KVM: SEV: Refactor out sev_es_state struct
[linux-2.6-block.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
531810ca 62#include "mmu_lock.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
fb04a1ed
PX
68#include <linux/kvm_dirty_ring.h>
69
536a6f88
JF
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
6aa8b732
AK
73MODULE_AUTHOR("Qumranet");
74MODULE_LICENSE("GPL");
75
920552b2 76/* Architectures should define their poll value according to the halt latency */
ec76d819 77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 78module_param(halt_poll_ns, uint, 0644);
ec76d819 79EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 80
aca6ff29 81/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 82unsigned int halt_poll_ns_grow = 2;
039c5d1b 83module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 85
49113d36
NW
86/* The start value to grow halt_poll_ns from */
87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88module_param(halt_poll_ns_grow_start, uint, 0644);
89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
aca6ff29 91/* Default resets per-vcpu halt_poll_ns . */
ec76d819 92unsigned int halt_poll_ns_shrink;
039c5d1b 93module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 95
fa40a821
MT
96/*
97 * Ordering of locks:
98 *
b7d409de 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
100 */
101
0d9ce162 102DEFINE_MUTEX(kvm_lock);
4a937f96 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 104LIST_HEAD(vm_list);
133de902 105
7f59f492 106static cpumask_var_t cpus_hardware_enabled;
f4fee932 107static int kvm_usage_count;
10474ae8 108static atomic_t hardware_enable_failed;
1b6c0168 109
aaba298c 110static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 111
15ad7146 112static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 114
76f7c879 115struct dentry *kvm_debugfs_dir;
e23a808b 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 117
09cbcef6 118static const struct file_operations stat_fops_per_vm;
536a6f88 119
bccf2150
AK
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
de8e5d74 122#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
7ddfd3e0
MZ
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
9cb09e7c
MZ
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
7ddfd3e0
MZ
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
1dda606c 143#endif
10474ae8
AG
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
bccf2150 146
e93f8a0f 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
286de8f6
CI
152#define KVM_EVENT_CREATE_VM 0
153#define KVM_EVENT_DESTROY_VM 1
154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155static unsigned long long kvm_createvm_count;
156static unsigned long long kvm_active_vms;
157
baff59cc
VK
158static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
e649b3f0
ET
160__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end)
b1394e74
RK
162{
163}
164
a78986aa
SC
165bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166{
167 /*
168 * The metadata used by is_zone_device_page() to determine whether or
169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 * the device has been pinned, e.g. by get_user_pages(). WARN if the
171 * page_count() is zero to help detect bad usage of this helper.
172 */
173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 return false;
175
176 return is_zone_device_page(pfn_to_page(pfn));
177}
178
ba049e93 179bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 180{
a78986aa
SC
181 /*
182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 * perspective they are "normal" pages, albeit with slightly different
184 * usage rules.
185 */
11feeb49 186 if (pfn_valid(pfn))
a78986aa 187 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 188 !is_zero_pfn(pfn) &&
a78986aa 189 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
190
191 return true;
192}
193
bccf2150
AK
194/*
195 * Switches to specified vcpu, until a matching vcpu_put()
196 */
ec7660cc 197void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 198{
ec7660cc 199 int cpu = get_cpu();
7495e22b
PB
200
201 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 202 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 203 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 204 put_cpu();
6aa8b732 205}
2f1fe811 206EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 207
313a3dc7 208void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 209{
15ad7146 210 preempt_disable();
313a3dc7 211 kvm_arch_vcpu_put(vcpu);
15ad7146 212 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 213 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 214 preempt_enable();
6aa8b732 215}
2f1fe811 216EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 217
7a97cec2
PB
218/* TODO: merge with kvm_arch_vcpu_should_kick */
219static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220{
221 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223 /*
224 * We need to wait for the VCPU to reenable interrupts and get out of
225 * READING_SHADOW_PAGE_TABLES mode.
226 */
227 if (req & KVM_REQUEST_WAIT)
228 return mode != OUTSIDE_GUEST_MODE;
229
230 /*
231 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 */
233 return mode == IN_GUEST_MODE;
234}
235
d9e368d6
AK
236static void ack_flush(void *_completed)
237{
d9e368d6
AK
238}
239
620b2438 240static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
b49defe8 241{
b49defe8
PB
242 if (cpumask_empty(cpus))
243 return false;
244
245 smp_call_function_many(cpus, ack_flush, NULL, wait);
246 return true;
247}
248
ae0946cd 249static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
620b2438 250 unsigned int req, struct cpumask *tmp,
ae0946cd
VK
251 int current_cpu)
252{
253 int cpu;
254
255 kvm_make_request(req, vcpu);
256
257 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258 return;
259
ae0946cd
VK
260 /*
261 * Note, the vCPU could get migrated to a different pCPU at any point
262 * after kvm_request_needs_ipi(), which could result in sending an IPI
263 * to the previous pCPU. But, that's OK because the purpose of the IPI
264 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266 * after this point is also OK, as the requirement is only that KVM wait
267 * for vCPUs that were reading SPTEs _before_ any changes were
268 * finalized. See kvm_vcpu_kick() for more details on handling requests.
269 */
270 if (kvm_request_needs_ipi(vcpu, req)) {
271 cpu = READ_ONCE(vcpu->cpu);
272 if (cpu != -1 && cpu != current_cpu)
273 __cpumask_set_cpu(cpu, tmp);
274 }
275}
276
7053df4e 277bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
620b2438 278 unsigned long *vcpu_bitmap)
d9e368d6 279{
d9e368d6 280 struct kvm_vcpu *vcpu;
620b2438 281 struct cpumask *cpus;
ae0946cd 282 int i, me;
7053df4e 283 bool called;
6ef7a1bc 284
3cba4130 285 me = get_cpu();
7053df4e 286
620b2438
VK
287 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288 cpumask_clear(cpus);
289
ae0946cd
VK
290 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291 vcpu = kvm_get_vcpu(kvm, i);
381cecc5 292 if (!vcpu)
7053df4e 293 continue;
620b2438 294 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
49846896 295 }
7053df4e 296
620b2438 297 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
3cba4130 298 put_cpu();
7053df4e
VK
299
300 return called;
301}
302
54163a34
SS
303bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304 struct kvm_vcpu *except)
7053df4e 305{
ae0946cd 306 struct kvm_vcpu *vcpu;
baff59cc 307 struct cpumask *cpus;
7053df4e 308 bool called;
ae0946cd 309 int i, me;
7053df4e 310
ae0946cd
VK
311 me = get_cpu();
312
baff59cc
VK
313 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
314 cpumask_clear(cpus);
315
ae0946cd
VK
316 kvm_for_each_vcpu(i, vcpu, kvm) {
317 if (vcpu == except)
318 continue;
319 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
320 }
321
322 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
323 put_cpu();
7053df4e 324
49846896 325 return called;
d9e368d6
AK
326}
327
54163a34
SS
328bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
329{
330 return kvm_make_all_cpus_request_except(kvm, req, NULL);
331}
a2486020 332EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 333
a6d51016 334#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 335void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 336{
3cc4e148 337 ++kvm->stat.generic.remote_tlb_flush_requests;
6bc6db00 338
4ae3cb3a
LT
339 /*
340 * We want to publish modifications to the page tables before reading
341 * mode. Pairs with a memory barrier in arch-specific code.
342 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
343 * and smp_mb in walk_shadow_page_lockless_begin/end.
344 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
345 *
346 * There is already an smp_mb__after_atomic() before
347 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
348 * barrier here.
349 */
b08660e5
TL
350 if (!kvm_arch_flush_remote_tlb(kvm)
351 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 352 ++kvm->stat.generic.remote_tlb_flush;
2e53d63a 353}
2ba9f0d8 354EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 355#endif
2e53d63a 356
49846896
RR
357void kvm_reload_remote_mmus(struct kvm *kvm)
358{
445b8236 359 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 360}
2e53d63a 361
6926f95a
SC
362#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
363static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
364 gfp_t gfp_flags)
365{
366 gfp_flags |= mc->gfp_zero;
367
368 if (mc->kmem_cache)
369 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
370 else
371 return (void *)__get_free_page(gfp_flags);
372}
373
374int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
375{
376 void *obj;
377
378 if (mc->nobjs >= min)
379 return 0;
380 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
381 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
382 if (!obj)
383 return mc->nobjs >= min ? 0 : -ENOMEM;
384 mc->objects[mc->nobjs++] = obj;
385 }
386 return 0;
387}
388
389int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
390{
391 return mc->nobjs;
392}
393
394void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
395{
396 while (mc->nobjs) {
397 if (mc->kmem_cache)
398 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
399 else
400 free_page((unsigned long)mc->objects[--mc->nobjs]);
401 }
402}
403
404void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
405{
406 void *p;
407
408 if (WARN_ON(!mc->nobjs))
409 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
410 else
411 p = mc->objects[--mc->nobjs];
412 BUG_ON(!p);
413 return p;
414}
415#endif
416
8bd826d6 417static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 418{
fb3f0f51
RR
419 mutex_init(&vcpu->mutex);
420 vcpu->cpu = -1;
fb3f0f51
RR
421 vcpu->kvm = kvm;
422 vcpu->vcpu_id = id;
34bb10b7 423 vcpu->pid = NULL;
da4ad88c 424 rcuwait_init(&vcpu->wait);
af585b92 425 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 426
bf9f6ac8
FW
427 vcpu->pre_pcpu = -1;
428 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
429
4c088493
R
430 kvm_vcpu_set_in_spin_loop(vcpu, false);
431 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 432 vcpu->preempted = false;
d73eb57b 433 vcpu->ready = false;
d5c48deb 434 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fe22ed82 435 vcpu->last_used_slot = 0;
fb3f0f51 436}
fb3f0f51 437
4543bdc0
SC
438void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439{
fb04a1ed 440 kvm_dirty_ring_free(&vcpu->dirty_ring);
4543bdc0 441 kvm_arch_vcpu_destroy(vcpu);
e529ef66 442
9941d224
SC
443 /*
444 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445 * the vcpu->pid pointer, and at destruction time all file descriptors
446 * are already gone.
447 */
448 put_pid(rcu_dereference_protected(vcpu->pid, 1));
449
8bd826d6 450 free_page((unsigned long)vcpu->run);
e529ef66 451 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
452}
453EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
454
e930bffe
AA
455#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
456static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
457{
458 return container_of(mn, struct kvm, mmu_notifier);
459}
460
e649b3f0
ET
461static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
462 struct mm_struct *mm,
463 unsigned long start, unsigned long end)
464{
465 struct kvm *kvm = mmu_notifier_to_kvm(mn);
466 int idx;
467
468 idx = srcu_read_lock(&kvm->srcu);
469 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
470 srcu_read_unlock(&kvm->srcu, idx);
471}
472
3039bcc7
SC
473typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
474
f922bd9b
SC
475typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
476 unsigned long end);
477
3039bcc7
SC
478struct kvm_hva_range {
479 unsigned long start;
480 unsigned long end;
481 pte_t pte;
482 hva_handler_t handler;
f922bd9b 483 on_lock_fn_t on_lock;
3039bcc7
SC
484 bool flush_on_ret;
485 bool may_block;
486};
487
f922bd9b
SC
488/*
489 * Use a dedicated stub instead of NULL to indicate that there is no callback
490 * function/handler. The compiler technically can't guarantee that a real
491 * function will have a non-zero address, and so it will generate code to
492 * check for !NULL, whereas comparing against a stub will be elided at compile
493 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
494 */
495static void kvm_null_fn(void)
496{
497
498}
499#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
500
3039bcc7
SC
501static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
502 const struct kvm_hva_range *range)
503{
8931a454 504 bool ret = false, locked = false;
f922bd9b 505 struct kvm_gfn_range gfn_range;
3039bcc7
SC
506 struct kvm_memory_slot *slot;
507 struct kvm_memslots *slots;
3039bcc7
SC
508 int i, idx;
509
f922bd9b
SC
510 /* A null handler is allowed if and only if on_lock() is provided. */
511 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
512 IS_KVM_NULL_FN(range->handler)))
513 return 0;
514
3039bcc7
SC
515 idx = srcu_read_lock(&kvm->srcu);
516
517 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
518 slots = __kvm_memslots(kvm, i);
519 kvm_for_each_memslot(slot, slots) {
520 unsigned long hva_start, hva_end;
521
522 hva_start = max(range->start, slot->userspace_addr);
523 hva_end = min(range->end, slot->userspace_addr +
524 (slot->npages << PAGE_SHIFT));
525 if (hva_start >= hva_end)
526 continue;
527
528 /*
529 * To optimize for the likely case where the address
530 * range is covered by zero or one memslots, don't
531 * bother making these conditional (to avoid writes on
532 * the second or later invocation of the handler).
533 */
534 gfn_range.pte = range->pte;
535 gfn_range.may_block = range->may_block;
536
537 /*
538 * {gfn(page) | page intersects with [hva_start, hva_end)} =
539 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
540 */
541 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
542 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
543 gfn_range.slot = slot;
544
8931a454
SC
545 if (!locked) {
546 locked = true;
547 KVM_MMU_LOCK(kvm);
071064f1
PB
548 if (!IS_KVM_NULL_FN(range->on_lock))
549 range->on_lock(kvm, range->start, range->end);
550 if (IS_KVM_NULL_FN(range->handler))
551 break;
8931a454 552 }
3039bcc7
SC
553 ret |= range->handler(kvm, &gfn_range);
554 }
555 }
556
6bc6db00 557 if (range->flush_on_ret && ret)
3039bcc7
SC
558 kvm_flush_remote_tlbs(kvm);
559
8931a454
SC
560 if (locked)
561 KVM_MMU_UNLOCK(kvm);
f922bd9b 562
3039bcc7
SC
563 srcu_read_unlock(&kvm->srcu, idx);
564
565 /* The notifiers are averse to booleans. :-( */
566 return (int)ret;
567}
568
569static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
570 unsigned long start,
571 unsigned long end,
572 pte_t pte,
573 hva_handler_t handler)
574{
575 struct kvm *kvm = mmu_notifier_to_kvm(mn);
576 const struct kvm_hva_range range = {
577 .start = start,
578 .end = end,
579 .pte = pte,
580 .handler = handler,
f922bd9b 581 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
582 .flush_on_ret = true,
583 .may_block = false,
584 };
3039bcc7 585
f922bd9b 586 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
587}
588
589static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
590 unsigned long start,
591 unsigned long end,
592 hva_handler_t handler)
593{
594 struct kvm *kvm = mmu_notifier_to_kvm(mn);
595 const struct kvm_hva_range range = {
596 .start = start,
597 .end = end,
598 .pte = __pte(0),
599 .handler = handler,
f922bd9b 600 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
601 .flush_on_ret = false,
602 .may_block = false,
603 };
3039bcc7 604
f922bd9b 605 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 606}
3da0dd43
IE
607static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
608 struct mm_struct *mm,
609 unsigned long address,
610 pte_t pte)
611{
612 struct kvm *kvm = mmu_notifier_to_kvm(mn);
613
501b9185
SC
614 trace_kvm_set_spte_hva(address);
615
c13fda23 616 /*
52ac8b35 617 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
071064f1
PB
618 * If mmu_notifier_count is zero, then no in-progress invalidations,
619 * including this one, found a relevant memslot at start(); rechecking
620 * memslots here is unnecessary. Note, a false positive (count elevated
621 * by a different invalidation) is sub-optimal but functionally ok.
c13fda23 622 */
52ac8b35 623 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
071064f1
PB
624 if (!READ_ONCE(kvm->mmu_notifier_count))
625 return;
c13fda23 626
3039bcc7 627 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
628}
629
edb298c6 630void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 631 unsigned long end)
e930bffe 632{
e930bffe
AA
633 /*
634 * The count increase must become visible at unlock time as no
635 * spte can be established without taking the mmu_lock and
636 * count is also read inside the mmu_lock critical section.
637 */
638 kvm->mmu_notifier_count++;
4a42d848 639 if (likely(kvm->mmu_notifier_count == 1)) {
f922bd9b
SC
640 kvm->mmu_notifier_range_start = start;
641 kvm->mmu_notifier_range_end = end;
4a42d848
DS
642 } else {
643 /*
644 * Fully tracking multiple concurrent ranges has dimishing
645 * returns. Keep things simple and just find the minimal range
646 * which includes the current and new ranges. As there won't be
647 * enough information to subtract a range after its invalidate
648 * completes, any ranges invalidated concurrently will
649 * accumulate and persist until all outstanding invalidates
650 * complete.
651 */
652 kvm->mmu_notifier_range_start =
f922bd9b 653 min(kvm->mmu_notifier_range_start, start);
4a42d848 654 kvm->mmu_notifier_range_end =
f922bd9b 655 max(kvm->mmu_notifier_range_end, end);
4a42d848 656 }
f922bd9b 657}
3039bcc7 658
f922bd9b
SC
659static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
660 const struct mmu_notifier_range *range)
661{
662 struct kvm *kvm = mmu_notifier_to_kvm(mn);
663 const struct kvm_hva_range hva_range = {
664 .start = range->start,
665 .end = range->end,
666 .pte = __pte(0),
667 .handler = kvm_unmap_gfn_range,
668 .on_lock = kvm_inc_notifier_count,
669 .flush_on_ret = true,
670 .may_block = mmu_notifier_range_blockable(range),
671 };
565f3be2 672
f922bd9b
SC
673 trace_kvm_unmap_hva_range(range->start, range->end);
674
52ac8b35
PB
675 /*
676 * Prevent memslot modification between range_start() and range_end()
677 * so that conditionally locking provides the same result in both
678 * functions. Without that guarantee, the mmu_notifier_count
679 * adjustments will be imbalanced.
680 *
681 * Pairs with the decrement in range_end().
682 */
683 spin_lock(&kvm->mn_invalidate_lock);
684 kvm->mn_active_invalidate_count++;
685 spin_unlock(&kvm->mn_invalidate_lock);
686
f922bd9b 687 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 688
e649b3f0 689 return 0;
e930bffe
AA
690}
691
edb298c6 692void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 693 unsigned long end)
e930bffe 694{
e930bffe
AA
695 /*
696 * This sequence increase will notify the kvm page fault that
697 * the page that is going to be mapped in the spte could have
698 * been freed.
699 */
700 kvm->mmu_notifier_seq++;
a355aa54 701 smp_wmb();
e930bffe
AA
702 /*
703 * The above sequence increase must be visible before the
a355aa54
PM
704 * below count decrease, which is ensured by the smp_wmb above
705 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
706 */
707 kvm->mmu_notifier_count--;
f922bd9b
SC
708}
709
710static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
711 const struct mmu_notifier_range *range)
712{
713 struct kvm *kvm = mmu_notifier_to_kvm(mn);
714 const struct kvm_hva_range hva_range = {
715 .start = range->start,
716 .end = range->end,
717 .pte = __pte(0),
718 .handler = (void *)kvm_null_fn,
719 .on_lock = kvm_dec_notifier_count,
720 .flush_on_ret = false,
721 .may_block = mmu_notifier_range_blockable(range),
722 };
52ac8b35 723 bool wake;
f922bd9b
SC
724
725 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe 726
52ac8b35
PB
727 /* Pairs with the increment in range_start(). */
728 spin_lock(&kvm->mn_invalidate_lock);
729 wake = (--kvm->mn_active_invalidate_count == 0);
730 spin_unlock(&kvm->mn_invalidate_lock);
731
732 /*
733 * There can only be one waiter, since the wait happens under
734 * slots_lock.
735 */
736 if (wake)
737 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
738
e930bffe
AA
739 BUG_ON(kvm->mmu_notifier_count < 0);
740}
741
742static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
743 struct mm_struct *mm,
57128468
ALC
744 unsigned long start,
745 unsigned long end)
e930bffe 746{
501b9185
SC
747 trace_kvm_age_hva(start, end);
748
3039bcc7 749 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
750}
751
1d7715c6
VD
752static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
753 struct mm_struct *mm,
754 unsigned long start,
755 unsigned long end)
756{
501b9185
SC
757 trace_kvm_age_hva(start, end);
758
1d7715c6
VD
759 /*
760 * Even though we do not flush TLB, this will still adversely
761 * affect performance on pre-Haswell Intel EPT, where there is
762 * no EPT Access Bit to clear so that we have to tear down EPT
763 * tables instead. If we find this unacceptable, we can always
764 * add a parameter to kvm_age_hva so that it effectively doesn't
765 * do anything on clear_young.
766 *
767 * Also note that currently we never issue secondary TLB flushes
768 * from clear_young, leaving this job up to the regular system
769 * cadence. If we find this inaccurate, we might come up with a
770 * more sophisticated heuristic later.
