KVM: Remove kvm_vcpu_gfn_to_page() and kvm_vcpu_gpa_to_page()
[linux-2.6-block.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
982ed0de 62#include "kvm_mm.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
fb04a1ed
PX
68#include <linux/kvm_dirty_ring.h>
69
536a6f88
JF
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
6aa8b732
AK
73MODULE_AUTHOR("Qumranet");
74MODULE_LICENSE("GPL");
75
920552b2 76/* Architectures should define their poll value according to the halt latency */
ec76d819 77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 78module_param(halt_poll_ns, uint, 0644);
ec76d819 79EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 80
aca6ff29 81/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 82unsigned int halt_poll_ns_grow = 2;
039c5d1b 83module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 85
49113d36
NW
86/* The start value to grow halt_poll_ns from */
87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88module_param(halt_poll_ns_grow_start, uint, 0644);
89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
aca6ff29 91/* Default resets per-vcpu halt_poll_ns . */
ec76d819 92unsigned int halt_poll_ns_shrink;
039c5d1b 93module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 95
fa40a821
MT
96/*
97 * Ordering of locks:
98 *
b7d409de 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
100 */
101
0d9ce162 102DEFINE_MUTEX(kvm_lock);
4a937f96 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 104LIST_HEAD(vm_list);
133de902 105
7f59f492 106static cpumask_var_t cpus_hardware_enabled;
f4fee932 107static int kvm_usage_count;
10474ae8 108static atomic_t hardware_enable_failed;
1b6c0168 109
aaba298c 110static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 111
15ad7146 112static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 114
76f7c879 115struct dentry *kvm_debugfs_dir;
e23a808b 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 117
09cbcef6 118static const struct file_operations stat_fops_per_vm;
536a6f88 119
5f6de5cb
DM
120static struct file_operations kvm_chardev_ops;
121
bccf2150
AK
122static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
de8e5d74 124#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
125static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
7ddfd3e0
MZ
127#define KVM_COMPAT(c) .compat_ioctl = (c)
128#else
9cb09e7c
MZ
129/*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
7ddfd3e0
MZ
136static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
138
139static int kvm_no_compat_open(struct inode *inode, struct file *file)
140{
141 return is_compat_task() ? -ENODEV : 0;
142}
143#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
1dda606c 145#endif
10474ae8
AG
146static int hardware_enable_all(void);
147static void hardware_disable_all(void);
bccf2150 148
e93f8a0f 149static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 150
52480137 151__visible bool kvm_rebooting;
b7c4145b 152EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 153
286de8f6
CI
154#define KVM_EVENT_CREATE_VM 0
155#define KVM_EVENT_DESTROY_VM 1
156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157static unsigned long long kvm_createvm_count;
158static unsigned long long kvm_active_vms;
159
baff59cc
VK
160static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
e649b3f0
ET
162__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 unsigned long start, unsigned long end)
b1394e74
RK
164{
165}
166
683412cc
MZ
167__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168{
169}
170
a78986aa
SC
171bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172{
173 /*
174 * The metadata used by is_zone_device_page() to determine whether or
175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 * the device has been pinned, e.g. by get_user_pages(). WARN if the
177 * page_count() is zero to help detect bad usage of this helper.
178 */
179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180 return false;
181
182 return is_zone_device_page(pfn_to_page(pfn));
183}
184
ba049e93 185bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 186{
a78986aa
SC
187 /*
188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189 * perspective they are "normal" pages, albeit with slightly different
190 * usage rules.
191 */
11feeb49 192 if (pfn_valid(pfn))
a78986aa 193 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 194 !is_zero_pfn(pfn) &&
a78986aa 195 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
196
197 return true;
198}
199
bccf2150
AK
200/*
201 * Switches to specified vcpu, until a matching vcpu_put()
202 */
ec7660cc 203void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 204{
ec7660cc 205 int cpu = get_cpu();
7495e22b
PB
206
207 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 208 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 209 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 210 put_cpu();
6aa8b732 211}
2f1fe811 212EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 213
313a3dc7 214void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 215{
15ad7146 216 preempt_disable();
313a3dc7 217 kvm_arch_vcpu_put(vcpu);
15ad7146 218 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 219 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 220 preempt_enable();
6aa8b732 221}
2f1fe811 222EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 223
7a97cec2
PB
224/* TODO: merge with kvm_arch_vcpu_should_kick */
225static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226{
227 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228
229 /*
230 * We need to wait for the VCPU to reenable interrupts and get out of
231 * READING_SHADOW_PAGE_TABLES mode.
232 */
233 if (req & KVM_REQUEST_WAIT)
234 return mode != OUTSIDE_GUEST_MODE;
235
236 /*
237 * Need to kick a running VCPU, but otherwise there is nothing to do.
238 */
239 return mode == IN_GUEST_MODE;
240}
241
f24b44e4 242static void ack_kick(void *_completed)
d9e368d6 243{
d9e368d6
AK
244}
245
620b2438 246static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
b49defe8 247{
b49defe8
PB
248 if (cpumask_empty(cpus))
249 return false;
250
f24b44e4 251 smp_call_function_many(cpus, ack_kick, NULL, wait);
b49defe8
PB
252 return true;
253}
254
b56bd8e0
JL
255static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
256 struct cpumask *tmp, int current_cpu)
ae0946cd
VK
257{
258 int cpu;
259
df06dae3
SC
260 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
261 __kvm_make_request(req, vcpu);
ae0946cd
VK
262
263 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
264 return;
265
ae0946cd
VK
266 /*
267 * Note, the vCPU could get migrated to a different pCPU at any point
268 * after kvm_request_needs_ipi(), which could result in sending an IPI
269 * to the previous pCPU. But, that's OK because the purpose of the IPI
270 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
271 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
272 * after this point is also OK, as the requirement is only that KVM wait
273 * for vCPUs that were reading SPTEs _before_ any changes were
274 * finalized. See kvm_vcpu_kick() for more details on handling requests.
275 */
276 if (kvm_request_needs_ipi(vcpu, req)) {
277 cpu = READ_ONCE(vcpu->cpu);
278 if (cpu != -1 && cpu != current_cpu)
279 __cpumask_set_cpu(cpu, tmp);
280 }
281}
282
7053df4e 283bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
620b2438 284 unsigned long *vcpu_bitmap)
d9e368d6 285{
d9e368d6 286 struct kvm_vcpu *vcpu;
620b2438 287 struct cpumask *cpus;
ae0946cd 288 int i, me;
7053df4e 289 bool called;
6ef7a1bc 290
3cba4130 291 me = get_cpu();
7053df4e 292
620b2438
VK
293 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
294 cpumask_clear(cpus);
295
ae0946cd
VK
296 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
297 vcpu = kvm_get_vcpu(kvm, i);
381cecc5 298 if (!vcpu)
7053df4e 299 continue;
b56bd8e0 300 kvm_make_vcpu_request(vcpu, req, cpus, me);
49846896 301 }
7053df4e 302
620b2438 303 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
3cba4130 304 put_cpu();
7053df4e
VK
305
306 return called;
307}
308
54163a34
SS
309bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
310 struct kvm_vcpu *except)
7053df4e 311{
ae0946cd 312 struct kvm_vcpu *vcpu;
baff59cc 313 struct cpumask *cpus;
46808a4c 314 unsigned long i;
7053df4e 315 bool called;
46808a4c 316 int me;
7053df4e 317
ae0946cd
VK
318 me = get_cpu();
319
baff59cc
VK
320 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
321 cpumask_clear(cpus);
322
ae0946cd
VK
323 kvm_for_each_vcpu(i, vcpu, kvm) {
324 if (vcpu == except)
325 continue;
b56bd8e0 326 kvm_make_vcpu_request(vcpu, req, cpus, me);
ae0946cd
VK
327 }
328
329 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
330 put_cpu();
7053df4e 331
49846896 332 return called;
d9e368d6
AK
333}
334
54163a34
SS
335bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
336{
337 return kvm_make_all_cpus_request_except(kvm, req, NULL);
338}
a2486020 339EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 340
a6d51016 341#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 342void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 343{
3cc4e148 344 ++kvm->stat.generic.remote_tlb_flush_requests;
6bc6db00 345
4ae3cb3a
LT
346 /*
347 * We want to publish modifications to the page tables before reading
348 * mode. Pairs with a memory barrier in arch-specific code.
349 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
350 * and smp_mb in walk_shadow_page_lockless_begin/end.
351 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
352 *
353 * There is already an smp_mb__after_atomic() before
354 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
355 * barrier here.
356 */
b08660e5
TL
357 if (!kvm_arch_flush_remote_tlb(kvm)
358 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 359 ++kvm->stat.generic.remote_tlb_flush;
2e53d63a 360}
2ba9f0d8 361EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 362#endif
2e53d63a 363
683412cc
MZ
364static void kvm_flush_shadow_all(struct kvm *kvm)
365{
366 kvm_arch_flush_shadow_all(kvm);
367 kvm_arch_guest_memory_reclaimed(kvm);
368}
369
6926f95a
SC
370#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
371static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
372 gfp_t gfp_flags)
373{
374 gfp_flags |= mc->gfp_zero;
375
376 if (mc->kmem_cache)
377 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
378 else
379 return (void *)__get_free_page(gfp_flags);
380}
381
382int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
383{
384 void *obj;
385
386 if (mc->nobjs >= min)
387 return 0;
388 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
389 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
390 if (!obj)
391 return mc->nobjs >= min ? 0 : -ENOMEM;
392 mc->objects[mc->nobjs++] = obj;
393 }
394 return 0;
395}
396
397int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
398{
399 return mc->nobjs;
400}
401
402void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
403{
404 while (mc->nobjs) {
405 if (mc->kmem_cache)
406 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
407 else
408 free_page((unsigned long)mc->objects[--mc->nobjs]);
409 }
410}
411
412void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
413{
414 void *p;
415
416 if (WARN_ON(!mc->nobjs))
417 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
418 else
419 p = mc->objects[--mc->nobjs];
420 BUG_ON(!p);
421 return p;
422}
423#endif
424
8bd826d6 425static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 426{
fb3f0f51
RR
427 mutex_init(&vcpu->mutex);
428 vcpu->cpu = -1;
fb3f0f51
RR
429 vcpu->kvm = kvm;
430 vcpu->vcpu_id = id;
34bb10b7 431 vcpu->pid = NULL;
510958e9 432#ifndef __KVM_HAVE_ARCH_WQP
da4ad88c 433 rcuwait_init(&vcpu->wait);
510958e9 434#endif
af585b92 435 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 436
4c088493
R
437 kvm_vcpu_set_in_spin_loop(vcpu, false);
438 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 439 vcpu->preempted = false;
d73eb57b 440 vcpu->ready = false;
d5c48deb 441 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
a54d8066 442 vcpu->last_used_slot = NULL;
fb3f0f51 443}
fb3f0f51 444
27592ae8 445static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
4543bdc0
SC
446{
447 kvm_arch_vcpu_destroy(vcpu);
5593473a 448 kvm_dirty_ring_free(&vcpu->dirty_ring);
e529ef66 449
9941d224
SC
450 /*
451 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
452 * the vcpu->pid pointer, and at destruction time all file descriptors
453 * are already gone.
454 */
455 put_pid(rcu_dereference_protected(vcpu->pid, 1));
456
8bd826d6 457 free_page((unsigned long)vcpu->run);
e529ef66 458 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0 459}
27592ae8
MZ
460
461void kvm_destroy_vcpus(struct kvm *kvm)
462{
46808a4c 463 unsigned long i;
27592ae8
MZ
464 struct kvm_vcpu *vcpu;
465
466 kvm_for_each_vcpu(i, vcpu, kvm) {
467 kvm_vcpu_destroy(vcpu);
c5b07754 468 xa_erase(&kvm->vcpu_array, i);
27592ae8
MZ
469 }
470
471 atomic_set(&kvm->online_vcpus, 0);
472}
473EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
4543bdc0 474
e930bffe
AA
475#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
476static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
477{
478 return container_of(mn, struct kvm, mmu_notifier);
479}
480
e649b3f0
ET
481static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
482 struct mm_struct *mm,
483 unsigned long start, unsigned long end)
484{
485 struct kvm *kvm = mmu_notifier_to_kvm(mn);
486 int idx;
487
488 idx = srcu_read_lock(&kvm->srcu);
489 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
490 srcu_read_unlock(&kvm->srcu, idx);
491}
492
3039bcc7
SC
493typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
494
f922bd9b
SC
495typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
496 unsigned long end);
497
683412cc
MZ
498typedef void (*on_unlock_fn_t)(struct kvm *kvm);
499
3039bcc7
SC
500struct kvm_hva_range {
501 unsigned long start;
502 unsigned long end;
503 pte_t pte;
504 hva_handler_t handler;
f922bd9b 505 on_lock_fn_t on_lock;
683412cc 506 on_unlock_fn_t on_unlock;
3039bcc7
SC
507 bool flush_on_ret;
508 bool may_block;
509};
510
f922bd9b
SC
511/*
512 * Use a dedicated stub instead of NULL to indicate that there is no callback
513 * function/handler. The compiler technically can't guarantee that a real
514 * function will have a non-zero address, and so it will generate code to
515 * check for !NULL, whereas comparing against a stub will be elided at compile
516 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
517 */
518static void kvm_null_fn(void)
519{
520
521}
522#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
523
ed922739
MS
524/* Iterate over each memslot intersecting [start, last] (inclusive) range */
525#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
526 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
527 node; \
528 node = interval_tree_iter_next(node, start, last)) \
529
3039bcc7
SC
530static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
531 const struct kvm_hva_range *range)
532{
8931a454 533 bool ret = false, locked = false;
f922bd9b 534 struct kvm_gfn_range gfn_range;
3039bcc7
SC
535 struct kvm_memory_slot *slot;
536 struct kvm_memslots *slots;
3039bcc7
SC
537 int i, idx;
538
ed922739
MS
539 if (WARN_ON_ONCE(range->end <= range->start))
540 return 0;
541
f922bd9b
SC
542 /* A null handler is allowed if and only if on_lock() is provided. */
543 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
544 IS_KVM_NULL_FN(range->handler)))
545 return 0;
546
3039bcc7
SC
547 idx = srcu_read_lock(&kvm->srcu);
548
549 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
ed922739
MS
550 struct interval_tree_node *node;
551
3039bcc7 552 slots = __kvm_memslots(kvm, i);
ed922739
MS
553 kvm_for_each_memslot_in_hva_range(node, slots,
554 range->start, range->end - 1) {
3039bcc7
SC
555 unsigned long hva_start, hva_end;
556
a54d8066 557 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
3039bcc7
SC
558 hva_start = max(range->start, slot->userspace_addr);
559 hva_end = min(range->end, slot->userspace_addr +
560 (slot->npages << PAGE_SHIFT));
3039bcc7
SC
561
562 /*
563 * To optimize for the likely case where the address
564 * range is covered by zero or one memslots, don't
565 * bother making these conditional (to avoid writes on
566 * the second or later invocation of the handler).
567 */
568 gfn_range.pte = range->pte;
569 gfn_range.may_block = range->may_block;
570
571 /*
572 * {gfn(page) | page intersects with [hva_start, hva_end)} =
573 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
574 */
575 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
576 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
577 gfn_range.slot = slot;
578
8931a454
SC
579 if (!locked) {
580 locked = true;
581 KVM_MMU_LOCK(kvm);
071064f1
PB
582 if (!IS_KVM_NULL_FN(range->on_lock))
583 range->on_lock(kvm, range->start, range->end);
584 if (IS_KVM_NULL_FN(range->handler))
585 break;
8931a454 586 }
3039bcc7
SC
587 ret |= range->handler(kvm, &gfn_range);
588 }
589 }
590
6bc6db00 591 if (range->flush_on_ret && ret)
3039bcc7
SC
592 kvm_flush_remote_tlbs(kvm);
593
683412cc 594 if (locked) {
8931a454 595 KVM_MMU_UNLOCK(kvm);
683412cc
MZ
596 if (!IS_KVM_NULL_FN(range->on_unlock))
597 range->on_unlock(kvm);
598 }
f922bd9b 599
3039bcc7
SC
600 srcu_read_unlock(&kvm->srcu, idx);
601
602 /* The notifiers are averse to booleans. :-( */
603 return (int)ret;
604}
605
606static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
607 unsigned long start,
608 unsigned long end,
609 pte_t pte,
610 hva_handler_t handler)
611{
612 struct kvm *kvm = mmu_notifier_to_kvm(mn);
613 const struct kvm_hva_range range = {
614 .start = start,
615 .end = end,
616 .pte = pte,
617 .handler = handler,
f922bd9b 618 .on_lock = (void *)kvm_null_fn,
683412cc 619 .on_unlock = (void *)kvm_null_fn,
3039bcc7
SC
620 .flush_on_ret = true,
621 .may_block = false,
622 };
3039bcc7 623
f922bd9b 624 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
625}
626
627static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
628 unsigned long start,
629 unsigned long end,
630 hva_handler_t handler)
631{
632 struct kvm *kvm = mmu_notifier_to_kvm(mn);
633 const struct kvm_hva_range range = {
634 .start = start,
635 .end = end,
636 .pte = __pte(0),
637 .handler = handler,
f922bd9b 638 .on_lock = (void *)kvm_null_fn,
683412cc 639 .on_unlock = (void *)kvm_null_fn,
3039bcc7
SC
640 .flush_on_ret = false,
641 .may_block = false,
642 };
3039bcc7 643
f922bd9b 644 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 645}
3da0dd43
IE
646static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
647 struct mm_struct *mm,
648 unsigned long address,
649 pte_t pte)
650{
651 struct kvm *kvm = mmu_notifier_to_kvm(mn);
652
501b9185
SC
653 trace_kvm_set_spte_hva(address);
654
c13fda23 655 /*
52ac8b35 656 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
071064f1
PB
657 * If mmu_notifier_count is zero, then no in-progress invalidations,
658 * including this one, found a relevant memslot at start(); rechecking
659 * memslots here is unnecessary. Note, a false positive (count elevated
660 * by a different invalidation) is sub-optimal but functionally ok.
c13fda23 661 */
52ac8b35 662 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
071064f1
PB
663 if (!READ_ONCE(kvm->mmu_notifier_count))
664 return;
c13fda23 665
3039bcc7 666 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
667}
668
edb298c6 669void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 670 unsigned long end)
e930bffe 671{
e930bffe
AA
672 /*
673 * The count increase must become visible at unlock time as no
674 * spte can be established without taking the mmu_lock and
675 * count is also read inside the mmu_lock critical section.
676 */
677 kvm->mmu_notifier_count++;
4a42d848 678 if (likely(kvm->mmu_notifier_count == 1)) {
f922bd9b
SC
679 kvm->mmu_notifier_range_start = start;
680 kvm->mmu_notifier_range_end = end;
4a42d848
DS
681 } else {
682 /*
a413a625 683 * Fully tracking multiple concurrent ranges has diminishing
4a42d848
DS
684 * returns. Keep things simple and just find the minimal range
685 * which includes the current and new ranges. As there won't be
686 * enough information to subtract a range after its invalidate
687 * completes, any ranges invalidated concurrently will
688 * accumulate and persist until all outstanding invalidates
689 * complete.
690 */
691 kvm->mmu_notifier_range_start =
f922bd9b 692 min(kvm->mmu_notifier_range_start, start);
4a42d848 693 kvm->mmu_notifier_range_end =
f922bd9b 694 max(kvm->mmu_notifier_range_end, end);
4a42d848 695 }
f922bd9b 696}
3039bcc7 697
f922bd9b
SC
698static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
699 const struct mmu_notifier_range *range)
700{
701 struct kvm *kvm = mmu_notifier_to_kvm(mn);
702 const struct kvm_hva_range hva_range = {
703 .start = range->start,
704 .end = range->end,
705 .pte = __pte(0),
706 .handler = kvm_unmap_gfn_range,
707 .on_lock = kvm_inc_notifier_count,
683412cc 708 .on_unlock = kvm_arch_guest_memory_reclaimed,
f922bd9b
SC
709 .flush_on_ret = true,
710 .may_block = mmu_notifier_range_blockable(range),
711 };
565f3be2 712
f922bd9b
SC
713 trace_kvm_unmap_hva_range(range->start, range->end);
714
52ac8b35
PB
715 /*
716 * Prevent memslot modification between range_start() and range_end()
717 * so that conditionally locking provides the same result in both
718 * functions. Without that guarantee, the mmu_notifier_count
719 * adjustments will be imbalanced.
720 *
721 * Pairs with the decrement in range_end().
722 */
723 spin_lock(&kvm->mn_invalidate_lock);
724 kvm->mn_active_invalidate_count++;
725 spin_unlock(&kvm->mn_invalidate_lock);
726
58cd407c
SC
727 /*
728 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
729 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
730 * each cache's lock. There are relatively few caches in existence at
731 * any given time, and the caches themselves can check for hva overlap,
732 * i.e. don't need to rely on memslot overlap checks for performance.
733 * Because this runs without holding mmu_lock, the pfn caches must use
734 * mn_active_invalidate_count (see above) instead of mmu_notifier_count.
735 */
982ed0de
DW
736 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
737 hva_range.may_block);
738
f922bd9b 739 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 740
e649b3f0 741 return 0;
e930bffe
AA
742}
743
edb298c6 744void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 745 unsigned long end)
e930bffe 746{
e930bffe
AA
747 /*
748 * This sequence increase will notify the kvm page fault that
749 * the page that is going to be mapped in the spte could have
750 * been freed.
751 */
752 kvm->mmu_notifier_seq++;
a355aa54 753 smp_wmb();
e930bffe
AA
754 /*
755 * The above sequence increase must be visible before the
a355aa54
PM
756 * below count decrease, which is ensured by the smp_wmb above
757 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
758 */
759 kvm->mmu_notifier_count--;
f922bd9b
SC
760}
761
762static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
763 const struct mmu_notifier_range *range)
764{
765 struct kvm *kvm = mmu_notifier_to_kvm(mn);
766 const struct kvm_hva_range hva_range = {
767 .start = range->start,
768 .end = range->end,
769 .pte = __pte(0),
770 .handler = (void *)kvm_null_fn,
771 .on_lock = kvm_dec_notifier_count,
683412cc 772 .on_unlock = (void *)kvm_null_fn,
f922bd9b
SC
773 .flush_on_ret = false,
774 .may_block = mmu_notifier_range_blockable(range),
775 };
52ac8b35 776 bool wake;
f922bd9b
SC
777
778 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe 779
52ac8b35
PB
780 /* Pairs with the increment in range_start(). */
781 spin_lock(&kvm->mn_invalidate_lock);
782 wake = (--kvm->mn_active_invalidate_count == 0);
783 spin_unlock(&kvm->mn_invalidate_lock);
784
785 /*
786 * There can only be one waiter, since the wait happens under
787 * slots_lock.
