 if (!kvm_vcpu_cache) {
4738 r = -ENOMEM;
fb3600cc 4739 goto out_free_3;
c16f862d
RR
4740 }
4741
af585b92
GN
4742 r = kvm_async_pf_init();
4743 if (r)
4744 goto out_free;
4745
6aa8b732 4746 kvm_chardev_ops.owner = module;
3d3aab1b
CB
4747 kvm_vm_fops.owner = module;
4748 kvm_vcpu_fops.owner = module;
6aa8b732
AK
4749
4750 r = misc_register(&kvm_dev);
4751 if (r) {
1170adc6 4752 pr_err("kvm: misc device register failed\n");
af585b92 4753 goto out_unreg;
6aa8b732
AK
4754 }
4755
fb3600cc
RW
4756 register_syscore_ops(&kvm_syscore_ops);
4757
15ad7146
AK
4758 kvm_preempt_ops.sched_in = kvm_sched_in;
4759 kvm_preempt_ops.sched_out = kvm_sched_out;
4760
929f45e3 4761 kvm_init_debug();
0ea4ed8e 4762
3c3c29fd
PB
4763 r = kvm_vfio_ops_init();
4764 WARN_ON(r);
4765
c7addb90 4766 return 0;
6aa8b732 4767
af585b92
GN
4768out_unreg:
4769 kvm_async_pf_deinit();
6aa8b732 4770out_free:
c16f862d 4771 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 4772out_free_3:
6aa8b732 4773 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4774 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 4775out_free_2:
e9b11c17 4776 kvm_arch_hardware_unsetup();
faf0be22 4777out_free_1:
7f59f492 4778 free_cpumask_var(cpus_hardware_enabled);
d2308784 4779out_free_0:
a0f155e9 4780 kvm_irqfd_exit();
36343f6e 4781out_irqfd:
7dac16c3
AH
4782 kvm_arch_exit();
4783out_fail:
6aa8b732
AK
4784 return r;
4785}
cb498ea2 4786EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 4787
cb498ea2 4788void kvm_exit(void)
6aa8b732 4789{
4bd33b56 4790 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 4791 misc_deregister(&kvm_dev);
c16f862d 4792 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 4793 kvm_async_pf_deinit();
fb3600cc 4794 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 4795 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4796 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 4797 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 4798 kvm_arch_hardware_unsetup();
f8c16bba 4799 kvm_arch_exit();
a0f155e9 4800 kvm_irqfd_exit();
7f59f492 4801 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 4802 kvm_vfio_ops_exit();
6aa8b732 4803}
cb498ea2 4804EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
4805
4806struct kvm_vm_worker_thread_context {
4807 struct kvm *kvm;
4808 struct task_struct *parent;
4809 struct completion init_done;
4810 kvm_vm_thread_fn_t thread_fn;
4811 uintptr_t data;
4812 int err;
4813};
4814
4815static int kvm_vm_worker_thread(void *context)
4816{
4817 /*
4818 * The init_context is allocated on the stack of the parent thread, so
4819 * we have to locally copy anything that is needed beyond initialization
4820 */
4821 struct kvm_vm_worker_thread_context *init_context = context;
4822 struct kvm *kvm = init_context->kvm;
4823 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4824 uintptr_t data = init_context->data;
4825 int err;
4826
4827 err = kthread_park(current);
4828 /* kthread_park(current) is never supposed to return an error */
4829 WARN_ON(err != 0);
4830 if (err)
4831 goto init_complete;
4832
4833 err = cgroup_attach_task_all(init_context->parent, current);
4834 if (err) {
4835 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4836 __func__, err);
4837 goto init_complete;
4838 }
4839
4840 set_user_nice(current, task_nice(init_context->parent));
4841
4842init_complete:
4843 init_context->err = err;
4844 complete(&init_context->init_done);
4845 init_context = NULL;
4846
4847 if (err)
4848 return err;
4849
4850 /* Wait to be woken up by the spawner before proceeding. */
4851 kthread_parkme();
4852
4853 if (!kthread_should_stop())
4854 err = thread_fn(kvm, data);
4855
4856 return err;
4857}
4858
4859int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4860 uintptr_t data, const char *name,
4861 struct task_struct **thread_ptr)
4862{
4863 struct kvm_vm_worker_thread_context init_context = {};
4864 struct task_struct *thread;
4865
4866 *thread_ptr = NULL;
4867 init_context.kvm = kvm;
4868 init_context.parent = current;
4869 init_context.thread_fn = thread_fn;
4870 init_context.data = data;
4871 init_completion(&init_context.init_done);
4872
4873 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4874 "%s-%d", name, task_pid_nr(current));
4875 if (IS_ERR(thread))
4876 return PTR_ERR(thread);
4877
4878 /* kthread_run is never supposed to return NULL */
4879 WARN_ON(thread == NULL);
4880
4881 wait_for_completion(&init_context.init_done);
4882
4883 if (!init_context.err)
4884 *thread_ptr = thread;
4885
4886 return init_context.err;
4887}