771 */
3039bcc7 772 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
773}
774
8ee53820
AA
775static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
776 struct mm_struct *mm,
777 unsigned long address)
778{
501b9185
SC
779 trace_kvm_test_age_hva(address);
780
3039bcc7
SC
781 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
782 kvm_test_age_gfn);
8ee53820
AA
783}
784
85db06e5
MT
785static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
786 struct mm_struct *mm)
787{
788 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
789 int idx;
790
791 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 792 kvm_arch_flush_shadow_all(kvm);
eda2beda 793 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
794}
795
e930bffe 796static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 797 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
798 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
799 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
800 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 801 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 802 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 803 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 804 .release = kvm_mmu_notifier_release,
e930bffe 805};
4c07b0a4
AK
806
807static int kvm_init_mmu_notifier(struct kvm *kvm)
808{
809 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
810 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
811}
812
813#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
814
815static int kvm_init_mmu_notifier(struct kvm *kvm)
816{
817 return 0;
818}
819
e930bffe
AA
820#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
821
2fdef3a2
SS
822#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
823static int kvm_pm_notifier_call(struct notifier_block *bl,
824 unsigned long state,
825 void *unused)
826{
827 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
828
829 return kvm_arch_pm_notifier(kvm, state);
830}
831
832static void kvm_init_pm_notifier(struct kvm *kvm)
833{
834 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
835 /* Suspend KVM before we suspend ftrace, RCU, etc. */
836 kvm->pm_notifier.priority = INT_MAX;
837 register_pm_notifier(&kvm->pm_notifier);
838}
839
840static void kvm_destroy_pm_notifier(struct kvm *kvm)
841{
842 unregister_pm_notifier(&kvm->pm_notifier);
843}
844#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
845static void kvm_init_pm_notifier(struct kvm *kvm)
846{
847}
848
849static void kvm_destroy_pm_notifier(struct kvm *kvm)
850{
851}
852#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
853
a47d2b07 854static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
855{
856 int i;
a47d2b07 857 struct kvm_memslots *slots;
bf3e05bc 858
b12ce36a 859 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
860 if (!slots)
861 return NULL;
862
bf3e05bc 863 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
36947254 864 slots->id_to_index[i] = -1;
a47d2b07
PB
865
866 return slots;
867}
868
869static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
870{
871 if (!memslot->dirty_bitmap)
872 return;
873
874 kvfree(memslot->dirty_bitmap);
875 memslot->dirty_bitmap = NULL;
876}
877
e96c81ee 878static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 879{
e96c81ee 880 kvm_destroy_dirty_bitmap(slot);
a47d2b07 881
e96c81ee 882 kvm_arch_free_memslot(kvm, slot);
a47d2b07 883
e96c81ee
SC
884 slot->flags = 0;
885 slot->npages = 0;
a47d2b07
PB
886}
887
888static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
889{
890 struct kvm_memory_slot *memslot;
891
892 if (!slots)
893 return;
894
895 kvm_for_each_memslot(memslot, slots)
e96c81ee 896 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
897
898 kvfree(slots);
bf3e05bc
XG
899}
900
bc9e9e67
JZ
901static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
902{
903 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
904 case KVM_STATS_TYPE_INSTANT:
905 return 0444;
906 case KVM_STATS_TYPE_CUMULATIVE:
907 case KVM_STATS_TYPE_PEAK:
908 default:
909 return 0644;
910 }
911}
912
913
536a6f88
JF
914static void kvm_destroy_vm_debugfs(struct kvm *kvm)
915{
916 int i;
bc9e9e67
JZ
917 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
918 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
919
920 if (!kvm->debugfs_dentry)
921 return;
922
923 debugfs_remove_recursive(kvm->debugfs_dentry);
924
9d5a1dce
LC
925 if (kvm->debugfs_stat_data) {
926 for (i = 0; i < kvm_debugfs_num_entries; i++)
927 kfree(kvm->debugfs_stat_data[i]);
928 kfree(kvm->debugfs_stat_data);
929 }
536a6f88
JF
930}
931
932static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
933{
85cd39af
PB
934 static DEFINE_MUTEX(kvm_debugfs_lock);
935 struct dentry *dent;
536a6f88
JF
936 char dir_name[ITOA_MAX_LEN * 2];
937 struct kvm_stat_data *stat_data;
bc9e9e67 938 const struct _kvm_stats_desc *pdesc;
3165af73 939 int i, ret;
bc9e9e67
JZ
940 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
941 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
942
943 if (!debugfs_initialized())
944 return 0;
945
946 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
85cd39af
PB
947 mutex_lock(&kvm_debugfs_lock);
948 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
949 if (dent) {
950 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
951 dput(dent);
952 mutex_unlock(&kvm_debugfs_lock);
953 return 0;
954 }
955 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
956 mutex_unlock(&kvm_debugfs_lock);
957 if (IS_ERR(dent))
958 return 0;
536a6f88 959
85cd39af 960 kvm->debugfs_dentry = dent;
536a6f88
JF
961 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
962 sizeof(*kvm->debugfs_stat_data),
b12ce36a 963 GFP_KERNEL_ACCOUNT);
536a6f88
JF
964 if (!kvm->debugfs_stat_data)
965 return -ENOMEM;
966
bc9e9e67
JZ
967 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
968 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 969 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
970 if (!stat_data)
971 return -ENOMEM;
972
973 stat_data->kvm = kvm;
bc9e9e67
JZ
974 stat_data->desc = pdesc;
975 stat_data->kind = KVM_STAT_VM;
976 kvm->debugfs_stat_data[i] = stat_data;
977 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
978 kvm->debugfs_dentry, stat_data,
979 &stat_fops_per_vm);
980 }
981
982 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
983 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 984 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
985 if (!stat_data)
986 return -ENOMEM;
987
988 stat_data->kvm = kvm;
bc9e9e67
JZ
989 stat_data->desc = pdesc;
990 stat_data->kind = KVM_STAT_VCPU;
004d62eb 991 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 992 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
993 kvm->debugfs_dentry, stat_data,
994 &stat_fops_per_vm);
536a6f88 995 }
3165af73
PX
996
997 ret = kvm_arch_create_vm_debugfs(kvm);
998 if (ret) {
999 kvm_destroy_vm_debugfs(kvm);
1000 return i;
1001 }
1002
536a6f88
JF
1003 return 0;
1004}
1005
1aa9b957
JS
1006/*
1007 * Called after the VM is otherwise initialized, but just before adding it to
1008 * the vm_list.
1009 */
1010int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1011{
1012 return 0;
1013}
1014
1015/*
1016 * Called just after removing the VM from the vm_list, but before doing any
1017 * other destruction.
1018 */
1019void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1020{
1021}
1022
3165af73
PX
1023/*
1024 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1025 * be setup already, so we can create arch-specific debugfs entries under it.
1026 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1027 * a per-arch destroy interface is not needed.
1028 */
1029int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1030{
1031 return 0;
1032}
1033
e08b9637 1034static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 1035{
d89f5eff 1036 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
1037 int r = -ENOMEM;
1038 int i;
6aa8b732 1039
d89f5eff
JK
1040 if (!kvm)
1041 return ERR_PTR(-ENOMEM);
1042
531810ca 1043 KVM_MMU_LOCK_INIT(kvm);
f1f10076 1044 mmgrab(current->mm);
e9ad4ec8
PB
1045 kvm->mm = current->mm;
1046 kvm_eventfd_init(kvm);
1047 mutex_init(&kvm->lock);
1048 mutex_init(&kvm->irq_lock);
1049 mutex_init(&kvm->slots_lock);
b10a038e 1050 mutex_init(&kvm->slots_arch_lock);
52ac8b35
PB
1051 spin_lock_init(&kvm->mn_invalidate_lock);
1052 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1053
e9ad4ec8
PB
1054 INIT_LIST_HEAD(&kvm->devices);
1055
1e702d9a
AW
1056 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1057
8a44119a
PB
1058 if (init_srcu_struct(&kvm->srcu))
1059 goto out_err_no_srcu;
1060 if (init_srcu_struct(&kvm->irq_srcu))
1061 goto out_err_no_irq_srcu;
1062
e2d3fcaf 1063 refcount_set(&kvm->users_count, 1);
f481b069 1064 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 1065 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 1066
4bd518f1 1067 if (!slots)
a97b0e77 1068 goto out_err_no_arch_destroy_vm;
0e32958e 1069 /* Generations must be different for each address space. */
164bf7e5 1070 slots->generation = i;
4bd518f1 1071 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 1072 }
00f034a1 1073
e93f8a0f 1074 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1075 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1076 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1077 if (!kvm->buses[i])
a97b0e77 1078 goto out_err_no_arch_destroy_vm;
e93f8a0f 1079 }
e930bffe 1080
acd05785
DM
1081 kvm->max_halt_poll_ns = halt_poll_ns;
1082
e08b9637 1083 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1084 if (r)
a97b0e77 1085 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1086
1087 r = hardware_enable_all();
1088 if (r)
719d93cd 1089 goto out_err_no_disable;
10474ae8 1090
c77dcacb 1091#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 1092 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1093#endif
6aa8b732 1094
74b5c5bf 1095 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1096 if (r)
1097 goto out_err_no_mmu_notifier;
1098
1099 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
1100 if (r)
1101 goto out_err;
1102
0d9ce162 1103 mutex_lock(&kvm_lock);
5e58cfe4 1104 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1105 mutex_unlock(&kvm_lock);
d89f5eff 1106
2ecd9d29 1107 preempt_notifier_inc();
2fdef3a2 1108 kvm_init_pm_notifier(kvm);
2ecd9d29 1109
f17abe9a 1110 return kvm;
10474ae8
AG
1111
1112out_err:
1aa9b957
JS
1113#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1114 if (kvm->mmu_notifier.ops)
1115 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1116#endif
1117out_err_no_mmu_notifier:
10474ae8 1118 hardware_disable_all();
719d93cd 1119out_err_no_disable:
a97b0e77 1120 kvm_arch_destroy_vm(kvm);
a97b0e77 1121out_err_no_arch_destroy_vm:
e2d3fcaf 1122 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1123 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1124 kfree(kvm_get_bus(kvm, i));
f481b069 1125 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1126 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
1127 cleanup_srcu_struct(&kvm->irq_srcu);
1128out_err_no_irq_srcu:
1129 cleanup_srcu_struct(&kvm->srcu);
1130out_err_no_srcu:
d89f5eff 1131 kvm_arch_free_vm(kvm);
e9ad4ec8 1132 mmdrop(current->mm);
10474ae8 1133 return ERR_PTR(r);
f17abe9a
AK
1134}
1135
07f0a7bd
SW
1136static void kvm_destroy_devices(struct kvm *kvm)
1137{
e6e3b5a6 1138 struct kvm_device *dev, *tmp;
07f0a7bd 1139
a28ebea2
CD
1140 /*
1141 * We do not need to take the kvm->lock here, because nobody else
1142 * has a reference to the struct kvm at this point and therefore
1143 * cannot access the devices list anyhow.
1144 */
e6e3b5a6
GT
1145 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1146 list_del(&dev->vm_node);
07f0a7bd
SW
1147 dev->ops->destroy(dev);
1148 }
1149}
1150
f17abe9a
AK
1151static void kvm_destroy_vm(struct kvm *kvm)
1152{
e93f8a0f 1153 int i;
6d4e4c4f
AK
1154 struct mm_struct *mm = kvm->mm;
1155
2fdef3a2 1156 kvm_destroy_pm_notifier(kvm);
286de8f6 1157 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1158 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1159 kvm_arch_sync_events(kvm);
0d9ce162 1160 mutex_lock(&kvm_lock);
133de902 1161 list_del(&kvm->vm_list);
0d9ce162 1162 mutex_unlock(&kvm_lock);
1aa9b957
JS
1163 kvm_arch_pre_destroy_vm(kvm);
1164
399ec807 1165 kvm_free_irq_routing(kvm);
df630b8c 1166 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1167 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1168
4a12f951
CB
1169 if (bus)
1170 kvm_io_bus_destroy(bus);
df630b8c
PX
1171 kvm->buses[i] = NULL;
1172 }
980da6ce 1173 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1174#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
52ac8b35
PB
1176 /*
1177 * At this point, pending calls to invalidate_range_start()
1178 * have completed but no more MMU notifiers will run, so
1179 * mn_active_invalidate_count may remain unbalanced.
1180 * No threads can be waiting in install_new_memslots as the
1181 * last reference on KVM has been dropped, but freeing
1182 * memslots would deadlock without this manual intervention.
1183 */
1184 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1185 kvm->mn_active_invalidate_count = 0;
f00be0ca 1186#else
2df72e9b 1187 kvm_arch_flush_shadow_all(kvm);
5f94c174 1188#endif
d19a9cd2 1189 kvm_arch_destroy_vm(kvm);
07f0a7bd 1190 kvm_destroy_devices(kvm);
f481b069 1191 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1192 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 1193 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1194 cleanup_srcu_struct(&kvm->srcu);
1195 kvm_arch_free_vm(kvm);
2ecd9d29 1196 preempt_notifier_dec();
10474ae8 1197 hardware_disable_all();
6d4e4c4f 1198 mmdrop(mm);
f17abe9a
AK
1199}
1200
d39f13b0
IE
1201void kvm_get_kvm(struct kvm *kvm)
1202{
e3736c3e 1203 refcount_inc(&kvm->users_count);
d39f13b0
IE
1204}
1205EXPORT_SYMBOL_GPL(kvm_get_kvm);
1206
605c7130
PX
1207/*
1208 * Make sure the vm is not during destruction, which is a safe version of
1209 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1210 */
1211bool kvm_get_kvm_safe(struct kvm *kvm)
1212{
1213 return refcount_inc_not_zero(&kvm->users_count);
1214}
1215EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1216
d39f13b0
IE
1217void kvm_put_kvm(struct kvm *kvm)
1218{
e3736c3e 1219 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1220 kvm_destroy_vm(kvm);
1221}
1222EXPORT_SYMBOL_GPL(kvm_put_kvm);
1223
149487bd
SC
1224/*
1225 * Used to put a reference that was taken on behalf of an object associated
1226 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1227 * of the new file descriptor fails and the reference cannot be transferred to
1228 * its final owner. In such cases, the caller is still actively using @kvm and
1229 * will fail miserably if the refcount unexpectedly hits zero.
1230 */
1231void kvm_put_kvm_no_destroy(struct kvm *kvm)
1232{
1233 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1234}
1235EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1236
f17abe9a
AK
1237static int kvm_vm_release(struct inode *inode, struct file *filp)
1238{
1239 struct kvm *kvm = filp->private_data;
1240
721eecbf
GH
1241 kvm_irqfd_release(kvm);
1242
d39f13b0 1243 kvm_put_kvm(kvm);
6aa8b732
AK
1244 return 0;
1245}
1246
515a0127
TY
1247/*
1248 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1249 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1250 */
3c9bd400 1251static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1252{
515a0127 1253 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1254
b12ce36a 1255 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1256 if (!memslot->dirty_bitmap)
1257 return -ENOMEM;
1258
a36a57b1
TY
1259 return 0;
1260}
1261
bf3e05bc 1262/*
0577d1ab
SC
1263 * Delete a memslot by decrementing the number of used slots and shifting all
1264 * other entries in the array forward one spot.
bf3e05bc 1265 */
0577d1ab
SC
1266static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1267 struct kvm_memory_slot *memslot)
bf3e05bc 1268{
063584d4 1269 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 1270 int i;
f85e2cb5 1271
0577d1ab
SC
1272 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1273 return;
0e60b079 1274
0577d1ab
SC
1275 slots->used_slots--;
1276
87689270
DM
1277 if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1278 atomic_set(&slots->last_used_slot, 0);
0774a964 1279
0577d1ab 1280 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
1281 mslots[i] = mslots[i + 1];
1282 slots->id_to_index[mslots[i].id] = i;
7f379cff 1283 }
0577d1ab
SC
1284 mslots[i] = *memslot;
1285 slots->id_to_index[memslot->id] = -1;
1286}
1287
1288/*
1289 * "Insert" a new memslot by incrementing the number of used slots. Returns
1290 * the new slot's initial index into the memslots array.
1291 */
1292static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1293{
1294 return slots->used_slots++;
1295}
1296
1297/*
1298 * Move a changed memslot backwards in the array by shifting existing slots
1299 * with a higher GFN toward the front of the array. Note, the changed memslot
1300 * itself is not preserved in the array, i.e. not swapped at this time, only
1301 * its new index into the array is tracked. Returns the changed memslot's
1302 * current index into the memslots array.
1303 */
1304static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1305 struct kvm_memory_slot *memslot)
1306{
1307 struct kvm_memory_slot *mslots = slots->memslots;
1308 int i;
1309
1310 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1311 WARN_ON_ONCE(!slots->used_slots))
1312 return -1;
efbeec70
PB
1313
1314 /*
0577d1ab
SC
1315 * Move the target memslot backward in the array by shifting existing
1316 * memslots with a higher GFN (than the target memslot) towards the
1317 * front of the array.
efbeec70 1318 */
0577d1ab
SC
1319 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1320 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1321 break;
1322
1323 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 1324
0577d1ab
SC
1325 /* Shift the next memslot forward one and update its index. */
1326 mslots[i] = mslots[i + 1];
1327 slots->id_to_index[mslots[i].id] = i;
1328 }
1329 return i;
1330}
1331
1332/*
1333 * Move a changed memslot forwards in the array by shifting existing slots with
1334 * a lower GFN toward the back of the array. Note, the changed memslot itself
1335 * is not preserved in the array, i.e. not swapped at this time, only its new
1336 * index into the array is tracked. Returns the changed memslot's final index
1337 * into the memslots array.
1338 */
1339static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1340 struct kvm_memory_slot *memslot,
1341 int start)
1342{
1343 struct kvm_memory_slot *mslots = slots->memslots;
1344 int i;
1345
1346 for (i = start; i > 0; i--) {
1347 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1348 break;
1349
1350 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1351
1352 /* Shift the next memslot back one and update its index. */
1353 mslots[i] = mslots[i - 1];
1354 slots->id_to_index[mslots[i].id] = i;
1355 }
1356 return i;
1357}
1358
1359/*
1360 * Re-sort memslots based on their GFN to account for an added, deleted, or
1361 * moved memslot. Sorting memslots by GFN allows using a binary search during
1362 * memslot lookup.
1363 *
1364 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1365 * at memslots[0] has the highest GFN.
1366 *
1367 * The sorting algorithm takes advantage of having initially sorted memslots
1368 * and knowing the position of the changed memslot. Sorting is also optimized
1369 * by not swapping the updated memslot and instead only shifting other memslots
1370 * and tracking the new index for the update memslot. Only once its final
1371 * index is known is the updated memslot copied into its position in the array.
1372 *
1373 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1374 * the end of the array.
1375 *
1376 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1377 * end of the array and then it forward to its correct location.
1378 *
1379 * - When moving a memslot, the algorithm first moves the updated memslot
1380 * backward to handle the scenario where the memslot's GFN was changed to a
1381 * lower value. update_memslots() then falls through and runs the same flow
1382 * as creating a memslot to move the memslot forward to handle the scenario
1383 * where its GFN was changed to a higher value.
1384 *
1385 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1386 * historical reasons. Originally, invalid memslots where denoted by having
1387 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1388 * to the end of the array. The current algorithm uses dedicated logic to
1389 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1390 *
1391 * The other historical motiviation for highest->lowest was to improve the
1392 * performance of memslot lookup. KVM originally used a linear search starting
1393 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1394 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1395 * single memslot above the 4gb boundary. As the largest memslot is also the
1396 * most likely to be referenced, sorting it to the front of the array was
1397 * advantageous. The current binary search starts from the middle of the array
1398 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1399 */
1400static void update_memslots(struct kvm_memslots *slots,
1401 struct kvm_memory_slot *memslot,
1402 enum kvm_mr_change change)
1403{
1404 int i;
1405
1406 if (change == KVM_MR_DELETE) {
1407 kvm_memslot_delete(slots, memslot);
1408 } else {
1409 if (change == KVM_MR_CREATE)
1410 i = kvm_memslot_insert_back(slots);
1411 else
1412 i = kvm_memslot_move_backward(slots, memslot);
1413 i = kvm_memslot_move_forward(slots, memslot, i);
1414
1415 /*
1416 * Copy the memslot to its new position in memslots and update
1417 * its index accordingly.
1418 */
1419 slots->memslots[i] = *memslot;
1420 slots->id_to_index[memslot->id] = i;
1421 }
bf3e05bc
XG
1422}
1423
09170a49 1424static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1425{
4d8b81ab
XG
1426 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1427
0f8a4de3 1428#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1429 valid_flags |= KVM_MEM_READONLY;
1430#endif
1431
1432 if (mem->flags & ~valid_flags)
a50d64d6
XG
1433 return -EINVAL;
1434
1435 return 0;
1436}
1437
7ec4fb44 1438static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1439 int as_id, struct kvm_memslots *slots)
7ec4fb44 1440{
f481b069 1441 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1442 u64 gen = old_memslots->generation;
7ec4fb44 1443
361209e0
SC
1444 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1445 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1446
52ac8b35
PB
1447 /*
1448 * Do not store the new memslots while there are invalidations in
071064f1
PB
1449 * progress, otherwise the locking in invalidate_range_start and
1450 * invalidate_range_end will be unbalanced.
52ac8b35
PB
1451 */
1452 spin_lock(&kvm->mn_invalidate_lock);
1453 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1454 while (kvm->mn_active_invalidate_count) {
1455 set_current_state(TASK_UNINTERRUPTIBLE);
1456 spin_unlock(&kvm->mn_invalidate_lock);
1457 schedule();
1458 spin_lock(&kvm->mn_invalidate_lock);
1459 }
1460 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
f481b069 1461 rcu_assign_pointer(kvm->memslots[as_id], slots);
52ac8b35 1462 spin_unlock(&kvm->mn_invalidate_lock);
b10a038e
BG
1463
1464 /*
1465 * Acquired in kvm_set_memslot. Must be released before synchronize
1466 * SRCU below in order to avoid deadlock with another thread
1467 * acquiring the slots_arch_lock in an srcu critical section.