788 */
789 if (wake)
790 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
791
e930bffe
AA
792 BUG_ON(kvm->mmu_notifier_count < 0);
793}
794
795static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
796 struct mm_struct *mm,
57128468
ALC
797 unsigned long start,
798 unsigned long end)
e930bffe 799{
501b9185
SC
800 trace_kvm_age_hva(start, end);
801
3039bcc7 802 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
803}
804
1d7715c6
VD
805static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
806 struct mm_struct *mm,
807 unsigned long start,
808 unsigned long end)
809{
501b9185
SC
810 trace_kvm_age_hva(start, end);
811
1d7715c6
VD
812 /*
813 * Even though we do not flush TLB, this will still adversely
814 * affect performance on pre-Haswell Intel EPT, where there is
815 * no EPT Access Bit to clear so that we have to tear down EPT
816 * tables instead. If we find this unacceptable, we can always
817 * add a parameter to kvm_age_hva so that it effectively doesn't
818 * do anything on clear_young.
819 *
820 * Also note that currently we never issue secondary TLB flushes
821 * from clear_young, leaving this job up to the regular system
822 * cadence. If we find this inaccurate, we might come up with a
823 * more sophisticated heuristic later.
824 */
3039bcc7 825 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
826}
827
8ee53820
AA
828static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
829 struct mm_struct *mm,
830 unsigned long address)
831{
501b9185
SC
832 trace_kvm_test_age_hva(address);
833
3039bcc7
SC
834 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
835 kvm_test_age_gfn);
8ee53820
AA
836}
837
85db06e5
MT
838static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
839 struct mm_struct *mm)
840{
841 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
842 int idx;
843
844 idx = srcu_read_lock(&kvm->srcu);
683412cc 845 kvm_flush_shadow_all(kvm);
eda2beda 846 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
847}
848
e930bffe 849static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 850 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
851 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
852 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
853 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 854 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 855 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 856 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 857 .release = kvm_mmu_notifier_release,
e930bffe 858};
4c07b0a4
AK
859
860static int kvm_init_mmu_notifier(struct kvm *kvm)
861{
862 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
863 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
864}
865
866#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
867
868static int kvm_init_mmu_notifier(struct kvm *kvm)
869{
870 return 0;
871}
872
e930bffe
AA
873#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
874
2fdef3a2
SS
875#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
876static int kvm_pm_notifier_call(struct notifier_block *bl,
877 unsigned long state,
878 void *unused)
879{
880 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
881
882 return kvm_arch_pm_notifier(kvm, state);
883}
884
885static void kvm_init_pm_notifier(struct kvm *kvm)
886{
887 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
888 /* Suspend KVM before we suspend ftrace, RCU, etc. */
889 kvm->pm_notifier.priority = INT_MAX;
890 register_pm_notifier(&kvm->pm_notifier);
891}
892
893static void kvm_destroy_pm_notifier(struct kvm *kvm)
894{
895 unregister_pm_notifier(&kvm->pm_notifier);
896}
897#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
898static void kvm_init_pm_notifier(struct kvm *kvm)
899{
900}
901
902static void kvm_destroy_pm_notifier(struct kvm *kvm)
903{
904}
905#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
906
a47d2b07
PB
907static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
908{
909 if (!memslot->dirty_bitmap)
910 return;
911
912 kvfree(memslot->dirty_bitmap);
913 memslot->dirty_bitmap = NULL;
914}
915
a54d8066 916/* This does not remove the slot from struct kvm_memslots data structures */
e96c81ee 917static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 918{
e96c81ee 919 kvm_destroy_dirty_bitmap(slot);
a47d2b07 920
e96c81ee 921 kvm_arch_free_memslot(kvm, slot);
a47d2b07 922
a54d8066 923 kfree(slot);
a47d2b07
PB
924}
925
926static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
927{
a54d8066 928 struct hlist_node *idnode;
a47d2b07 929 struct kvm_memory_slot *memslot;
a54d8066 930 int bkt;
a47d2b07 931
a54d8066
MS
932 /*
933 * The same memslot objects live in both active and inactive sets,
934 * arbitrarily free using index '1' so the second invocation of this
935 * function isn't operating over a structure with dangling pointers
936 * (even though this function isn't actually touching them).
937 */
938 if (!slots->node_idx)
a47d2b07
PB
939 return;
940
a54d8066 941 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
e96c81ee 942 kvm_free_memslot(kvm, memslot);
bf3e05bc
XG
943}
944
bc9e9e67
JZ
945static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
946{
947 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
948 case KVM_STATS_TYPE_INSTANT:
949 return 0444;
950 case KVM_STATS_TYPE_CUMULATIVE:
951 case KVM_STATS_TYPE_PEAK:
952 default:
953 return 0644;
954 }
955}
956
957
536a6f88
JF
958static void kvm_destroy_vm_debugfs(struct kvm *kvm)
959{
960 int i;
bc9e9e67
JZ
961 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
962 kvm_vcpu_stats_header.num_desc;
536a6f88 963
a44a4cc1 964 if (IS_ERR(kvm->debugfs_dentry))
536a6f88
JF
965 return;
966
967 debugfs_remove_recursive(kvm->debugfs_dentry);
968
9d5a1dce
LC
969 if (kvm->debugfs_stat_data) {
970 for (i = 0; i < kvm_debugfs_num_entries; i++)
971 kfree(kvm->debugfs_stat_data[i]);
972 kfree(kvm->debugfs_stat_data);
973 }
536a6f88
JF
974}
975
976static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
977{
85cd39af
PB
978 static DEFINE_MUTEX(kvm_debugfs_lock);
979 struct dentry *dent;
536a6f88
JF
980 char dir_name[ITOA_MAX_LEN * 2];
981 struct kvm_stat_data *stat_data;
bc9e9e67 982 const struct _kvm_stats_desc *pdesc;
3165af73 983 int i, ret;
bc9e9e67
JZ
984 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
985 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
986
987 if (!debugfs_initialized())
988 return 0;
989
990 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
85cd39af
PB
991 mutex_lock(&kvm_debugfs_lock);
992 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
993 if (dent) {
994 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
995 dput(dent);
996 mutex_unlock(&kvm_debugfs_lock);
997 return 0;
998 }
999 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1000 mutex_unlock(&kvm_debugfs_lock);
1001 if (IS_ERR(dent))
1002 return 0;
536a6f88 1003
85cd39af 1004 kvm->debugfs_dentry = dent;
536a6f88
JF
1005 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1006 sizeof(*kvm->debugfs_stat_data),
b12ce36a 1007 GFP_KERNEL_ACCOUNT);
536a6f88
JF
1008 if (!kvm->debugfs_stat_data)
1009 return -ENOMEM;
1010
bc9e9e67
JZ
1011 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1012 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 1013 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
1014 if (!stat_data)
1015 return -ENOMEM;
1016
1017 stat_data->kvm = kvm;
bc9e9e67
JZ
1018 stat_data->desc = pdesc;
1019 stat_data->kind = KVM_STAT_VM;
1020 kvm->debugfs_stat_data[i] = stat_data;
1021 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1022 kvm->debugfs_dentry, stat_data,
1023 &stat_fops_per_vm);
1024 }
1025
1026 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1027 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 1028 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
1029 if (!stat_data)
1030 return -ENOMEM;
1031
1032 stat_data->kvm = kvm;
bc9e9e67
JZ
1033 stat_data->desc = pdesc;
1034 stat_data->kind = KVM_STAT_VCPU;
004d62eb 1035 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 1036 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
1037 kvm->debugfs_dentry, stat_data,
1038 &stat_fops_per_vm);
536a6f88 1039 }
3165af73
PX
1040
1041 ret = kvm_arch_create_vm_debugfs(kvm);
1042 if (ret) {
1043 kvm_destroy_vm_debugfs(kvm);
1044 return i;
1045 }
1046
536a6f88
JF
1047 return 0;
1048}
1049
1aa9b957
JS
1050/*
1051 * Called after the VM is otherwise initialized, but just before adding it to
1052 * the vm_list.
1053 */
1054int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1055{
1056 return 0;
1057}
1058
1059/*
1060 * Called just after removing the VM from the vm_list, but before doing any
1061 * other destruction.
1062 */
1063void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1064{
1065}
1066
3165af73
PX
1067/*
1068 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1069 * be setup already, so we can create arch-specific debugfs entries under it.
1070 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1071 * a per-arch destroy interface is not needed.
1072 */
1073int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1074{
1075 return 0;
1076}
1077
e08b9637 1078static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 1079{
d89f5eff 1080 struct kvm *kvm = kvm_arch_alloc_vm();
a54d8066 1081 struct kvm_memslots *slots;
9121923c 1082 int r = -ENOMEM;
a54d8066 1083 int i, j;
6aa8b732 1084
d89f5eff
JK
1085 if (!kvm)
1086 return ERR_PTR(-ENOMEM);
1087
531810ca 1088 KVM_MMU_LOCK_INIT(kvm);
f1f10076 1089 mmgrab(current->mm);
e9ad4ec8
PB
1090 kvm->mm = current->mm;
1091 kvm_eventfd_init(kvm);
1092 mutex_init(&kvm->lock);
1093 mutex_init(&kvm->irq_lock);
1094 mutex_init(&kvm->slots_lock);
b10a038e 1095 mutex_init(&kvm->slots_arch_lock);
52ac8b35
PB
1096 spin_lock_init(&kvm->mn_invalidate_lock);
1097 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
c5b07754 1098 xa_init(&kvm->vcpu_array);
52ac8b35 1099
982ed0de
DW
1100 INIT_LIST_HEAD(&kvm->gpc_list);
1101 spin_lock_init(&kvm->gpc_lock);
52ac8b35 1102
e9ad4ec8 1103 INIT_LIST_HEAD(&kvm->devices);
f502cc56 1104 kvm->max_vcpus = KVM_MAX_VCPUS;
e9ad4ec8 1105
1e702d9a
AW
1106 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1107
5c697c36
SC
1108 /*
1109 * Force subsequent debugfs file creations to fail if the VM directory
1110 * is not created (by kvm_create_vm_debugfs()).
1111 */
1112 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1113
8a44119a
PB
1114 if (init_srcu_struct(&kvm->srcu))
1115 goto out_err_no_srcu;
1116 if (init_srcu_struct(&kvm->irq_srcu))
1117 goto out_err_no_irq_srcu;
1118
e2d3fcaf 1119 refcount_set(&kvm->users_count, 1);
f481b069 1120 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
a54d8066
MS
1121 for (j = 0; j < 2; j++) {
1122 slots = &kvm->__memslots[i][j];
9121923c 1123
a54d8066
MS
1124 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1125 slots->hva_tree = RB_ROOT_CACHED;
1126 slots->gfn_tree = RB_ROOT;
1127 hash_init(slots->id_hash);
1128 slots->node_idx = j;
1129
1130 /* Generations must be different for each address space. */
1131 slots->generation = i;
1132 }
1133
1134 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
f481b069 1135 }
00f034a1 1136
e93f8a0f 1137 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1138 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1139 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1140 if (!kvm->buses[i])
a97b0e77 1141 goto out_err_no_arch_destroy_vm;
e93f8a0f 1142 }
e930bffe 1143
acd05785
DM
1144 kvm->max_halt_poll_ns = halt_poll_ns;
1145
e08b9637 1146 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1147 if (r)
a97b0e77 1148 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1149
1150 r = hardware_enable_all();
1151 if (r)
719d93cd 1152 goto out_err_no_disable;
10474ae8 1153
c77dcacb 1154#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 1155 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1156#endif
6aa8b732 1157
74b5c5bf 1158 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1159 if (r)
1160 goto out_err_no_mmu_notifier;
1161
1162 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
1163 if (r)
1164 goto out_err;
1165
0d9ce162 1166 mutex_lock(&kvm_lock);
5e58cfe4 1167 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1168 mutex_unlock(&kvm_lock);
d89f5eff 1169
2ecd9d29 1170 preempt_notifier_inc();
2fdef3a2 1171 kvm_init_pm_notifier(kvm);
2ecd9d29 1172
5f6de5cb
DM
1173 /*
1174 * When the fd passed to this ioctl() is opened it pins the module,
1175 * but try_module_get() also prevents getting a reference if the module
1176 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1177 */
1178 if (!try_module_get(kvm_chardev_ops.owner)) {
1179 r = -ENODEV;
1180 goto out_err;
1181 }
1182
f17abe9a 1183 return kvm;
10474ae8
AG
1184
1185out_err:
1aa9b957
JS
1186#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1187 if (kvm->mmu_notifier.ops)
1188 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1189#endif
1190out_err_no_mmu_notifier:
10474ae8 1191 hardware_disable_all();
719d93cd 1192out_err_no_disable:
a97b0e77 1193 kvm_arch_destroy_vm(kvm);
a97b0e77 1194out_err_no_arch_destroy_vm:
e2d3fcaf 1195 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1196 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1197 kfree(kvm_get_bus(kvm, i));
8a44119a
PB
1198 cleanup_srcu_struct(&kvm->irq_srcu);
1199out_err_no_irq_srcu:
1200 cleanup_srcu_struct(&kvm->srcu);
1201out_err_no_srcu:
d89f5eff 1202 kvm_arch_free_vm(kvm);
e9ad4ec8 1203 mmdrop(current->mm);
10474ae8 1204 return ERR_PTR(r);
f17abe9a
AK
1205}
1206
07f0a7bd
SW
1207static void kvm_destroy_devices(struct kvm *kvm)
1208{
e6e3b5a6 1209 struct kvm_device *dev, *tmp;
07f0a7bd 1210
a28ebea2
CD
1211 /*
1212 * We do not need to take the kvm->lock here, because nobody else
1213 * has a reference to the struct kvm at this point and therefore
1214 * cannot access the devices list anyhow.
1215 */
e6e3b5a6
GT
1216 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1217 list_del(&dev->vm_node);
07f0a7bd
SW
1218 dev->ops->destroy(dev);
1219 }
1220}
1221
f17abe9a
AK
1222static void kvm_destroy_vm(struct kvm *kvm)
1223{
e93f8a0f 1224 int i;
6d4e4c4f
AK
1225 struct mm_struct *mm = kvm->mm;
1226
2fdef3a2 1227 kvm_destroy_pm_notifier(kvm);
286de8f6 1228 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1229 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1230 kvm_arch_sync_events(kvm);
0d9ce162 1231 mutex_lock(&kvm_lock);
133de902 1232 list_del(&kvm->vm_list);
0d9ce162 1233 mutex_unlock(&kvm_lock);
1aa9b957
JS
1234 kvm_arch_pre_destroy_vm(kvm);
1235
399ec807 1236 kvm_free_irq_routing(kvm);
df630b8c 1237 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1238 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1239
4a12f951
CB
1240 if (bus)
1241 kvm_io_bus_destroy(bus);
df630b8c
PX
1242 kvm->buses[i] = NULL;
1243 }
980da6ce 1244 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1245#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1246 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
52ac8b35
PB
1247 /*
1248 * At this point, pending calls to invalidate_range_start()
1249 * have completed but no more MMU notifiers will run, so
1250 * mn_active_invalidate_count may remain unbalanced.
1251 * No threads can be waiting in install_new_memslots as the
1252 * last reference on KVM has been dropped, but freeing
1253 * memslots would deadlock without this manual intervention.
1254 */
1255 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1256 kvm->mn_active_invalidate_count = 0;
f00be0ca 1257#else
683412cc 1258 kvm_flush_shadow_all(kvm);
5f94c174 1259#endif
d19a9cd2 1260 kvm_arch_destroy_vm(kvm);
07f0a7bd 1261 kvm_destroy_devices(kvm);
a54d8066
MS
1262 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1263 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1264 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1265 }
820b3fcd 1266 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1267 cleanup_srcu_struct(&kvm->srcu);
1268 kvm_arch_free_vm(kvm);
2ecd9d29 1269 preempt_notifier_dec();
10474ae8 1270 hardware_disable_all();
6d4e4c4f 1271 mmdrop(mm);
5f6de5cb 1272 module_put(kvm_chardev_ops.owner);
f17abe9a
AK
1273}
1274
d39f13b0
IE
1275void kvm_get_kvm(struct kvm *kvm)
1276{
e3736c3e 1277 refcount_inc(&kvm->users_count);
d39f13b0
IE
1278}
1279EXPORT_SYMBOL_GPL(kvm_get_kvm);
1280
605c7130
PX
1281/*
1282 * Make sure the vm is not during destruction, which is a safe version of
1283 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1284 */
1285bool kvm_get_kvm_safe(struct kvm *kvm)
1286{
1287 return refcount_inc_not_zero(&kvm->users_count);
1288}
1289EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1290
d39f13b0
IE
1291void kvm_put_kvm(struct kvm *kvm)
1292{
e3736c3e 1293 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1294 kvm_destroy_vm(kvm);
1295}
1296EXPORT_SYMBOL_GPL(kvm_put_kvm);
1297
149487bd
SC
1298/*
1299 * Used to put a reference that was taken on behalf of an object associated
1300 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1301 * of the new file descriptor fails and the reference cannot be transferred to
1302 * its final owner. In such cases, the caller is still actively using @kvm and
1303 * will fail miserably if the refcount unexpectedly hits zero.
1304 */
1305void kvm_put_kvm_no_destroy(struct kvm *kvm)
1306{
1307 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1308}
1309EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1310
f17abe9a
AK
1311static int kvm_vm_release(struct inode *inode, struct file *filp)
1312{
1313 struct kvm *kvm = filp->private_data;
1314
721eecbf
GH
1315 kvm_irqfd_release(kvm);
1316
d39f13b0 1317 kvm_put_kvm(kvm);
6aa8b732
AK
1318 return 0;
1319}
1320
515a0127
TY
1321/*
1322 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1323 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1324 */
3c9bd400 1325static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1326{
37b2a651 1327 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1328
37b2a651 1329 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1330 if (!memslot->dirty_bitmap)
1331 return -ENOMEM;
1332
a36a57b1
TY
1333 return 0;
1334}
1335
a54d8066 1336static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
bf3e05bc 1337{
a54d8066
MS
1338 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1339 int node_idx_inactive = active->node_idx ^ 1;
0e60b079 1340
a54d8066 1341 return &kvm->__memslots[as_id][node_idx_inactive];
0577d1ab
SC
1342}
1343
1344/*
a54d8066
MS
1345 * Helper to get the address space ID when one of memslot pointers may be NULL.
1346 * This also serves as a sanity that at least one of the pointers is non-NULL,
1347 * and that their address space IDs don't diverge.
0577d1ab 1348 */
a54d8066
MS
1349static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1350 struct kvm_memory_slot *b)
0577d1ab 1351{
a54d8066
MS
1352 if (WARN_ON_ONCE(!a && !b))
1353 return 0;
0577d1ab 1354
a54d8066
MS
1355 if (!a)
1356 return b->as_id;
1357 if (!b)
1358 return a->as_id;
0577d1ab 1359
a54d8066
MS
1360 WARN_ON_ONCE(a->as_id != b->as_id);
1361 return a->as_id;
0577d1ab 1362}
efbeec70 1363
a54d8066
MS
1364static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1365 struct kvm_memory_slot *slot)
0577d1ab 1366{
a54d8066
MS
1367 struct rb_root *gfn_tree = &slots->gfn_tree;
1368 struct rb_node **node, *parent;
1369 int idx = slots->node_idx;
0577d1ab 1370
a54d8066
MS
1371 parent = NULL;
1372 for (node = &gfn_tree->rb_node; *node; ) {
1373 struct kvm_memory_slot *tmp;
f85e2cb5 1374
a54d8066
MS
1375 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1376 parent = *node;
1377 if (slot->base_gfn < tmp->base_gfn)
1378 node = &(*node)->rb_left;
1379 else if (slot->base_gfn > tmp->base_gfn)
1380 node = &(*node)->rb_right;
1381 else
1382 BUG();
0577d1ab 1383 }
a54d8066
MS
1384
1385 rb_link_node(&slot->gfn_node[idx], parent, node);
1386 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
0577d1ab
SC
1387}
1388
a54d8066
MS
1389static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1390 struct kvm_memory_slot *slot)
0577d1ab 1391{
a54d8066
MS
1392 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1393}
0577d1ab 1394
a54d8066
MS
1395static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1396 struct kvm_memory_slot *old,
1397 struct kvm_memory_slot *new)
1398{
1399 int idx = slots->node_idx;
0577d1ab 1400
a54d8066 1401 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
0577d1ab 1402
a54d8066
MS
1403 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1404 &slots->gfn_tree);
0577d1ab
SC
1405}
1406
1407/*
a54d8066 1408 * Replace @old with @new in the inactive memslots.
0577d1ab 1409 *
a54d8066
MS
1410 * With NULL @old this simply adds @new.
1411 * With NULL @new this simply removes @old.
0577d1ab 1412 *
a54d8066
MS
1413 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1414 * appropriately.
0577d1ab 1415 */
a54d8066
MS
1416static void kvm_replace_memslot(struct kvm *kvm,
1417 struct kvm_memory_slot *old,
1418 struct kvm_memory_slot *new)
0577d1ab 1419{
a54d8066
MS
1420 int as_id = kvm_memslots_get_as_id(old, new);
1421 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1422 int idx = slots->node_idx;
0577d1ab 1423
a54d8066
MS
1424 if (old) {
1425 hash_del(&old->id_node[idx]);
1426 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
0577d1ab 1427
a54d8066
MS
1428 if ((long)old == atomic_long_read(&slots->last_used_slot))
1429 atomic_long_set(&slots->last_used_slot, (long)new);
0577d1ab 1430
a54d8066
MS
1431 if (!new) {
1432 kvm_erase_gfn_node(slots, old);
1e8617d3 1433 return;
a54d8066
MS
1434 }
1435 }
1e8617d3 1436
a54d8066
MS
1437 /*
1438 * Initialize @new's hva range. Do this even when replacing an @old
1439 * slot, kvm_copy_memslot() deliberately does not touch node data.
1440 */
1441 new->hva_node[idx].start = new->userspace_addr;
1442 new->hva_node[idx].last = new->userspace_addr +
1443 (new->npages << PAGE_SHIFT) - 1;
1444
1445 /*
1446 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1447 * hva_node needs to be swapped with remove+insert even though hva can't
1448 * change when replacing an existing slot.
1449 */
1450 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1451 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1452
1453 /*
1454 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1455 * switch the node in the gfn tree instead of removing the old and
1456 * inserting the new as two separate operations. Replacement is a
1457 * single O(1) operation versus two O(log(n)) operations for
1458 * remove+insert.