1468 */
1469 mutex_unlock(&kvm->slots_arch_lock);
1470
7ec4fb44 1471 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1472
ee3d1570 1473 /*
361209e0 1474 * Increment the new memslot generation a second time, dropping the
00116795 1475 * update in-progress flag and incrementing the generation based on
361209e0
SC
1476 * the number of address spaces. This provides a unique and easily
1477 * identifiable generation number while the memslots are in flux.
1478 */
1479 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1480
1481 /*
4bd518f1
PB
1482 * Generations must be unique even across address spaces. We do not need
1483 * a global counter for that, instead the generation space is evenly split
1484 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1485 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1486 * use generations 1, 3, 5, ...
ee3d1570 1487 */
164bf7e5 1488 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1489
15248258 1490 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1491
15248258 1492 slots->generation = gen;
e59dbe09
TY
1493
1494 return old_memslots;
7ec4fb44
GN
1495}
1496
ddc12f2a
BG
1497static size_t kvm_memslots_size(int slots)
1498{
1499 return sizeof(struct kvm_memslots) +
1500 (sizeof(struct kvm_memory_slot) * slots);
1501}
1502
1503static void kvm_copy_memslots(struct kvm_memslots *to,
1504 struct kvm_memslots *from)
1505{
1506 memcpy(to, from, kvm_memslots_size(from->used_slots));
1507}
1508
36947254
SC
1509/*
1510 * Note, at a minimum, the current number of used slots must be allocated, even
1511 * when deleting a memslot, as we need a complete duplicate of the memslots for
1512 * use when invalidating a memslot prior to deleting/moving the memslot.
1513 */
1514static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1515 enum kvm_mr_change change)
1516{
1517 struct kvm_memslots *slots;
ddc12f2a 1518 size_t new_size;
36947254
SC
1519
1520 if (change == KVM_MR_CREATE)
ddc12f2a 1521 new_size = kvm_memslots_size(old->used_slots + 1);
36947254 1522 else
ddc12f2a 1523 new_size = kvm_memslots_size(old->used_slots);
36947254
SC
1524
1525 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1526 if (likely(slots))
ddc12f2a 1527 kvm_copy_memslots(slots, old);
36947254
SC
1528
1529 return slots;
1530}
1531
cf47f50b
SC
1532static int kvm_set_memslot(struct kvm *kvm,
1533 const struct kvm_userspace_memory_region *mem,
9d4c197c 1534 struct kvm_memory_slot *old,
cf47f50b
SC
1535 struct kvm_memory_slot *new, int as_id,
1536 enum kvm_mr_change change)
1537{
1538 struct kvm_memory_slot *slot;
1539 struct kvm_memslots *slots;
1540 int r;
1541
b10a038e
BG
1542 /*
1543 * Released in install_new_memslots.
1544 *
1545 * Must be held from before the current memslots are copied until
1546 * after the new memslots are installed with rcu_assign_pointer,
1547 * then released before the synchronize srcu in install_new_memslots.
1548 *
1549 * When modifying memslots outside of the slots_lock, must be held
1550 * before reading the pointer to the current memslots until after all
1551 * changes to those memslots are complete.
1552 *
1553 * These rules ensure that installing new memslots does not lose
1554 * changes made to the previous memslots.
1555 */
1556 mutex_lock(&kvm->slots_arch_lock);
1557
36947254 1558 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
b10a038e
BG
1559 if (!slots) {
1560 mutex_unlock(&kvm->slots_arch_lock);
cf47f50b 1561 return -ENOMEM;
b10a038e 1562 }
cf47f50b
SC
1563
1564 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1565 /*
1566 * Note, the INVALID flag needs to be in the appropriate entry
1567 * in the freshly allocated memslots, not in @old or @new.
1568 */
1569 slot = id_to_memslot(slots, old->id);
1570 slot->flags |= KVM_MEMSLOT_INVALID;
1571
1572 /*
b10a038e
BG
1573 * We can re-use the memory from the old memslots.
1574 * It will be overwritten with a copy of the new memslots
1575 * after reacquiring the slots_arch_lock below.
cf47f50b
SC
1576 */
1577 slots = install_new_memslots(kvm, as_id, slots);
1578
1579 /* From this point no new shadow pages pointing to a deleted,
1580 * or moved, memslot will be created.
1581 *
1582 * validation of sp->gfn happens in:
1583 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1584 * - kvm_is_visible_gfn (mmu_check_root)
1585 */
1586 kvm_arch_flush_shadow_memslot(kvm, slot);
b10a038e
BG
1587
1588 /* Released in install_new_memslots. */
1589 mutex_lock(&kvm->slots_arch_lock);
1590
1591 /*
1592 * The arch-specific fields of the memslots could have changed
1593 * between releasing the slots_arch_lock in
1594 * install_new_memslots and here, so get a fresh copy of the
1595 * slots.
1596 */
1597 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
cf47f50b
SC
1598 }
1599
1600 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1601 if (r)
1602 goto out_slots;
1603
1604 update_memslots(slots, new, change);
1605 slots = install_new_memslots(kvm, as_id, slots);
1606
1607 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1608
1609 kvfree(slots);
1610 return 0;
1611
1612out_slots:
b10a038e
BG
1613 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1614 slot = id_to_memslot(slots, old->id);
1615 slot->flags &= ~KVM_MEMSLOT_INVALID;
cf47f50b 1616 slots = install_new_memslots(kvm, as_id, slots);
b10a038e
BG
1617 } else {
1618 mutex_unlock(&kvm->slots_arch_lock);
1619 }
cf47f50b
SC
1620 kvfree(slots);
1621 return r;
1622}
1623
5c0b4f3d
SC
1624static int kvm_delete_memslot(struct kvm *kvm,
1625 const struct kvm_userspace_memory_region *mem,
1626 struct kvm_memory_slot *old, int as_id)
1627{
1628 struct kvm_memory_slot new;
1629 int r;
1630
1631 if (!old->npages)
1632 return -EINVAL;
1633
1634 memset(&new, 0, sizeof(new));
1635 new.id = old->id;
9e9eb226
PX
1636 /*
1637 * This is only for debugging purpose; it should never be referenced
1638 * for a removed memslot.
1639 */
1640 new.as_id = as_id;
5c0b4f3d
SC
1641
1642 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1643 if (r)
1644 return r;
1645
e96c81ee 1646 kvm_free_memslot(kvm, old);
5c0b4f3d
SC
1647 return 0;
1648}
1649
6aa8b732
AK
1650/*
1651 * Allocate some memory and give it an address in the guest physical address
1652 * space.
1653 *
1654 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1655 *
02d5d55b 1656 * Must be called holding kvm->slots_lock for write.
6aa8b732 1657 */
f78e0e2e 1658int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1659 const struct kvm_userspace_memory_region *mem)
6aa8b732 1660{
6aa8b732 1661 struct kvm_memory_slot old, new;
163da372 1662 struct kvm_memory_slot *tmp;
f64c0398 1663 enum kvm_mr_change change;
163da372
SC
1664 int as_id, id;
1665 int r;
6aa8b732 1666
a50d64d6
XG
1667 r = check_memory_region_flags(mem);
1668 if (r)
71a4c30b 1669 return r;
a50d64d6 1670
f481b069
PB
1671 as_id = mem->slot >> 16;
1672 id = (u16)mem->slot;
1673
6aa8b732
AK
1674 /* General sanity checks */
1675 if (mem->memory_size & (PAGE_SIZE - 1))
71a4c30b 1676 return -EINVAL;
6aa8b732 1677 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1678 return -EINVAL;
fa3d315a 1679 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1680 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1681 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1682 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1683 mem->memory_size))
71a4c30b 1684 return -EINVAL;
f481b069 1685 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1686 return -EINVAL;
6aa8b732 1687 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1688 return -EINVAL;
6aa8b732 1689
5c0b4f3d
SC
1690 /*
1691 * Make a full copy of the old memslot, the pointer will become stale
1692 * when the memslots are re-sorted by update_memslots(), and the old
1693 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1694 * to free its resources and for arch specific behavior.
5c0b4f3d 1695 */
0577d1ab
SC
1696 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1697 if (tmp) {
1698 old = *tmp;
1699 tmp = NULL;
1700 } else {
1701 memset(&old, 0, sizeof(old));
1702 old.id = id;
1703 }
163da372 1704
5c0b4f3d
SC
1705 if (!mem->memory_size)
1706 return kvm_delete_memslot(kvm, mem, &old, as_id);
1707
9e9eb226 1708 new.as_id = as_id;
f481b069 1709 new.id = id;
163da372
SC
1710 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1711 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1712 new.flags = mem->flags;
414de7ab 1713 new.userspace_addr = mem->userspace_addr;
6aa8b732 1714
163da372
SC
1715 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1716 return -EINVAL;
1717
5c0b4f3d
SC
1718 if (!old.npages) {
1719 change = KVM_MR_CREATE;
163da372
SC
1720 new.dirty_bitmap = NULL;
1721 memset(&new.arch, 0, sizeof(new.arch));
5c0b4f3d
SC
1722 } else { /* Modify an existing slot. */
1723 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1724 (new.npages != old.npages) ||
5c0b4f3d 1725 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1726 return -EINVAL;
09170a49 1727
163da372 1728 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1729 change = KVM_MR_MOVE;
1730 else if (new.flags != old.flags)
1731 change = KVM_MR_FLAGS_ONLY;
1732 else /* Nothing to change. */
1733 return 0;
163da372
SC
1734
1735 /* Copy dirty_bitmap and arch from the current memslot. */
1736 new.dirty_bitmap = old.dirty_bitmap;
1737 memcpy(&new.arch, &old.arch, sizeof(new.arch));
09170a49 1738 }
6aa8b732 1739
f64c0398 1740 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1741 /* Check for overlaps */
163da372
SC
1742 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1743 if (tmp->id == id)
0a706bee 1744 continue;
163da372
SC
1745 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1746 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1747 return -EEXIST;
0a706bee 1748 }
6aa8b732 1749 }
6aa8b732 1750
414de7ab
SC
1751 /* Allocate/free page dirty bitmap as needed */
1752 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1753 new.dirty_bitmap = NULL;
044c59c4 1754 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
3c9bd400 1755 r = kvm_alloc_dirty_bitmap(&new);
71a4c30b
SC
1756 if (r)
1757 return r;
3c9bd400
JZ
1758
1759 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1760 bitmap_set(new.dirty_bitmap, 0, new.npages);
6aa8b732
AK
1761 }
1762
cf47f50b
SC
1763 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1764 if (r)
1765 goto out_bitmap;
82ce2c96 1766
5c0b4f3d
SC
1767 if (old.dirty_bitmap && !new.dirty_bitmap)
1768 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1769 return 0;
1770
bd0e96fd
SC
1771out_bitmap:
1772 if (new.dirty_bitmap && !old.dirty_bitmap)
1773 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1774 return r;
210c7c4d 1775}
f78e0e2e
SY
1776EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1777
1778int kvm_set_memory_region(struct kvm *kvm,
09170a49 1779 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1780{
1781 int r;
1782
79fac95e 1783 mutex_lock(&kvm->slots_lock);
47ae31e2 1784 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1785 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1786 return r;
1787}
210c7c4d
IE
1788EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1789
7940876e
SH
1790static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1791 struct kvm_userspace_memory_region *mem)
210c7c4d 1792{
f481b069 1793 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1794 return -EINVAL;
09170a49 1795
47ae31e2 1796 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1797}
1798
0dff0846 1799#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1800/**
1801 * kvm_get_dirty_log - get a snapshot of dirty pages
1802 * @kvm: pointer to kvm instance
1803 * @log: slot id and address to which we copy the log
1804 * @is_dirty: set to '1' if any dirty pages were found
1805 * @memslot: set to the associated memslot, always valid on success
1806 */
1807int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1808 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1809{
9f6b8029 1810 struct kvm_memslots *slots;
843574a3 1811 int i, as_id, id;
87bf6e7d 1812 unsigned long n;
6aa8b732
AK
1813 unsigned long any = 0;
1814
b2cc64c4
PX
1815 /* Dirty ring tracking is exclusive to dirty log tracking */
1816 if (kvm->dirty_ring_size)
1817 return -ENXIO;
1818
2a49f61d
SC
1819 *memslot = NULL;
1820 *is_dirty = 0;
1821
f481b069
PB
1822 as_id = log->slot >> 16;
1823 id = (u16)log->slot;
1824 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1825 return -EINVAL;
6aa8b732 1826
f481b069 1827 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1828 *memslot = id_to_memslot(slots, id);
0577d1ab 1829 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1830 return -ENOENT;
6aa8b732 1831
2a49f61d
SC
1832 kvm_arch_sync_dirty_log(kvm, *memslot);
1833
1834 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1835
cd1a4a98 1836 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1837 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1838
2a49f61d 1839 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1840 return -EFAULT;
6aa8b732 1841
5bb064dc
ZX
1842 if (any)
1843 *is_dirty = 1;
843574a3 1844 return 0;
6aa8b732 1845}
2ba9f0d8 1846EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1847
0dff0846 1848#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1849/**
b8b00220 1850 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1851 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1852 * @kvm: pointer to kvm instance
1853 * @log: slot id and address to which we copy the log
ba0513b5
MS
1854 *
1855 * We need to keep it in mind that VCPU threads can write to the bitmap
1856 * concurrently. So, to avoid losing track of dirty pages we keep the
1857 * following order:
1858 *
1859 * 1. Take a snapshot of the bit and clear it if needed.
1860 * 2. Write protect the corresponding page.
1861 * 3. Copy the snapshot to the userspace.
1862 * 4. Upon return caller flushes TLB's if needed.
1863 *
1864 * Between 2 and 4, the guest may write to the page using the remaining TLB
1865 * entry. This is not a problem because the page is reported dirty using
1866 * the snapshot taken before and step 4 ensures that writes done after
1867 * exiting to userspace will be logged for the next call.
1868 *
1869 */
0dff0846 1870static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1871{
9f6b8029 1872 struct kvm_memslots *slots;
ba0513b5 1873 struct kvm_memory_slot *memslot;
58d6db34 1874 int i, as_id, id;
ba0513b5
MS
1875 unsigned long n;
1876 unsigned long *dirty_bitmap;
1877 unsigned long *dirty_bitmap_buffer;
0dff0846 1878 bool flush;
ba0513b5 1879
b2cc64c4
PX
1880 /* Dirty ring tracking is exclusive to dirty log tracking */
1881 if (kvm->dirty_ring_size)
1882 return -ENXIO;
1883
f481b069
PB
1884 as_id = log->slot >> 16;
1885 id = (u16)log->slot;
1886 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1887 return -EINVAL;
ba0513b5 1888
f481b069
PB
1889 slots = __kvm_memslots(kvm, as_id);
1890 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1891 if (!memslot || !memslot->dirty_bitmap)
1892 return -ENOENT;
ba0513b5
MS
1893
1894 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1895
0dff0846
SC
1896 kvm_arch_sync_dirty_log(kvm, memslot);
1897
ba0513b5 1898 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1899 flush = false;
2a31b9db
PB
1900 if (kvm->manual_dirty_log_protect) {
1901 /*
1902 * Unlike kvm_get_dirty_log, we always return false in *flush,
1903 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1904 * is some code duplication between this function and
1905 * kvm_get_dirty_log, but hopefully all architecture
1906 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1907 * can be eliminated.
1908 */
1909 dirty_bitmap_buffer = dirty_bitmap;
1910 } else {
1911 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1912 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1913
531810ca 1914 KVM_MMU_LOCK(kvm);
2a31b9db
PB
1915 for (i = 0; i < n / sizeof(long); i++) {
1916 unsigned long mask;
1917 gfn_t offset;
ba0513b5 1918
2a31b9db
PB
1919 if (!dirty_bitmap[i])
1920 continue;
1921
0dff0846 1922 flush = true;
2a31b9db
PB
1923 mask = xchg(&dirty_bitmap[i], 0);
1924 dirty_bitmap_buffer[i] = mask;
1925
a67794ca
LT
1926 offset = i * BITS_PER_LONG;
1927 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1928 offset, mask);
2a31b9db 1929 }
531810ca 1930 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
1931 }
1932
0dff0846
SC
1933 if (flush)
1934 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1935
2a31b9db
PB
1936 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1937 return -EFAULT;
1938 return 0;
1939}
0dff0846
SC
1940
1941
1942/**
1943 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1944 * @kvm: kvm instance
1945 * @log: slot id and address to which we copy the log
1946 *
1947 * Steps 1-4 below provide general overview of dirty page logging. See
1948 * kvm_get_dirty_log_protect() function description for additional details.
1949 *
1950 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1951 * always flush the TLB (step 4) even if previous step failed and the dirty
1952 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1953 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1954 * writes will be marked dirty for next log read.
1955 *
1956 * 1. Take a snapshot of the bit and clear it if needed.
1957 * 2. Write protect the corresponding page.
1958 * 3. Copy the snapshot to the userspace.
1959 * 4. Flush TLB's if needed.
1960 */
1961static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1962 struct kvm_dirty_log *log)
1963{
1964 int r;
1965
1966 mutex_lock(&kvm->slots_lock);
1967
1968 r = kvm_get_dirty_log_protect(kvm, log);
1969
1970 mutex_unlock(&kvm->slots_lock);
1971 return r;
1972}
2a31b9db
PB
1973
1974/**
1975 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1976 * and reenable dirty page tracking for the corresponding pages.
1977 * @kvm: pointer to kvm instance
1978 * @log: slot id and address from which to fetch the bitmap of dirty pages
1979 */
0dff0846
SC
1980static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1981 struct kvm_clear_dirty_log *log)
2a31b9db
PB
1982{
1983 struct kvm_memslots *slots;
1984 struct kvm_memory_slot *memslot;
98938aa8 1985 int as_id, id;
2a31b9db 1986 gfn_t offset;
98938aa8 1987 unsigned long i, n;
2a31b9db
PB
1988 unsigned long *dirty_bitmap;
1989 unsigned long *dirty_bitmap_buffer;
0dff0846 1990 bool flush;
2a31b9db 1991
b2cc64c4
PX
1992 /* Dirty ring tracking is exclusive to dirty log tracking */
1993 if (kvm->dirty_ring_size)
1994 return -ENXIO;
1995
2a31b9db
PB
1996 as_id = log->slot >> 16;
1997 id = (u16)log->slot;
1998 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1999 return -EINVAL;
2000
76d58e0f 2001 if (log->first_page & 63)
2a31b9db
PB
2002 return -EINVAL;
2003
2004 slots = __kvm_memslots(kvm, as_id);
2005 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2006 if (!memslot || !memslot->dirty_bitmap)
2007 return -ENOENT;
2a31b9db
PB
2008
2009 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 2010
4ddc9204 2011 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
2012
2013 if (log->first_page > memslot->npages ||
76d58e0f
PB
2014 log->num_pages > memslot->npages - log->first_page ||
2015 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2016 return -EINVAL;
98938aa8 2017
0dff0846
SC
2018 kvm_arch_sync_dirty_log(kvm, memslot);
2019
2020 flush = false;
2a31b9db
PB
2021 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2022 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2023 return -EFAULT;
ba0513b5 2024
531810ca 2025 KVM_MMU_LOCK(kvm);
53eac7a8
PX
2026 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2027 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
2028 i++, offset += BITS_PER_LONG) {
2029 unsigned long mask = *dirty_bitmap_buffer++;
2030 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2031 if (!mask)
ba0513b5
MS
2032 continue;
2033
2a31b9db 2034 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 2035
2a31b9db
PB
2036 /*
2037 * mask contains the bits that really have been cleared. This
2038 * never includes any bits beyond the length of the memslot (if
2039 * the length is not aligned to 64 pages), therefore it is not
2040 * a problem if userspace sets them in log->dirty_bitmap.
2041 */
58d2930f 2042 if (mask) {
0dff0846 2043 flush = true;
58d2930f
TY
2044 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2045 offset, mask);
2046 }
ba0513b5 2047 }
531810ca 2048 KVM_MMU_UNLOCK(kvm);
2a31b9db 2049
0dff0846
SC
2050 if (flush)
2051 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2052
58d6db34 2053 return 0;
ba0513b5 2054}
0dff0846
SC
2055
2056static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2057 struct kvm_clear_dirty_log *log)
2058{
2059 int r;
2060
2061 mutex_lock(&kvm->slots_lock);
2062
2063 r = kvm_clear_dirty_log_protect(kvm, log);
2064
2065 mutex_unlock(&kvm->slots_lock);
2066 return r;
2067}
2068#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2069
49c7754c
GN
2070struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2071{
2072 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2073}
a1f4d395 2074EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 2075
8e73485c
PB
2076struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2077{
fe22ed82
DM
2078 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2079 struct kvm_memory_slot *slot;
2080 int slot_index;
2081
2082 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2083 if (slot)
2084 return slot;
2085
2086 /*
2087 * Fall back to searching all memslots. We purposely use
2088 * search_memslots() instead of __gfn_to_memslot() to avoid
2089 * thrashing the VM-wide last_used_index in kvm_memslots.
2090 */
2091 slot = search_memslots(slots, gfn, &slot_index);
2092 if (slot) {
2093 vcpu->last_used_slot = slot_index;
2094 return slot;
2095 }
2096
2097 return NULL;
8e73485c 2098}
e72436bc 2099EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
8e73485c 2100
33e94154 2101bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 2102{
bf3e05bc 2103 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 2104
c36b7150 2105 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
2106}
2107EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2108
995decb6
VK
2109bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2110{
2111 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2112
2113 return kvm_is_visible_memslot(memslot);
2114}
2115EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2116
f9b84e19 2117unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
2118{
2119 struct vm_area_struct *vma;
2120 unsigned long addr, size;
2121
2122 size = PAGE_SIZE;
2123
42cde48b 2124 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
2125 if (kvm_is_error_hva(addr))
2126 return PAGE_SIZE;
2127
d8ed45c5 2128 mmap_read_lock(current->mm);
8f0b1ab6
JR
2129 vma = find_vma(current->mm, addr);
2130 if (!vma)
2131 goto out;
2132
2133 size = vma_kernel_pagesize(vma);
2134
2135out:
d8ed45c5 2136 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2137
2138 return size;
2139}
2140
4d8b81ab
XG
2141static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2142{
2143 return slot->flags & KVM_MEM_READONLY;
2144}
2145
4d8b81ab
XG
2146static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2147 gfn_t *nr_pages, bool write)
539cb660 2148{
bc6678a3 2149 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2150 return KVM_HVA_ERR_BAD;
48987781 2151
4d8b81ab
XG
2152 if (memslot_is_readonly(slot) && write)
2153 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2154
2155 if (nr_pages)
2156 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2157
4d8b81ab 2158 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2159}
48987781 2160
4d8b81ab
XG
2161static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2162 gfn_t *nr_pages)
2163{
2164 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2165}
48987781 2166
4d8b81ab 2167unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2168 gfn_t gfn)
4d8b81ab
XG
2169{
2170 return gfn_to_hva_many(slot, gfn, NULL);
2171}
2172EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2173
48987781
XG
2174unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2175{
49c7754c 2176 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2177}
0d150298 2178EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2179
8e73485c
PB
2180unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2181{
2182 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2183}
2184EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2185
86ab8cff 2186/*
970c0d4b
WY
2187 * Return the hva of a @gfn and the R/W attribute if possible.
2188 *
2189 * @slot: the kvm_memory_slot which contains @gfn
2190 * @gfn: the gfn to be translated
2191 * @writable: used to return the read/write attribute of the @slot if the hva
2192 * is valid and @writable is not NULL
86ab8cff 2193 */
64d83126
CD
2194unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2195 gfn_t gfn, bool *writable)
86ab8cff 2196{
a2ac07fe
GN
2197 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2198
2199 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2200 *writable = !memslot_is_readonly(slot);
2201
a2ac07fe 2202 return hva;
86ab8cff
XG
2203}
2204
64d83126
CD
2205unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2206{
2207 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2208
2209 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2210}
2211
8e73485c
PB
2212unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2213{
2214 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2215
2216 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2217}
2218
fafc3dba
HY
2219static inline int check_user_page_hwpoison(unsigned long addr)
2220{
0d731759 2221 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2222
0d731759 2223 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
2224 return rc == -EHWPOISON;
2225}
2226
2fc84311 2227/*
b9b33da2
PB
2228 * The fast path to get the writable pfn which will be stored in @pfn,
2229 * true indicates success, otherwise false is returned. It's also the
311497e0 2230 * only part that runs if we can in atomic context.
2fc84311 2231 */
b9b33da2
PB
2232static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2233 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2234{
8d4e1288 2235 struct page *page[1];
954bbbc2 2236
12ce13fe
XG
2237 /*
2238 * Fast pin a writable pfn only if it is a write fault request
2239 * or the caller allows to map a writable pfn for a read fault
2240 * request.
2241 */
2242 if (!(write_fault || writable))
2243 return false;
612819c3 2244
dadbb612 2245 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2246 *pfn = page_to_pfn(page[0]);
612819c3 2247
2fc84311
XG
2248 if (writable)
2249 *writable = true;
2250 return true;
2251 }
af585b92 2252
2fc84311
XG
2253 return false;
2254}
612819c3 2255
2fc84311
XG
2256/*
2257 * The slow path to get the pfn of the specified host virtual address,
2258 * 1 indicates success, -errno is returned if error is detected.
2259 */
2260static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 2261 bool *writable, kvm_pfn_t *pfn)
2fc84311 2262{
ce53053c
AV
2263 unsigned int flags = FOLL_HWPOISON;
2264 struct page *page;
2fc84311 2265 int npages = 0;
612819c3 2266
2fc84311
XG
2267 might_sleep();
2268
2269 if (writable)
2270 *writable = write_fault;
2271
ce53053c
AV
2272 if (write_fault)
2273 flags |= FOLL_WRITE;
2274 if (async)
2275 flags |= FOLL_NOWAIT;
d4944b0e 2276
ce53053c 2277 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2278 if (npages != 1)
2279 return npages;
2280
2281 /* map read fault as writable if possible */
12ce13fe 2282 if (unlikely(!write_fault) && writable) {
ce53053c 2283 struct page *wpage;
2fc84311 2284
dadbb612 2285 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2286 *writable = true;
ce53053c
AV
2287 put_page(page);
2288 page = wpage;
612819c3 2289 }
887c08ac 2290 }
ce53053c 2291 *pfn = page_to_pfn(page);
2fc84311
XG
2292 return npages;
2293}
539cb660 2294
4d8b81ab
XG
2295static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2296{
2297 if (unlikely(!(vma->vm_flags & VM_READ)))
2298 return false;
2e2e3738 2299
4d8b81ab
XG
2300 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2301 return false;
887c08ac 2302
4d8b81ab
XG
2303 return true;
2304}
bf998156 2305
f8be156b
NP
2306static int kvm_try_get_pfn(kvm_pfn_t pfn)
2307{
2308 if (kvm_is_reserved_pfn(pfn))
2309 return 1;
2310 return get_page_unless_zero(pfn_to_page(pfn));
2311}
2312
92176a8e
PB
2313static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2314 unsigned long addr, bool *async,
a340b3e2
KA
2315 bool write_fault, bool *writable,
2316 kvm_pfn_t *p_pfn)
92176a8e 2317{
a9545779 2318 kvm_pfn_t pfn;
bd2fae8d
PB
2319 pte_t *ptep;
2320 spinlock_t *ptl;
add6a0cd
PB
2321 int r;
2322
9fd6dad1 2323 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2324 if (r) {
2325 /*
2326 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2327 * not call the fault handler, so do it here.
2328 */
2329 bool unlocked = false;
64019a2e 2330 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2331 (write_fault ? FAULT_FLAG_WRITE : 0),
2332 &unlocked);
a8387d0b
PB
2333 if (unlocked)
2334 return -EAGAIN;
add6a0cd
PB
2335 if (r)
2336 return r;
2337
9fd6dad1 2338 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2339 if (r)
2340 return r;
bd2fae8d 2341 }
add6a0cd 2342
bd2fae8d
PB
2343 if (write_fault && !pte_write(*ptep)) {
2344 pfn = KVM_PFN_ERR_RO_FAULT;
2345 goto out;
add6a0cd
PB
2346 }
2347
a340b3e2 2348 if (writable)
bd2fae8d
PB
2349 *writable = pte_write(*ptep);
2350 pfn = pte_pfn(*ptep);
add6a0cd
PB
2351
2352 /*
2353 * Get a reference here because callers of *hva_to_pfn* and
2354 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2355 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
36c3ce6c 2356 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
add6a0cd
PB
2357 * simply do nothing for reserved pfns.
2358 *
2359 * Whoever called remap_pfn_range is also going to call e.g.
2360 * unmap_mapping_range before the underlying pages are freed,
2361 * causing a call to our MMU notifier.
f8be156b
NP
2362 *
2363 * Certain IO or PFNMAP mappings can be backed with valid
2364 * struct pages, but be allocated without refcounting e.g.,
2365 * tail pages of non-compound higher order allocations, which
2366 * would then underflow the refcount when the caller does the
2367 * required put_page. Don't allow those pages here.
add6a0cd 2368 */
f8be156b
NP
2369 if (!kvm_try_get_pfn(pfn))
2370 r = -EFAULT;
add6a0cd 2371
bd2fae8d
PB
2372out:
2373 pte_unmap_unlock(ptep, ptl);
add6a0cd 2374 *p_pfn = pfn;
f8be156b
NP
2375
2376 return r;
92176a8e
PB
2377}
2378
12ce13fe
XG
2379/*
2380 * Pin guest page in memory and return its pfn.
2381 * @addr: host virtual address which maps memory to the guest
2382 * @atomic: whether this function can sleep
2383 * @async: whether this function need to wait IO complete if the
2384 * host page is not in the memory
2385 * @write_fault: whether we should get a writable host page
2386 * @writable: whether it allows to map a writable host page for !@write_fault
2387 *
2388 * The function will map a writable host page for these two cases:
2389 * 1): @write_fault = true
2390 * 2): @write_fault = false && @writable, @writable will tell the caller
2391 * whether the mapping is writable.
2392 */
ba049e93 2393static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
2394 bool write_fault, bool *writable)
2395{
2396 struct vm_area_struct *vma;
ba049e93 2397 kvm_pfn_t pfn = 0;
92176a8e 2398 int npages, r;
2e2e3738 2399
2fc84311
XG
2400 /* we can do it either atomically or asynchronously, not both */
2401 BUG_ON(atomic && async);
8d4e1288 2402
b9b33da2 2403 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2404 return pfn;
2405
2406 if (atomic)
2407 return KVM_PFN_ERR_FAULT;
2408
2409 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2410 if (npages == 1)
2411 return pfn;
8d4e1288 2412
d8ed45c5 2413 mmap_read_lock(current->mm);
2fc84311
XG
2414 if (npages == -EHWPOISON ||
2415 (!async && check_user_page_hwpoison(addr))) {
2416 pfn = KVM_PFN_ERR_HWPOISON;
2417 goto exit;
2418 }
2419
a8387d0b 2420retry:
fc98c03b 2421 vma = vma_lookup(current->mm, addr);
2fc84311
XG
2422
2423 if (vma == NULL)
2424 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2425 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 2426 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
a8387d0b
PB
2427 if (r == -EAGAIN)
2428 goto retry;
92176a8e
PB
2429 if (r < 0)
2430 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2431 } else {
4d8b81ab 2432 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2433 *async = true;
2434 pfn = KVM_PFN_ERR_FAULT;
2435 }
2436exit:
d8ed45c5 2437 mmap_read_unlock(current->mm);
2e2e3738 2438 return pfn;
35149e21
AL
2439}
2440
ba049e93
DW
2441kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2442 bool atomic, bool *async, bool write_fault,
4a42d848 2443 bool *writable, hva_t *hva)
887c08ac 2444{
4d8b81ab
XG
2445 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2446
4a42d848
DS
2447 if (hva)
2448 *hva = addr;
2449
b2740d35
PB
2450 if (addr == KVM_HVA_ERR_RO_BAD) {
2451 if (writable)
2452 *writable = false;
4d8b81ab 2453 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2454 }
4d8b81ab 2455
b2740d35
PB
2456 if (kvm_is_error_hva(addr)) {
2457 if (writable)
2458 *writable = false;
81c52c56 2459 return KVM_PFN_NOSLOT;
b2740d35 2460 }
4d8b81ab
XG
2461
2462 /* Do not map writable pfn in the readonly memslot. */
2463 if (writable && memslot_is_readonly(slot)) {
2464 *writable = false;
2465 writable = NULL;
2466 }
2467
2468 return hva_to_pfn(addr, atomic, async, write_fault,
2469 writable);
887c08ac 2470}
3520469d 2471EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2472
ba049e93 2473kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2474 bool *writable)
2475{
e37afc6e 2476 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
4a42d848 2477 write_fault, writable, NULL);
612819c3
MT
2478}
2479EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2480
ba049e93 2481kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2482{
4a42d848 2483 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
506f0d6f 2484}
e37afc6e 2485EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2486
ba049e93 2487kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2488{
4a42d848 2489 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
506f0d6f 2490}
037d92dc 2491EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2492
ba049e93 2493kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2494{
2495 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2496}
2497EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2498
ba049e93 2499kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2500{
2501 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2502}
2503EXPORT_SYMBOL_GPL(gfn_to_pfn);
2504
ba049e93 2505kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2506{
2507 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2508}
2509EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2510
d9ef13c2
PB
2511int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2512 struct page **pages, int nr_pages)
48987781
XG
2513{
2514 unsigned long addr;
076b925d 2515 gfn_t entry = 0;
48987781 2516
d9ef13c2 2517 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2518 if (kvm_is_error_hva(addr))
2519 return -1;
2520
2521 if (entry < nr_pages)
2522 return 0;
2523
dadbb612 2524 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2525}
2526EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2527
ba049e93 2528static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 2529{
81c52c56 2530 if (is_error_noslot_pfn(pfn))
cb9aaa30 2531 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2532
bf4bea8e 2533 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 2534 WARN_ON(1);
6cede2e6 2535 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2536 }
a2766325
XG
2537
2538 return pfn_to_page(pfn);
2539}
2540
35149e21
AL
2541struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2542{
ba049e93 2543 kvm_pfn_t pfn;
2e2e3738
AL
2544
2545 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2546
a2766325 2547 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2548}
2549EXPORT_SYMBOL_GPL(gfn_to_page);
2550
91724814
BO
2551void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2552{
2553 if (pfn == 0)
2554 return;
2555
2556 if (cache)
2557 cache->pfn = cache->gfn = 0;
2558
2559 if (dirty)
2560 kvm_release_pfn_dirty(pfn);
2561 else
2562 kvm_release_pfn_clean(pfn);
2563}
2564
2565static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2566 struct gfn_to_pfn_cache *cache, u64 gen)
2567{
2568 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2569
2570 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2571 cache->gfn = gfn;
2572 cache->dirty = false;
2573 cache->generation = gen;
2574}
2575
1eff70a9 2576static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
2577 struct kvm_host_map *map,
2578 struct gfn_to_pfn_cache *cache,
2579 bool atomic)
e45adf66
KA
2580{
2581 kvm_pfn_t pfn;
2582 void *hva = NULL;
2583 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 2584 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 2585 u64 gen = slots->generation;
e45adf66
KA
2586
2587 if (!map)
2588 return -EINVAL;
2589
91724814
BO
2590 if (cache) {
2591 if (!cache->pfn || cache->gfn != gfn ||
2592 cache->generation != gen) {
2593 if (atomic)
2594 return -EAGAIN;
2595 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2596 }
2597 pfn = cache->pfn;
2598 } else {
2599 if (atomic)
2600 return -EAGAIN;
2601 pfn = gfn_to_pfn_memslot(slot, gfn);
2602 }
e45adf66
KA
2603 if (is_error_noslot_pfn(pfn))
2604 return -EINVAL;
2605
2606 if (pfn_valid(pfn)) {
2607 page = pfn_to_page(pfn);
91724814
BO
2608 if (atomic)
2609 hva = kmap_atomic(page);
2610 else
2611 hva = kmap(page);
d30b214d 2612#ifdef CONFIG_HAS_IOMEM
91724814 2613 } else if (!atomic) {
e45adf66 2614 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
2615 } else {
2616 return -EINVAL;
d30b214d 2617#endif
e45adf66
KA
2618 }
2619
2620 if (!hva)
2621 return -EFAULT;
2622
2623 map->page = page;
2624 map->hva = hva;
2625 map->pfn = pfn;
2626 map->gfn = gfn;
2627
2628 return 0;
2629}
2630
91724814
BO
2631int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2632 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 2633{
91724814
BO
2634 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2635 cache, atomic);
1eff70a9
BO
2636}
2637EXPORT_SYMBOL_GPL(kvm_map_gfn);
2638
e45adf66
KA
2639int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2640{
91724814
BO
2641 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2642 NULL, false);
e45adf66
KA
2643}
2644EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2645
28bd726a
PX
2646static void __kvm_unmap_gfn(struct kvm *kvm,
2647 struct kvm_memory_slot *memslot,
91724814
BO
2648 struct kvm_host_map *map,
2649 struct gfn_to_pfn_cache *cache,
2650 bool dirty, bool atomic)
e45adf66
KA
2651{
2652 if (!map)
2653 return;
2654
2655 if (!map->hva)
2656 return;
2657
91724814
BO
2658 if (map->page != KVM_UNMAPPED_PAGE) {
2659 if (atomic)
2660 kunmap_atomic(map->hva);
2661 else
2662 kunmap(map->page);
2663 }
eb1f2f38 2664#ifdef CONFIG_HAS_IOMEM
91724814 2665 else if (!atomic)
e45adf66 2666 memunmap(map->hva);
91724814
BO
2667 else
2668 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 2669#endif
e45adf66 2670
91724814 2671 if (dirty)
28bd726a 2672 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
91724814
BO
2673
2674 if (cache)
2675 cache->dirty |= dirty;
2676 else
2677 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
2678
2679 map->hva = NULL;
2680 map->page = NULL;
2681}
1eff70a9 2682
91724814
BO
2683int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2684 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 2685{
28bd726a 2686 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
91724814 2687 cache, dirty, atomic);
1eff70a9
BO
2688 return 0;
2689}
2690EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2691
2692void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2693{
28bd726a
PX
2694 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2695 map, NULL, dirty, false);
1eff70a9 2696}
e45adf66
KA
2697EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2698
8e73485c
PB
2699struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2700{
ba049e93 2701 kvm_pfn_t pfn;
8e73485c
PB
2702
2703 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2704
2705 return kvm_pfn_to_page(pfn);
2706}
2707EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2708
b4231d61
IE
2709void kvm_release_page_clean(struct page *page)
2710{
32cad84f
XG
2711 WARN_ON(is_error_page(page));
2712
35149e21 2713 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2714}
2715EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2716
ba049e93 2717void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2718{
bf4bea8e 2719 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2720 put_page(pfn_to_page(pfn));
35149e21
AL
2721}
2722EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2723
b4231d61 2724void kvm_release_page_dirty(struct page *page)
8a7ae055 2725{
a2766325
XG
2726 WARN_ON(is_error_page(page));
2727
35149e21
AL
2728 kvm_release_pfn_dirty(page_to_pfn(page));
2729}
2730EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2731
f7a6509f 2732void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2733{
2734 kvm_set_pfn_dirty(pfn);
2735 kvm_release_pfn_clean(pfn);
2736}
f7a6509f 2737EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2738
ba049e93 2739void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2740{
d29c03a5
ML
2741 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2742 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2743}
35149e21
AL
2744EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2745
ba049e93 2746void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2747{
a78986aa 2748 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2749 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2750}
2751EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2752
195aefde
IE
2753static int next_segment(unsigned long len, int offset)
2754{
2755 if (len > PAGE_SIZE - offset)
2756 return PAGE_SIZE - offset;
2757 else
2758 return len;
2759}
2760
8e73485c
PB
2761static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2762 void *data, int offset, int len)
195aefde 2763{
e0506bcb
IE
2764 int r;
2765 unsigned long addr;
195aefde 2766
8e73485c 2767 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2768 if (kvm_is_error_hva(addr))
2769 return -EFAULT;
3180a7fc 2770 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2771 if (r)
195aefde 2772 return -EFAULT;
195aefde
IE
2773 return 0;
2774}
8e73485c
PB
2775
2776int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2777 int len)
2778{
2779 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2780
2781 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2782}
195aefde
IE
2783EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2784
8e73485c
PB
2785int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2786 int offset, int len)
2787{
2788 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2789
2790 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2791}
2792EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2793
195aefde
IE
2794int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2795{
2796 gfn_t gfn = gpa >> PAGE_SHIFT;
2797 int seg;
2798 int offset = offset_in_page(gpa);
2799 int ret;
2800
2801 while ((seg = next_segment(len, offset)) != 0) {
2802 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2803 if (ret < 0)
2804 return ret;
2805 offset = 0;
2806 len -= seg;
2807 data += seg;
2808 ++gfn;
2809 }
2810 return 0;
2811}
2812EXPORT_SYMBOL_GPL(kvm_read_guest);
2813
8e73485c 2814int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2815{
7ec54588 2816 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2817 int seg;
7ec54588 2818 int offset = offset_in_page(gpa);
8e73485c
PB
2819 int ret;
2820
2821 while ((seg = next_segment(len, offset)) != 0) {
2822 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2823 if (ret < 0)
2824 return ret;
2825 offset = 0;
2826 len -= seg;
2827 data += seg;
2828 ++gfn;
2829 }
2830 return 0;
2831}
2832EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2833
8e73485c
PB
2834static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2835 void *data, int offset, unsigned long len)
2836{
2837 int r;
2838 unsigned long addr;
2839
2840 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2841 if (kvm_is_error_hva(addr))
2842 return -EFAULT;
0aac03f0 2843 pagefault_disable();
3180a7fc 2844 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2845 pagefault_enable();
7ec54588
MT
2846 if (r)
2847 return -EFAULT;
2848 return 0;
2849}
7ec54588 2850
8e73485c
PB
2851int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2852 void *data, unsigned long len)
2853{
2854 gfn_t gfn = gpa >> PAGE_SHIFT;
2855 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2856 int offset = offset_in_page(gpa);
2857
2858 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2859}
2860EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2861
28bd726a
PX
2862static int __kvm_write_guest_page(struct kvm *kvm,
2863 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 2864 const void *data, int offset, int len)
195aefde 2865{
e0506bcb
IE
2866 int r;
2867 unsigned long addr;
195aefde 2868
251eb841 2869 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2870 if (kvm_is_error_hva(addr))
2871 return -EFAULT;
8b0cedff 2872 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2873 if (r)
195aefde 2874 return -EFAULT;
28bd726a 2875 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
2876 return 0;
2877}
8e73485c
PB
2878
2879int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2880 const void *data, int offset, int len)
2881{
2882 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2883
28bd726a 2884 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 2885}
195aefde
IE
2886EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2887
8e73485c
PB
2888int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2889 const void *data, int offset, int len)
2890{
2891 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2892
28bd726a 2893 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
2894}
2895EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2896
195aefde
IE
2897int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2898 unsigned long len)
2899{
2900 gfn_t gfn = gpa >> PAGE_SHIFT;
2901 int seg;
2902 int offset = offset_in_page(gpa);
2903 int ret;
2904
2905 while ((seg = next_segment(len, offset)) != 0) {
2906 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2907 if (ret < 0)
2908 return ret;
2909 offset = 0;
2910 len -= seg;
2911 data += seg;
2912 ++gfn;
2913 }
2914 return 0;
2915}
ff651cb6 2916EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2917
8e73485c
PB
2918int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2919 unsigned long len)
2920{
2921 gfn_t gfn = gpa >> PAGE_SHIFT;
2922 int seg;
2923 int offset = offset_in_page(gpa);
2924 int ret;
2925
2926 while ((seg = next_segment(len, offset)) != 0) {
2927 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2928 if (ret < 0)
2929 return ret;
2930 offset = 0;
2931 len -= seg;
2932 data += seg;
2933 ++gfn;
2934 }
2935 return 0;
2936}
2937EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2938
5a2d4365
PB
2939static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2940 struct gfn_to_hva_cache *ghc,
2941 gpa_t gpa, unsigned long len)
49c7754c 2942{
49c7754c 2943 int offset = offset_in_page(gpa);
8f964525
AH
2944 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2945 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2946 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2947 gfn_t nr_pages_avail;
49c7754c 2948
6ad1e29f 2949 /* Update ghc->generation before performing any error checks. */
49c7754c 2950 ghc->generation = slots->generation;
6ad1e29f
SC
2951
2952 if (start_gfn > end_gfn) {
2953 ghc->hva = KVM_HVA_ERR_BAD;
2954 return -EINVAL;
2955 }
f1b9dd5e
JM
2956
2957 /*
2958 * If the requested region crosses two memslots, we still
2959 * verify that the entire region is valid here.