1459 */
1460 if (old && old->base_gfn == new->base_gfn) {
1461 kvm_replace_gfn_node(slots, old, new);
1462 } else {
1463 if (old)
1464 kvm_erase_gfn_node(slots, old);
1465 kvm_insert_gfn_node(slots, new);
0577d1ab 1466 }
bf3e05bc
XG
1467}
1468
09170a49 1469static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1470{
4d8b81ab
XG
1471 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1472
0f8a4de3 1473#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1474 valid_flags |= KVM_MEM_READONLY;
1475#endif
1476
1477 if (mem->flags & ~valid_flags)
a50d64d6
XG
1478 return -EINVAL;
1479
1480 return 0;
1481}
1482
a54d8066 1483static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
7ec4fb44 1484{
a54d8066
MS
1485 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1486
1487 /* Grab the generation from the activate memslots. */
1488 u64 gen = __kvm_memslots(kvm, as_id)->generation;
7ec4fb44 1489
361209e0
SC
1490 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1491 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1492
52ac8b35
PB
1493 /*
1494 * Do not store the new memslots while there are invalidations in
071064f1
PB
1495 * progress, otherwise the locking in invalidate_range_start and
1496 * invalidate_range_end will be unbalanced.
52ac8b35
PB
1497 */
1498 spin_lock(&kvm->mn_invalidate_lock);
1499 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1500 while (kvm->mn_active_invalidate_count) {
1501 set_current_state(TASK_UNINTERRUPTIBLE);
1502 spin_unlock(&kvm->mn_invalidate_lock);
1503 schedule();
1504 spin_lock(&kvm->mn_invalidate_lock);
1505 }
1506 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
f481b069 1507 rcu_assign_pointer(kvm->memslots[as_id], slots);
52ac8b35 1508 spin_unlock(&kvm->mn_invalidate_lock);
b10a038e
BG
1509
1510 /*
1511 * Acquired in kvm_set_memslot. Must be released before synchronize
1512 * SRCU below in order to avoid deadlock with another thread
1513 * acquiring the slots_arch_lock in an srcu critical section.
1514 */
1515 mutex_unlock(&kvm->slots_arch_lock);
1516
7ec4fb44 1517 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1518
ee3d1570 1519 /*
361209e0 1520 * Increment the new memslot generation a second time, dropping the
00116795 1521 * update in-progress flag and incrementing the generation based on
361209e0
SC
1522 * the number of address spaces. This provides a unique and easily
1523 * identifiable generation number while the memslots are in flux.
1524 */
1525 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1526
1527 /*
4bd518f1
PB
1528 * Generations must be unique even across address spaces. We do not need
1529 * a global counter for that, instead the generation space is evenly split
1530 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1531 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1532 * use generations 1, 3, 5, ...
ee3d1570 1533 */
164bf7e5 1534 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1535
15248258 1536 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1537
15248258 1538 slots->generation = gen;
7ec4fb44
GN
1539}
1540
07921665
SC
1541static int kvm_prepare_memory_region(struct kvm *kvm,
1542 const struct kvm_memory_slot *old,
1543 struct kvm_memory_slot *new,
1544 enum kvm_mr_change change)
ddc12f2a 1545{
07921665
SC
1546 int r;
1547
1548 /*
1549 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1550 * will be freed on "commit". If logging is enabled in both old and
1551 * new, reuse the existing bitmap. If logging is enabled only in the
1552 * new and KVM isn't using a ring buffer, allocate and initialize a
1553 * new bitmap.
1554 */
244893fa
SC
1555 if (change != KVM_MR_DELETE) {
1556 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1557 new->dirty_bitmap = NULL;
1558 else if (old && old->dirty_bitmap)
1559 new->dirty_bitmap = old->dirty_bitmap;
1560 else if (!kvm->dirty_ring_size) {
1561 r = kvm_alloc_dirty_bitmap(new);
1562 if (r)
1563 return r;
1564
1565 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1566 bitmap_set(new->dirty_bitmap, 0, new->npages);
1567 }
07921665
SC
1568 }
1569
1570 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1571
1572 /* Free the bitmap on failure if it was allocated above. */
c87661f8 1573 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
07921665
SC
1574 kvm_destroy_dirty_bitmap(new);
1575
1576 return r;
ddc12f2a
BG
1577}
1578
07921665
SC
1579static void kvm_commit_memory_region(struct kvm *kvm,
1580 struct kvm_memory_slot *old,
1581 const struct kvm_memory_slot *new,
1582 enum kvm_mr_change change)
ddc12f2a 1583{
07921665
SC
1584 /*
1585 * Update the total number of memslot pages before calling the arch
1586 * hook so that architectures can consume the result directly.
1587 */
1588 if (change == KVM_MR_DELETE)
1589 kvm->nr_memslot_pages -= old->npages;
1590 else if (change == KVM_MR_CREATE)
1591 kvm->nr_memslot_pages += new->npages;
1592
1593 kvm_arch_commit_memory_region(kvm, old, new, change);
1594
a54d8066
MS
1595 switch (change) {
1596 case KVM_MR_CREATE:
1597 /* Nothing more to do. */
1598 break;
1599 case KVM_MR_DELETE:
1600 /* Free the old memslot and all its metadata. */
1601 kvm_free_memslot(kvm, old);
1602 break;
1603 case KVM_MR_MOVE:
1604 case KVM_MR_FLAGS_ONLY:
1605 /*
1606 * Free the dirty bitmap as needed; the below check encompasses
1607 * both the flags and whether a ring buffer is being used)
1608 */
1609 if (old->dirty_bitmap && !new->dirty_bitmap)
1610 kvm_destroy_dirty_bitmap(old);
1611
1612 /*
1613 * The final quirk. Free the detached, old slot, but only its
1614 * memory, not any metadata. Metadata, including arch specific
1615 * data, may be reused by @new.
1616 */
1617 kfree(old);
1618 break;
1619 default:
1620 BUG();
1621 }
ddc12f2a
BG
1622}
1623
36947254 1624/*
a54d8066
MS
1625 * Activate @new, which must be installed in the inactive slots by the caller,
1626 * by swapping the active slots and then propagating @new to @old once @old is
1627 * unreachable and can be safely modified.
1628 *
1629 * With NULL @old this simply adds @new to @active (while swapping the sets).
1630 * With NULL @new this simply removes @old from @active and frees it
1631 * (while also swapping the sets).
36947254 1632 */
a54d8066
MS
1633static void kvm_activate_memslot(struct kvm *kvm,
1634 struct kvm_memory_slot *old,
1635 struct kvm_memory_slot *new)
36947254 1636{
a54d8066 1637 int as_id = kvm_memslots_get_as_id(old, new);
36947254 1638
a54d8066
MS
1639 kvm_swap_active_memslots(kvm, as_id);
1640
1641 /* Propagate the new memslot to the now inactive memslots. */
1642 kvm_replace_memslot(kvm, old, new);
1643}
1644
1645static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1646 const struct kvm_memory_slot *src)
1647{
1648 dest->base_gfn = src->base_gfn;
1649 dest->npages = src->npages;
1650 dest->dirty_bitmap = src->dirty_bitmap;
1651 dest->arch = src->arch;
1652 dest->userspace_addr = src->userspace_addr;
1653 dest->flags = src->flags;
1654 dest->id = src->id;
1655 dest->as_id = src->as_id;
1656}
1657
1658static void kvm_invalidate_memslot(struct kvm *kvm,
1659 struct kvm_memory_slot *old,
244893fa 1660 struct kvm_memory_slot *invalid_slot)
a54d8066 1661{
07921665 1662 /*
a54d8066
MS
1663 * Mark the current slot INVALID. As with all memslot modifications,
1664 * this must be done on an unreachable slot to avoid modifying the
1665 * current slot in the active tree.
07921665 1666 */
244893fa
SC
1667 kvm_copy_memslot(invalid_slot, old);
1668 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1669 kvm_replace_memslot(kvm, old, invalid_slot);
a54d8066
MS
1670
1671 /*
1672 * Activate the slot that is now marked INVALID, but don't propagate
1673 * the slot to the now inactive slots. The slot is either going to be
1674 * deleted or recreated as a new slot.
1675 */
1676 kvm_swap_active_memslots(kvm, old->as_id);
1677
1678 /*
1679 * From this point no new shadow pages pointing to a deleted, or moved,
1680 * memslot will be created. Validation of sp->gfn happens in:
1681 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1682 * - kvm_is_visible_gfn (mmu_check_root)
1683 */
bcb63dcd 1684 kvm_arch_flush_shadow_memslot(kvm, old);
683412cc 1685 kvm_arch_guest_memory_reclaimed(kvm);
a54d8066
MS
1686
1687 /* Was released by kvm_swap_active_memslots, reacquire. */
1688 mutex_lock(&kvm->slots_arch_lock);
1689
1690 /*
1691 * Copy the arch-specific field of the newly-installed slot back to the
1692 * old slot as the arch data could have changed between releasing
1693 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1694 * above. Writers are required to retrieve memslots *after* acquiring
1695 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1696 */
244893fa 1697 old->arch = invalid_slot->arch;
a54d8066
MS
1698}
1699
1700static void kvm_create_memslot(struct kvm *kvm,
244893fa 1701 struct kvm_memory_slot *new)
a54d8066 1702{
244893fa
SC
1703 /* Add the new memslot to the inactive set and activate. */
1704 kvm_replace_memslot(kvm, NULL, new);
1705 kvm_activate_memslot(kvm, NULL, new);
a54d8066
MS
1706}
1707
1708static void kvm_delete_memslot(struct kvm *kvm,
1709 struct kvm_memory_slot *old,
1710 struct kvm_memory_slot *invalid_slot)
1711{
1712 /*
1713 * Remove the old memslot (in the inactive memslots) by passing NULL as
244893fa 1714 * the "new" slot, and for the invalid version in the active slots.
a54d8066
MS
1715 */
1716 kvm_replace_memslot(kvm, old, NULL);
a54d8066 1717 kvm_activate_memslot(kvm, invalid_slot, NULL);
a54d8066 1718}
36947254 1719
244893fa
SC
1720static void kvm_move_memslot(struct kvm *kvm,
1721 struct kvm_memory_slot *old,
1722 struct kvm_memory_slot *new,
1723 struct kvm_memory_slot *invalid_slot)
a54d8066 1724{
a54d8066 1725 /*
244893fa
SC
1726 * Replace the old memslot in the inactive slots, and then swap slots
1727 * and replace the current INVALID with the new as well.
a54d8066 1728 */
244893fa
SC
1729 kvm_replace_memslot(kvm, old, new);
1730 kvm_activate_memslot(kvm, invalid_slot, new);
a54d8066 1731}
36947254 1732
a54d8066
MS
1733static void kvm_update_flags_memslot(struct kvm *kvm,
1734 struct kvm_memory_slot *old,
244893fa 1735 struct kvm_memory_slot *new)
a54d8066
MS
1736{
1737 /*
1738 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1739 * an intermediate step. Instead, the old memslot is simply replaced
1740 * with a new, updated copy in both memslot sets.
1741 */
244893fa
SC
1742 kvm_replace_memslot(kvm, old, new);
1743 kvm_activate_memslot(kvm, old, new);
36947254
SC
1744}
1745
cf47f50b 1746static int kvm_set_memslot(struct kvm *kvm,
a54d8066 1747 struct kvm_memory_slot *old,
ce5f0215 1748 struct kvm_memory_slot *new,
cf47f50b
SC
1749 enum kvm_mr_change change)
1750{
244893fa 1751 struct kvm_memory_slot *invalid_slot;
cf47f50b
SC
1752 int r;
1753
b10a038e 1754 /*
a54d8066 1755 * Released in kvm_swap_active_memslots.
b10a038e
BG
1756 *
1757 * Must be held from before the current memslots are copied until
1758 * after the new memslots are installed with rcu_assign_pointer,
a54d8066 1759 * then released before the synchronize srcu in kvm_swap_active_memslots.
b10a038e
BG
1760 *
1761 * When modifying memslots outside of the slots_lock, must be held
1762 * before reading the pointer to the current memslots until after all
1763 * changes to those memslots are complete.
1764 *
1765 * These rules ensure that installing new memslots does not lose
1766 * changes made to the previous memslots.
1767 */
1768 mutex_lock(&kvm->slots_arch_lock);
1769
a54d8066
MS
1770 /*
1771 * Invalidate the old slot if it's being deleted or moved. This is
1772 * done prior to actually deleting/moving the memslot to allow vCPUs to
1773 * continue running by ensuring there are no mappings or shadow pages
1774 * for the memslot when it is deleted/moved. Without pre-invalidation
1775 * (and without a lock), a window would exist between effecting the
1776 * delete/move and committing the changes in arch code where KVM or a
1777 * guest could access a non-existent memslot.
244893fa
SC
1778 *
1779 * Modifications are done on a temporary, unreachable slot. The old
1780 * slot needs to be preserved in case a later step fails and the
1781 * invalidation needs to be reverted.
a54d8066 1782 */
cf47f50b 1783 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
244893fa
SC
1784 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1785 if (!invalid_slot) {
1786 mutex_unlock(&kvm->slots_arch_lock);
1787 return -ENOMEM;
1788 }
1789 kvm_invalidate_memslot(kvm, old, invalid_slot);
1790 }
b10a038e 1791
a54d8066
MS
1792 r = kvm_prepare_memory_region(kvm, old, new, change);
1793 if (r) {
b10a038e 1794 /*
a54d8066
MS
1795 * For DELETE/MOVE, revert the above INVALID change. No
1796 * modifications required since the original slot was preserved
1797 * in the inactive slots. Changing the active memslots also
1798 * release slots_arch_lock.
b10a038e 1799 */
244893fa
SC
1800 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1801 kvm_activate_memslot(kvm, invalid_slot, old);
1802 kfree(invalid_slot);
1803 } else {
a54d8066 1804 mutex_unlock(&kvm->slots_arch_lock);
244893fa 1805 }
a54d8066 1806 return r;
cf47f50b
SC
1807 }
1808
bda44d84 1809 /*
a54d8066
MS
1810 * For DELETE and MOVE, the working slot is now active as the INVALID
1811 * version of the old slot. MOVE is particularly special as it reuses
1812 * the old slot and returns a copy of the old slot (in working_slot).
1813 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1814 * old slot is detached but otherwise preserved.
bda44d84 1815 */
a54d8066 1816 if (change == KVM_MR_CREATE)
244893fa 1817 kvm_create_memslot(kvm, new);
a54d8066 1818 else if (change == KVM_MR_DELETE)
244893fa 1819 kvm_delete_memslot(kvm, old, invalid_slot);
a54d8066 1820 else if (change == KVM_MR_MOVE)
244893fa 1821 kvm_move_memslot(kvm, old, new, invalid_slot);
a54d8066 1822 else if (change == KVM_MR_FLAGS_ONLY)
244893fa 1823 kvm_update_flags_memslot(kvm, old, new);
a54d8066
MS
1824 else
1825 BUG();
cf47f50b 1826
244893fa
SC
1827 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1828 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1829 kfree(invalid_slot);
bda44d84 1830
a54d8066
MS
1831 /*
1832 * No need to refresh new->arch, changes after dropping slots_arch_lock
a413a625 1833 * will directly hit the final, active memslot. Architectures are
a54d8066
MS
1834 * responsible for knowing that new->arch may be stale.
1835 */
1836 kvm_commit_memory_region(kvm, old, new, change);
cf47f50b 1837
cf47f50b 1838 return 0;
cf47f50b
SC
1839}
1840
44401a20
MS
1841static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1842 gfn_t start, gfn_t end)
5c0b4f3d 1843{
44401a20 1844 struct kvm_memslot_iter iter;
5c0b4f3d 1845
44401a20
MS
1846 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1847 if (iter.slot->id != id)
1848 return true;
1849 }
5c0b4f3d 1850
44401a20 1851 return false;
5c0b4f3d
SC
1852}
1853
6aa8b732
AK
1854/*
1855 * Allocate some memory and give it an address in the guest physical address
1856 * space.
1857 *
1858 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1859 *
02d5d55b 1860 * Must be called holding kvm->slots_lock for write.
6aa8b732 1861 */
f78e0e2e 1862int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1863 const struct kvm_userspace_memory_region *mem)
6aa8b732 1864{
244893fa 1865 struct kvm_memory_slot *old, *new;
44401a20 1866 struct kvm_memslots *slots;
f64c0398 1867 enum kvm_mr_change change;
0f9bdef3
SC
1868 unsigned long npages;
1869 gfn_t base_gfn;
163da372
SC
1870 int as_id, id;
1871 int r;
6aa8b732 1872
a50d64d6
XG
1873 r = check_memory_region_flags(mem);
1874 if (r)
71a4c30b 1875 return r;
a50d64d6 1876
f481b069
PB
1877 as_id = mem->slot >> 16;
1878 id = (u16)mem->slot;
1879
6aa8b732 1880 /* General sanity checks */
6b285a55
SC
1881 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1882 (mem->memory_size != (unsigned long)mem->memory_size))
71a4c30b 1883 return -EINVAL;
6aa8b732 1884 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1885 return -EINVAL;
fa3d315a 1886 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1887 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1888 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1889 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1890 mem->memory_size))
71a4c30b 1891 return -EINVAL;
f481b069 1892 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1893 return -EINVAL;
6aa8b732 1894 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1895 return -EINVAL;
0f9bdef3
SC
1896 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1897 return -EINVAL;
6aa8b732 1898
44401a20 1899 slots = __kvm_memslots(kvm, as_id);
6aa8b732 1900
5c0b4f3d 1901 /*
7cd08553
SC
1902 * Note, the old memslot (and the pointer itself!) may be invalidated
1903 * and/or destroyed by kvm_set_memslot().
5c0b4f3d 1904 */
44401a20 1905 old = id_to_memslot(slots, id);
163da372 1906
47ea7d90 1907 if (!mem->memory_size) {
7cd08553 1908 if (!old || !old->npages)
47ea7d90 1909 return -EINVAL;
5c0b4f3d 1910
7cd08553 1911 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
47ea7d90 1912 return -EIO;
6aa8b732 1913
244893fa 1914 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
47ea7d90 1915 }
5c0b4f3d 1916
0f9bdef3
SC
1917 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1918 npages = (mem->memory_size >> PAGE_SHIFT);
163da372 1919
7cd08553 1920 if (!old || !old->npages) {
5c0b4f3d 1921 change = KVM_MR_CREATE;
afa319a5
SC
1922
1923 /*
1924 * To simplify KVM internals, the total number of pages across
1925 * all memslots must fit in an unsigned long.
1926 */
0f9bdef3 1927 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
afa319a5 1928 return -EINVAL;
5c0b4f3d 1929 } else { /* Modify an existing slot. */
0f9bdef3
SC
1930 if ((mem->userspace_addr != old->userspace_addr) ||
1931 (npages != old->npages) ||
1932 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
71a4c30b 1933 return -EINVAL;
09170a49 1934
0f9bdef3 1935 if (base_gfn != old->base_gfn)
5c0b4f3d 1936 change = KVM_MR_MOVE;
0f9bdef3 1937 else if (mem->flags != old->flags)
5c0b4f3d
SC
1938 change = KVM_MR_FLAGS_ONLY;
1939 else /* Nothing to change. */
1940 return 0;
09170a49 1941 }
6aa8b732 1942
44401a20 1943 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
0f9bdef3 1944 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
44401a20 1945 return -EEXIST;
6aa8b732 1946
244893fa
SC
1947 /* Allocate a slot that will persist in the memslot. */
1948 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1949 if (!new)
1950 return -ENOMEM;
3c9bd400 1951
244893fa
SC
1952 new->as_id = as_id;
1953 new->id = id;
1954 new->base_gfn = base_gfn;
1955 new->npages = npages;
1956 new->flags = mem->flags;
1957 new->userspace_addr = mem->userspace_addr;
6aa8b732 1958
244893fa 1959 r = kvm_set_memslot(kvm, old, new, change);
cf47f50b 1960 if (r)
244893fa 1961 kfree(new);
6aa8b732 1962 return r;
210c7c4d 1963}
f78e0e2e
SY
1964EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1965
1966int kvm_set_memory_region(struct kvm *kvm,
09170a49 1967 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1968{
1969 int r;
1970
79fac95e 1971 mutex_lock(&kvm->slots_lock);
47ae31e2 1972 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1973 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1974 return r;
1975}
210c7c4d
IE
1976EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1977
7940876e
SH
1978static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1979 struct kvm_userspace_memory_region *mem)
210c7c4d 1980{
f481b069 1981 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1982 return -EINVAL;
09170a49 1983
47ae31e2 1984 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1985}
1986
0dff0846 1987#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1988/**
1989 * kvm_get_dirty_log - get a snapshot of dirty pages
1990 * @kvm: pointer to kvm instance
1991 * @log: slot id and address to which we copy the log
1992 * @is_dirty: set to '1' if any dirty pages were found
1993 * @memslot: set to the associated memslot, always valid on success
1994 */
1995int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1996 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1997{
9f6b8029 1998 struct kvm_memslots *slots;
843574a3 1999 int i, as_id, id;
87bf6e7d 2000 unsigned long n;
6aa8b732
AK
2001 unsigned long any = 0;
2002
b2cc64c4
PX
2003 /* Dirty ring tracking is exclusive to dirty log tracking */
2004 if (kvm->dirty_ring_size)
2005 return -ENXIO;
2006
2a49f61d
SC
2007 *memslot = NULL;
2008 *is_dirty = 0;
2009
f481b069
PB
2010 as_id = log->slot >> 16;
2011 id = (u16)log->slot;
2012 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 2013 return -EINVAL;
6aa8b732 2014
f481b069 2015 slots = __kvm_memslots(kvm, as_id);
2a49f61d 2016 *memslot = id_to_memslot(slots, id);
0577d1ab 2017 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 2018 return -ENOENT;
6aa8b732 2019
2a49f61d
SC
2020 kvm_arch_sync_dirty_log(kvm, *memslot);
2021
2022 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 2023
cd1a4a98 2024 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 2025 any = (*memslot)->dirty_bitmap[i];
6aa8b732 2026
2a49f61d 2027 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 2028 return -EFAULT;
6aa8b732 2029
5bb064dc
ZX
2030 if (any)
2031 *is_dirty = 1;
843574a3 2032 return 0;
6aa8b732 2033}
2ba9f0d8 2034EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 2035
0dff0846 2036#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2037/**
b8b00220 2038 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 2039 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
2040 * @kvm: pointer to kvm instance
2041 * @log: slot id and address to which we copy the log
ba0513b5
MS
2042 *
2043 * We need to keep it in mind that VCPU threads can write to the bitmap
2044 * concurrently. So, to avoid losing track of dirty pages we keep the
2045 * following order:
2046 *
2047 * 1. Take a snapshot of the bit and clear it if needed.