2960 */
6ad1e29f 2961 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2962 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2963 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2964 &nr_pages_avail);
2965 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2966 return -EFAULT;
f1b9dd5e
JM
2967 }
2968
2969 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2970 if (nr_pages_needed == 1)
49c7754c 2971 ghc->hva += offset;
f1b9dd5e 2972 else
8f964525 2973 ghc->memslot = NULL;
f1b9dd5e 2974
6ad1e29f
SC
2975 ghc->gpa = gpa;
2976 ghc->len = len;
2977 return 0;
49c7754c 2978}
5a2d4365 2979
4e335d9e 2980int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2981 gpa_t gpa, unsigned long len)
2982{
4e335d9e 2983 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2984 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2985}
4e335d9e 2986EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2987
4e335d9e 2988int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2989 void *data, unsigned int offset,
2990 unsigned long len)
49c7754c 2991{
4e335d9e 2992 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2993 int r;
4ec6e863 2994 gpa_t gpa = ghc->gpa + offset;
49c7754c 2995
4ec6e863 2996 BUG_ON(len + offset > ghc->len);
8f964525 2997
dc9ce71e
SC
2998 if (slots->generation != ghc->generation) {
2999 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3000 return -EFAULT;
3001 }
8f964525 3002
49c7754c
GN
3003 if (kvm_is_error_hva(ghc->hva))
3004 return -EFAULT;
3005
fcfbc617
SC
3006 if (unlikely(!ghc->memslot))
3007 return kvm_write_guest(kvm, gpa, data, len);
3008
4ec6e863 3009 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
3010 if (r)
3011 return -EFAULT;
28bd726a 3012 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
3013
3014 return 0;
3015}
4e335d9e 3016EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 3017
4e335d9e
PB
3018int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3019 void *data, unsigned long len)
4ec6e863 3020{
4e335d9e 3021 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 3022}
4e335d9e 3023EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 3024
0958f0ce
VK
3025int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3026 void *data, unsigned int offset,
3027 unsigned long len)
e03b644f 3028{
4e335d9e 3029 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 3030 int r;
0958f0ce 3031 gpa_t gpa = ghc->gpa + offset;
e03b644f 3032
0958f0ce 3033 BUG_ON(len + offset > ghc->len);
8f964525 3034
dc9ce71e
SC
3035 if (slots->generation != ghc->generation) {
3036 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3037 return -EFAULT;
3038 }
8f964525 3039
e03b644f
GN
3040 if (kvm_is_error_hva(ghc->hva))
3041 return -EFAULT;
3042
fcfbc617 3043 if (unlikely(!ghc->memslot))
0958f0ce 3044 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 3045
0958f0ce 3046 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
3047 if (r)
3048 return -EFAULT;
3049
3050 return 0;
3051}
0958f0ce
VK
3052EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3053
3054int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3055 void *data, unsigned long len)
3056{
3057 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3058}
4e335d9e 3059EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 3060
195aefde
IE
3061int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3062{
2f541442 3063 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
3064 gfn_t gfn = gpa >> PAGE_SHIFT;
3065 int seg;
3066 int offset = offset_in_page(gpa);
3067 int ret;
3068
bfda0e84 3069 while ((seg = next_segment(len, offset)) != 0) {
2f541442 3070 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
3071 if (ret < 0)
3072 return ret;
3073 offset = 0;
3074 len -= seg;
3075 ++gfn;
3076 }
3077 return 0;
3078}
3079EXPORT_SYMBOL_GPL(kvm_clear_guest);
3080
28bd726a
PX
3081void mark_page_dirty_in_slot(struct kvm *kvm,
3082 struct kvm_memory_slot *memslot,
3083 gfn_t gfn)
6aa8b732 3084{
044c59c4 3085 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 3086 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 3087 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 3088
fb04a1ed
PX
3089 if (kvm->dirty_ring_size)
3090 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3091 slot, rel_gfn);
3092 else
3093 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
3094 }
3095}
a6a0b05d 3096EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 3097
49c7754c
GN
3098void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3099{
3100 struct kvm_memory_slot *memslot;
3101
3102 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 3103 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 3104}
2ba9f0d8 3105EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 3106
8e73485c
PB
3107void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3108{
3109 struct kvm_memory_slot *memslot;
3110
3111 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 3112 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
3113}
3114EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3115
20b7035c
JS
3116void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3117{
3118 if (!vcpu->sigset_active)
3119 return;
3120
3121 /*
3122 * This does a lockless modification of ->real_blocked, which is fine
3123 * because, only current can change ->real_blocked and all readers of
3124 * ->real_blocked don't care as long ->real_blocked is always a subset
3125 * of ->blocked.
3126 */
3127 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3128}
3129
3130void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3131{
3132 if (!vcpu->sigset_active)
3133 return;
3134
3135 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3136 sigemptyset(&current->real_blocked);
3137}
3138
aca6ff29
WL
3139static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3140{
dee339b5 3141 unsigned int old, val, grow, grow_start;
aca6ff29 3142
2cbd7824 3143 old = val = vcpu->halt_poll_ns;
dee339b5 3144 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3145 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3146 if (!grow)
3147 goto out;
3148
dee339b5
NW
3149 val *= grow;
3150 if (val < grow_start)
3151 val = grow_start;
aca6ff29 3152
258785ef
DM
3153 if (val > vcpu->kvm->max_halt_poll_ns)
3154 val = vcpu->kvm->max_halt_poll_ns;
313f636d 3155
aca6ff29 3156 vcpu->halt_poll_ns = val;
7fa08e71 3157out:
2cbd7824 3158 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3159}
3160
3161static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3162{
ae232ea4 3163 unsigned int old, val, shrink, grow_start;
aca6ff29 3164
2cbd7824 3165 old = val = vcpu->halt_poll_ns;
6b6de68c 3166 shrink = READ_ONCE(halt_poll_ns_shrink);
ae232ea4 3167 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3168 if (shrink == 0)
aca6ff29
WL
3169 val = 0;
3170 else
6b6de68c 3171 val /= shrink;
aca6ff29 3172
ae232ea4
SS
3173 if (val < grow_start)
3174 val = 0;
3175
aca6ff29 3176 vcpu->halt_poll_ns = val;
2cbd7824 3177 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3178}
3179
f7819512
PB
3180static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3181{
50c28f21
JS
3182 int ret = -EINTR;
3183 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3184
f7819512
PB
3185 if (kvm_arch_vcpu_runnable(vcpu)) {
3186 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 3187 goto out;
f7819512
PB
3188 }
3189 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3190 goto out;
f7819512 3191 if (signal_pending(current))
50c28f21 3192 goto out;
084071d5
MT
3193 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3194 goto out;
f7819512 3195
50c28f21
JS
3196 ret = 0;
3197out:
3198 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3199 return ret;
f7819512
PB
3200}
3201
cb953129
DM
3202static inline void
3203update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3204{
3205 if (waited)
0193cc90 3206 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
cb953129 3207 else
0193cc90 3208 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
cb953129
DM
3209}
3210
b6958ce4
ED
3211/*
3212 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3213 */
8776e519 3214void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 3215{
cb953129 3216 ktime_t start, cur, poll_end;
f7819512 3217 bool waited = false;
aca6ff29 3218 u64 block_ns;
f7819512 3219
07ab0f8d
MZ
3220 kvm_arch_vcpu_blocking(vcpu);
3221
cb953129 3222 start = cur = poll_end = ktime_get();
cdd6ad3a 3223 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 3224 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 3225
0193cc90 3226 ++vcpu->stat.generic.halt_attempted_poll;
f7819512
PB
3227 do {
3228 /*
3229 * This sets KVM_REQ_UNHALT if an interrupt
3230 * arrives.
3231 */
3232 if (kvm_vcpu_check_block(vcpu) < 0) {
0193cc90 3233 ++vcpu->stat.generic.halt_successful_poll;
3491caf2 3234 if (!vcpu_valid_wakeup(vcpu))
0193cc90 3235 ++vcpu->stat.generic.halt_poll_invalid;
8ccba534
JZ
3236
3237 KVM_STATS_LOG_HIST_UPDATE(
3238 vcpu->stat.generic.halt_poll_success_hist,
3239 ktime_to_ns(ktime_get()) -
3240 ktime_to_ns(start));
f7819512
PB
3241 goto out;
3242 }
74775654 3243 cpu_relax();
cb953129 3244 poll_end = cur = ktime_get();
6bd5b743 3245 } while (kvm_vcpu_can_poll(cur, stop));
8ccba534
JZ
3246
3247 KVM_STATS_LOG_HIST_UPDATE(
3248 vcpu->stat.generic.halt_poll_fail_hist,
3249 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
f7819512 3250 }
e5c239cf 3251
8ccba534 3252
da4ad88c 3253 prepare_to_rcuwait(&vcpu->wait);
e5c239cf 3254 for (;;) {
da4ad88c 3255 set_current_state(TASK_INTERRUPTIBLE);
e5c239cf 3256
f7819512 3257 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
3258 break;
3259
f7819512 3260 waited = true;
b6958ce4 3261 schedule();
b6958ce4 3262 }
da4ad88c 3263 finish_rcuwait(&vcpu->wait);
f7819512 3264 cur = ktime_get();
87bcc5fa
JZ
3265 if (waited) {
3266 vcpu->stat.generic.halt_wait_ns +=
3267 ktime_to_ns(cur) - ktime_to_ns(poll_end);
8ccba534
JZ
3268 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3269 ktime_to_ns(cur) - ktime_to_ns(poll_end));
87bcc5fa 3270 }
f7819512 3271out:
07ab0f8d 3272 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
3273 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3274
cb953129
DM
3275 update_halt_poll_stats(
3276 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3277
44551b2f
WL
3278 if (!kvm_arch_no_poll(vcpu)) {
3279 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3280 shrink_halt_poll_ns(vcpu);
acd05785 3281 } else if (vcpu->kvm->max_halt_poll_ns) {
44551b2f
WL
3282 if (block_ns <= vcpu->halt_poll_ns)
3283 ;
3284 /* we had a long block, shrink polling */
acd05785
DM
3285 else if (vcpu->halt_poll_ns &&
3286 block_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3287 shrink_halt_poll_ns(vcpu);
3288 /* we had a short halt and our poll time is too small */
acd05785
DM
3289 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3290 block_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3291 grow_halt_poll_ns(vcpu);
3292 } else {
3293 vcpu->halt_poll_ns = 0;
3294 }
3295 }
aca6ff29 3296
3491caf2
CB
3297 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3298 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 3299}
2ba9f0d8 3300EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 3301
178f02ff 3302bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3303{
da4ad88c 3304 struct rcuwait *waitp;
b6d33834 3305
da4ad88c
DB
3306 waitp = kvm_arch_vcpu_get_wait(vcpu);
3307 if (rcuwait_wake_up(waitp)) {
d73eb57b 3308 WRITE_ONCE(vcpu->ready, true);
0193cc90 3309 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3310 return true;
b6d33834
CD
3311 }
3312
178f02ff 3313 return false;
dd1a4cc1
RK
3314}
3315EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3316
0266c894 3317#ifndef CONFIG_S390
dd1a4cc1
RK
3318/*
3319 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3320 */
3321void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3322{
85b64045 3323 int me, cpu;
dd1a4cc1 3324
178f02ff
RK
3325 if (kvm_vcpu_wake_up(vcpu))
3326 return;
3327
85b64045
SC
3328 /*
3329 * Note, the vCPU could get migrated to a different pCPU at any point
3330 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3331 * IPI to the previous pCPU. But, that's ok because the purpose of the
3332 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3333 * vCPU also requires it to leave IN_GUEST_MODE.
3334 */
b6d33834 3335 me = get_cpu();
85b64045
SC
3336 if (kvm_arch_vcpu_should_kick(vcpu)) {
3337 cpu = READ_ONCE(vcpu->cpu);
3338 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
b6d33834 3339 smp_send_reschedule(cpu);
85b64045 3340 }
b6d33834
CD
3341 put_cpu();
3342}
a20ed54d 3343EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3344#endif /* !CONFIG_S390 */
b6d33834 3345
fa93384f 3346int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3347{
3348 struct pid *pid;
3349 struct task_struct *task = NULL;
fa93384f 3350 int ret = 0;
41628d33
KW
3351
3352 rcu_read_lock();
3353 pid = rcu_dereference(target->pid);
3354 if (pid)
27fbe64b 3355 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3356 rcu_read_unlock();
3357 if (!task)
c45c528e 3358 return ret;
c45c528e 3359 ret = yield_to(task, 1);
41628d33 3360 put_task_struct(task);
c45c528e
R
3361
3362 return ret;
41628d33
KW
3363}
3364EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3365
06e48c51
R
3366/*
3367 * Helper that checks whether a VCPU is eligible for directed yield.
3368 * Most eligible candidate to yield is decided by following heuristics:
3369 *
3370 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3371 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3372 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3373 *
3374 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3375 * chance last time (mostly it has become eligible now since we have probably
3376 * yielded to lockholder in last iteration. This is done by toggling
3377 * @dy_eligible each time a VCPU checked for eligibility.)
3378 *
3379 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3380 * to preempted lock-holder could result in wrong VCPU selection and CPU
3381 * burning. Giving priority for a potential lock-holder increases lock
3382 * progress.
3383 *
3384 * Since algorithm is based on heuristics, accessing another VCPU data without
3385 * locking does not harm. It may result in trying to yield to same VCPU, fail
3386 * and continue with next VCPU and so on.
3387 */
7940876e 3388static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3389{
4a55dd72 3390#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3391 bool eligible;
3392
3393 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3394 vcpu->spin_loop.dy_eligible;
06e48c51
R
3395
3396 if (vcpu->spin_loop.in_spin_loop)
3397 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3398
3399 return eligible;
4a55dd72
SW
3400#else
3401 return true;
06e48c51 3402#endif
4a55dd72 3403}
c45c528e 3404
17e433b5
WL
3405/*
3406 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3407 * a vcpu_load/vcpu_put pair. However, for most architectures
3408 * kvm_arch_vcpu_runnable does not require vcpu_load.
3409 */
3410bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3411{
3412 return kvm_arch_vcpu_runnable(vcpu);
3413}
3414
3415static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3416{
3417 if (kvm_arch_dy_runnable(vcpu))
3418 return true;
3419
3420#ifdef CONFIG_KVM_ASYNC_PF
3421 if (!list_empty_careful(&vcpu->async_pf.done))
3422 return true;
3423#endif
3424
3425 return false;
3426}
3427
52acd22f
WL
3428bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3429{
3430 return false;
3431}
3432
199b5763 3433void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3434{
217ece61
RR
3435 struct kvm *kvm = me->kvm;
3436 struct kvm_vcpu *vcpu;
3437 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3438 int yielded = 0;
c45c528e 3439 int try = 3;
217ece61
RR
3440 int pass;
3441 int i;
d255f4f2 3442
4c088493 3443 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3444 /*
3445 * We boost the priority of a VCPU that is runnable but not
3446 * currently running, because it got preempted by something
3447 * else and called schedule in __vcpu_run. Hopefully that
3448 * VCPU is holding the lock that we need and will release it.
3449 * We approximate round-robin by starting at the last boosted VCPU.
3450 */
c45c528e 3451 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3452 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3453 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3454 i = last_boosted_vcpu;
3455 continue;
3456 } else if (pass && i > last_boosted_vcpu)
3457 break;
d73eb57b 3458 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3459 continue;
217ece61
RR
3460 if (vcpu == me)
3461 continue;
da4ad88c
DB
3462 if (rcuwait_active(&vcpu->wait) &&
3463 !vcpu_dy_runnable(vcpu))
217ece61 3464 continue;
046ddeed 3465 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3466 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3467 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3468 continue;
06e48c51
R
3469 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3470 continue;
c45c528e
R
3471
3472 yielded = kvm_vcpu_yield_to(vcpu);
3473 if (yielded > 0) {
217ece61 3474 kvm->last_boosted_vcpu = i;
217ece61 3475 break;
c45c528e
R
3476 } else if (yielded < 0) {
3477 try--;
3478 if (!try)
3479 break;
217ece61 3480 }
217ece61
RR
3481 }
3482 }
4c088493 3483 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3484
3485 /* Ensure vcpu is not eligible during next spinloop */
3486 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3487}
3488EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3489
fb04a1ed
PX
3490static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3491{
3492#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3493 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3494 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3495 kvm->dirty_ring_size / PAGE_SIZE);
3496#else
3497 return false;
3498#endif
3499}
3500
1499fa80 3501static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3502{
11bac800 3503 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3504 struct page *page;
3505
e4a533a4 3506 if (vmf->pgoff == 0)
039576c0 3507 page = virt_to_page(vcpu->run);
09566765 3508#ifdef CONFIG_X86
e4a533a4 3509 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3510 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3511#endif
4b4357e0 3512#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3513 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3514 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3515#endif
fb04a1ed
PX
3516 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3517 page = kvm_dirty_ring_get_page(
3518 &vcpu->dirty_ring,
3519 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3520 else
5b1c1493 3521 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3522 get_page(page);
e4a533a4 3523 vmf->page = page;
3524 return 0;
9a2bb7f4
AK
3525}
3526
f0f37e2f 3527static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3528 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3529};
3530
3531static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3532{
fb04a1ed 3533 struct kvm_vcpu *vcpu = file->private_data;
11476d27 3534 unsigned long pages = vma_pages(vma);
fb04a1ed
PX
3535
3536 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3537 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3538 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3539 return -EINVAL;
3540
9a2bb7f4
AK
3541 vma->vm_ops = &kvm_vcpu_vm_ops;
3542 return 0;
3543}
3544
bccf2150
AK
3545static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3546{
3547 struct kvm_vcpu *vcpu = filp->private_data;
3548
66c0b394 3549 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3550 return 0;
3551}
3552
3d3aab1b 3553static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3554 .release = kvm_vcpu_release,
3555 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3556 .mmap = kvm_vcpu_mmap,
6038f373 3557 .llseek = noop_llseek,
7ddfd3e0 3558 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3559};
3560
3561/*
3562 * Allocates an inode for the vcpu.
3563 */
3564static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3565{
e46b4692
MY
3566 char name[8 + 1 + ITOA_MAX_LEN + 1];
3567
3568 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3569 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3570}
3571
3e7093d0 3572static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3573{
741cbbae 3574#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
d56f5136 3575 struct dentry *debugfs_dentry;
45b5939e 3576 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3577
45b5939e 3578 if (!debugfs_initialized())
3e7093d0 3579 return;
45b5939e
LC
3580
3581 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3582 debugfs_dentry = debugfs_create_dir(dir_name,
3583 vcpu->kvm->debugfs_dentry);
45b5939e 3584
d56f5136 3585 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
741cbbae 3586#endif
45b5939e
LC
3587}
3588
c5ea7660
AK
3589/*
3590 * Creates some virtual cpus. Good luck creating more than one.