2048 * 2. Write protect the corresponding page.
2049 * 3. Copy the snapshot to the userspace.
2050 * 4. Upon return caller flushes TLB's if needed.
2051 *
2052 * Between 2 and 4, the guest may write to the page using the remaining TLB
2053 * entry. This is not a problem because the page is reported dirty using
2054 * the snapshot taken before and step 4 ensures that writes done after
2055 * exiting to userspace will be logged for the next call.
2056 *
2057 */
0dff0846 2058static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 2059{
9f6b8029 2060 struct kvm_memslots *slots;
ba0513b5 2061 struct kvm_memory_slot *memslot;
58d6db34 2062 int i, as_id, id;
ba0513b5
MS
2063 unsigned long n;
2064 unsigned long *dirty_bitmap;
2065 unsigned long *dirty_bitmap_buffer;
0dff0846 2066 bool flush;
ba0513b5 2067
b2cc64c4
PX
2068 /* Dirty ring tracking is exclusive to dirty log tracking */
2069 if (kvm->dirty_ring_size)
2070 return -ENXIO;
2071
f481b069
PB
2072 as_id = log->slot >> 16;
2073 id = (u16)log->slot;
2074 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 2075 return -EINVAL;
ba0513b5 2076
f481b069
PB
2077 slots = __kvm_memslots(kvm, as_id);
2078 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2079 if (!memslot || !memslot->dirty_bitmap)
2080 return -ENOENT;
ba0513b5
MS
2081
2082 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 2083
0dff0846
SC
2084 kvm_arch_sync_dirty_log(kvm, memslot);
2085
ba0513b5 2086 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 2087 flush = false;
2a31b9db
PB
2088 if (kvm->manual_dirty_log_protect) {
2089 /*
2090 * Unlike kvm_get_dirty_log, we always return false in *flush,
2091 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2092 * is some code duplication between this function and
2093 * kvm_get_dirty_log, but hopefully all architecture
2094 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2095 * can be eliminated.
2096 */
2097 dirty_bitmap_buffer = dirty_bitmap;
2098 } else {
2099 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2100 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 2101
531810ca 2102 KVM_MMU_LOCK(kvm);
2a31b9db
PB
2103 for (i = 0; i < n / sizeof(long); i++) {
2104 unsigned long mask;
2105 gfn_t offset;
ba0513b5 2106
2a31b9db
PB
2107 if (!dirty_bitmap[i])
2108 continue;
2109
0dff0846 2110 flush = true;
2a31b9db
PB
2111 mask = xchg(&dirty_bitmap[i], 0);
2112 dirty_bitmap_buffer[i] = mask;
2113
a67794ca
LT
2114 offset = i * BITS_PER_LONG;
2115 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2116 offset, mask);
2a31b9db 2117 }
531810ca 2118 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
2119 }
2120
0dff0846
SC
2121 if (flush)
2122 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2123
2a31b9db
PB
2124 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2125 return -EFAULT;
2126 return 0;
2127}
0dff0846
SC
2128
2129
2130/**
2131 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2132 * @kvm: kvm instance
2133 * @log: slot id and address to which we copy the log
2134 *
2135 * Steps 1-4 below provide general overview of dirty page logging. See
2136 * kvm_get_dirty_log_protect() function description for additional details.
2137 *
2138 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2139 * always flush the TLB (step 4) even if previous step failed and the dirty
2140 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2141 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2142 * writes will be marked dirty for next log read.
2143 *
2144 * 1. Take a snapshot of the bit and clear it if needed.
2145 * 2. Write protect the corresponding page.
2146 * 3. Copy the snapshot to the userspace.
2147 * 4. Flush TLB's if needed.
2148 */
2149static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2150 struct kvm_dirty_log *log)
2151{
2152 int r;
2153
2154 mutex_lock(&kvm->slots_lock);
2155
2156 r = kvm_get_dirty_log_protect(kvm, log);
2157
2158 mutex_unlock(&kvm->slots_lock);
2159 return r;
2160}
2a31b9db
PB
2161
2162/**
2163 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2164 * and reenable dirty page tracking for the corresponding pages.
2165 * @kvm: pointer to kvm instance
2166 * @log: slot id and address from which to fetch the bitmap of dirty pages
2167 */
0dff0846
SC
2168static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2169 struct kvm_clear_dirty_log *log)
2a31b9db
PB
2170{
2171 struct kvm_memslots *slots;
2172 struct kvm_memory_slot *memslot;
98938aa8 2173 int as_id, id;
2a31b9db 2174 gfn_t offset;
98938aa8 2175 unsigned long i, n;
2a31b9db
PB
2176 unsigned long *dirty_bitmap;
2177 unsigned long *dirty_bitmap_buffer;
0dff0846 2178 bool flush;
2a31b9db 2179
b2cc64c4
PX
2180 /* Dirty ring tracking is exclusive to dirty log tracking */
2181 if (kvm->dirty_ring_size)
2182 return -ENXIO;
2183
2a31b9db
PB
2184 as_id = log->slot >> 16;
2185 id = (u16)log->slot;
2186 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2187 return -EINVAL;
2188
76d58e0f 2189 if (log->first_page & 63)
2a31b9db
PB
2190 return -EINVAL;
2191
2192 slots = __kvm_memslots(kvm, as_id);
2193 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2194 if (!memslot || !memslot->dirty_bitmap)
2195 return -ENOENT;
2a31b9db
PB
2196
2197 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 2198
4ddc9204 2199 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
2200
2201 if (log->first_page > memslot->npages ||
76d58e0f
PB
2202 log->num_pages > memslot->npages - log->first_page ||
2203 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2204 return -EINVAL;
98938aa8 2205
0dff0846
SC
2206 kvm_arch_sync_dirty_log(kvm, memslot);
2207
2208 flush = false;
2a31b9db
PB
2209 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2210 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2211 return -EFAULT;
ba0513b5 2212
531810ca 2213 KVM_MMU_LOCK(kvm);
53eac7a8
PX
2214 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2215 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
2216 i++, offset += BITS_PER_LONG) {
2217 unsigned long mask = *dirty_bitmap_buffer++;
2218 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2219 if (!mask)
ba0513b5
MS
2220 continue;
2221
2a31b9db 2222 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 2223
2a31b9db
PB
2224 /*
2225 * mask contains the bits that really have been cleared. This
2226 * never includes any bits beyond the length of the memslot (if
2227 * the length is not aligned to 64 pages), therefore it is not
2228 * a problem if userspace sets them in log->dirty_bitmap.
2229 */
58d2930f 2230 if (mask) {
0dff0846 2231 flush = true;
58d2930f
TY
2232 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2233 offset, mask);
2234 }
ba0513b5 2235 }
531810ca 2236 KVM_MMU_UNLOCK(kvm);
2a31b9db 2237
0dff0846
SC
2238 if (flush)
2239 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2240
58d6db34 2241 return 0;
ba0513b5 2242}
0dff0846
SC
2243
2244static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2245 struct kvm_clear_dirty_log *log)
2246{
2247 int r;
2248
2249 mutex_lock(&kvm->slots_lock);
2250
2251 r = kvm_clear_dirty_log_protect(kvm, log);
2252
2253 mutex_unlock(&kvm->slots_lock);
2254 return r;
2255}
2256#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2257
49c7754c
GN
2258struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2259{
2260 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2261}
a1f4d395 2262EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 2263
8e73485c
PB
2264struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2265{
fe22ed82 2266 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
a54d8066 2267 u64 gen = slots->generation;
fe22ed82 2268 struct kvm_memory_slot *slot;
fe22ed82 2269
a54d8066
MS
2270 /*
2271 * This also protects against using a memslot from a different address space,
2272 * since different address spaces have different generation numbers.
2273 */
2274 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2275 vcpu->last_used_slot = NULL;
2276 vcpu->last_used_slot_gen = gen;
2277 }
2278
2279 slot = try_get_memslot(vcpu->last_used_slot, gfn);
fe22ed82
DM
2280 if (slot)
2281 return slot;
2282
2283 /*
2284 * Fall back to searching all memslots. We purposely use
2285 * search_memslots() instead of __gfn_to_memslot() to avoid
a54d8066 2286 * thrashing the VM-wide last_used_slot in kvm_memslots.
fe22ed82 2287 */
a54d8066 2288 slot = search_memslots(slots, gfn, false);
fe22ed82 2289 if (slot) {
a54d8066 2290 vcpu->last_used_slot = slot;
fe22ed82
DM
2291 return slot;
2292 }
2293
2294 return NULL;
8e73485c
PB
2295}
2296
33e94154 2297bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 2298{
bf3e05bc 2299 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 2300
c36b7150 2301 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
2302}
2303EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2304
995decb6
VK
2305bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2306{
2307 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2308
2309 return kvm_is_visible_memslot(memslot);
2310}
2311EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2312
f9b84e19 2313unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
2314{
2315 struct vm_area_struct *vma;
2316 unsigned long addr, size;
2317
2318 size = PAGE_SIZE;
2319
42cde48b 2320 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
2321 if (kvm_is_error_hva(addr))
2322 return PAGE_SIZE;
2323
d8ed45c5 2324 mmap_read_lock(current->mm);
8f0b1ab6
JR
2325 vma = find_vma(current->mm, addr);
2326 if (!vma)
2327 goto out;
2328
2329 size = vma_kernel_pagesize(vma);
2330
2331out:
d8ed45c5 2332 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2333
2334 return size;
2335}
2336
8283e36a 2337static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
4d8b81ab
XG
2338{
2339 return slot->flags & KVM_MEM_READONLY;
2340}
2341
8283e36a 2342static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
4d8b81ab 2343 gfn_t *nr_pages, bool write)
539cb660 2344{
bc6678a3 2345 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2346 return KVM_HVA_ERR_BAD;
48987781 2347
4d8b81ab
XG
2348 if (memslot_is_readonly(slot) && write)
2349 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2350
2351 if (nr_pages)
2352 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2353
4d8b81ab 2354 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2355}
48987781 2356
4d8b81ab
XG
2357static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2358 gfn_t *nr_pages)
2359{
2360 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2361}
48987781 2362
4d8b81ab 2363unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2364 gfn_t gfn)
4d8b81ab
XG
2365{
2366 return gfn_to_hva_many(slot, gfn, NULL);
2367}
2368EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2369
48987781
XG
2370unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2371{
49c7754c 2372 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2373}
0d150298 2374EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2375
8e73485c
PB
2376unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2377{
2378 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2379}
2380EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2381
86ab8cff 2382/*
970c0d4b
WY
2383 * Return the hva of a @gfn and the R/W attribute if possible.
2384 *
2385 * @slot: the kvm_memory_slot which contains @gfn
2386 * @gfn: the gfn to be translated
2387 * @writable: used to return the read/write attribute of the @slot if the hva
2388 * is valid and @writable is not NULL
86ab8cff 2389 */
64d83126
CD
2390unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2391 gfn_t gfn, bool *writable)
86ab8cff 2392{
a2ac07fe
GN
2393 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2394
2395 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2396 *writable = !memslot_is_readonly(slot);
2397
a2ac07fe 2398 return hva;
86ab8cff
XG
2399}
2400
64d83126
CD
2401unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2402{
2403 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2404
2405 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2406}
2407
8e73485c
PB
2408unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2409{
2410 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411
2412 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2413}
2414
fafc3dba
HY
2415static inline int check_user_page_hwpoison(unsigned long addr)
2416{
0d731759 2417 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2418
0d731759 2419 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
2420 return rc == -EHWPOISON;
2421}
2422
2fc84311 2423/*
b9b33da2
PB
2424 * The fast path to get the writable pfn which will be stored in @pfn,
2425 * true indicates success, otherwise false is returned. It's also the
311497e0 2426 * only part that runs if we can in atomic context.
2fc84311 2427 */
b9b33da2
PB
2428static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2429 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2430{
8d4e1288 2431 struct page *page[1];
954bbbc2 2432
12ce13fe
XG
2433 /*
2434 * Fast pin a writable pfn only if it is a write fault request
2435 * or the caller allows to map a writable pfn for a read fault
2436 * request.
2437 */
2438 if (!(write_fault || writable))
2439 return false;
612819c3 2440
dadbb612 2441 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2442 *pfn = page_to_pfn(page[0]);
612819c3 2443
2fc84311
XG
2444 if (writable)
2445 *writable = true;
2446 return true;
2447 }
af585b92 2448
2fc84311
XG
2449 return false;
2450}
612819c3 2451
2fc84311
XG
2452/*
2453 * The slow path to get the pfn of the specified host virtual address,
2454 * 1 indicates success, -errno is returned if error is detected.
2455 */
2456static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 2457 bool *writable, kvm_pfn_t *pfn)
2fc84311 2458{
ce53053c
AV
2459 unsigned int flags = FOLL_HWPOISON;
2460 struct page *page;
2fc84311 2461 int npages = 0;
612819c3 2462
2fc84311
XG
2463 might_sleep();
2464
2465 if (writable)
2466 *writable = write_fault;
2467
ce53053c
AV
2468 if (write_fault)
2469 flags |= FOLL_WRITE;
2470 if (async)
2471 flags |= FOLL_NOWAIT;
d4944b0e 2472
ce53053c 2473 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2474 if (npages != 1)
2475 return npages;
2476
2477 /* map read fault as writable if possible */
12ce13fe 2478 if (unlikely(!write_fault) && writable) {
ce53053c 2479 struct page *wpage;
2fc84311 2480
dadbb612 2481 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2482 *writable = true;
ce53053c
AV
2483 put_page(page);
2484 page = wpage;
612819c3 2485 }
887c08ac 2486 }
ce53053c 2487 *pfn = page_to_pfn(page);
2fc84311
XG
2488 return npages;
2489}
539cb660 2490
4d8b81ab
XG
2491static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2492{
2493 if (unlikely(!(vma->vm_flags & VM_READ)))
2494 return false;
2e2e3738 2495
4d8b81ab
XG
2496 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2497 return false;
887c08ac 2498
4d8b81ab
XG
2499 return true;
2500}
bf998156 2501
f8be156b
NP
2502static int kvm_try_get_pfn(kvm_pfn_t pfn)
2503{
2504 if (kvm_is_reserved_pfn(pfn))
2505 return 1;
2506 return get_page_unless_zero(pfn_to_page(pfn));
2507}
2508
92176a8e 2509static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1625566e
XT
2510 unsigned long addr, bool write_fault,
2511 bool *writable, kvm_pfn_t *p_pfn)
92176a8e 2512{
a9545779 2513 kvm_pfn_t pfn;
bd2fae8d
PB
2514 pte_t *ptep;
2515 spinlock_t *ptl;
add6a0cd
PB
2516 int r;
2517
9fd6dad1 2518 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2519 if (r) {
2520 /*
2521 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2522 * not call the fault handler, so do it here.
2523 */
2524 bool unlocked = false;
64019a2e 2525 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2526 (write_fault ? FAULT_FLAG_WRITE : 0),
2527 &unlocked);
a8387d0b
PB
2528 if (unlocked)
2529 return -EAGAIN;
add6a0cd
PB
2530 if (r)
2531 return r;
2532
9fd6dad1 2533 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2534 if (r)
2535 return r;
bd2fae8d 2536 }
add6a0cd 2537
bd2fae8d
PB
2538 if (write_fault && !pte_write(*ptep)) {
2539 pfn = KVM_PFN_ERR_RO_FAULT;
2540 goto out;
add6a0cd
PB
2541 }
2542
a340b3e2 2543 if (writable)
bd2fae8d
PB
2544 *writable = pte_write(*ptep);
2545 pfn = pte_pfn(*ptep);
add6a0cd
PB
2546
2547 /*
2548 * Get a reference here because callers of *hva_to_pfn* and
2549 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2550 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
36c3ce6c 2551 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
add6a0cd
PB
2552 * simply do nothing for reserved pfns.
2553 *
2554 * Whoever called remap_pfn_range is also going to call e.g.
2555 * unmap_mapping_range before the underlying pages are freed,
2556 * causing a call to our MMU notifier.
f8be156b
NP
2557 *
2558 * Certain IO or PFNMAP mappings can be backed with valid
2559 * struct pages, but be allocated without refcounting e.g.,
2560 * tail pages of non-compound higher order allocations, which
2561 * would then underflow the refcount when the caller does the
2562 * required put_page. Don't allow those pages here.
add6a0cd 2563 */
f8be156b
NP
2564 if (!kvm_try_get_pfn(pfn))
2565 r = -EFAULT;
add6a0cd 2566
bd2fae8d
PB
2567out:
2568 pte_unmap_unlock(ptep, ptl);
add6a0cd 2569 *p_pfn = pfn;
f8be156b
NP
2570
2571 return r;
92176a8e
PB
2572}
2573
12ce13fe
XG
2574/*
2575 * Pin guest page in memory and return its pfn.
2576 * @addr: host virtual address which maps memory to the guest
2577 * @atomic: whether this function can sleep
2578 * @async: whether this function need to wait IO complete if the
2579 * host page is not in the memory
2580 * @write_fault: whether we should get a writable host page
2581 * @writable: whether it allows to map a writable host page for !@write_fault
2582 *
2583 * The function will map a writable host page for these two cases:
2584 * 1): @write_fault = true
2585 * 2): @write_fault = false && @writable, @writable will tell the caller
2586 * whether the mapping is writable.
2587 */
982ed0de
DW
2588kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2589 bool write_fault, bool *writable)
2fc84311
XG
2590{
2591 struct vm_area_struct *vma;
ba049e93 2592 kvm_pfn_t pfn = 0;
92176a8e 2593 int npages, r;
2e2e3738 2594
2fc84311
XG
2595 /* we can do it either atomically or asynchronously, not both */
2596 BUG_ON(atomic && async);
8d4e1288 2597
b9b33da2 2598 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2599 return pfn;
2600
2601 if (atomic)
2602 return KVM_PFN_ERR_FAULT;
2603
2604 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2605 if (npages == 1)
2606 return pfn;
8d4e1288 2607
d8ed45c5 2608 mmap_read_lock(current->mm);
2fc84311
XG
2609 if (npages == -EHWPOISON ||
2610 (!async && check_user_page_hwpoison(addr))) {
2611 pfn = KVM_PFN_ERR_HWPOISON;
2612 goto exit;
2613 }
2614
a8387d0b 2615retry:
fc98c03b 2616 vma = vma_lookup(current->mm, addr);
2fc84311
XG
2617
2618 if (vma == NULL)
2619 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2620 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1625566e 2621 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
a8387d0b
PB
2622 if (r == -EAGAIN)
2623 goto retry;
92176a8e
PB
2624 if (r < 0)
2625 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2626 } else {
4d8b81ab 2627 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2628 *async = true;
2629 pfn = KVM_PFN_ERR_FAULT;
2630 }
2631exit:
d8ed45c5 2632 mmap_read_unlock(current->mm);
2e2e3738 2633 return pfn;
35149e21
AL
2634}
2635
8283e36a 2636kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
ba049e93 2637 bool atomic, bool *async, bool write_fault,
4a42d848 2638 bool *writable, hva_t *hva)
887c08ac 2639{
4d8b81ab
XG
2640 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2641
4a42d848
DS
2642 if (hva)
2643 *hva = addr;
2644
b2740d35
PB
2645 if (addr == KVM_HVA_ERR_RO_BAD) {
2646 if (writable)
2647 *writable = false;
4d8b81ab 2648 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2649 }
4d8b81ab 2650
b2740d35
PB
2651 if (kvm_is_error_hva(addr)) {
2652 if (writable)
2653 *writable = false;
81c52c56 2654 return KVM_PFN_NOSLOT;
b2740d35 2655 }
4d8b81ab
XG
2656
2657 /* Do not map writable pfn in the readonly memslot. */
2658 if (writable && memslot_is_readonly(slot)) {
2659 *writable = false;
2660 writable = NULL;
2661 }
2662
2663 return hva_to_pfn(addr, atomic, async, write_fault,
2664 writable);
887c08ac 2665}
3520469d 2666EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2667
ba049e93 2668kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2669 bool *writable)
2670{
e37afc6e 2671 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
4a42d848 2672 write_fault, writable, NULL);
612819c3
MT
2673}
2674EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2675
8283e36a 2676kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2677{
4a42d848 2678 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
506f0d6f 2679}
e37afc6e 2680EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2681
8283e36a 2682kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2683{
4a42d848 2684 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
506f0d6f 2685}
037d92dc 2686EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2687
ba049e93 2688kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2689{
2690 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2691}
2692EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2693
ba049e93 2694kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2695{
2696 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2697}
2698EXPORT_SYMBOL_GPL(gfn_to_pfn);
2699
ba049e93 2700kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2701{
2702 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2703}
2704EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2705
d9ef13c2
PB
2706int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2707 struct page **pages, int nr_pages)
48987781
XG
2708{
2709 unsigned long addr;
076b925d 2710 gfn_t entry = 0;
48987781 2711
d9ef13c2 2712 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2713 if (kvm_is_error_hva(addr))
2714 return -1;
2715
2716 if (entry < nr_pages)
2717 return 0;
2718
dadbb612 2719 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2720}
2721EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2722
b1624f99
SC
2723/*
2724 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2725 * backed by 'struct page'. A valid example is if the backing memslot is
2726 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2727 * been elevated by gfn_to_pfn().