3591 */
73880c80 3592static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3593{
3594 int r;
e09fefde 3595 struct kvm_vcpu *vcpu;
8bd826d6 3596 struct page *page;
c5ea7660 3597
a1c42dde 3598 if (id >= KVM_MAX_VCPU_IDS)
338c7dba
AH
3599 return -EINVAL;
3600
6c7caebc
PB
3601 mutex_lock(&kvm->lock);
3602 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3603 mutex_unlock(&kvm->lock);
3604 return -EINVAL;
3605 }
3606
3607 kvm->created_vcpus++;
3608 mutex_unlock(&kvm->lock);
3609
897cc38e
SC
3610 r = kvm_arch_vcpu_precreate(kvm, id);
3611 if (r)
3612 goto vcpu_decrement;
3613
85f47930 3614 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3615 if (!vcpu) {
3616 r = -ENOMEM;
6c7caebc
PB
3617 goto vcpu_decrement;
3618 }
c5ea7660 3619
fcd97ad5 3620 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3621 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3622 if (!page) {
3623 r = -ENOMEM;
e529ef66 3624 goto vcpu_free;
8bd826d6
SC
3625 }
3626 vcpu->run = page_address(page);
3627
3628 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3629
3630 r = kvm_arch_vcpu_create(vcpu);
3631 if (r)
8bd826d6 3632 goto vcpu_free_run_page;
e529ef66 3633
fb04a1ed
PX
3634 if (kvm->dirty_ring_size) {
3635 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3636 id, kvm->dirty_ring_size);
3637 if (r)
3638 goto arch_vcpu_destroy;
3639 }
3640
11ec2804 3641 mutex_lock(&kvm->lock);
e09fefde
DH
3642 if (kvm_get_vcpu_by_id(kvm, id)) {
3643 r = -EEXIST;
3644 goto unlock_vcpu_destroy;
3645 }
73880c80 3646
8750e72a
RK
3647 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3648 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 3649
ce55c049
JZ
3650 /* Fill the stats id string for the vcpu */
3651 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3652 task_pid_nr(current), id);
3653
fb3f0f51 3654 /* Now it's all set up, let userspace reach it */
66c0b394 3655 kvm_get_kvm(kvm);
bccf2150 3656 r = create_vcpu_fd(vcpu);
73880c80 3657 if (r < 0) {
149487bd 3658 kvm_put_kvm_no_destroy(kvm);
d780592b 3659 goto unlock_vcpu_destroy;
73880c80
GN
3660 }
3661
8750e72a 3662 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
3663
3664 /*
3665 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3666 * before kvm->online_vcpu's incremented value.
3667 */
73880c80
GN
3668 smp_wmb();
3669 atomic_inc(&kvm->online_vcpus);
3670
73880c80 3671 mutex_unlock(&kvm->lock);
42897d86 3672 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3673 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3674 return r;
39c3b86e 3675
d780592b 3676unlock_vcpu_destroy:
7d8fece6 3677 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3678 kvm_dirty_ring_free(&vcpu->dirty_ring);
3679arch_vcpu_destroy:
d40ccc62 3680 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3681vcpu_free_run_page:
3682 free_page((unsigned long)vcpu->run);
e529ef66
SC
3683vcpu_free:
3684 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3685vcpu_decrement:
3686 mutex_lock(&kvm->lock);
3687 kvm->created_vcpus--;
3688 mutex_unlock(&kvm->lock);
c5ea7660
AK
3689 return r;
3690}
3691
1961d276
AK
3692static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3693{
3694 if (sigset) {
3695 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3696 vcpu->sigset_active = 1;
3697 vcpu->sigset = *sigset;
3698 } else
3699 vcpu->sigset_active = 0;
3700 return 0;
3701}
3702
ce55c049
JZ
3703static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3704 size_t size, loff_t *offset)
3705{
3706 struct kvm_vcpu *vcpu = file->private_data;
3707
3708 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3709 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3710 sizeof(vcpu->stat), user_buffer, size, offset);
3711}
3712
3713static const struct file_operations kvm_vcpu_stats_fops = {
3714 .read = kvm_vcpu_stats_read,
3715 .llseek = noop_llseek,
3716};
3717
3718static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3719{
3720 int fd;
3721 struct file *file;
3722 char name[15 + ITOA_MAX_LEN + 1];
3723
3724 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3725
3726 fd = get_unused_fd_flags(O_CLOEXEC);
3727 if (fd < 0)
3728 return fd;
3729
3730 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3731 if (IS_ERR(file)) {
3732 put_unused_fd(fd);
3733 return PTR_ERR(file);
3734 }
3735 file->f_mode |= FMODE_PREAD;
3736 fd_install(fd, file);
3737
3738 return fd;
3739}
3740
bccf2150
AK
3741static long kvm_vcpu_ioctl(struct file *filp,
3742 unsigned int ioctl, unsigned long arg)
6aa8b732 3743{
bccf2150 3744 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3745 void __user *argp = (void __user *)arg;
313a3dc7 3746 int r;
fa3795a7
DH
3747 struct kvm_fpu *fpu = NULL;
3748 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3749
0b8f1173 3750 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
6d4e4c4f 3751 return -EIO;
2122ff5e 3752
2ea75be3
DM
3753 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3754 return -EINVAL;
3755
2122ff5e 3756 /*
5cb0944c
PB
3757 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3758 * execution; mutex_lock() would break them.
2122ff5e 3759 */
5cb0944c
PB
3760 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3761 if (r != -ENOIOCTLCMD)
9fc77441 3762 return r;
2122ff5e 3763
ec7660cc
CD
3764 if (mutex_lock_killable(&vcpu->mutex))
3765 return -EINTR;
6aa8b732 3766 switch (ioctl) {
0e4524a5
CB
3767 case KVM_RUN: {
3768 struct pid *oldpid;
f0fe5108
AK
3769 r = -EINVAL;
3770 if (arg)
3771 goto out;
0e4524a5 3772 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3773 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3774 /* The thread running this VCPU changed. */
bd2a6394 3775 struct pid *newpid;
f95ef0cd 3776
bd2a6394
CD
3777 r = kvm_arch_vcpu_run_pid_change(vcpu);
3778 if (r)
3779 break;
3780
3781 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3782 rcu_assign_pointer(vcpu->pid, newpid);
3783 if (oldpid)
3784 synchronize_rcu();
3785 put_pid(oldpid);
3786 }
1b94f6f8 3787 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 3788 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3789 break;
0e4524a5 3790 }
6aa8b732 3791 case KVM_GET_REGS: {
3e4bb3ac 3792 struct kvm_regs *kvm_regs;
6aa8b732 3793
3e4bb3ac 3794 r = -ENOMEM;
b12ce36a 3795 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3796 if (!kvm_regs)
6aa8b732 3797 goto out;
3e4bb3ac
XZ
3798 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3799 if (r)
3800 goto out_free1;
6aa8b732 3801 r = -EFAULT;
3e4bb3ac
XZ
3802 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3803 goto out_free1;
6aa8b732 3804 r = 0;
3e4bb3ac
XZ
3805out_free1:
3806 kfree(kvm_regs);
6aa8b732
AK
3807 break;
3808 }
3809 case KVM_SET_REGS: {
3e4bb3ac 3810 struct kvm_regs *kvm_regs;
6aa8b732 3811
ff5c2c03
SL
3812 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3813 if (IS_ERR(kvm_regs)) {
3814 r = PTR_ERR(kvm_regs);
6aa8b732 3815 goto out;
ff5c2c03 3816 }
3e4bb3ac 3817 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3818 kfree(kvm_regs);
6aa8b732
AK
3819 break;
3820 }
3821 case KVM_GET_SREGS: {
b12ce36a
BG
3822 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3823 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3824 r = -ENOMEM;
3825 if (!kvm_sregs)
3826 goto out;
3827 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3828 if (r)
3829 goto out;
3830 r = -EFAULT;
fa3795a7 3831 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3832 goto out;
3833 r = 0;
3834 break;
3835 }
3836 case KVM_SET_SREGS: {
ff5c2c03
SL
3837 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3838 if (IS_ERR(kvm_sregs)) {
3839 r = PTR_ERR(kvm_sregs);
18595411 3840 kvm_sregs = NULL;
6aa8b732 3841 goto out;
ff5c2c03 3842 }
fa3795a7 3843 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3844 break;
3845 }
62d9f0db
MT
3846 case KVM_GET_MP_STATE: {
3847 struct kvm_mp_state mp_state;
3848
3849 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3850 if (r)
3851 goto out;
3852 r = -EFAULT;
893bdbf1 3853 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3854 goto out;
3855 r = 0;
3856 break;
3857 }
3858 case KVM_SET_MP_STATE: {
3859 struct kvm_mp_state mp_state;
3860
3861 r = -EFAULT;
893bdbf1 3862 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3863 goto out;
3864 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3865 break;
3866 }
6aa8b732
AK
3867 case KVM_TRANSLATE: {
3868 struct kvm_translation tr;
3869
3870 r = -EFAULT;
893bdbf1 3871 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3872 goto out;
8b006791 3873 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3874 if (r)
3875 goto out;
3876 r = -EFAULT;
893bdbf1 3877 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3878 goto out;
3879 r = 0;
3880 break;
3881 }
d0bfb940
JK
3882 case KVM_SET_GUEST_DEBUG: {
3883 struct kvm_guest_debug dbg;
6aa8b732
AK
3884
3885 r = -EFAULT;
893bdbf1 3886 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3887 goto out;
d0bfb940 3888 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3889 break;
3890 }
1961d276
AK
3891 case KVM_SET_SIGNAL_MASK: {
3892 struct kvm_signal_mask __user *sigmask_arg = argp;
3893 struct kvm_signal_mask kvm_sigmask;
3894 sigset_t sigset, *p;
3895
3896 p = NULL;
3897 if (argp) {
3898 r = -EFAULT;
3899 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3900 sizeof(kvm_sigmask)))
1961d276
AK
3901 goto out;
3902 r = -EINVAL;
893bdbf1 3903 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3904 goto out;
3905 r = -EFAULT;
3906 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3907 sizeof(sigset)))
1961d276
AK
3908 goto out;
3909 p = &sigset;
3910 }
376d41ff 3911 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3912 break;
3913 }
b8836737 3914 case KVM_GET_FPU: {
b12ce36a 3915 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3916 r = -ENOMEM;
3917 if (!fpu)
3918 goto out;
3919 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3920 if (r)
3921 goto out;
3922 r = -EFAULT;
fa3795a7 3923 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3924 goto out;
3925 r = 0;
3926 break;
3927 }
3928 case KVM_SET_FPU: {
ff5c2c03
SL
3929 fpu = memdup_user(argp, sizeof(*fpu));
3930 if (IS_ERR(fpu)) {
3931 r = PTR_ERR(fpu);
18595411 3932 fpu = NULL;
b8836737 3933 goto out;
ff5c2c03 3934 }
fa3795a7 3935 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3936 break;
3937 }
ce55c049
JZ
3938 case KVM_GET_STATS_FD: {
3939 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3940 break;
3941 }
bccf2150 3942 default:
313a3dc7 3943 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3944 }
3945out:
ec7660cc 3946 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3947 kfree(fpu);
3948 kfree(kvm_sregs);
bccf2150
AK
3949 return r;
3950}
3951
de8e5d74 3952#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3953static long kvm_vcpu_compat_ioctl(struct file *filp,
3954 unsigned int ioctl, unsigned long arg)
3955{
3956 struct kvm_vcpu *vcpu = filp->private_data;
3957 void __user *argp = compat_ptr(arg);
3958 int r;
3959
0b8f1173 3960 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
1dda606c
AG
3961 return -EIO;
3962
3963 switch (ioctl) {
3964 case KVM_SET_SIGNAL_MASK: {
3965 struct kvm_signal_mask __user *sigmask_arg = argp;
3966 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3967 sigset_t sigset;
3968
3969 if (argp) {
3970 r = -EFAULT;
3971 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3972 sizeof(kvm_sigmask)))
1dda606c
AG
3973 goto out;
3974 r = -EINVAL;
3968cf62 3975 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3976 goto out;
3977 r = -EFAULT;
1393b4aa
PB
3978 if (get_compat_sigset(&sigset,
3979 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 3980 goto out;
760a9a30
AC
3981 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3982 } else
3983 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3984 break;
3985 }
3986 default:
3987 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3988 }
3989
3990out:
3991 return r;
3992}
3993#endif
3994
a1cd3f08
CLG
3995static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3996{
3997 struct kvm_device *dev = filp->private_data;
3998
3999 if (dev->ops->mmap)
4000 return dev->ops->mmap(dev, vma);
4001
4002 return -ENODEV;
4003}
4004
852b6d57
SW
4005static int kvm_device_ioctl_attr(struct kvm_device *dev,
4006 int (*accessor)(struct kvm_device *dev,
4007 struct kvm_device_attr *attr),
4008 unsigned long arg)
4009{
4010 struct kvm_device_attr attr;
4011
4012 if (!accessor)
4013 return -EPERM;
4014
4015 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4016 return -EFAULT;
4017
4018 return accessor(dev, &attr);
4019}
4020
4021static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4022 unsigned long arg)
4023{
4024 struct kvm_device *dev = filp->private_data;
4025
0b8f1173 4026 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
ddba9180
SC
4027 return -EIO;
4028
852b6d57
SW
4029 switch (ioctl) {
4030 case KVM_SET_DEVICE_ATTR:
4031 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4032 case KVM_GET_DEVICE_ATTR:
4033 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4034 case KVM_HAS_DEVICE_ATTR:
4035 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4036 default:
4037 if (dev->ops->ioctl)
4038 return dev->ops->ioctl(dev, ioctl, arg);
4039
4040 return -ENOTTY;
4041 }
4042}
4043
852b6d57
SW
4044static int kvm_device_release(struct inode *inode, struct file *filp)
4045{
4046 struct kvm_device *dev = filp->private_data;
4047 struct kvm *kvm = dev->kvm;
4048
2bde9b3e
CLG
4049 if (dev->ops->release) {
4050 mutex_lock(&kvm->lock);
4051 list_del(&dev->vm_node);
4052 dev->ops->release(dev);
4053 mutex_unlock(&kvm->lock);
4054 }
4055
852b6d57
SW
4056 kvm_put_kvm(kvm);
4057 return 0;
4058}
4059
4060static const struct file_operations kvm_device_fops = {
4061 .unlocked_ioctl = kvm_device_ioctl,
4062 .release = kvm_device_release,
7ddfd3e0 4063 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 4064 .mmap = kvm_device_mmap,
852b6d57
SW
4065};
4066
4067struct kvm_device *kvm_device_from_filp(struct file *filp)
4068{
4069 if (filp->f_op != &kvm_device_fops)
4070 return NULL;
4071
4072 return filp->private_data;
4073}
4074
8538cb22 4075static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 4076#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
4077 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4078 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 4079#endif
d60eacb0
WD
4080};
4081
8538cb22 4082int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
4083{
4084 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4085 return -ENOSPC;
4086
4087 if (kvm_device_ops_table[type] != NULL)
4088 return -EEXIST;
4089
4090 kvm_device_ops_table[type] = ops;
4091 return 0;
4092}
4093
571ee1b6
WL
4094void kvm_unregister_device_ops(u32 type)
4095{
4096 if (kvm_device_ops_table[type] != NULL)
4097 kvm_device_ops_table[type] = NULL;
4098}
4099
852b6d57
SW
4100static int kvm_ioctl_create_device(struct kvm *kvm,
4101 struct kvm_create_device *cd)
4102{
8538cb22 4103 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
4104 struct kvm_device *dev;
4105 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 4106 int type;
852b6d57
SW
4107 int ret;
4108
d60eacb0
WD
4109 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4110 return -ENODEV;
4111
1d487e9b
PB
4112 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4113 ops = kvm_device_ops_table[type];
d60eacb0 4114 if (ops == NULL)
852b6d57 4115 return -ENODEV;
852b6d57
SW
4116
4117 if (test)
4118 return 0;
4119
b12ce36a 4120 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
4121 if (!dev)
4122 return -ENOMEM;
4123
4124 dev->ops = ops;
4125 dev->kvm = kvm;
852b6d57 4126
a28ebea2 4127 mutex_lock(&kvm->lock);
1d487e9b 4128 ret = ops->create(dev, type);
852b6d57 4129 if (ret < 0) {
a28ebea2 4130 mutex_unlock(&kvm->lock);
852b6d57
SW
4131 kfree(dev);
4132 return ret;
4133 }
a28ebea2
CD
4134 list_add(&dev->vm_node, &kvm->devices);
4135 mutex_unlock(&kvm->lock);
852b6d57 4136
023e9fdd
CD
4137 if (ops->init)
4138 ops->init(dev);
4139
cfa39381 4140 kvm_get_kvm(kvm);
24009b05 4141 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 4142 if (ret < 0) {
149487bd 4143 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
4144 mutex_lock(&kvm->lock);
4145 list_del(&dev->vm_node);
4146 mutex_unlock(&kvm->lock);
a0f1d21c 4147 ops->destroy(dev);
852b6d57
SW
4148 return ret;
4149 }
4150
852b6d57
SW
4151 cd->fd = ret;
4152 return 0;
4153}
4154
92b591a4
AG
4155static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4156{
4157 switch (arg) {
4158 case KVM_CAP_USER_MEMORY:
4159 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4160 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4161 case KVM_CAP_INTERNAL_ERROR_DATA:
4162#ifdef CONFIG_HAVE_KVM_MSI
4163 case KVM_CAP_SIGNAL_MSI:
4164#endif
297e2105 4165#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 4166 case KVM_CAP_IRQFD:
92b591a4
AG
4167 case KVM_CAP_IRQFD_RESAMPLE:
4168#endif
e9ea5069 4169 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4170 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4171 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4172 case KVM_CAP_HALT_POLL:
92b591a4 4173 return 1;
4b4357e0 4174#ifdef CONFIG_KVM_MMIO
30422558
PB
4175 case KVM_CAP_COALESCED_MMIO:
4176 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4177 case KVM_CAP_COALESCED_PIO:
4178 return 1;
30422558 4179#endif
3c9bd400
JZ
4180#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4181 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4182 return KVM_DIRTY_LOG_MANUAL_CAPS;
4183#endif
92b591a4
AG
4184#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4185 case KVM_CAP_IRQ_ROUTING:
4186 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
4187#endif
4188#if KVM_ADDRESS_SPACE_NUM > 1
4189 case KVM_CAP_MULTI_ADDRESS_SPACE:
4190 return KVM_ADDRESS_SPACE_NUM;
92b591a4 4191#endif
c110ae57
PB
4192 case KVM_CAP_NR_MEMSLOTS:
4193 return KVM_USER_MEM_SLOTS;
fb04a1ed
PX
4194 case KVM_CAP_DIRTY_LOG_RING:
4195#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4196 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4197#else
4198 return 0;
4199#endif
ce55c049
JZ
4200 case KVM_CAP_BINARY_STATS_FD:
4201 return 1;
92b591a4
AG
4202 default:
4203 break;
4204 }
4205 return kvm_vm_ioctl_check_extension(kvm, arg);
4206}
4207
fb04a1ed
PX
4208static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4209{
4210 int r;
4211
4212 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4213 return -EINVAL;
4214
4215 /* the size should be power of 2 */
4216 if (!size || (size & (size - 1)))
4217 return -EINVAL;
4218
4219 /* Should be bigger to keep the reserved entries, or a page */
4220 if (size < kvm_dirty_ring_get_rsvd_entries() *
4221 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4222 return -EINVAL;
4223
4224 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4225 sizeof(struct kvm_dirty_gfn))
4226 return -E2BIG;
4227
4228 /* We only allow it to set once */
4229 if (kvm->dirty_ring_size)
4230 return -EINVAL;
4231
4232 mutex_lock(&kvm->lock);
4233
4234 if (kvm->created_vcpus) {
4235 /* We don't allow to change this value after vcpu created */
4236 r = -EINVAL;
4237 } else {
4238 kvm->dirty_ring_size = size;
4239 r = 0;
4240 }
4241
4242 mutex_unlock(&kvm->lock);
4243 return r;
4244}
4245
4246static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4247{
4248 int i;
4249 struct kvm_vcpu *vcpu;
4250 int cleared = 0;
4251
4252 if (!kvm->dirty_ring_size)
4253 return -EINVAL;
4254
4255 mutex_lock(&kvm->slots_lock);
4256
4257 kvm_for_each_vcpu(i, vcpu, kvm)
4258 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4259
4260 mutex_unlock(&kvm->slots_lock);
4261
4262 if (cleared)
4263 kvm_flush_remote_tlbs(kvm);
4264
4265 return cleared;
4266}
4267
e5d83c74
PB
4268int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4269 struct kvm_enable_cap *cap)