2728 */
2729struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
a2766325 2730{
b1624f99
SC
2731 kvm_pfn_t pfn;
2732
2733 pfn = gfn_to_pfn(kvm, gfn);
2734
81c52c56 2735 if (is_error_noslot_pfn(pfn))
cb9aaa30 2736 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2737
6573a691 2738 if (kvm_is_reserved_pfn(pfn))
6cede2e6 2739 return KVM_ERR_PTR_BAD_PAGE;
a2766325
XG
2740
2741 return pfn_to_page(pfn);
2742}
954bbbc2
AK
2743EXPORT_SYMBOL_GPL(gfn_to_page);
2744
357a18ad 2745void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
91724814 2746{
91724814
BO
2747 if (dirty)
2748 kvm_release_pfn_dirty(pfn);
2749 else
2750 kvm_release_pfn_clean(pfn);
2751}
2752
357a18ad 2753int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
e45adf66
KA
2754{
2755 kvm_pfn_t pfn;
2756 void *hva = NULL;
2757 struct page *page = KVM_UNMAPPED_PAGE;
2758
2759 if (!map)
2760 return -EINVAL;
2761
357a18ad 2762 pfn = gfn_to_pfn(vcpu->kvm, gfn);
e45adf66
KA
2763 if (is_error_noslot_pfn(pfn))
2764 return -EINVAL;
2765
2766 if (pfn_valid(pfn)) {
2767 page = pfn_to_page(pfn);
357a18ad 2768 hva = kmap(page);
d30b214d 2769#ifdef CONFIG_HAS_IOMEM
91724814 2770 } else {
357a18ad 2771 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
d30b214d 2772#endif
e45adf66
KA
2773 }
2774
2775 if (!hva)
2776 return -EFAULT;
2777
2778 map->page = page;
2779 map->hva = hva;
2780 map->pfn = pfn;
2781 map->gfn = gfn;
2782
2783 return 0;
2784}
e45adf66
KA
2785EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2786
357a18ad 2787void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
e45adf66
KA
2788{
2789 if (!map)
2790 return;
2791
2792 if (!map->hva)
2793 return;
2794
357a18ad
DW
2795 if (map->page != KVM_UNMAPPED_PAGE)
2796 kunmap(map->page);
eb1f2f38 2797#ifdef CONFIG_HAS_IOMEM
91724814 2798 else
357a18ad 2799 memunmap(map->hva);
eb1f2f38 2800#endif
e45adf66 2801
91724814 2802 if (dirty)
357a18ad 2803 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
91724814 2804
357a18ad 2805 kvm_release_pfn(map->pfn, dirty);
e45adf66
KA
2806
2807 map->hva = NULL;
2808 map->page = NULL;
2809}
2810EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2811
8e1c6914
SC
2812static bool kvm_is_ad_tracked_page(struct page *page)
2813{
2814 /*
2815 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2816 * touched (e.g. set dirty) except by its owner".
2817 */
2818 return !PageReserved(page);
2819}
2820
2821static void kvm_set_page_dirty(struct page *page)
2822{
2823 if (kvm_is_ad_tracked_page(page))
2824 SetPageDirty(page);
2825}
2826
2827static void kvm_set_page_accessed(struct page *page)
2828{
2829 if (kvm_is_ad_tracked_page(page))
2830 mark_page_accessed(page);
2831}
2832
b4231d61
IE
2833void kvm_release_page_clean(struct page *page)
2834{
32cad84f
XG
2835 WARN_ON(is_error_page(page));
2836
8e1c6914
SC
2837 kvm_set_page_accessed(page);
2838 put_page(page);
b4231d61
IE
2839}
2840EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2841
ba049e93 2842void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2843{
bf4bea8e 2844 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
8e1c6914 2845 kvm_release_page_clean(pfn_to_page(pfn));
35149e21
AL
2846}
2847EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2848
b4231d61 2849void kvm_release_page_dirty(struct page *page)
8a7ae055 2850{
a2766325
XG
2851 WARN_ON(is_error_page(page));
2852
8e1c6914
SC
2853 kvm_set_page_dirty(page);
2854 kvm_release_page_clean(page);
35149e21
AL
2855}
2856EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2857
f7a6509f 2858void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21 2859{
8e1c6914
SC
2860 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2861 kvm_release_page_dirty(pfn_to_page(pfn));
35149e21 2862}
f7a6509f 2863EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2864
8e1c6914
SC
2865/*
2866 * Note, checking for an error/noslot pfn is the caller's responsibility when
2867 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2868 * "set" helpers are not to be used when the pfn might point at garbage.
2869 */
ba049e93 2870void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2871{
8e1c6914
SC
2872 if (WARN_ON(is_error_noslot_pfn(pfn)))
2873 return;
2874
2875 if (pfn_valid(pfn))
2876 kvm_set_page_dirty(pfn_to_page(pfn));
8a7ae055 2877}
35149e21
AL
2878EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2879
ba049e93 2880void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2881{
8e1c6914
SC
2882 if (WARN_ON(is_error_noslot_pfn(pfn)))
2883 return;
2884
2885 if (pfn_valid(pfn))
2886 kvm_set_page_accessed(pfn_to_page(pfn));
35149e21
AL
2887}
2888EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2889
195aefde
IE
2890static int next_segment(unsigned long len, int offset)
2891{
2892 if (len > PAGE_SIZE - offset)
2893 return PAGE_SIZE - offset;
2894 else
2895 return len;
2896}
2897
8e73485c
PB
2898static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2899 void *data, int offset, int len)
195aefde 2900{
e0506bcb
IE
2901 int r;
2902 unsigned long addr;
195aefde 2903
8e73485c 2904 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2905 if (kvm_is_error_hva(addr))
2906 return -EFAULT;
3180a7fc 2907 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2908 if (r)
195aefde 2909 return -EFAULT;
195aefde
IE
2910 return 0;
2911}
8e73485c
PB
2912
2913int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2914 int len)
2915{
2916 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2917
2918 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2919}
195aefde
IE
2920EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2921
8e73485c
PB
2922int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2923 int offset, int len)
2924{
2925 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2926
2927 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2928}
2929EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2930
195aefde
IE
2931int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2932{
2933 gfn_t gfn = gpa >> PAGE_SHIFT;
2934 int seg;
2935 int offset = offset_in_page(gpa);
2936 int ret;
2937
2938 while ((seg = next_segment(len, offset)) != 0) {
2939 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2940 if (ret < 0)
2941 return ret;
2942 offset = 0;
2943 len -= seg;
2944 data += seg;
2945 ++gfn;
2946 }
2947 return 0;
2948}
2949EXPORT_SYMBOL_GPL(kvm_read_guest);
2950
8e73485c 2951int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2952{
7ec54588 2953 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2954 int seg;
7ec54588 2955 int offset = offset_in_page(gpa);
8e73485c
PB
2956 int ret;
2957
2958 while ((seg = next_segment(len, offset)) != 0) {
2959 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2960 if (ret < 0)
2961 return ret;
2962 offset = 0;
2963 len -= seg;
2964 data += seg;
2965 ++gfn;
2966 }
2967 return 0;
2968}
2969EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2970
8e73485c
PB
2971static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2972 void *data, int offset, unsigned long len)
2973{
2974 int r;
2975 unsigned long addr;
2976
2977 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2978 if (kvm_is_error_hva(addr))
2979 return -EFAULT;
0aac03f0 2980 pagefault_disable();
3180a7fc 2981 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2982 pagefault_enable();
7ec54588
MT
2983 if (r)
2984 return -EFAULT;
2985 return 0;
2986}
7ec54588 2987
8e73485c
PB
2988int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2989 void *data, unsigned long len)
2990{
2991 gfn_t gfn = gpa >> PAGE_SHIFT;
2992 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2993 int offset = offset_in_page(gpa);
2994
2995 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2996}
2997EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2998
28bd726a
PX
2999static int __kvm_write_guest_page(struct kvm *kvm,
3000 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 3001 const void *data, int offset, int len)
195aefde 3002{
e0506bcb
IE
3003 int r;
3004 unsigned long addr;
195aefde 3005
251eb841 3006 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
3007 if (kvm_is_error_hva(addr))
3008 return -EFAULT;
8b0cedff 3009 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 3010 if (r)
195aefde 3011 return -EFAULT;
28bd726a 3012 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
3013 return 0;
3014}
8e73485c
PB
3015
3016int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3017 const void *data, int offset, int len)
3018{
3019 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3020
28bd726a 3021 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 3022}
195aefde
IE
3023EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3024
8e73485c
PB
3025int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3026 const void *data, int offset, int len)
3027{
3028 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3029
28bd726a 3030 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
3031}
3032EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3033
195aefde
IE
3034int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3035 unsigned long len)
3036{
3037 gfn_t gfn = gpa >> PAGE_SHIFT;
3038 int seg;
3039 int offset = offset_in_page(gpa);
3040 int ret;
3041
3042 while ((seg = next_segment(len, offset)) != 0) {
3043 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3044 if (ret < 0)
3045 return ret;
3046 offset = 0;
3047 len -= seg;
3048 data += seg;
3049 ++gfn;
3050 }
3051 return 0;
3052}
ff651cb6 3053EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 3054
8e73485c
PB
3055int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3056 unsigned long len)
3057{
3058 gfn_t gfn = gpa >> PAGE_SHIFT;
3059 int seg;
3060 int offset = offset_in_page(gpa);
3061 int ret;
3062
3063 while ((seg = next_segment(len, offset)) != 0) {
3064 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3065 if (ret < 0)
3066 return ret;
3067 offset = 0;
3068 len -= seg;
3069 data += seg;
3070 ++gfn;
3071 }
3072 return 0;
3073}
3074EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3075
5a2d4365
PB
3076static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3077 struct gfn_to_hva_cache *ghc,
3078 gpa_t gpa, unsigned long len)
49c7754c 3079{
49c7754c 3080 int offset = offset_in_page(gpa);
8f964525
AH
3081 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3082 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3083 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3084 gfn_t nr_pages_avail;
49c7754c 3085
6ad1e29f 3086 /* Update ghc->generation before performing any error checks. */
49c7754c 3087 ghc->generation = slots->generation;
6ad1e29f
SC
3088
3089 if (start_gfn > end_gfn) {
3090 ghc->hva = KVM_HVA_ERR_BAD;
3091 return -EINVAL;
3092 }
f1b9dd5e
JM
3093
3094 /*
3095 * If the requested region crosses two memslots, we still
3096 * verify that the entire region is valid here.
3097 */
6ad1e29f 3098 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
3099 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3100 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3101 &nr_pages_avail);
3102 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 3103 return -EFAULT;
f1b9dd5e
JM
3104 }
3105
3106 /* Use the slow path for cross page reads and writes. */
6ad1e29f 3107 if (nr_pages_needed == 1)
49c7754c 3108 ghc->hva += offset;
f1b9dd5e 3109 else
8f964525 3110 ghc->memslot = NULL;
f1b9dd5e 3111
6ad1e29f
SC
3112 ghc->gpa = gpa;
3113 ghc->len = len;
3114 return 0;
49c7754c 3115}
5a2d4365 3116
4e335d9e 3117int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
3118 gpa_t gpa, unsigned long len)
3119{
4e335d9e 3120 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
3121 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3122}
4e335d9e 3123EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 3124
4e335d9e 3125int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
3126 void *data, unsigned int offset,
3127 unsigned long len)
49c7754c 3128{
4e335d9e 3129 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 3130 int r;
4ec6e863 3131 gpa_t gpa = ghc->gpa + offset;
49c7754c 3132
5f25e71e
PB
3133 if (WARN_ON_ONCE(len + offset > ghc->len))
3134 return -EINVAL;
8f964525 3135
dc9ce71e
SC
3136 if (slots->generation != ghc->generation) {
3137 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3138 return -EFAULT;
3139 }
8f964525 3140
49c7754c
GN
3141 if (kvm_is_error_hva(ghc->hva))
3142 return -EFAULT;
3143
fcfbc617
SC
3144 if (unlikely(!ghc->memslot))
3145 return kvm_write_guest(kvm, gpa, data, len);
3146
4ec6e863 3147 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
3148 if (r)
3149 return -EFAULT;
28bd726a 3150 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
3151
3152 return 0;
3153}
4e335d9e 3154EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 3155
4e335d9e
PB
3156int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3157 void *data, unsigned long len)
4ec6e863 3158{
4e335d9e 3159 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 3160}
4e335d9e 3161EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 3162
0958f0ce
VK
3163int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3164 void *data, unsigned int offset,
3165 unsigned long len)
e03b644f 3166{
4e335d9e 3167 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 3168 int r;
0958f0ce 3169 gpa_t gpa = ghc->gpa + offset;
e03b644f 3170
5f25e71e
PB
3171 if (WARN_ON_ONCE(len + offset > ghc->len))
3172 return -EINVAL;
8f964525 3173
dc9ce71e
SC
3174 if (slots->generation != ghc->generation) {
3175 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3176 return -EFAULT;
3177 }
8f964525 3178
e03b644f
GN
3179 if (kvm_is_error_hva(ghc->hva))
3180 return -EFAULT;
3181
fcfbc617 3182 if (unlikely(!ghc->memslot))
0958f0ce 3183 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 3184
0958f0ce 3185 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
3186 if (r)
3187 return -EFAULT;
3188
3189 return 0;
3190}
0958f0ce
VK
3191EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3192
3193int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3194 void *data, unsigned long len)
3195{
3196 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3197}
4e335d9e 3198EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 3199
195aefde
IE
3200int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3201{
2f541442 3202 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
3203 gfn_t gfn = gpa >> PAGE_SHIFT;
3204 int seg;
3205 int offset = offset_in_page(gpa);
3206 int ret;
3207
bfda0e84 3208 while ((seg = next_segment(len, offset)) != 0) {
2f541442 3209 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
3210 if (ret < 0)
3211 return ret;
3212 offset = 0;
3213 len -= seg;
3214 ++gfn;
3215 }
3216 return 0;
3217}
3218EXPORT_SYMBOL_GPL(kvm_clear_guest);
3219
28bd726a 3220void mark_page_dirty_in_slot(struct kvm *kvm,
8283e36a 3221 const struct kvm_memory_slot *memslot,
28bd726a 3222 gfn_t gfn)
6aa8b732 3223{
2efd61a6
DW
3224 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3225
e09fccb5 3226#ifdef CONFIG_HAVE_KVM_DIRTY_RING
2efd61a6
DW
3227 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3228 return;
e09fccb5 3229#endif
2efd61a6 3230
044c59c4 3231 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 3232 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 3233 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 3234
fb04a1ed 3235 if (kvm->dirty_ring_size)
2efd61a6 3236 kvm_dirty_ring_push(&vcpu->dirty_ring,
fb04a1ed
PX
3237 slot, rel_gfn);
3238 else
3239 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
3240 }
3241}
a6a0b05d 3242EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 3243
49c7754c
GN
3244void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3245{
3246 struct kvm_memory_slot *memslot;
3247
3248 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 3249 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 3250}
2ba9f0d8 3251EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 3252
8e73485c
PB
3253void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3254{
3255 struct kvm_memory_slot *memslot;
3256
3257 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 3258 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
3259}
3260EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3261
20b7035c
JS
3262void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3263{
3264 if (!vcpu->sigset_active)
3265 return;
3266
3267 /*
3268 * This does a lockless modification of ->real_blocked, which is fine
3269 * because, only current can change ->real_blocked and all readers of
3270 * ->real_blocked don't care as long ->real_blocked is always a subset
3271 * of ->blocked.
3272 */
3273 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3274}
3275
3276void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3277{
3278 if (!vcpu->sigset_active)
3279 return;
3280
3281 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3282 sigemptyset(&current->real_blocked);
3283}
3284
aca6ff29
WL
3285static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3286{
dee339b5 3287 unsigned int old, val, grow, grow_start;
aca6ff29 3288
2cbd7824 3289 old = val = vcpu->halt_poll_ns;
dee339b5 3290 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3291 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3292 if (!grow)
3293 goto out;
3294
dee339b5
NW
3295 val *= grow;
3296 if (val < grow_start)
3297 val = grow_start;
aca6ff29 3298
258785ef
DM
3299 if (val > vcpu->kvm->max_halt_poll_ns)
3300 val = vcpu->kvm->max_halt_poll_ns;
313f636d 3301
aca6ff29 3302 vcpu->halt_poll_ns = val;
7fa08e71 3303out:
2cbd7824 3304 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3305}
3306
3307static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3308{
ae232ea4 3309 unsigned int old, val, shrink, grow_start;
aca6ff29 3310
2cbd7824 3311 old = val = vcpu->halt_poll_ns;
6b6de68c 3312 shrink = READ_ONCE(halt_poll_ns_shrink);
ae232ea4 3313 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3314 if (shrink == 0)
aca6ff29
WL
3315 val = 0;
3316 else
6b6de68c 3317 val /= shrink;
aca6ff29 3318
ae232ea4
SS
3319 if (val < grow_start)
3320 val = 0;
3321
aca6ff29 3322 vcpu->halt_poll_ns = val;
2cbd7824 3323 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3324}
3325
f7819512
PB
3326static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3327{
50c28f21
JS
3328 int ret = -EINTR;
3329 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3330
f7819512
PB
3331 if (kvm_arch_vcpu_runnable(vcpu)) {
3332 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 3333 goto out;
f7819512
PB
3334 }
3335 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3336 goto out;
f7819512 3337 if (signal_pending(current))
50c28f21 3338 goto out;
084071d5
MT
3339 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3340 goto out;
f7819512 3341
50c28f21
JS
3342 ret = 0;
3343out:
3344 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3345 return ret;
f7819512
PB
3346}
3347
fac42688
SC
3348/*
3349 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3350 * pending. This is mostly used when halting a vCPU, but may also be used
3351 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3352 */
3353bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
cb953129 3354{
fac42688
SC
3355 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3356 bool waited = false;
3357
c3858335
JZ
3358 vcpu->stat.generic.blocking = 1;
3359
18869f26 3360 preempt_disable();
fac42688 3361 kvm_arch_vcpu_blocking(vcpu);
fac42688 3362 prepare_to_rcuwait(wait);
18869f26
ML
3363 preempt_enable();
3364
fac42688
SC
3365 for (;;) {
3366 set_current_state(TASK_INTERRUPTIBLE);
3367
3368 if (kvm_vcpu_check_block(vcpu) < 0)
3369 break;
3370
3371 waited = true;
3372 schedule();
3373 }
fac42688 3374
18869f26
ML
3375 preempt_disable();
3376 finish_rcuwait(wait);
fac42688 3377 kvm_arch_vcpu_unblocking(vcpu);
18869f26 3378 preempt_enable();
fac42688 3379
c3858335
JZ
3380 vcpu->stat.generic.blocking = 0;
3381
fac42688
SC
3382 return waited;
3383}
3384
29e72893
SC
3385static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3386 ktime_t end, bool success)
cb953129 3387{
30c94347 3388 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
29e72893
SC
3389 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3390
30c94347
SC
3391 ++vcpu->stat.generic.halt_attempted_poll;
3392
3393 if (success) {
3394 ++vcpu->stat.generic.halt_successful_poll;
3395
3396 if (!vcpu_valid_wakeup(vcpu))
3397 ++vcpu->stat.generic.halt_poll_invalid;
3398
3399 stats->halt_poll_success_ns += poll_ns;
3400 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3401 } else {
3402 stats->halt_poll_fail_ns += poll_ns;
3403 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3404 }
cb953129
DM
3405}
3406
b6958ce4 3407/*
fac42688
SC
3408 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3409 * polling is enabled, busy wait for a short time before blocking to avoid the
3410 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3411 * is halted.
b6958ce4 3412 */
91b99ea7 3413void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
d3bef15f 3414{
6f390916 3415 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
8df6a61c 3416 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
cb953129 3417 ktime_t start, cur, poll_end;
f7819512 3418 bool waited = false;
91b99ea7 3419 u64 halt_ns;
07ab0f8d 3420
cb953129 3421 start = cur = poll_end = ktime_get();
8df6a61c 3422 if (do_halt_poll) {
109a9826 3423 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
f95ef0cd 3424
f7819512
PB
3425 do {
3426 /*
3427 * This sets KVM_REQ_UNHALT if an interrupt
3428 * arrives.
3429 */
30c94347 3430 if (kvm_vcpu_check_block(vcpu) < 0)
f7819512 3431 goto out;
74775654 3432 cpu_relax();
cb953129 3433 poll_end = cur = ktime_get();
6bd5b743 3434 } while (kvm_vcpu_can_poll(cur, stop));
f7819512 3435 }
e5c239cf 3436
fac42688 3437 waited = kvm_vcpu_block(vcpu);
8ccba534 3438
f7819512 3439 cur = ktime_get();
87bcc5fa
JZ
3440 if (waited) {
3441 vcpu->stat.generic.halt_wait_ns +=
3442 ktime_to_ns(cur) - ktime_to_ns(poll_end);
8ccba534
JZ
3443 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3444 ktime_to_ns(cur) - ktime_to_ns(poll_end));
87bcc5fa 3445 }
f7819512 3446out:
91b99ea7
SC
3447 /* The total time the vCPU was "halted", including polling time. */
3448 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
aca6ff29 3449
29e72893
SC
3450 /*
3451 * Note, halt-polling is considered successful so long as the vCPU was
3452 * never actually scheduled out, i.e. even if the wake event arrived
3453 * after of the halt-polling loop itself, but before the full wait.
3454 */
8df6a61c 3455 if (do_halt_poll)
29e72893 3456 update_halt_poll_stats(vcpu, start, poll_end, !waited);
cb953129 3457
6f390916 3458 if (halt_poll_allowed) {
44551b2f 3459 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3460 shrink_halt_poll_ns(vcpu);
acd05785 3461 } else if (vcpu->kvm->max_halt_poll_ns) {
91b99ea7 3462 if (halt_ns <= vcpu->halt_poll_ns)
44551b2f
WL
3463 ;
3464 /* we had a long block, shrink polling */
acd05785 3465 else if (vcpu->halt_poll_ns &&
91b99ea7 3466 halt_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3467 shrink_halt_poll_ns(vcpu);
3468 /* we had a short halt and our poll time is too small */
acd05785 3469 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
91b99ea7 3470 halt_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3471 grow_halt_poll_ns(vcpu);
3472 } else {
3473 vcpu->halt_poll_ns = 0;
3474 }
3475 }
aca6ff29 3476
91b99ea7 3477 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
b6958ce4 3478}
91b99ea7 3479EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
b6958ce4 3480
178f02ff 3481bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3482{
d92a5d1c 3483 if (__kvm_vcpu_wake_up(vcpu)) {
d73eb57b 3484 WRITE_ONCE(vcpu->ready, true);
0193cc90 3485 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3486 return true;
b6d33834
CD
3487 }
3488
178f02ff 3489 return false;
dd1a4cc1
RK
3490}
3491EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3492
0266c894 3493#ifndef CONFIG_S390
dd1a4cc1
RK
3494/*
3495 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3496 */
3497void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3498{
85b64045 3499 int me, cpu;
dd1a4cc1 3500
178f02ff
RK
3501 if (kvm_vcpu_wake_up(vcpu))
3502 return;
3503
aefdc2ed
PB
3504 me = get_cpu();
3505 /*
3506 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3507 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3508 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3509 * within the vCPU thread itself.
3510 */
3511 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3512 if (vcpu->mode == IN_GUEST_MODE)
3513 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3514 goto out;
3515 }
3516
85b64045
SC
3517 /*
3518 * Note, the vCPU could get migrated to a different pCPU at any point
3519 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3520 * IPI to the previous pCPU. But, that's ok because the purpose of the
3521 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3522 * vCPU also requires it to leave IN_GUEST_MODE.
3523 */
85b64045
SC
3524 if (kvm_arch_vcpu_should_kick(vcpu)) {
3525 cpu = READ_ONCE(vcpu->cpu);
3526 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
b6d33834 3527 smp_send_reschedule(cpu);
85b64045 3528 }
aefdc2ed 3529out:
b6d33834
CD
3530 put_cpu();
3531}
a20ed54d 3532EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3533#endif /* !CONFIG_S390 */
b6d33834 3534
fa93384f 3535int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3536{
3537 struct pid *pid;
3538 struct task_struct *task = NULL;
fa93384f 3539 int ret = 0;
41628d33
KW
3540
3541 rcu_read_lock();
3542 pid = rcu_dereference(target->pid);
3543 if (pid)
27fbe64b 3544 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3545 rcu_read_unlock();
3546 if (!task)
c45c528e 3547 return ret;
c45c528e 3548 ret = yield_to(task, 1);
41628d33 3549 put_task_struct(task);
c45c528e
R
3550
3551 return ret;
41628d33
KW
3552}
3553EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3554
06e48c51
R
3555/*
3556 * Helper that checks whether a VCPU is eligible for directed yield.
3557 * Most eligible candidate to yield is decided by following heuristics:
3558 *
3559 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3560 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3561 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3562 *
3563 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3564 * chance last time (mostly it has become eligible now since we have probably
3565 * yielded to lockholder in last iteration. This is done by toggling
3566 * @dy_eligible each time a VCPU checked for eligibility.)
3567 *
3568 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3569 * to preempted lock-holder could result in wrong VCPU selection and CPU
3570 * burning. Giving priority for a potential lock-holder increases lock
3571 * progress.
3572 *
3573 * Since algorithm is based on heuristics, accessing another VCPU data without
3574 * locking does not harm. It may result in trying to yield to same VCPU, fail
3575 * and continue with next VCPU and so on.
3576 */
7940876e 3577static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3578{
4a55dd72 3579#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3580 bool eligible;
3581
3582 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3583 vcpu->spin_loop.dy_eligible;
06e48c51
R
3584
3585 if (vcpu->spin_loop.in_spin_loop)
3586 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3587
3588 return eligible;
4a55dd72
SW
3589#else
3590 return true;
06e48c51 3591#endif
4a55dd72 3592}
c45c528e 3593
17e433b5
WL
3594/*
3595 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3596 * a vcpu_load/vcpu_put pair. However, for most architectures
3597 * kvm_arch_vcpu_runnable does not require vcpu_load.
3598 */
3599bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3600{
3601 return kvm_arch_vcpu_runnable(vcpu);
3602}
3603
3604static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3605{
3606 if (kvm_arch_dy_runnable(vcpu))
3607 return true;
3608
3609#ifdef CONFIG_KVM_ASYNC_PF
3610 if (!list_empty_careful(&vcpu->async_pf.done))
3611 return true;
3612#endif
3613
3614 return false;
3615}
3616
52acd22f
WL
3617bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3618{
3619 return false;
3620}
3621
199b5763 3622void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3623{
217ece61
RR
3624 struct kvm *kvm = me->kvm;
3625 struct kvm_vcpu *vcpu;
3626 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
46808a4c 3627 unsigned long i;
217ece61 3628 int yielded = 0;
c45c528e 3629 int try = 3;
217ece61 3630 int pass;
d255f4f2 3631
4c088493 3632 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3633 /*
3634 * We boost the priority of a VCPU that is runnable but not
3635 * currently running, because it got preempted by something
3636 * else and called schedule in __vcpu_run. Hopefully that
3637 * VCPU is holding the lock that we need and will release it.
3638 * We approximate round-robin by starting at the last boosted VCPU.
3639 */
c45c528e 3640 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3641 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3642 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3643 i = last_boosted_vcpu;
3644 continue;
3645 } else if (pass && i > last_boosted_vcpu)
3646 break;
d73eb57b 3647 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3648 continue;
217ece61
RR
3649 if (vcpu == me)
3650 continue;
d92a5d1c 3651 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
217ece61 3652 continue;
046ddeed 3653 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3654 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3655 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3656 continue;
06e48c51
R
3657 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3658 continue;
c45c528e
R
3659
3660 yielded = kvm_vcpu_yield_to(vcpu);
3661 if (yielded > 0) {
217ece61 3662 kvm->last_boosted_vcpu = i;
217ece61 3663 break;
c45c528e
R
3664 } else if (yielded < 0) {
3665 try--;
3666 if (!try)
3667 break;
217ece61 3668 }
217ece61
RR
3669 }
3670 }
4c088493 3671 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3672
3673 /* Ensure vcpu is not eligible during next spinloop */
3674 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3675}
3676EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3677
fb04a1ed
PX
3678static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3679{
dc70ec21 3680#ifdef CONFIG_HAVE_KVM_DIRTY_RING
fb04a1ed
PX
3681 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3682 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3683 kvm->dirty_ring_size / PAGE_SIZE);
3684#else
3685 return false;
3686#endif
3687}
3688
1499fa80 3689static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3690{
11bac800 3691 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3692 struct page *page;
3693
e4a533a4 3694 if (vmf->pgoff == 0)
039576c0 3695 page = virt_to_page(vcpu->run);
09566765 3696#ifdef CONFIG_X86
e4a533a4 3697 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3698 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3699#endif
4b4357e0 3700#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3701 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3702 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3703#endif
fb04a1ed
PX
3704 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3705 page = kvm_dirty_ring_get_page(
3706 &vcpu->dirty_ring,
3707 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3708 else
5b1c1493 3709 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3710 get_page(page);
e4a533a4 3711 vmf->page = page;
3712 return 0;
9a2bb7f4
AK
3713}
3714
f0f37e2f 3715static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3716 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3717};
3718
3719static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3720{
fb04a1ed 3721 struct kvm_vcpu *vcpu = file->private_data;
11476d27 3722 unsigned long pages = vma_pages(vma);
fb04a1ed
PX
3723
3724 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3725 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3726 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3727 return -EINVAL;
3728
9a2bb7f4
AK
3729 vma->vm_ops = &kvm_vcpu_vm_ops;
3730 return 0;
3731}
3732
bccf2150
AK
3733static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3734{
3735 struct kvm_vcpu *vcpu = filp->private_data;
3736
66c0b394 3737 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3738 return 0;
3739}
3740
70375c2d 3741static const struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3742 .release = kvm_vcpu_release,
3743 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3744 .mmap = kvm_vcpu_mmap,
6038f373 3745 .llseek = noop_llseek,
7ddfd3e0 3746 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3747};
3748
3749/*
3750 * Allocates an inode for the vcpu.
3751 */
3752static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3753{
e46b4692
MY
3754 char name[8 + 1 + ITOA_MAX_LEN + 1];
3755
3756 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3757 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3758}
3759
3e7093d0 3760static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3761{
741cbbae 3762#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
d56f5136 3763 struct dentry *debugfs_dentry;
45b5939e 3764 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3765
45b5939e 3766 if (!debugfs_initialized())
3e7093d0 3767 return;
45b5939e
LC
3768
3769 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3770 debugfs_dentry = debugfs_create_dir(dir_name,
3771 vcpu->kvm->debugfs_dentry);
45b5939e 3772
d56f5136 3773 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
741cbbae 3774#endif
45b5939e
LC
3775}
3776
c5ea7660
AK
3777/*
3778 * Creates some virtual cpus. Good luck creating more than one.
3779 */
73880c80 3780static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3781{
3782 int r;
e09fefde 3783 struct kvm_vcpu *vcpu;
8bd826d6 3784 struct page *page;
c5ea7660 3785
a1c42dde 3786 if (id >= KVM_MAX_VCPU_IDS)
338c7dba
AH
3787 return -EINVAL;
3788
6c7caebc 3789 mutex_lock(&kvm->lock);
f502cc56 3790 if (kvm->created_vcpus >= kvm->max_vcpus) {
6c7caebc
PB
3791 mutex_unlock(&kvm->lock);
3792 return -EINVAL;
3793 }
3794
1d5e740d
ZG
3795 r = kvm_arch_vcpu_precreate(kvm, id);
3796 if (r) {
3797 mutex_unlock(&kvm->lock);
3798 return r;
3799 }
3800
6c7caebc
PB
3801 kvm->created_vcpus++;
3802 mutex_unlock(&kvm->lock);
3803
85f47930 3804 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3805 if (!vcpu) {
3806 r = -ENOMEM;
6c7caebc
PB
3807 goto vcpu_decrement;
3808 }
c5ea7660 3809
fcd97ad5 3810 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3811 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3812 if (!page) {
3813 r = -ENOMEM;
e529ef66 3814 goto vcpu_free;
8bd826d6
SC
3815 }
3816 vcpu->run = page_address(page);
3817
3818 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3819
3820 r = kvm_arch_vcpu_create(vcpu);
3821 if (r)
8bd826d6 3822 goto vcpu_free_run_page;
e529ef66 3823
fb04a1ed
PX
3824 if (kvm->dirty_ring_size) {
3825 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3826 id, kvm->dirty_ring_size);
3827 if (r)
3828 goto arch_vcpu_destroy;
3829 }
3830
11ec2804 3831 mutex_lock(&kvm->lock);
e09fefde
DH
3832 if (kvm_get_vcpu_by_id(kvm, id)) {
3833 r = -EEXIST;
3834 goto unlock_vcpu_destroy;
3835 }
73880c80 3836
8750e72a 3837 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
c5b07754
MZ
3838 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3839 BUG_ON(r == -EBUSY);
3840 if (r)
3841 goto unlock_vcpu_destroy;
c5ea7660 3842
ce55c049
JZ
3843 /* Fill the stats id string for the vcpu */
3844 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3845 task_pid_nr(current), id);
3846
fb3f0f51 3847 /* Now it's all set up, let userspace reach it */
66c0b394 3848 kvm_get_kvm(kvm);
bccf2150 3849 r = create_vcpu_fd(vcpu);
73880c80 3850 if (r < 0) {
c5b07754 3851 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
149487bd 3852 kvm_put_kvm_no_destroy(kvm);
d780592b 3853 goto unlock_vcpu_destroy;
73880c80
GN
3854 }
3855
dd489240 3856 /*
c5b07754
MZ
3857 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3858 * pointer before kvm->online_vcpu's incremented value.
dd489240 3859 */
73880c80
GN
3860 smp_wmb();
3861 atomic_inc(&kvm->online_vcpus);
3862
73880c80 3863 mutex_unlock(&kvm->lock);
42897d86 3864 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3865 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3866 return r;
39c3b86e 3867
d780592b 3868unlock_vcpu_destroy:
7d8fece6 3869 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3870 kvm_dirty_ring_free(&vcpu->dirty_ring);
3871arch_vcpu_destroy:
d40ccc62 3872 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3873vcpu_free_run_page:
3874 free_page((unsigned long)vcpu->run);
e529ef66
SC
3875vcpu_free:
3876 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3877vcpu_decrement:
3878 mutex_lock(&kvm->lock);
3879 kvm->created_vcpus--;
3880 mutex_unlock(&kvm->lock);
c5ea7660
AK
3881 return r;
3882}
3883
1961d276
AK
3884static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3885{
3886 if (sigset) {
3887 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3888 vcpu->sigset_active = 1;
3889 vcpu->sigset = *sigset;
3890 } else
3891 vcpu->sigset_active = 0;
3892 return 0;
3893}
3894
ce55c049
JZ
3895static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3896 size_t size, loff_t *offset)
3897{
3898 struct kvm_vcpu *vcpu = file->private_data;
3899
3900 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3901 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3902 sizeof(vcpu->stat), user_buffer, size, offset);
3903}
3904
3905static const struct file_operations kvm_vcpu_stats_fops = {
3906 .read = kvm_vcpu_stats_read,
3907 .llseek = noop_llseek,
3908};
3909
3910static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3911{
3912 int fd;
3913 struct file *file;
3914 char name[15 + ITOA_MAX_LEN + 1];
3915
3916 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3917
3918 fd = get_unused_fd_flags(O_CLOEXEC);
3919 if (fd < 0)
3920 return fd;
3921
3922 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3923 if (IS_ERR(file)) {
3924 put_unused_fd(fd);
3925 return PTR_ERR(file);
3926 }
3927 file->f_mode |= FMODE_PREAD;
3928 fd_install(fd, file);
3929
3930 return fd;
3931}
3932
bccf2150
AK
3933static long kvm_vcpu_ioctl(struct file *filp,
3934 unsigned int ioctl, unsigned long arg)
6aa8b732 3935{
bccf2150 3936 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3937 void __user *argp = (void __user *)arg;
313a3dc7 3938 int r;
fa3795a7
DH
3939 struct kvm_fpu *fpu = NULL;
3940 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3941
f4d31653 3942 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
6d4e4c4f 3943 return -EIO;
2122ff5e 3944
2ea75be3
DM
3945 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3946 return -EINVAL;
3947
2122ff5e 3948 /*
5cb0944c
PB
3949 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3950 * execution; mutex_lock() would break them.
2122ff5e 3951 */
5cb0944c
PB
3952 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3953 if (r != -ENOIOCTLCMD)
9fc77441 3954 return r;
2122ff5e 3955
ec7660cc
CD
3956 if (mutex_lock_killable(&vcpu->mutex))
3957 return -EINTR;
6aa8b732 3958 switch (ioctl) {
0e4524a5
CB
3959 case KVM_RUN: {
3960 struct pid *oldpid;
f0fe5108
AK
3961 r = -EINVAL;
3962 if (arg)
3963 goto out;
0e4524a5 3964 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3965 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3966 /* The thread running this VCPU changed. */
bd2a6394 3967 struct pid *newpid;
f95ef0cd 3968
bd2a6394
CD
3969 r = kvm_arch_vcpu_run_pid_change(vcpu);
3970 if (r)
3971 break;
3972
3973 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3974 rcu_assign_pointer(vcpu->pid, newpid);
3975 if (oldpid)
3976 synchronize_rcu();
3977 put_pid(oldpid);
3978 }
1b94f6f8 3979 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 3980 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3981 break;
0e4524a5 3982 }
6aa8b732 3983 case KVM_GET_REGS: {
3e4bb3ac 3984 struct kvm_regs *kvm_regs;
6aa8b732 3985
3e4bb3ac 3986 r = -ENOMEM;
b12ce36a 3987 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3988 if (!kvm_regs)
6aa8b732 3989 goto out;
3e4bb3ac
XZ
3990 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3991 if (r)
3992 goto out_free1;
6aa8b732 3993 r = -EFAULT;
3e4bb3ac
XZ
3994 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3995 goto out_free1;
6aa8b732 3996 r = 0;
3e4bb3ac
XZ
3997out_free1:
3998 kfree(kvm_regs);
6aa8b732
AK
3999 break;
4000 }
4001 case KVM_SET_REGS: {
3e4bb3ac 4002 struct kvm_regs *kvm_regs;
6aa8b732 4003
ff5c2c03
SL
4004 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4005 if (IS_ERR(kvm_regs)) {
4006 r = PTR_ERR(kvm_regs);
6aa8b732 4007 goto out;
ff5c2c03 4008 }
3e4bb3ac 4009 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 4010 kfree(kvm_regs);
6aa8b732
AK
4011 break;
4012 }
4013 case KVM_GET_SREGS: {
b12ce36a
BG
4014 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4015 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4016 r = -ENOMEM;
4017 if (!kvm_sregs)
4018 goto out;
4019 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4020 if (r)
4021 goto out;
4022 r = -EFAULT;
fa3795a7 4023 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
4024 goto out;
4025 r = 0;
4026 break;
4027 }
4028 case KVM_SET_SREGS: {
ff5c2c03
SL
4029 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4030 if (IS_ERR(kvm_sregs)) {
4031 r = PTR_ERR(kvm_sregs);
18595411 4032 kvm_sregs = NULL;
6aa8b732 4033 goto out;
ff5c2c03 4034 }
fa3795a7 4035 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4036 break;
4037 }
62d9f0db
MT
4038 case KVM_GET_MP_STATE: {
4039 struct kvm_mp_state mp_state;
4040
4041 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4042 if (r)
4043 goto out;
4044 r = -EFAULT;
893bdbf1 4045 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
4046 goto out;
4047 r = 0;
4048 break;
4049 }
4050 case KVM_SET_MP_STATE: {
4051 struct kvm_mp_state mp_state;
4052
4053 r = -EFAULT;
893bdbf1 4054 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
4055 goto out;
4056 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
4057 break;
4058 }
6aa8b732
AK
4059 case KVM_TRANSLATE: {
4060 struct kvm_translation tr;
4061
4062 r = -EFAULT;
893bdbf1 4063 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 4064 goto out;
8b006791 4065 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
4066 if (r)
4067 goto out;
4068 r = -EFAULT;
893bdbf1 4069 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
4070 goto out;
4071 r = 0;
4072 break;
4073 }
d0bfb940
JK
4074 case KVM_SET_GUEST_DEBUG: {
4075 struct kvm_guest_debug dbg;
6aa8b732
AK
4076
4077 r = -EFAULT;
893bdbf1 4078 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 4079 goto out;
d0bfb940 4080 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
4081 break;
4082 }
1961d276
AK
4083 case KVM_SET_SIGNAL_MASK: {
4084 struct kvm_signal_mask __user *sigmask_arg = argp;
4085 struct kvm_signal_mask kvm_sigmask;
4086 sigset_t sigset, *p;
4087
4088 p = NULL;
4089 if (argp) {
4090 r = -EFAULT;
4091 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4092 sizeof(kvm_sigmask)))
1961d276
AK
4093 goto out;
4094 r = -EINVAL;
893bdbf1 4095 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
4096 goto out;
4097 r = -EFAULT;
4098 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 4099 sizeof(sigset)))
1961d276
AK
4100 goto out;
4101 p = &sigset;
4102 }
376d41ff 4103 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
4104 break;
4105 }
b8836737 4106 case KVM_GET_FPU: {
b12ce36a 4107 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4108 r = -ENOMEM;
4109 if (!fpu)
4110 goto out;
4111 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
4112 if (r)
4113 goto out;
4114 r = -EFAULT;
fa3795a7 4115 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
4116 goto out;
4117 r = 0;
4118 break;
4119 }
4120 case KVM_SET_FPU: {
ff5c2c03
SL
4121 fpu = memdup_user(argp, sizeof(*fpu));
4122 if (IS_ERR(fpu)) {
4123 r = PTR_ERR(fpu);
18595411 4124 fpu = NULL;
b8836737 4125 goto out;
ff5c2c03 4126 }
fa3795a7 4127 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
4128 break;
4129 }
ce55c049
JZ
4130 case KVM_GET_STATS_FD: {
4131 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4132 break;
4133 }
bccf2150 4134 default:
313a3dc7 4135 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
4136 }
4137out:
ec7660cc 4138 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
4139 kfree(fpu);
4140 kfree(kvm_sregs);
bccf2150
AK
4141 return r;
4142}
4143
de8e5d74 4144#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
4145static long kvm_vcpu_compat_ioctl(struct file *filp,
4146 unsigned int ioctl, unsigned long arg)
4147{
4148 struct kvm_vcpu *vcpu = filp->private_data;
4149 void __user *argp = compat_ptr(arg);
4150 int r;
4151
f4d31653 4152 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
1dda606c
AG
4153 return -EIO;
4154
4155 switch (ioctl) {
4156 case KVM_SET_SIGNAL_MASK: {
4157 struct kvm_signal_mask __user *sigmask_arg = argp;
4158 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
4159 sigset_t sigset;
4160
4161 if (argp) {
4162 r = -EFAULT;
4163 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4164 sizeof(kvm_sigmask)))
1dda606c
AG
4165 goto out;
4166 r = -EINVAL;
3968cf62 4167 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
4168 goto out;
4169 r = -EFAULT;
1393b4aa
PB
4170 if (get_compat_sigset(&sigset,
4171 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 4172 goto out;
760a9a30
AC
4173 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4174 } else
4175 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
4176 break;
4177 }
4178 default:
4179 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4180 }
4181
4182out:
4183 return r;
4184}
4185#endif
4186
a1cd3f08
CLG
4187static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4188{
4189 struct kvm_device *dev = filp->private_data;
4190
4191 if (dev->ops->mmap)
4192 return dev->ops->mmap(dev, vma);
4193
4194 return -ENODEV;
4195}
4196
852b6d57
SW
4197static int kvm_device_ioctl_attr(struct kvm_device *dev,
4198 int (*accessor)(struct kvm_device *dev,
4199 struct kvm_device_attr *attr),
4200 unsigned long arg)
4201{
4202 struct kvm_device_attr attr;
4203
4204 if (!accessor)
4205 return -EPERM;
4206
4207 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4208 return -EFAULT;
4209
4210 return accessor(dev, &attr);
4211}
4212
4213static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4214 unsigned long arg)
4215{
4216 struct kvm_device *dev = filp->private_data;
4217
f4d31653 4218 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
ddba9180
SC
4219 return -EIO;
4220
852b6d57
SW
4221 switch (ioctl) {
4222 case KVM_SET_DEVICE_ATTR:
4223 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4224 case KVM_GET_DEVICE_ATTR:
4225 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4226 case KVM_HAS_DEVICE_ATTR:
4227 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4228 default:
4229 if (dev->ops->ioctl)
4230 return dev->ops->ioctl(dev, ioctl, arg);
4231
4232 return -ENOTTY;
4233 }
4234}
4235
852b6d57
SW
4236static int kvm_device_release(struct inode *inode, struct file *filp)
4237{
4238 struct kvm_device *dev = filp->private_data;