4270{
4271 return -EINVAL;
4272}
4273
4274static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4275 struct kvm_enable_cap *cap)
4276{
4277 switch (cap->cap) {
2a31b9db 4278#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4279 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4280 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4281
4282 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4283 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4284
4285 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4286 return -EINVAL;
4287 kvm->manual_dirty_log_protect = cap->args[0];
4288 return 0;
3c9bd400 4289 }
2a31b9db 4290#endif
acd05785
DM
4291 case KVM_CAP_HALT_POLL: {
4292 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4293 return -EINVAL;
4294
4295 kvm->max_halt_poll_ns = cap->args[0];
4296 return 0;
4297 }
fb04a1ed
PX
4298 case KVM_CAP_DIRTY_LOG_RING:
4299 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
e5d83c74
PB
4300 default:
4301 return kvm_vm_ioctl_enable_cap(kvm, cap);
4302 }
4303}
4304
fcfe1bae
JZ
4305static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4306 size_t size, loff_t *offset)
4307{
4308 struct kvm *kvm = file->private_data;
4309
4310 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4311 &kvm_vm_stats_desc[0], &kvm->stat,
4312 sizeof(kvm->stat), user_buffer, size, offset);
4313}
4314
4315static const struct file_operations kvm_vm_stats_fops = {
4316 .read = kvm_vm_stats_read,
4317 .llseek = noop_llseek,
4318};
4319
4320static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4321{
4322 int fd;
4323 struct file *file;
4324
4325 fd = get_unused_fd_flags(O_CLOEXEC);
4326 if (fd < 0)
4327 return fd;
4328
4329 file = anon_inode_getfile("kvm-vm-stats",
4330 &kvm_vm_stats_fops, kvm, O_RDONLY);
4331 if (IS_ERR(file)) {
4332 put_unused_fd(fd);
4333 return PTR_ERR(file);
4334 }
4335 file->f_mode |= FMODE_PREAD;
4336 fd_install(fd, file);
4337
4338 return fd;
4339}
4340
bccf2150
AK
4341static long kvm_vm_ioctl(struct file *filp,
4342 unsigned int ioctl, unsigned long arg)
4343{
4344 struct kvm *kvm = filp->private_data;
4345 void __user *argp = (void __user *)arg;
1fe779f8 4346 int r;
bccf2150 4347
0b8f1173 4348 if (kvm->mm != current->mm || kvm->vm_bugged)
6d4e4c4f 4349 return -EIO;
bccf2150
AK
4350 switch (ioctl) {
4351 case KVM_CREATE_VCPU:
4352 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 4353 break;
e5d83c74
PB
4354 case KVM_ENABLE_CAP: {
4355 struct kvm_enable_cap cap;
4356
4357 r = -EFAULT;
4358 if (copy_from_user(&cap, argp, sizeof(cap)))
4359 goto out;
4360 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4361 break;
4362 }
6fc138d2
IE
4363 case KVM_SET_USER_MEMORY_REGION: {
4364 struct kvm_userspace_memory_region kvm_userspace_mem;
4365
4366 r = -EFAULT;
4367 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 4368 sizeof(kvm_userspace_mem)))
6fc138d2
IE
4369 goto out;
4370
47ae31e2 4371 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4372 break;
4373 }
4374 case KVM_GET_DIRTY_LOG: {
4375 struct kvm_dirty_log log;
4376
4377 r = -EFAULT;
893bdbf1 4378 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4379 goto out;
2c6f5df9 4380 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4381 break;
4382 }
2a31b9db
PB
4383#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4384 case KVM_CLEAR_DIRTY_LOG: {
4385 struct kvm_clear_dirty_log log;
4386
4387 r = -EFAULT;
4388 if (copy_from_user(&log, argp, sizeof(log)))
4389 goto out;
4390 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4391 break;
4392 }
4393#endif
4b4357e0 4394#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4395 case KVM_REGISTER_COALESCED_MMIO: {
4396 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4397
5f94c174 4398 r = -EFAULT;
893bdbf1 4399 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4400 goto out;
5f94c174 4401 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4402 break;
4403 }
4404 case KVM_UNREGISTER_COALESCED_MMIO: {
4405 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4406
5f94c174 4407 r = -EFAULT;
893bdbf1 4408 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4409 goto out;
5f94c174 4410 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4411 break;
4412 }
4413#endif
721eecbf
GH
4414 case KVM_IRQFD: {
4415 struct kvm_irqfd data;
4416
4417 r = -EFAULT;
893bdbf1 4418 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4419 goto out;
d4db2935 4420 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4421 break;
4422 }
d34e6b17
GH
4423 case KVM_IOEVENTFD: {
4424 struct kvm_ioeventfd data;
4425
4426 r = -EFAULT;
893bdbf1 4427 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4428 goto out;
4429 r = kvm_ioeventfd(kvm, &data);
4430 break;
4431 }
07975ad3
JK
4432#ifdef CONFIG_HAVE_KVM_MSI
4433 case KVM_SIGNAL_MSI: {
4434 struct kvm_msi msi;
4435
4436 r = -EFAULT;
893bdbf1 4437 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4438 goto out;
4439 r = kvm_send_userspace_msi(kvm, &msi);
4440 break;
4441 }
23d43cf9
CD
4442#endif
4443#ifdef __KVM_HAVE_IRQ_LINE
4444 case KVM_IRQ_LINE_STATUS:
4445 case KVM_IRQ_LINE: {
4446 struct kvm_irq_level irq_event;
4447
4448 r = -EFAULT;
893bdbf1 4449 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4450 goto out;
4451
aa2fbe6d
YZ
4452 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4453 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4454 if (r)
4455 goto out;
4456
4457 r = -EFAULT;
4458 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4459 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4460 goto out;
4461 }
4462
4463 r = 0;
4464 break;
4465 }
73880c80 4466#endif
aa8d5944
AG
4467#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4468 case KVM_SET_GSI_ROUTING: {
4469 struct kvm_irq_routing routing;
4470 struct kvm_irq_routing __user *urouting;
f8c1b85b 4471 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4472
4473 r = -EFAULT;
4474 if (copy_from_user(&routing, argp, sizeof(routing)))
4475 goto out;
4476 r = -EINVAL;
5c0aea0e
DH
4477 if (!kvm_arch_can_set_irq_routing(kvm))
4478 goto out;
caf1ff26 4479 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4480 goto out;
4481 if (routing.flags)
4482 goto out;
f8c1b85b 4483 if (routing.nr) {
f8c1b85b 4484 urouting = argp;
7ec28e26
DE
4485 entries = vmemdup_user(urouting->entries,
4486 array_size(sizeof(*entries),
4487 routing.nr));
4488 if (IS_ERR(entries)) {
4489 r = PTR_ERR(entries);
4490 goto out;
4491 }
f8c1b85b 4492 }
aa8d5944
AG
4493 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4494 routing.flags);
7ec28e26 4495 kvfree(entries);
aa8d5944
AG
4496 break;
4497 }
4498#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4499 case KVM_CREATE_DEVICE: {
4500 struct kvm_create_device cd;
4501
4502 r = -EFAULT;
4503 if (copy_from_user(&cd, argp, sizeof(cd)))
4504 goto out;
4505
4506 r = kvm_ioctl_create_device(kvm, &cd);
4507 if (r)
4508 goto out;
4509
4510 r = -EFAULT;
4511 if (copy_to_user(argp, &cd, sizeof(cd)))
4512 goto out;
4513
4514 r = 0;
4515 break;
4516 }
92b591a4
AG
4517 case KVM_CHECK_EXTENSION:
4518 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4519 break;
fb04a1ed
PX
4520 case KVM_RESET_DIRTY_RINGS:
4521 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4522 break;
fcfe1bae
JZ
4523 case KVM_GET_STATS_FD:
4524 r = kvm_vm_ioctl_get_stats_fd(kvm);
4525 break;
f17abe9a 4526 default:
1fe779f8 4527 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4528 }
4529out:
4530 return r;
4531}
4532
de8e5d74 4533#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4534struct compat_kvm_dirty_log {
4535 __u32 slot;
4536 __u32 padding1;
4537 union {
4538 compat_uptr_t dirty_bitmap; /* one bit per page */
4539 __u64 padding2;
4540 };
4541};
4542
8750f9bb
PB
4543struct compat_kvm_clear_dirty_log {
4544 __u32 slot;
4545 __u32 num_pages;
4546 __u64 first_page;
4547 union {
4548 compat_uptr_t dirty_bitmap; /* one bit per page */
4549 __u64 padding2;
4550 };
4551};
4552
6ff5894c
AB
4553static long kvm_vm_compat_ioctl(struct file *filp,
4554 unsigned int ioctl, unsigned long arg)
4555{
4556 struct kvm *kvm = filp->private_data;
4557 int r;
4558
0b8f1173 4559 if (kvm->mm != current->mm || kvm->vm_bugged)
6ff5894c
AB
4560 return -EIO;
4561 switch (ioctl) {
8750f9bb
PB
4562#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4563 case KVM_CLEAR_DIRTY_LOG: {
4564 struct compat_kvm_clear_dirty_log compat_log;
4565 struct kvm_clear_dirty_log log;
4566
4567 if (copy_from_user(&compat_log, (void __user *)arg,
4568 sizeof(compat_log)))
4569 return -EFAULT;
4570 log.slot = compat_log.slot;
4571 log.num_pages = compat_log.num_pages;
4572 log.first_page = compat_log.first_page;
4573 log.padding2 = compat_log.padding2;
4574 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4575
4576 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4577 break;
4578 }
4579#endif
6ff5894c
AB
4580 case KVM_GET_DIRTY_LOG: {
4581 struct compat_kvm_dirty_log compat_log;
4582 struct kvm_dirty_log log;
4583
6ff5894c
AB
4584 if (copy_from_user(&compat_log, (void __user *)arg,
4585 sizeof(compat_log)))
f6a3b168 4586 return -EFAULT;
6ff5894c
AB
4587 log.slot = compat_log.slot;
4588 log.padding1 = compat_log.padding1;
4589 log.padding2 = compat_log.padding2;
4590 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4591
4592 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4593 break;
4594 }
4595 default:
4596 r = kvm_vm_ioctl(filp, ioctl, arg);
4597 }
6ff5894c
AB
4598 return r;
4599}
4600#endif
4601
3d3aab1b 4602static struct file_operations kvm_vm_fops = {
f17abe9a
AK
4603 .release = kvm_vm_release,
4604 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4605 .llseek = noop_llseek,
7ddfd3e0 4606 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4607};
4608
54526d1f
NT
4609bool file_is_kvm(struct file *file)
4610{
4611 return file && file->f_op == &kvm_vm_fops;
4612}
4613EXPORT_SYMBOL_GPL(file_is_kvm);
4614
e08b9637 4615static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 4616{
aac87636 4617 int r;
f17abe9a 4618 struct kvm *kvm;
506cfba9 4619 struct file *file;
f17abe9a 4620
e08b9637 4621 kvm = kvm_create_vm(type);
d6d28168
AK
4622 if (IS_ERR(kvm))
4623 return PTR_ERR(kvm);
4b4357e0 4624#ifdef CONFIG_KVM_MMIO
6ce5a090 4625 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
4626 if (r < 0)
4627 goto put_kvm;
6ce5a090 4628#endif
506cfba9 4629 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
4630 if (r < 0)
4631 goto put_kvm;
4632
fcfe1bae
JZ
4633 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4634 "kvm-%d", task_pid_nr(current));
4635
506cfba9
AV
4636 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4637 if (IS_ERR(file)) {
4638 put_unused_fd(r);
78588335
ME
4639 r = PTR_ERR(file);
4640 goto put_kvm;
506cfba9 4641 }
536a6f88 4642
525df861
PB
4643 /*
4644 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4645 * already set, with ->release() being kvm_vm_release(). In error
4646 * cases it will be called by the final fput(file) and will take
4647 * care of doing kvm_put_kvm(kvm).
4648 */
536a6f88 4649 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
4650 put_unused_fd(r);
4651 fput(file);
536a6f88
JF
4652 return -ENOMEM;
4653 }
286de8f6 4654 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 4655
506cfba9 4656 fd_install(r, file);
aac87636 4657 return r;
78588335
ME
4658
4659put_kvm:
4660 kvm_put_kvm(kvm);
4661 return r;
f17abe9a
AK
4662}
4663
4664static long kvm_dev_ioctl(struct file *filp,
4665 unsigned int ioctl, unsigned long arg)
4666{
07c45a36 4667 long r = -EINVAL;
f17abe9a
AK
4668
4669 switch (ioctl) {
4670 case KVM_GET_API_VERSION:
f0fe5108
AK
4671 if (arg)
4672 goto out;
f17abe9a
AK
4673 r = KVM_API_VERSION;
4674 break;
4675 case KVM_CREATE_VM:
e08b9637 4676 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 4677 break;
018d00d2 4678 case KVM_CHECK_EXTENSION:
784aa3d7 4679 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 4680 break;
07c45a36 4681 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
4682 if (arg)
4683 goto out;
adb1ff46
AK
4684 r = PAGE_SIZE; /* struct kvm_run */
4685#ifdef CONFIG_X86
4686 r += PAGE_SIZE; /* pio data page */
5f94c174 4687#endif
4b4357e0 4688#ifdef CONFIG_KVM_MMIO
5f94c174 4689 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 4690#endif
07c45a36 4691 break;
d4c9ff2d
FEL
4692 case KVM_TRACE_ENABLE:
4693 case KVM_TRACE_PAUSE:
4694 case KVM_TRACE_DISABLE:
2023a29c 4695 r = -EOPNOTSUPP;
d4c9ff2d 4696 break;
6aa8b732 4697 default:
043405e1 4698 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
4699 }
4700out:
4701 return r;
4702}
4703
6aa8b732 4704static struct file_operations kvm_chardev_ops = {
6aa8b732 4705 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 4706 .llseek = noop_llseek,
7ddfd3e0 4707 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
4708};
4709
4710static struct miscdevice kvm_dev = {
bbe4432e 4711 KVM_MINOR,
6aa8b732
AK
4712 "kvm",
4713 &kvm_chardev_ops,
4714};
4715
75b7127c 4716static void hardware_enable_nolock(void *junk)
1b6c0168
AK
4717{
4718 int cpu = raw_smp_processor_id();
10474ae8 4719 int r;
1b6c0168 4720
7f59f492 4721 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4722 return;
10474ae8 4723
7f59f492 4724 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 4725
13a34e06 4726 r = kvm_arch_hardware_enable();
10474ae8
AG
4727
4728 if (r) {
4729 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4730 atomic_inc(&hardware_enable_failed);
1170adc6 4731 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 4732 }
1b6c0168
AK
4733}
4734
8c18b2d2 4735static int kvm_starting_cpu(unsigned int cpu)
75b7127c 4736{
4a937f96 4737 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4738 if (kvm_usage_count)
4739 hardware_enable_nolock(NULL);
4a937f96 4740 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4741 return 0;
75b7127c
TY
4742}
4743
4744static void hardware_disable_nolock(void *junk)
1b6c0168
AK
4745{
4746 int cpu = raw_smp_processor_id();
4747
7f59f492 4748 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4749 return;
7f59f492 4750 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 4751 kvm_arch_hardware_disable();
1b6c0168
AK
4752}
4753
8c18b2d2 4754static int kvm_dying_cpu(unsigned int cpu)
75b7127c 4755{
4a937f96 4756 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4757 if (kvm_usage_count)
4758 hardware_disable_nolock(NULL);
4a937f96 4759 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4760 return 0;
75b7127c
TY
4761}
4762
10474ae8
AG
4763static void hardware_disable_all_nolock(void)
4764{
4765 BUG_ON(!kvm_usage_count);
4766
4767 kvm_usage_count--;
4768 if (!kvm_usage_count)
75b7127c 4769 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
4770}
4771
4772static void hardware_disable_all(void)
4773{
4a937f96 4774 raw_spin_lock(&kvm_count_lock);
10474ae8 4775 hardware_disable_all_nolock();
4a937f96 4776 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4777}
4778
4779static int hardware_enable_all(void)
4780{
4781 int r = 0;
4782
4a937f96 4783 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
4784
4785 kvm_usage_count++;
4786 if (kvm_usage_count == 1) {
4787 atomic_set(&hardware_enable_failed, 0);
75b7127c 4788 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
4789
4790 if (atomic_read(&hardware_enable_failed)) {
4791 hardware_disable_all_nolock();
4792 r = -EBUSY;
4793 }
4794 }
4795
4a937f96 4796 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4797
4798 return r;
4799}
4800
9a2b85c6 4801static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 4802 void *v)
9a2b85c6 4803{
8e1c1815
SY
4804 /*
4805 * Some (well, at least mine) BIOSes hang on reboot if
4806 * in vmx root mode.
4807 *
4808 * And Intel TXT required VMX off for all cpu when system shutdown.
4809 */
1170adc6 4810 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 4811 kvm_rebooting = true;
75b7127c 4812 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
4813 return NOTIFY_OK;
4814}
4815
4816static struct notifier_block kvm_reboot_notifier = {
4817 .notifier_call = kvm_reboot,
4818 .priority = 0,
4819};
4820
e93f8a0f 4821static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
4822{
4823 int i;
4824
4825 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4826 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4827
4828 kvm_iodevice_destructor(pos);
4829 }
e93f8a0f 4830 kfree(bus);
2eeb2e94
GH
4831}
4832
c21fbff1 4833static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4834 const struct kvm_io_range *r2)
743eeb0b 4835{
8f4216c7
JW
4836 gpa_t addr1 = r1->addr;
4837 gpa_t addr2 = r2->addr;
4838
4839 if (addr1 < addr2)
743eeb0b 4840 return -1;
8f4216c7
JW
4841
4842 /* If r2->len == 0, match the exact address. If r2->len != 0,
4843 * accept any overlapping write. Any order is acceptable for
4844 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4845 * we process all of them.
4846 */
4847 if (r2->len) {
4848 addr1 += r1->len;
4849 addr2 += r2->len;
4850 }
4851
4852 if (addr1 > addr2)
743eeb0b 4853 return 1;
8f4216c7 4854
743eeb0b
SL
4855 return 0;
4856}
4857
a343c9b7
PB
4858static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4859{
c21fbff1 4860 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4861}
4862
39369f7a 4863static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4864 gpa_t addr, int len)
4865{
4866 struct kvm_io_range *range, key;
4867 int off;
4868
4869 key = (struct kvm_io_range) {
4870 .addr = addr,
4871 .len = len,
4872 };
4873
4874 range = bsearch(&key, bus->range, bus->dev_count,
4875 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4876 if (range == NULL)
4877 return -ENOENT;
4878
4879 off = range - bus->range;
4880
c21fbff1 4881 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4882 off--;
4883
4884 return off;
4885}
4886
e32edf4f 4887static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4888 struct kvm_io_range *range, const void *val)
4889{
4890 int idx;
4891
4892 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4893 if (idx < 0)
4894 return -EOPNOTSUPP;
4895
4896 while (idx < bus->dev_count &&
c21fbff1 4897 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4898 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4899 range->len, val))
4900 return idx;
4901 idx++;
4902 }
4903
4904 return -EOPNOTSUPP;
4905}
4906
bda9020e 4907/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4908int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4909 int len, const void *val)
2eeb2e94 4910{
90d83dc3 4911 struct kvm_io_bus *bus;
743eeb0b 4912 struct kvm_io_range range;
126a5af5 4913 int r;
743eeb0b
SL
4914
4915 range = (struct kvm_io_range) {
4916 .addr = addr,
4917 .len = len,
4918 };
90d83dc3 4919
e32edf4f 4920 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4921 if (!bus)
4922 return -ENOMEM;
e32edf4f 4923 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4924 return r < 0 ? r : 0;
4925}
a2420107 4926EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4927
4928/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4929int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4930 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4931{
4932 struct kvm_io_bus *bus;
4933 struct kvm_io_range range;
4934
4935 range = (struct kvm_io_range) {
4936 .addr = addr,
4937 .len = len,
4938 };
4939
e32edf4f 4940 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4941 if (!bus)
4942 return -ENOMEM;
126a5af5
CH
4943
4944 /* First try the device referenced by cookie. */
4945 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4946 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4947 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4948 val))
4949 return cookie;
4950
4951 /*
4952 * cookie contained garbage; fall back to search and return the
4953 * correct cookie value.