4239 struct kvm *kvm = dev->kvm;
4240
2bde9b3e
CLG
4241 if (dev->ops->release) {
4242 mutex_lock(&kvm->lock);
4243 list_del(&dev->vm_node);
4244 dev->ops->release(dev);
4245 mutex_unlock(&kvm->lock);
4246 }
4247
852b6d57
SW
4248 kvm_put_kvm(kvm);
4249 return 0;
4250}
4251
4252static const struct file_operations kvm_device_fops = {
4253 .unlocked_ioctl = kvm_device_ioctl,
4254 .release = kvm_device_release,
7ddfd3e0 4255 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 4256 .mmap = kvm_device_mmap,
852b6d57
SW
4257};
4258
4259struct kvm_device *kvm_device_from_filp(struct file *filp)
4260{
4261 if (filp->f_op != &kvm_device_fops)
4262 return NULL;
4263
4264 return filp->private_data;
4265}
4266
8538cb22 4267static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 4268#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
4269 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4270 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 4271#endif
d60eacb0
WD
4272};
4273
8538cb22 4274int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
4275{
4276 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4277 return -ENOSPC;
4278
4279 if (kvm_device_ops_table[type] != NULL)
4280 return -EEXIST;
4281
4282 kvm_device_ops_table[type] = ops;
4283 return 0;
4284}
4285
571ee1b6
WL
4286void kvm_unregister_device_ops(u32 type)
4287{
4288 if (kvm_device_ops_table[type] != NULL)
4289 kvm_device_ops_table[type] = NULL;
4290}
4291
852b6d57
SW
4292static int kvm_ioctl_create_device(struct kvm *kvm,
4293 struct kvm_create_device *cd)
4294{
8538cb22 4295 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
4296 struct kvm_device *dev;
4297 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 4298 int type;
852b6d57
SW
4299 int ret;
4300
d60eacb0
WD
4301 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4302 return -ENODEV;
4303
1d487e9b
PB
4304 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4305 ops = kvm_device_ops_table[type];
d60eacb0 4306 if (ops == NULL)
852b6d57 4307 return -ENODEV;
852b6d57
SW
4308
4309 if (test)
4310 return 0;
4311
b12ce36a 4312 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
4313 if (!dev)
4314 return -ENOMEM;
4315
4316 dev->ops = ops;
4317 dev->kvm = kvm;
852b6d57 4318
a28ebea2 4319 mutex_lock(&kvm->lock);
1d487e9b 4320 ret = ops->create(dev, type);
852b6d57 4321 if (ret < 0) {
a28ebea2 4322 mutex_unlock(&kvm->lock);
852b6d57
SW
4323 kfree(dev);
4324 return ret;
4325 }
a28ebea2
CD
4326 list_add(&dev->vm_node, &kvm->devices);
4327 mutex_unlock(&kvm->lock);
852b6d57 4328
023e9fdd
CD
4329 if (ops->init)
4330 ops->init(dev);
4331
cfa39381 4332 kvm_get_kvm(kvm);
24009b05 4333 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 4334 if (ret < 0) {
149487bd 4335 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
4336 mutex_lock(&kvm->lock);
4337 list_del(&dev->vm_node);
e8bc2427
AK
4338 if (ops->release)
4339 ops->release(dev);
a28ebea2 4340 mutex_unlock(&kvm->lock);
e8bc2427
AK
4341 if (ops->destroy)
4342 ops->destroy(dev);
852b6d57
SW
4343 return ret;
4344 }
4345
852b6d57
SW
4346 cd->fd = ret;
4347 return 0;
4348}
4349
92b591a4
AG
4350static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4351{
4352 switch (arg) {
4353 case KVM_CAP_USER_MEMORY:
4354 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4355 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4356 case KVM_CAP_INTERNAL_ERROR_DATA:
4357#ifdef CONFIG_HAVE_KVM_MSI
4358 case KVM_CAP_SIGNAL_MSI:
4359#endif
297e2105 4360#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 4361 case KVM_CAP_IRQFD:
92b591a4
AG
4362 case KVM_CAP_IRQFD_RESAMPLE:
4363#endif
e9ea5069 4364 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4365 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4366 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4367 case KVM_CAP_HALT_POLL:
92b591a4 4368 return 1;
4b4357e0 4369#ifdef CONFIG_KVM_MMIO
30422558
PB
4370 case KVM_CAP_COALESCED_MMIO:
4371 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4372 case KVM_CAP_COALESCED_PIO:
4373 return 1;
30422558 4374#endif
3c9bd400
JZ
4375#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4376 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4377 return KVM_DIRTY_LOG_MANUAL_CAPS;
4378#endif
92b591a4
AG
4379#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4380 case KVM_CAP_IRQ_ROUTING:
4381 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
4382#endif
4383#if KVM_ADDRESS_SPACE_NUM > 1
4384 case KVM_CAP_MULTI_ADDRESS_SPACE:
4385 return KVM_ADDRESS_SPACE_NUM;
92b591a4 4386#endif
c110ae57
PB
4387 case KVM_CAP_NR_MEMSLOTS:
4388 return KVM_USER_MEM_SLOTS;
fb04a1ed 4389 case KVM_CAP_DIRTY_LOG_RING:
dc70ec21 4390#ifdef CONFIG_HAVE_KVM_DIRTY_RING
fb04a1ed
PX
4391 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4392#else
4393 return 0;
4394#endif
ce55c049 4395 case KVM_CAP_BINARY_STATS_FD:
d495f942 4396 case KVM_CAP_SYSTEM_EVENT_DATA:
ce55c049 4397 return 1;
92b591a4
AG
4398 default:
4399 break;
4400 }
4401 return kvm_vm_ioctl_check_extension(kvm, arg);
4402}
4403
fb04a1ed
PX
4404static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4405{
4406 int r;
4407
4408 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4409 return -EINVAL;
4410
4411 /* the size should be power of 2 */
4412 if (!size || (size & (size - 1)))
4413 return -EINVAL;
4414
4415 /* Should be bigger to keep the reserved entries, or a page */
4416 if (size < kvm_dirty_ring_get_rsvd_entries() *
4417 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4418 return -EINVAL;
4419
4420 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4421 sizeof(struct kvm_dirty_gfn))
4422 return -E2BIG;
4423
4424 /* We only allow it to set once */
4425 if (kvm->dirty_ring_size)
4426 return -EINVAL;
4427
4428 mutex_lock(&kvm->lock);
4429
4430 if (kvm->created_vcpus) {
4431 /* We don't allow to change this value after vcpu created */
4432 r = -EINVAL;
4433 } else {
4434 kvm->dirty_ring_size = size;
4435 r = 0;
4436 }
4437
4438 mutex_unlock(&kvm->lock);
4439 return r;
4440}
4441
4442static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4443{
46808a4c 4444 unsigned long i;
fb04a1ed
PX
4445 struct kvm_vcpu *vcpu;
4446 int cleared = 0;
4447
4448 if (!kvm->dirty_ring_size)
4449 return -EINVAL;
4450
4451 mutex_lock(&kvm->slots_lock);
4452
4453 kvm_for_each_vcpu(i, vcpu, kvm)
4454 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4455
4456 mutex_unlock(&kvm->slots_lock);
4457
4458 if (cleared)
4459 kvm_flush_remote_tlbs(kvm);
4460
4461 return cleared;
4462}
4463
e5d83c74
PB
4464int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4465 struct kvm_enable_cap *cap)
4466{
4467 return -EINVAL;
4468}
4469
4470static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4471 struct kvm_enable_cap *cap)
4472{
4473 switch (cap->cap) {
2a31b9db 4474#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4475 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4476 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4477
4478 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4479 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4480
4481 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4482 return -EINVAL;
4483 kvm->manual_dirty_log_protect = cap->args[0];
4484 return 0;
3c9bd400 4485 }
2a31b9db 4486#endif
acd05785
DM
4487 case KVM_CAP_HALT_POLL: {
4488 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4489 return -EINVAL;
4490
4491 kvm->max_halt_poll_ns = cap->args[0];
4492 return 0;
4493 }
fb04a1ed
PX
4494 case KVM_CAP_DIRTY_LOG_RING:
4495 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
e5d83c74
PB
4496 default:
4497 return kvm_vm_ioctl_enable_cap(kvm, cap);
4498 }
4499}
4500
fcfe1bae
JZ
4501static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4502 size_t size, loff_t *offset)
4503{
4504 struct kvm *kvm = file->private_data;
4505
4506 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4507 &kvm_vm_stats_desc[0], &kvm->stat,
4508 sizeof(kvm->stat), user_buffer, size, offset);
4509}
4510
4511static const struct file_operations kvm_vm_stats_fops = {
4512 .read = kvm_vm_stats_read,
4513 .llseek = noop_llseek,
4514};
4515
4516static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4517{
4518 int fd;
4519 struct file *file;
4520
4521 fd = get_unused_fd_flags(O_CLOEXEC);
4522 if (fd < 0)
4523 return fd;
4524
4525 file = anon_inode_getfile("kvm-vm-stats",
4526 &kvm_vm_stats_fops, kvm, O_RDONLY);
4527 if (IS_ERR(file)) {
4528 put_unused_fd(fd);
4529 return PTR_ERR(file);
4530 }
4531 file->f_mode |= FMODE_PREAD;
4532 fd_install(fd, file);
4533
4534 return fd;
4535}
4536
bccf2150
AK
4537static long kvm_vm_ioctl(struct file *filp,
4538 unsigned int ioctl, unsigned long arg)
4539{
4540 struct kvm *kvm = filp->private_data;
4541 void __user *argp = (void __user *)arg;
1fe779f8 4542 int r;
bccf2150 4543
f4d31653 4544 if (kvm->mm != current->mm || kvm->vm_dead)
6d4e4c4f 4545 return -EIO;
bccf2150
AK
4546 switch (ioctl) {
4547 case KVM_CREATE_VCPU:
4548 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 4549 break;
e5d83c74
PB
4550 case KVM_ENABLE_CAP: {
4551 struct kvm_enable_cap cap;
4552
4553 r = -EFAULT;
4554 if (copy_from_user(&cap, argp, sizeof(cap)))
4555 goto out;
4556 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4557 break;
4558 }
6fc138d2
IE
4559 case KVM_SET_USER_MEMORY_REGION: {
4560 struct kvm_userspace_memory_region kvm_userspace_mem;
4561
4562 r = -EFAULT;
4563 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 4564 sizeof(kvm_userspace_mem)))
6fc138d2
IE
4565 goto out;
4566
47ae31e2 4567 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4568 break;
4569 }
4570 case KVM_GET_DIRTY_LOG: {
4571 struct kvm_dirty_log log;
4572
4573 r = -EFAULT;
893bdbf1 4574 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4575 goto out;
2c6f5df9 4576 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4577 break;
4578 }
2a31b9db
PB
4579#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4580 case KVM_CLEAR_DIRTY_LOG: {
4581 struct kvm_clear_dirty_log log;
4582
4583 r = -EFAULT;
4584 if (copy_from_user(&log, argp, sizeof(log)))
4585 goto out;
4586 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4587 break;
4588 }
4589#endif
4b4357e0 4590#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4591 case KVM_REGISTER_COALESCED_MMIO: {
4592 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4593
5f94c174 4594 r = -EFAULT;
893bdbf1 4595 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4596 goto out;
5f94c174 4597 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4598 break;
4599 }
4600 case KVM_UNREGISTER_COALESCED_MMIO: {
4601 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4602
5f94c174 4603 r = -EFAULT;
893bdbf1 4604 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4605 goto out;
5f94c174 4606 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4607 break;
4608 }
4609#endif
721eecbf
GH
4610 case KVM_IRQFD: {
4611 struct kvm_irqfd data;
4612
4613 r = -EFAULT;
893bdbf1 4614 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4615 goto out;
d4db2935 4616 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4617 break;
4618 }
d34e6b17
GH
4619 case KVM_IOEVENTFD: {
4620 struct kvm_ioeventfd data;
4621
4622 r = -EFAULT;
893bdbf1 4623 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4624 goto out;
4625 r = kvm_ioeventfd(kvm, &data);
4626 break;
4627 }
07975ad3
JK
4628#ifdef CONFIG_HAVE_KVM_MSI
4629 case KVM_SIGNAL_MSI: {
4630 struct kvm_msi msi;
4631
4632 r = -EFAULT;
893bdbf1 4633 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4634 goto out;
4635 r = kvm_send_userspace_msi(kvm, &msi);
4636 break;
4637 }
23d43cf9
CD
4638#endif
4639#ifdef __KVM_HAVE_IRQ_LINE
4640 case KVM_IRQ_LINE_STATUS:
4641 case KVM_IRQ_LINE: {
4642 struct kvm_irq_level irq_event;
4643
4644 r = -EFAULT;
893bdbf1 4645 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4646 goto out;
4647
aa2fbe6d
YZ
4648 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4649 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4650 if (r)
4651 goto out;
4652
4653 r = -EFAULT;
4654 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4655 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4656 goto out;
4657 }
4658
4659 r = 0;
4660 break;
4661 }
73880c80 4662#endif
aa8d5944
AG
4663#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4664 case KVM_SET_GSI_ROUTING: {
4665 struct kvm_irq_routing routing;
4666 struct kvm_irq_routing __user *urouting;
f8c1b85b 4667 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4668
4669 r = -EFAULT;
4670 if (copy_from_user(&routing, argp, sizeof(routing)))
4671 goto out;
4672 r = -EINVAL;
5c0aea0e
DH
4673 if (!kvm_arch_can_set_irq_routing(kvm))
4674 goto out;
caf1ff26 4675 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4676 goto out;
4677 if (routing.flags)
4678 goto out;
f8c1b85b 4679 if (routing.nr) {
f8c1b85b 4680 urouting = argp;
7ec28e26
DE
4681 entries = vmemdup_user(urouting->entries,
4682 array_size(sizeof(*entries),
4683 routing.nr));
4684 if (IS_ERR(entries)) {
4685 r = PTR_ERR(entries);
4686 goto out;
4687 }
f8c1b85b 4688 }
aa8d5944
AG
4689 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4690 routing.flags);
7ec28e26 4691 kvfree(entries);
aa8d5944
AG
4692 break;
4693 }
4694#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4695 case KVM_CREATE_DEVICE: {
4696 struct kvm_create_device cd;
4697
4698 r = -EFAULT;
4699 if (copy_from_user(&cd, argp, sizeof(cd)))
4700 goto out;
4701
4702 r = kvm_ioctl_create_device(kvm, &cd);
4703 if (r)
4704 goto out;
4705
4706 r = -EFAULT;
4707 if (copy_to_user(argp, &cd, sizeof(cd)))
4708 goto out;
4709
4710 r = 0;
4711 break;
4712 }
92b591a4
AG
4713 case KVM_CHECK_EXTENSION:
4714 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4715 break;
fb04a1ed
PX
4716 case KVM_RESET_DIRTY_RINGS:
4717 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4718 break;
fcfe1bae
JZ
4719 case KVM_GET_STATS_FD:
4720 r = kvm_vm_ioctl_get_stats_fd(kvm);
4721 break;
f17abe9a 4722 default:
1fe779f8 4723 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4724 }
4725out:
4726 return r;
4727}
4728
de8e5d74 4729#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4730struct compat_kvm_dirty_log {
4731 __u32 slot;
4732 __u32 padding1;
4733 union {
4734 compat_uptr_t dirty_bitmap; /* one bit per page */
4735 __u64 padding2;
4736 };
4737};
4738
8750f9bb
PB
4739struct compat_kvm_clear_dirty_log {
4740 __u32 slot;
4741 __u32 num_pages;
4742 __u64 first_page;
4743 union {
4744 compat_uptr_t dirty_bitmap; /* one bit per page */
4745 __u64 padding2;
4746 };
4747};
4748
6ff5894c
AB
4749static long kvm_vm_compat_ioctl(struct file *filp,
4750 unsigned int ioctl, unsigned long arg)
4751{
4752 struct kvm *kvm = filp->private_data;
4753 int r;
4754
f4d31653 4755 if (kvm->mm != current->mm || kvm->vm_dead)
6ff5894c
AB
4756 return -EIO;
4757 switch (ioctl) {
8750f9bb
PB
4758#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4759 case KVM_CLEAR_DIRTY_LOG: {
4760 struct compat_kvm_clear_dirty_log compat_log;
4761 struct kvm_clear_dirty_log log;
4762
4763 if (copy_from_user(&compat_log, (void __user *)arg,
4764 sizeof(compat_log)))
4765 return -EFAULT;
4766 log.slot = compat_log.slot;
4767 log.num_pages = compat_log.num_pages;
4768 log.first_page = compat_log.first_page;
4769 log.padding2 = compat_log.padding2;
4770 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4771
4772 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4773 break;
4774 }
4775#endif
6ff5894c
AB
4776 case KVM_GET_DIRTY_LOG: {
4777 struct compat_kvm_dirty_log compat_log;
4778 struct kvm_dirty_log log;
4779
6ff5894c
AB
4780 if (copy_from_user(&compat_log, (void __user *)arg,
4781 sizeof(compat_log)))
f6a3b168 4782 return -EFAULT;
6ff5894c
AB
4783 log.slot = compat_log.slot;
4784 log.padding1 = compat_log.padding1;
4785 log.padding2 = compat_log.padding2;
4786 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4787
4788 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4789 break;
4790 }
4791 default:
4792 r = kvm_vm_ioctl(filp, ioctl, arg);
4793 }
6ff5894c
AB
4794 return r;
4795}
4796#endif
4797
70375c2d 4798static const struct file_operations kvm_vm_fops = {
f17abe9a
AK
4799 .release = kvm_vm_release,
4800 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4801 .llseek = noop_llseek,
7ddfd3e0 4802 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4803};
4804
54526d1f
NT
4805bool file_is_kvm(struct file *file)
4806{
4807 return file && file->f_op == &kvm_vm_fops;
4808}
4809EXPORT_SYMBOL_GPL(file_is_kvm);
4810
e08b9637 4811static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 4812{
aac87636 4813 int r;
f17abe9a 4814 struct kvm *kvm;
506cfba9 4815 struct file *file;
f17abe9a 4816
e08b9637 4817 kvm = kvm_create_vm(type);
d6d28168
AK
4818 if (IS_ERR(kvm))
4819 return PTR_ERR(kvm);
4b4357e0 4820#ifdef CONFIG_KVM_MMIO
6ce5a090 4821 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
4822 if (r < 0)
4823 goto put_kvm;
6ce5a090 4824#endif
506cfba9 4825 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
4826 if (r < 0)
4827 goto put_kvm;
4828
fcfe1bae
JZ
4829 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4830 "kvm-%d", task_pid_nr(current));
4831
506cfba9
AV
4832 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4833 if (IS_ERR(file)) {
4834 put_unused_fd(r);
78588335
ME
4835 r = PTR_ERR(file);
4836 goto put_kvm;
506cfba9 4837 }
536a6f88 4838
525df861
PB
4839 /*
4840 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4841 * already set, with ->release() being kvm_vm_release(). In error
4842 * cases it will be called by the final fput(file) and will take
4843 * care of doing kvm_put_kvm(kvm).
4844 */
536a6f88 4845 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
4846 put_unused_fd(r);
4847 fput(file);
536a6f88
JF
4848 return -ENOMEM;
4849 }
286de8f6 4850 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 4851
506cfba9 4852 fd_install(r, file);
aac87636 4853 return r;
78588335
ME
4854
4855put_kvm:
4856 kvm_put_kvm(kvm);
4857 return r;
f17abe9a
AK
4858}
4859
4860static long kvm_dev_ioctl(struct file *filp,
4861 unsigned int ioctl, unsigned long arg)
4862{
07c45a36 4863 long r = -EINVAL;
f17abe9a
AK
4864
4865 switch (ioctl) {
4866 case KVM_GET_API_VERSION:
f0fe5108
AK
4867 if (arg)
4868 goto out;
f17abe9a
AK
4869 r = KVM_API_VERSION;
4870 break;
4871 case KVM_CREATE_VM:
e08b9637 4872 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 4873 break;
018d00d2 4874 case KVM_CHECK_EXTENSION:
784aa3d7 4875 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 4876 break;
07c45a36 4877 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
4878 if (arg)
4879 goto out;
adb1ff46
AK
4880 r = PAGE_SIZE; /* struct kvm_run */
4881#ifdef CONFIG_X86
4882 r += PAGE_SIZE; /* pio data page */
5f94c174 4883#endif
4b4357e0 4884#ifdef CONFIG_KVM_MMIO
5f94c174 4885 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 4886#endif
07c45a36 4887 break;
d4c9ff2d
FEL
4888 case KVM_TRACE_ENABLE:
4889 case KVM_TRACE_PAUSE:
4890 case KVM_TRACE_DISABLE:
2023a29c 4891 r = -EOPNOTSUPP;
d4c9ff2d 4892 break;
6aa8b732 4893 default:
043405e1 4894 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
4895 }
4896out:
4897 return r;
4898}
4899
6aa8b732 4900static struct file_operations kvm_chardev_ops = {
6aa8b732 4901 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 4902 .llseek = noop_llseek,
7ddfd3e0 4903 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
4904};
4905
4906static struct miscdevice kvm_dev = {
bbe4432e 4907 KVM_MINOR,
6aa8b732
AK
4908 "kvm",
4909 &kvm_chardev_ops,
4910};
4911
75b7127c 4912static void hardware_enable_nolock(void *junk)
1b6c0168
AK
4913{
4914 int cpu = raw_smp_processor_id();
10474ae8 4915 int r;
1b6c0168 4916
7f59f492 4917 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4918 return;
10474ae8 4919
7f59f492 4920 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 4921
13a34e06 4922 r = kvm_arch_hardware_enable();
10474ae8
AG
4923
4924 if (r) {
4925 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4926 atomic_inc(&hardware_enable_failed);
1170adc6 4927 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 4928 }
1b6c0168
AK
4929}
4930
8c18b2d2 4931static int kvm_starting_cpu(unsigned int cpu)
75b7127c 4932{
4a937f96 4933 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4934 if (kvm_usage_count)
4935 hardware_enable_nolock(NULL);
4a937f96 4936 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4937 return 0;
75b7127c
TY
4938}
4939
4940static void hardware_disable_nolock(void *junk)
1b6c0168
AK
4941{
4942 int cpu = raw_smp_processor_id();
4943
7f59f492 4944 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4945 return;
7f59f492 4946 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 4947 kvm_arch_hardware_disable();
1b6c0168
AK
4948}
4949
8c18b2d2 4950static int kvm_dying_cpu(unsigned int cpu)
75b7127c 4951{
4a937f96 4952 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4953 if (kvm_usage_count)
4954 hardware_disable_nolock(NULL);
4a937f96 4955 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4956 return 0;
75b7127c
TY
4957}
4958
10474ae8
AG
4959static void hardware_disable_all_nolock(void)
4960{
4961 BUG_ON(!kvm_usage_count);
4962
4963 kvm_usage_count--;
4964 if (!kvm_usage_count)
75b7127c 4965 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
4966}
4967
4968static void hardware_disable_all(void)
4969{
4a937f96 4970 raw_spin_lock(&kvm_count_lock);
10474ae8 4971 hardware_disable_all_nolock();
4a937f96 4972 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4973}
4974
4975static int hardware_enable_all(void)
4976{
4977 int r = 0;
4978
4a937f96 4979 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
4980
4981 kvm_usage_count++;
4982 if (kvm_usage_count == 1) {
4983 atomic_set(&hardware_enable_failed, 0);
75b7127c 4984 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
4985
4986 if (atomic_read(&hardware_enable_failed)) {
4987 hardware_disable_all_nolock();
4988 r = -EBUSY;
4989 }
4990 }
4991
4a937f96 4992 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4993
4994 return r;
4995}
4996
9a2b85c6 4997static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 4998 void *v)
9a2b85c6 4999{
8e1c1815
SY
5000 /*
5001 * Some (well, at least mine) BIOSes hang on reboot if
5002 * in vmx root mode.
5003 *
5004 * And Intel TXT required VMX off for all cpu when system shutdown.