4954 */
e32edf4f 4955 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4956}
4957
e32edf4f
NN
4958static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4959 struct kvm_io_range *range, void *val)
126a5af5
CH
4960{
4961 int idx;
4962
4963 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4964 if (idx < 0)
4965 return -EOPNOTSUPP;
4966
4967 while (idx < bus->dev_count &&
c21fbff1 4968 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4969 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4970 range->len, val))
4971 return idx;
743eeb0b
SL
4972 idx++;
4973 }
4974
bda9020e
MT
4975 return -EOPNOTSUPP;
4976}
2eeb2e94 4977
bda9020e 4978/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4979int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4980 int len, void *val)
bda9020e 4981{
90d83dc3 4982 struct kvm_io_bus *bus;
743eeb0b 4983 struct kvm_io_range range;
126a5af5 4984 int r;
743eeb0b
SL
4985
4986 range = (struct kvm_io_range) {
4987 .addr = addr,
4988 .len = len,
4989 };
e93f8a0f 4990
e32edf4f 4991 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4992 if (!bus)
4993 return -ENOMEM;
e32edf4f 4994 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
4995 return r < 0 ? r : 0;
4996}
743eeb0b 4997
79fac95e 4998/* Caller must hold slots_lock. */
743eeb0b
SL
4999int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5000 int len, struct kvm_io_device *dev)
6c474694 5001{
d4c67a7a 5002 int i;
e93f8a0f 5003 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 5004 struct kvm_io_range range;
090b7aff 5005
4a12f951 5006 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
5007 if (!bus)
5008 return -ENOMEM;
5009
6ea34c9b
AK
5010 /* exclude ioeventfd which is limited by maximum fd */
5011 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 5012 return -ENOSPC;
2eeb2e94 5013
90952cd3 5014 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 5015 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
5016 if (!new_bus)
5017 return -ENOMEM;
d4c67a7a
GH
5018
5019 range = (struct kvm_io_range) {
5020 .addr = addr,
5021 .len = len,
5022 .dev = dev,
5023 };
5024
5025 for (i = 0; i < bus->dev_count; i++)
5026 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5027 break;
5028
5029 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5030 new_bus->dev_count++;
5031 new_bus->range[i] = range;
5032 memcpy(new_bus->range + i + 1, bus->range + i,
5033 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
5034 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5035 synchronize_srcu_expedited(&kvm->srcu);
5036 kfree(bus);
090b7aff
GH
5037
5038 return 0;
5039}
5040
5d3c4c79
SC
5041int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5042 struct kvm_io_device *dev)
090b7aff 5043{
f6588660 5044 int i, j;
e93f8a0f 5045 struct kvm_io_bus *new_bus, *bus;
090b7aff 5046
7c896d37
SC
5047 lockdep_assert_held(&kvm->slots_lock);
5048
4a12f951 5049 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 5050 if (!bus)
5d3c4c79 5051 return 0;
df630b8c 5052
7c896d37 5053 for (i = 0; i < bus->dev_count; i++) {
a1300716 5054 if (bus->range[i].dev == dev) {
090b7aff
GH
5055 break;
5056 }
7c896d37 5057 }
e93f8a0f 5058
90db1043 5059 if (i == bus->dev_count)
5d3c4c79 5060 return 0;
a1300716 5061
90952cd3 5062 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 5063 GFP_KERNEL_ACCOUNT);
f6588660 5064 if (new_bus) {
871c433b 5065 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
5066 new_bus->dev_count--;
5067 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 5068 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
5069 }
5070
5071 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5072 synchronize_srcu_expedited(&kvm->srcu);
5073
5074 /* Destroy the old bus _after_ installing the (null) bus. */
5075 if (!new_bus) {
90db1043 5076 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
5077 for (j = 0; j < bus->dev_count; j++) {
5078 if (j == i)
5079 continue;
5080 kvm_iodevice_destructor(bus->range[j].dev);
5081 }
90db1043 5082 }
a1300716 5083
e93f8a0f 5084 kfree(bus);
5d3c4c79 5085 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
5086}
5087
8a39d006
AP
5088struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5089 gpa_t addr)
5090{
5091 struct kvm_io_bus *bus;
5092 int dev_idx, srcu_idx;
5093 struct kvm_io_device *iodev = NULL;
5094
5095 srcu_idx = srcu_read_lock(&kvm->srcu);
5096
5097 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
5098 if (!bus)
5099 goto out_unlock;
8a39d006
AP
5100
5101 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5102 if (dev_idx < 0)
5103 goto out_unlock;
5104
5105 iodev = bus->range[dev_idx].dev;
5106
5107out_unlock:
5108 srcu_read_unlock(&kvm->srcu, srcu_idx);
5109
5110 return iodev;
5111}
5112EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5113
536a6f88
JF
5114static int kvm_debugfs_open(struct inode *inode, struct file *file,
5115 int (*get)(void *, u64 *), int (*set)(void *, u64),
5116 const char *fmt)
5117{
5118 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5119 inode->i_private;
5120
605c7130
PX
5121 /*
5122 * The debugfs files are a reference to the kvm struct which
5123 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5124 * avoids the race between open and the removal of the debugfs directory.
536a6f88 5125 */
605c7130 5126 if (!kvm_get_kvm_safe(stat_data->kvm))
536a6f88
JF
5127 return -ENOENT;
5128
833b45de 5129 if (simple_attr_open(inode, file, get,
bc9e9e67 5130 kvm_stats_debugfs_mode(stat_data->desc) & 0222
09cbcef6
MP
5131 ? set : NULL,
5132 fmt)) {
536a6f88
JF
5133 kvm_put_kvm(stat_data->kvm);
5134 return -ENOMEM;
5135 }
5136
5137 return 0;
5138}
5139
5140static int kvm_debugfs_release(struct inode *inode, struct file *file)
5141{
5142 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5143 inode->i_private;
5144
5145 simple_attr_release(inode, file);
5146 kvm_put_kvm(stat_data->kvm);
5147
5148 return 0;
5149}
5150
09cbcef6 5151static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 5152{
bc9e9e67 5153 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 5154
09cbcef6
MP
5155 return 0;
5156}
5157
5158static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5159{
bc9e9e67 5160 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
5161
5162 return 0;
5163}
5164
09cbcef6 5165static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 5166{
09cbcef6
MP
5167 int i;
5168 struct kvm_vcpu *vcpu;
ce35ef27 5169
09cbcef6 5170 *val = 0;
ce35ef27 5171
09cbcef6 5172 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5173 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
5174
5175 return 0;
5176}
5177
09cbcef6 5178static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 5179{
09cbcef6
MP
5180 int i;
5181 struct kvm_vcpu *vcpu;
536a6f88 5182
09cbcef6 5183 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5184 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
5185
5186 return 0;
5187}
536a6f88 5188
09cbcef6 5189static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 5190{
09cbcef6 5191 int r = -EFAULT;
536a6f88 5192 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 5193
bc9e9e67 5194 switch (stat_data->kind) {
09cbcef6
MP
5195 case KVM_STAT_VM:
5196 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 5197 stat_data->desc->desc.offset, val);
09cbcef6
MP
5198 break;
5199 case KVM_STAT_VCPU:
5200 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5201 stat_data->desc->desc.offset, val);
09cbcef6
MP
5202 break;
5203 }
536a6f88 5204
09cbcef6 5205 return r;
536a6f88
JF
5206}
5207
09cbcef6 5208static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 5209{
09cbcef6 5210 int r = -EFAULT;
ce35ef27 5211 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
5212
5213 if (val)
5214 return -EINVAL;
5215
bc9e9e67 5216 switch (stat_data->kind) {
09cbcef6
MP
5217 case KVM_STAT_VM:
5218 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 5219 stat_data->desc->desc.offset);
09cbcef6
MP
5220 break;
5221 case KVM_STAT_VCPU:
5222 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5223 stat_data->desc->desc.offset);
09cbcef6
MP
5224 break;
5225 }
ce35ef27 5226
09cbcef6 5227 return r;
ce35ef27
SJS
5228}
5229
09cbcef6 5230static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
5231{
5232 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
5233 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5234 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
5235}
5236
09cbcef6
MP
5237static const struct file_operations stat_fops_per_vm = {
5238 .owner = THIS_MODULE,
5239 .open = kvm_stat_data_open,
536a6f88 5240 .release = kvm_debugfs_release,
09cbcef6
MP
5241 .read = simple_attr_read,
5242 .write = simple_attr_write,
5243 .llseek = no_llseek,
536a6f88
JF
5244};
5245
8b88b099 5246static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
5247{
5248 unsigned offset = (long)_offset;
ba1389b7 5249 struct kvm *kvm;
536a6f88 5250 u64 tmp_val;
ba1389b7 5251
8b88b099 5252 *val = 0;
0d9ce162 5253 mutex_lock(&kvm_lock);
536a6f88 5254 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5255 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
5256 *val += tmp_val;
5257 }
0d9ce162 5258 mutex_unlock(&kvm_lock);
8b88b099 5259 return 0;
ba1389b7
AK
5260}
5261
ce35ef27
SJS
5262static int vm_stat_clear(void *_offset, u64 val)
5263{
5264 unsigned offset = (long)_offset;
5265 struct kvm *kvm;
ce35ef27
SJS
5266
5267 if (val)
5268 return -EINVAL;
5269
0d9ce162 5270 mutex_lock(&kvm_lock);
ce35ef27 5271 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5272 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 5273 }
0d9ce162 5274 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5275
5276 return 0;
5277}
5278
5279DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 5280DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 5281
8b88b099 5282static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
5283{
5284 unsigned offset = (long)_offset;
1165f5fe 5285 struct kvm *kvm;
536a6f88 5286 u64 tmp_val;
1165f5fe 5287
8b88b099 5288 *val = 0;
0d9ce162 5289 mutex_lock(&kvm_lock);
536a6f88 5290 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5291 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
5292 *val += tmp_val;
5293 }
0d9ce162 5294 mutex_unlock(&kvm_lock);
8b88b099 5295 return 0;
1165f5fe
AK
5296}
5297
ce35ef27
SJS
5298static int vcpu_stat_clear(void *_offset, u64 val)
5299{
5300 unsigned offset = (long)_offset;
5301 struct kvm *kvm;
ce35ef27
SJS
5302
5303 if (val)
5304 return -EINVAL;
5305
0d9ce162 5306 mutex_lock(&kvm_lock);
ce35ef27 5307 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5308 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 5309 }
0d9ce162 5310 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5311
5312 return 0;
5313}
5314
5315DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5316 "%llu\n");
bc9e9e67 5317DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 5318
286de8f6
CI
5319static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5320{
5321 struct kobj_uevent_env *env;
286de8f6
CI
5322 unsigned long long created, active;
5323
5324 if (!kvm_dev.this_device || !kvm)
5325 return;
5326
0d9ce162 5327 mutex_lock(&kvm_lock);
286de8f6
CI
5328 if (type == KVM_EVENT_CREATE_VM) {
5329 kvm_createvm_count++;
5330 kvm_active_vms++;
5331 } else if (type == KVM_EVENT_DESTROY_VM) {
5332 kvm_active_vms--;
5333 }
5334 created = kvm_createvm_count;
5335 active = kvm_active_vms;
0d9ce162 5336 mutex_unlock(&kvm_lock);
286de8f6 5337
b12ce36a 5338 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
5339 if (!env)
5340 return;
5341
5342 add_uevent_var(env, "CREATED=%llu", created);
5343 add_uevent_var(env, "COUNT=%llu", active);
5344
fdeaf7e3 5345 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 5346 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
5347 kvm->userspace_pid = task_pid_nr(current);
5348 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 5349 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
5350 }
5351 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 5352
85cd39af 5353 if (kvm->debugfs_dentry) {
b12ce36a 5354 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
5355
5356 if (p) {
5357 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5358 if (!IS_ERR(tmp))
5359 add_uevent_var(env, "STATS_PATH=%s", tmp);
5360 kfree(p);
286de8f6
CI
5361 }
5362 }
5363 /* no need for checks, since we are adding at most only 5 keys */
5364 env->envp[env->envp_idx++] = NULL;
5365 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5366 kfree(env);
286de8f6
CI
5367}
5368
929f45e3 5369static void kvm_init_debug(void)
6aa8b732 5370{
bc9e9e67
JZ
5371 const struct file_operations *fops;
5372 const struct _kvm_stats_desc *pdesc;
5373 int i;
6aa8b732 5374
76f7c879 5375 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 5376
bc9e9e67
JZ
5377 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5378 pdesc = &kvm_vm_stats_desc[i];
5379 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5380 fops = &vm_stat_fops;
5381 else
5382 fops = &vm_stat_readonly_fops;
5383 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5384 kvm_debugfs_dir,
5385 (void *)(long)pdesc->desc.offset, fops);
5386 }
5387
5388 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5389 pdesc = &kvm_vcpu_stats_desc[i];
5390 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5391 fops = &vcpu_stat_fops;
5392 else
5393 fops = &vcpu_stat_readonly_fops;
5394 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5395 kvm_debugfs_dir,
5396 (void *)(long)pdesc->desc.offset, fops);
4f69b680 5397 }
6aa8b732
AK
5398}
5399
fb3600cc 5400static int kvm_suspend(void)
59ae6c6b 5401{
10474ae8 5402 if (kvm_usage_count)
75b7127c 5403 hardware_disable_nolock(NULL);
59ae6c6b
AK
5404 return 0;
5405}
5406
fb3600cc 5407static void kvm_resume(void)
59ae6c6b 5408{
ca84d1a2 5409 if (kvm_usage_count) {
2eb06c30
WL
5410#ifdef CONFIG_LOCKDEP
5411 WARN_ON(lockdep_is_held(&kvm_count_lock));
5412#endif
75b7127c 5413 hardware_enable_nolock(NULL);
ca84d1a2 5414 }
59ae6c6b
AK
5415}
5416
fb3600cc 5417static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
5418 .suspend = kvm_suspend,
5419 .resume = kvm_resume,
5420};
5421
15ad7146
AK
5422static inline
5423struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5424{
5425 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5426}
5427
5428static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5429{
5430 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5431
046ddeed 5432 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5433 WRITE_ONCE(vcpu->ready, false);
15ad7146 5434
7495e22b 5435 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5436 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5437 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5438}
5439
5440static void kvm_sched_out(struct preempt_notifier *pn,
5441 struct task_struct *next)
5442{
5443 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5444
3ba9f93b 5445 if (current->on_rq) {
046ddeed 5446 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5447 WRITE_ONCE(vcpu->ready, true);
5448 }
e9b11c17 5449 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5450 __this_cpu_write(kvm_running_vcpu, NULL);
5451}
5452
5453/**
5454 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5455 *
5456 * We can disable preemption locally around accessing the per-CPU variable,
5457 * and use the resolved vcpu pointer after enabling preemption again,
5458 * because even if the current thread is migrated to another CPU, reading
5459 * the per-CPU value later will give us the same value as we update the
5460 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5461 */
5462struct kvm_vcpu *kvm_get_running_vcpu(void)
5463{
1f03b2bc
MZ
5464 struct kvm_vcpu *vcpu;
5465
5466 preempt_disable();
5467 vcpu = __this_cpu_read(kvm_running_vcpu);
5468 preempt_enable();
5469
5470 return vcpu;
7495e22b 5471}
379a3c8e 5472EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5473
5474/**
5475 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5476 */
5477struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5478{
5479 return &kvm_running_vcpu;
15ad7146
AK
5480}
5481
b9904085
SC
5482struct kvm_cpu_compat_check {
5483 void *opaque;
5484 int *ret;
5485};
5486
5487static void check_processor_compat(void *data)
f257d6dc 5488{
b9904085
SC
5489 struct kvm_cpu_compat_check *c = data;
5490
5491 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
5492}
5493
0ee75bea 5494int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 5495 struct module *module)
6aa8b732 5496{
b9904085 5497 struct kvm_cpu_compat_check c;
6aa8b732 5498 int r;
002c7f7c 5499 int cpu;
6aa8b732 5500
f8c16bba
ZX
5501 r = kvm_arch_init(opaque);
5502 if (r)
d2308784 5503 goto out_fail;
cb498ea2 5504
7dac16c3
AH
5505 /*
5506 * kvm_arch_init makes sure there's at most one caller
5507 * for architectures that support multiple implementations,
5508 * like intel and amd on x86.
36343f6e
PB
5509 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5510 * conflicts in case kvm is already setup for another implementation.
7dac16c3 5511 */
36343f6e
PB
5512 r = kvm_irqfd_init();
5513 if (r)
5514 goto out_irqfd;
7dac16c3 5515
8437a617 5516 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
5517 r = -ENOMEM;
5518 goto out_free_0;
5519 }
5520
b9904085 5521 r = kvm_arch_hardware_setup(opaque);
6aa8b732 5522 if (r < 0)
faf0be22 5523 goto out_free_1;
6aa8b732 5524
b9904085
SC
5525 c.ret = &r;
5526 c.opaque = opaque;
002c7f7c 5527 for_each_online_cpu(cpu) {
b9904085 5528 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 5529 if (r < 0)
faf0be22 5530 goto out_free_2;
002c7f7c
YS
5531 }
5532
73c1b41e 5533 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 5534 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 5535 if (r)
d2308784 5536 goto out_free_2;
6aa8b732
AK
5537 register_reboot_notifier(&kvm_reboot_notifier);
5538
c16f862d 5539 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5540 if (!vcpu_align)
5541 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5542 kvm_vcpu_cache =
5543 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5544 SLAB_ACCOUNT,
5545 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
5546 offsetofend(struct kvm_vcpu, stats_id)
5547 - offsetof(struct kvm_vcpu, arch),
46515736 5548 NULL);
c16f862d
RR
5549 if (!kvm_vcpu_cache) {
5550 r = -ENOMEM;
fb3600cc 5551 goto out_free_3;
c16f862d
RR
5552 }
5553
baff59cc
VK
5554 for_each_possible_cpu(cpu) {
5555 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5556 GFP_KERNEL, cpu_to_node(cpu))) {
5557 r = -ENOMEM;
5558 goto out_free_4;
5559 }
5560 }
5561
af585b92
GN
5562 r = kvm_async_pf_init();
5563 if (r)
baff59cc 5564 goto out_free_5;
af585b92 5565
6aa8b732 5566 kvm_chardev_ops.owner = module;
3d3aab1b
CB
5567 kvm_vm_fops.owner = module;
5568 kvm_vcpu_fops.owner = module;
6aa8b732
AK
5569
5570 r = misc_register(&kvm_dev);
5571 if (r) {
1170adc6 5572 pr_err("kvm: misc device register failed\n");
af585b92 5573 goto out_unreg;
6aa8b732
AK
5574 }
5575
fb3600cc
RW
5576 register_syscore_ops(&kvm_syscore_ops);
5577
15ad7146
AK
5578 kvm_preempt_ops.sched_in = kvm_sched_in;
5579 kvm_preempt_ops.sched_out = kvm_sched_out;
5580
929f45e3 5581 kvm_init_debug();
0ea4ed8e 5582
3c3c29fd
PB
5583 r = kvm_vfio_ops_init();
5584 WARN_ON(r);
5585
c7addb90 5586 return 0;
6aa8b732 5587
af585b92
GN
5588out_unreg:
5589 kvm_async_pf_deinit();
baff59cc
VK
5590out_free_5:
5591 for_each_possible_cpu(cpu)
5592 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5593out_free_4:
c16f862d 5594 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 5595out_free_3:
6aa8b732 5596 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5597 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 5598out_free_2:
e9b11c17 5599 kvm_arch_hardware_unsetup();
faf0be22 5600out_free_1:
7f59f492 5601 free_cpumask_var(cpus_hardware_enabled);
d2308784 5602out_free_0:
a0f155e9 5603 kvm_irqfd_exit();
36343f6e 5604out_irqfd:
7dac16c3
AH
5605 kvm_arch_exit();
5606out_fail:
6aa8b732
AK
5607 return r;
5608}
cb498ea2 5609EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 5610
cb498ea2 5611void kvm_exit(void)
6aa8b732 5612{
baff59cc
VK
5613 int cpu;
5614
4bd33b56 5615 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 5616 misc_deregister(&kvm_dev);
baff59cc
VK
5617 for_each_possible_cpu(cpu)
5618 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 5619 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 5620 kvm_async_pf_deinit();
fb3600cc 5621 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 5622 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5623 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 5624 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 5625 kvm_arch_hardware_unsetup();
f8c16bba 5626 kvm_arch_exit();
a0f155e9 5627 kvm_irqfd_exit();
7f59f492 5628 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 5629 kvm_vfio_ops_exit();
6aa8b732 5630}
cb498ea2 5631EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
5632
5633struct kvm_vm_worker_thread_context {
5634 struct kvm *kvm;
5635 struct task_struct *parent;
5636 struct completion init_done;
5637 kvm_vm_thread_fn_t thread_fn;
5638 uintptr_t data;
5639 int err;
5640};
5641
5642static int kvm_vm_worker_thread(void *context)
5643{
5644 /*
5645 * The init_context is allocated on the stack of the parent thread, so
5646 * we have to locally copy anything that is needed beyond initialization
5647 */
5648 struct kvm_vm_worker_thread_context *init_context = context;
5649 struct kvm *kvm = init_context->kvm;
5650 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5651 uintptr_t data = init_context->data;
5652 int err;
5653
5654 err = kthread_park(current);
5655 /* kthread_park(current) is never supposed to return an error */
5656 WARN_ON(err != 0);
5657 if (err)
5658 goto init_complete;
5659
5660 err = cgroup_attach_task_all(init_context->parent, current);
5661 if (err) {
5662 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5663 __func__, err);
5664 goto init_complete;
5665 }
5666
5667 set_user_nice(current, task_nice(init_context->parent));
5668
5669init_complete:
5670 init_context->err = err;
5671 complete(&init_context->init_done);
5672 init_context = NULL;
5673
5674 if (err)
5675 return err;
5676
5677 /* Wait to be woken up by the spawner before proceeding. */
5678 kthread_parkme();
5679
5680 if (!kthread_should_stop())
5681 err = thread_fn(kvm, data);
5682
5683 return err;
5684}
5685
5686int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5687 uintptr_t data, const char *name,
5688 struct task_struct **thread_ptr)
5689{
5690 struct kvm_vm_worker_thread_context init_context = {};
5691 struct task_struct *thread;
5692
5693 *thread_ptr = NULL;
5694 init_context.kvm = kvm;
5695 init_context.parent = current;
5696 init_context.thread_fn = thread_fn;
5697 init_context.data = data;
5698 init_completion(&init_context.init_done);
5699
5700 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5701 "%s-%d", name, task_pid_nr(current));
5702 if (IS_ERR(thread))
5703 return PTR_ERR(thread);
5704
5705 /* kthread_run is never supposed to return NULL */
5706 WARN_ON(thread == NULL);
5707
5708 wait_for_completion(&init_context.init_done);
5709
5710 if (!init_context.err)
5711 *thread_ptr = thread;
5712
5713 return init_context.err;
5714}