5005 */
1170adc6 5006 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 5007 kvm_rebooting = true;
75b7127c 5008 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
5009 return NOTIFY_OK;
5010}
5011
5012static struct notifier_block kvm_reboot_notifier = {
5013 .notifier_call = kvm_reboot,
5014 .priority = 0,
5015};
5016
e93f8a0f 5017static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
5018{
5019 int i;
5020
5021 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 5022 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
5023
5024 kvm_iodevice_destructor(pos);
5025 }
e93f8a0f 5026 kfree(bus);
2eeb2e94
GH
5027}
5028
c21fbff1 5029static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 5030 const struct kvm_io_range *r2)
743eeb0b 5031{
8f4216c7
JW
5032 gpa_t addr1 = r1->addr;
5033 gpa_t addr2 = r2->addr;
5034
5035 if (addr1 < addr2)
743eeb0b 5036 return -1;
8f4216c7
JW
5037
5038 /* If r2->len == 0, match the exact address. If r2->len != 0,
5039 * accept any overlapping write. Any order is acceptable for
5040 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5041 * we process all of them.
5042 */
5043 if (r2->len) {
5044 addr1 += r1->len;
5045 addr2 += r2->len;
5046 }
5047
5048 if (addr1 > addr2)
743eeb0b 5049 return 1;
8f4216c7 5050
743eeb0b
SL
5051 return 0;
5052}
5053
a343c9b7
PB
5054static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5055{
c21fbff1 5056 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
5057}
5058
39369f7a 5059static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
5060 gpa_t addr, int len)
5061{
5062 struct kvm_io_range *range, key;
5063 int off;
5064
5065 key = (struct kvm_io_range) {
5066 .addr = addr,
5067 .len = len,
5068 };
5069
5070 range = bsearch(&key, bus->range, bus->dev_count,
5071 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5072 if (range == NULL)
5073 return -ENOENT;
5074
5075 off = range - bus->range;
5076
c21fbff1 5077 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
5078 off--;
5079
5080 return off;
5081}
5082
e32edf4f 5083static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
5084 struct kvm_io_range *range, const void *val)
5085{
5086 int idx;
5087
5088 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5089 if (idx < 0)
5090 return -EOPNOTSUPP;
5091
5092 while (idx < bus->dev_count &&
c21fbff1 5093 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5094 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5095 range->len, val))
5096 return idx;
5097 idx++;
5098 }
5099
5100 return -EOPNOTSUPP;
5101}
5102
bda9020e 5103/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 5104int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 5105 int len, const void *val)
2eeb2e94 5106{
90d83dc3 5107 struct kvm_io_bus *bus;
743eeb0b 5108 struct kvm_io_range range;
126a5af5 5109 int r;
743eeb0b
SL
5110
5111 range = (struct kvm_io_range) {
5112 .addr = addr,
5113 .len = len,
5114 };
90d83dc3 5115
e32edf4f 5116 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5117 if (!bus)
5118 return -ENOMEM;
e32edf4f 5119 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5120 return r < 0 ? r : 0;
5121}
a2420107 5122EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
5123
5124/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
5125int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5126 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
5127{
5128 struct kvm_io_bus *bus;
5129 struct kvm_io_range range;
5130
5131 range = (struct kvm_io_range) {
5132 .addr = addr,
5133 .len = len,
5134 };
5135
e32edf4f 5136 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5137 if (!bus)
5138 return -ENOMEM;
126a5af5
CH
5139
5140 /* First try the device referenced by cookie. */
5141 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 5142 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 5143 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
5144 val))
5145 return cookie;
5146
5147 /*
5148 * cookie contained garbage; fall back to search and return the
5149 * correct cookie value.
5150 */
e32edf4f 5151 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5152}
5153
e32edf4f
NN
5154static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5155 struct kvm_io_range *range, void *val)
126a5af5
CH
5156{
5157 int idx;
5158
5159 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
5160 if (idx < 0)
5161 return -EOPNOTSUPP;
5162
5163 while (idx < bus->dev_count &&
c21fbff1 5164 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5165 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5166 range->len, val))
5167 return idx;
743eeb0b
SL
5168 idx++;
5169 }
5170
bda9020e
MT
5171 return -EOPNOTSUPP;
5172}
2eeb2e94 5173
bda9020e 5174/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 5175int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 5176 int len, void *val)
bda9020e 5177{
90d83dc3 5178 struct kvm_io_bus *bus;
743eeb0b 5179 struct kvm_io_range range;
126a5af5 5180 int r;
743eeb0b
SL
5181
5182 range = (struct kvm_io_range) {
5183 .addr = addr,
5184 .len = len,
5185 };
e93f8a0f 5186
e32edf4f 5187 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5188 if (!bus)
5189 return -ENOMEM;
e32edf4f 5190 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
5191 return r < 0 ? r : 0;
5192}
743eeb0b 5193
79fac95e 5194/* Caller must hold slots_lock. */
743eeb0b
SL
5195int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5196 int len, struct kvm_io_device *dev)
6c474694 5197{
d4c67a7a 5198 int i;
e93f8a0f 5199 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 5200 struct kvm_io_range range;
090b7aff 5201
4a12f951 5202 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
5203 if (!bus)
5204 return -ENOMEM;
5205
6ea34c9b
AK
5206 /* exclude ioeventfd which is limited by maximum fd */
5207 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 5208 return -ENOSPC;
2eeb2e94 5209
90952cd3 5210 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 5211 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
5212 if (!new_bus)
5213 return -ENOMEM;
d4c67a7a
GH
5214
5215 range = (struct kvm_io_range) {
5216 .addr = addr,
5217 .len = len,
5218 .dev = dev,
5219 };
5220
5221 for (i = 0; i < bus->dev_count; i++)
5222 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5223 break;
5224
5225 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5226 new_bus->dev_count++;
5227 new_bus->range[i] = range;
5228 memcpy(new_bus->range + i + 1, bus->range + i,
5229 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
5230 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5231 synchronize_srcu_expedited(&kvm->srcu);
5232 kfree(bus);
090b7aff
GH
5233
5234 return 0;
5235}
5236
5d3c4c79
SC
5237int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5238 struct kvm_io_device *dev)
090b7aff 5239{
f6588660 5240 int i, j;
e93f8a0f 5241 struct kvm_io_bus *new_bus, *bus;
090b7aff 5242
7c896d37
SC
5243 lockdep_assert_held(&kvm->slots_lock);
5244
4a12f951 5245 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 5246 if (!bus)
5d3c4c79 5247 return 0;
df630b8c 5248
7c896d37 5249 for (i = 0; i < bus->dev_count; i++) {
a1300716 5250 if (bus->range[i].dev == dev) {
090b7aff
GH
5251 break;
5252 }
7c896d37 5253 }
e93f8a0f 5254
90db1043 5255 if (i == bus->dev_count)
5d3c4c79 5256 return 0;
a1300716 5257
90952cd3 5258 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 5259 GFP_KERNEL_ACCOUNT);
f6588660 5260 if (new_bus) {
871c433b 5261 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
5262 new_bus->dev_count--;
5263 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 5264 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
5265 }
5266
5267 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5268 synchronize_srcu_expedited(&kvm->srcu);
5269
5270 /* Destroy the old bus _after_ installing the (null) bus. */
5271 if (!new_bus) {
90db1043 5272 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
5273 for (j = 0; j < bus->dev_count; j++) {
5274 if (j == i)
5275 continue;
5276 kvm_iodevice_destructor(bus->range[j].dev);
5277 }
90db1043 5278 }
a1300716 5279
e93f8a0f 5280 kfree(bus);
5d3c4c79 5281 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
5282}
5283
8a39d006
AP
5284struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5285 gpa_t addr)
5286{
5287 struct kvm_io_bus *bus;
5288 int dev_idx, srcu_idx;
5289 struct kvm_io_device *iodev = NULL;
5290
5291 srcu_idx = srcu_read_lock(&kvm->srcu);
5292
5293 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
5294 if (!bus)
5295 goto out_unlock;
8a39d006
AP
5296
5297 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5298 if (dev_idx < 0)
5299 goto out_unlock;
5300
5301 iodev = bus->range[dev_idx].dev;
5302
5303out_unlock:
5304 srcu_read_unlock(&kvm->srcu, srcu_idx);
5305
5306 return iodev;
5307}
5308EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5309
536a6f88
JF
5310static int kvm_debugfs_open(struct inode *inode, struct file *file,
5311 int (*get)(void *, u64 *), int (*set)(void *, u64),
5312 const char *fmt)
5313{
5314 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5315 inode->i_private;
5316
605c7130
PX
5317 /*
5318 * The debugfs files are a reference to the kvm struct which
5319 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5320 * avoids the race between open and the removal of the debugfs directory.
536a6f88 5321 */
605c7130 5322 if (!kvm_get_kvm_safe(stat_data->kvm))
536a6f88
JF
5323 return -ENOENT;
5324
833b45de 5325 if (simple_attr_open(inode, file, get,
bc9e9e67 5326 kvm_stats_debugfs_mode(stat_data->desc) & 0222
09cbcef6
MP
5327 ? set : NULL,
5328 fmt)) {
536a6f88
JF
5329 kvm_put_kvm(stat_data->kvm);
5330 return -ENOMEM;
5331 }
5332
5333 return 0;
5334}
5335
5336static int kvm_debugfs_release(struct inode *inode, struct file *file)
5337{
5338 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5339 inode->i_private;
5340
5341 simple_attr_release(inode, file);
5342 kvm_put_kvm(stat_data->kvm);
5343
5344 return 0;
5345}
5346
09cbcef6 5347static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 5348{
bc9e9e67 5349 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 5350
09cbcef6
MP
5351 return 0;
5352}
5353
5354static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5355{
bc9e9e67 5356 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
5357
5358 return 0;
5359}
5360
09cbcef6 5361static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 5362{
46808a4c 5363 unsigned long i;
09cbcef6 5364 struct kvm_vcpu *vcpu;
ce35ef27 5365
09cbcef6 5366 *val = 0;
ce35ef27 5367
09cbcef6 5368 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5369 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
5370
5371 return 0;
5372}
5373
09cbcef6 5374static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 5375{
46808a4c 5376 unsigned long i;
09cbcef6 5377 struct kvm_vcpu *vcpu;
536a6f88 5378
09cbcef6 5379 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5380 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
5381
5382 return 0;
5383}
536a6f88 5384
09cbcef6 5385static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 5386{
09cbcef6 5387 int r = -EFAULT;
536a6f88 5388 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 5389
bc9e9e67 5390 switch (stat_data->kind) {
09cbcef6
MP
5391 case KVM_STAT_VM:
5392 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 5393 stat_data->desc->desc.offset, val);
09cbcef6
MP
5394 break;
5395 case KVM_STAT_VCPU:
5396 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5397 stat_data->desc->desc.offset, val);
09cbcef6
MP
5398 break;
5399 }
536a6f88 5400
09cbcef6 5401 return r;
536a6f88
JF
5402}
5403
09cbcef6 5404static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 5405{
09cbcef6 5406 int r = -EFAULT;
ce35ef27 5407 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
5408
5409 if (val)
5410 return -EINVAL;
5411
bc9e9e67 5412 switch (stat_data->kind) {
09cbcef6
MP
5413 case KVM_STAT_VM:
5414 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 5415 stat_data->desc->desc.offset);
09cbcef6
MP
5416 break;
5417 case KVM_STAT_VCPU:
5418 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5419 stat_data->desc->desc.offset);
09cbcef6
MP
5420 break;
5421 }
ce35ef27 5422
09cbcef6 5423 return r;
ce35ef27
SJS
5424}
5425
09cbcef6 5426static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
5427{
5428 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
5429 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5430 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
5431}
5432
09cbcef6
MP
5433static const struct file_operations stat_fops_per_vm = {
5434 .owner = THIS_MODULE,
5435 .open = kvm_stat_data_open,
536a6f88 5436 .release = kvm_debugfs_release,
09cbcef6
MP
5437 .read = simple_attr_read,
5438 .write = simple_attr_write,
5439 .llseek = no_llseek,
536a6f88
JF
5440};
5441
8b88b099 5442static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
5443{
5444 unsigned offset = (long)_offset;
ba1389b7 5445 struct kvm *kvm;
536a6f88 5446 u64 tmp_val;
ba1389b7 5447
8b88b099 5448 *val = 0;
0d9ce162 5449 mutex_lock(&kvm_lock);
536a6f88 5450 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5451 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
5452 *val += tmp_val;
5453 }
0d9ce162 5454 mutex_unlock(&kvm_lock);
8b88b099 5455 return 0;
ba1389b7
AK
5456}
5457
ce35ef27
SJS
5458static int vm_stat_clear(void *_offset, u64 val)
5459{
5460 unsigned offset = (long)_offset;
5461 struct kvm *kvm;
ce35ef27
SJS
5462
5463 if (val)
5464 return -EINVAL;
5465
0d9ce162 5466 mutex_lock(&kvm_lock);
ce35ef27 5467 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5468 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 5469 }
0d9ce162 5470 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5471
5472 return 0;
5473}
5474
5475DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 5476DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 5477
8b88b099 5478static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
5479{
5480 unsigned offset = (long)_offset;
1165f5fe 5481 struct kvm *kvm;
536a6f88 5482 u64 tmp_val;
1165f5fe 5483
8b88b099 5484 *val = 0;
0d9ce162 5485 mutex_lock(&kvm_lock);
536a6f88 5486 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5487 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
5488 *val += tmp_val;
5489 }
0d9ce162 5490 mutex_unlock(&kvm_lock);
8b88b099 5491 return 0;
1165f5fe
AK
5492}
5493
ce35ef27
SJS
5494static int vcpu_stat_clear(void *_offset, u64 val)
5495{
5496 unsigned offset = (long)_offset;
5497 struct kvm *kvm;
ce35ef27
SJS
5498
5499 if (val)
5500 return -EINVAL;
5501
0d9ce162 5502 mutex_lock(&kvm_lock);
ce35ef27 5503 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5504 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 5505 }
0d9ce162 5506 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5507
5508 return 0;
5509}
5510
5511DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5512 "%llu\n");
bc9e9e67 5513DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 5514
286de8f6
CI
5515static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5516{
5517 struct kobj_uevent_env *env;
286de8f6
CI
5518 unsigned long long created, active;
5519
5520 if (!kvm_dev.this_device || !kvm)
5521 return;
5522
0d9ce162 5523 mutex_lock(&kvm_lock);
286de8f6
CI
5524 if (type == KVM_EVENT_CREATE_VM) {
5525 kvm_createvm_count++;
5526 kvm_active_vms++;
5527 } else if (type == KVM_EVENT_DESTROY_VM) {
5528 kvm_active_vms--;
5529 }
5530 created = kvm_createvm_count;
5531 active = kvm_active_vms;
0d9ce162 5532 mutex_unlock(&kvm_lock);
286de8f6 5533
b12ce36a 5534 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
5535 if (!env)
5536 return;
5537
5538 add_uevent_var(env, "CREATED=%llu", created);
5539 add_uevent_var(env, "COUNT=%llu", active);
5540
fdeaf7e3 5541 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 5542 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
5543 kvm->userspace_pid = task_pid_nr(current);
5544 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 5545 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
5546 }
5547 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 5548
a44a4cc1 5549 if (!IS_ERR(kvm->debugfs_dentry)) {
b12ce36a 5550 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
5551
5552 if (p) {
5553 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5554 if (!IS_ERR(tmp))
5555 add_uevent_var(env, "STATS_PATH=%s", tmp);
5556 kfree(p);
286de8f6
CI
5557 }
5558 }
5559 /* no need for checks, since we are adding at most only 5 keys */
5560 env->envp[env->envp_idx++] = NULL;
5561 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5562 kfree(env);
286de8f6
CI
5563}
5564
929f45e3 5565static void kvm_init_debug(void)
6aa8b732 5566{
bc9e9e67
JZ
5567 const struct file_operations *fops;
5568 const struct _kvm_stats_desc *pdesc;
5569 int i;
6aa8b732 5570
76f7c879 5571 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 5572
bc9e9e67
JZ
5573 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5574 pdesc = &kvm_vm_stats_desc[i];
5575 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5576 fops = &vm_stat_fops;
5577 else
5578 fops = &vm_stat_readonly_fops;
5579 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5580 kvm_debugfs_dir,
5581 (void *)(long)pdesc->desc.offset, fops);
5582 }
5583
5584 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5585 pdesc = &kvm_vcpu_stats_desc[i];
5586 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5587 fops = &vcpu_stat_fops;
5588 else
5589 fops = &vcpu_stat_readonly_fops;
5590 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5591 kvm_debugfs_dir,
5592 (void *)(long)pdesc->desc.offset, fops);
4f69b680 5593 }
6aa8b732
AK
5594}
5595
fb3600cc 5596static int kvm_suspend(void)
59ae6c6b 5597{
10474ae8 5598 if (kvm_usage_count)
75b7127c 5599 hardware_disable_nolock(NULL);
59ae6c6b
AK
5600 return 0;
5601}
5602
fb3600cc 5603static void kvm_resume(void)
59ae6c6b 5604{
ca84d1a2 5605 if (kvm_usage_count) {
4cb9a998 5606 lockdep_assert_not_held(&kvm_count_lock);
75b7127c 5607 hardware_enable_nolock(NULL);
ca84d1a2 5608 }
59ae6c6b
AK
5609}
5610
fb3600cc 5611static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
5612 .suspend = kvm_suspend,
5613 .resume = kvm_resume,
5614};
5615
15ad7146
AK
5616static inline
5617struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5618{
5619 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5620}
5621
5622static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5623{
5624 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5625
046ddeed 5626 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5627 WRITE_ONCE(vcpu->ready, false);
15ad7146 5628
7495e22b 5629 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5630 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5631 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5632}
5633
5634static void kvm_sched_out(struct preempt_notifier *pn,
5635 struct task_struct *next)
5636{
5637 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5638
3ba9f93b 5639 if (current->on_rq) {
046ddeed 5640 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5641 WRITE_ONCE(vcpu->ready, true);
5642 }
e9b11c17 5643 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5644 __this_cpu_write(kvm_running_vcpu, NULL);
5645}
5646
5647/**
5648 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5649 *
5650 * We can disable preemption locally around accessing the per-CPU variable,
5651 * and use the resolved vcpu pointer after enabling preemption again,
5652 * because even if the current thread is migrated to another CPU, reading
5653 * the per-CPU value later will give us the same value as we update the
5654 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5655 */
5656struct kvm_vcpu *kvm_get_running_vcpu(void)
5657{
1f03b2bc
MZ
5658 struct kvm_vcpu *vcpu;
5659
5660 preempt_disable();
5661 vcpu = __this_cpu_read(kvm_running_vcpu);
5662 preempt_enable();
5663
5664 return vcpu;
7495e22b 5665}
379a3c8e 5666EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5667
5668/**
5669 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5670 */
5671struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5672{
5673 return &kvm_running_vcpu;
15ad7146
AK
5674}
5675
e1bfc245
SC
5676#ifdef CONFIG_GUEST_PERF_EVENTS
5677static unsigned int kvm_guest_state(void)
5678{
5679 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5680 unsigned int state;
5681
5682 if (!kvm_arch_pmi_in_guest(vcpu))
5683 return 0;
5684
5685 state = PERF_GUEST_ACTIVE;
5686 if (!kvm_arch_vcpu_in_kernel(vcpu))
5687 state |= PERF_GUEST_USER;
5688
5689 return state;
5690}
5691
5692static unsigned long kvm_guest_get_ip(void)
5693{
5694 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5695
5696 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5697 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5698 return 0;
5699
5700 return kvm_arch_vcpu_get_ip(vcpu);
5701}
5702
5703static struct perf_guest_info_callbacks kvm_guest_cbs = {
5704 .state = kvm_guest_state,
5705 .get_ip = kvm_guest_get_ip,
5706 .handle_intel_pt_intr = NULL,
5707};
5708
5709void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5710{
5711 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5712 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5713}
5714void kvm_unregister_perf_callbacks(void)
5715{
5716 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5717}
5718#endif
5719
b9904085
SC
5720struct kvm_cpu_compat_check {
5721 void *opaque;
5722 int *ret;
5723};
5724
5725static void check_processor_compat(void *data)
f257d6dc 5726{
b9904085
SC
5727 struct kvm_cpu_compat_check *c = data;
5728
5729 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
5730}
5731
0ee75bea 5732int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 5733 struct module *module)
6aa8b732 5734{
b9904085 5735 struct kvm_cpu_compat_check c;
6aa8b732 5736 int r;
002c7f7c 5737 int cpu;
6aa8b732 5738
f8c16bba
ZX
5739 r = kvm_arch_init(opaque);
5740 if (r)
d2308784 5741 goto out_fail;
cb498ea2 5742
7dac16c3
AH
5743 /*
5744 * kvm_arch_init makes sure there's at most one caller
5745 * for architectures that support multiple implementations,
5746 * like intel and amd on x86.
36343f6e
PB
5747 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5748 * conflicts in case kvm is already setup for another implementation.
7dac16c3 5749 */
36343f6e
PB
5750 r = kvm_irqfd_init();
5751 if (r)
5752 goto out_irqfd;
7dac16c3 5753
8437a617 5754 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
5755 r = -ENOMEM;
5756 goto out_free_0;
5757 }
5758
b9904085 5759 r = kvm_arch_hardware_setup(opaque);
6aa8b732 5760 if (r < 0)
faf0be22 5761 goto out_free_1;
6aa8b732 5762
b9904085
SC
5763 c.ret = &r;
5764 c.opaque = opaque;
002c7f7c 5765 for_each_online_cpu(cpu) {
b9904085 5766 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 5767 if (r < 0)
faf0be22 5768 goto out_free_2;
002c7f7c
YS
5769 }
5770
73c1b41e 5771 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 5772 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 5773 if (r)
d2308784 5774 goto out_free_2;
6aa8b732
AK
5775 register_reboot_notifier(&kvm_reboot_notifier);
5776
c16f862d 5777 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5778 if (!vcpu_align)
5779 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5780 kvm_vcpu_cache =
5781 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5782 SLAB_ACCOUNT,
5783 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
5784 offsetofend(struct kvm_vcpu, stats_id)
5785 - offsetof(struct kvm_vcpu, arch),
46515736 5786 NULL);
c16f862d
RR
5787 if (!kvm_vcpu_cache) {
5788 r = -ENOMEM;
fb3600cc 5789 goto out_free_3;
c16f862d
RR
5790 }
5791
baff59cc
VK
5792 for_each_possible_cpu(cpu) {
5793 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5794 GFP_KERNEL, cpu_to_node(cpu))) {
5795 r = -ENOMEM;
5796 goto out_free_4;
5797 }
5798 }
5799
af585b92
GN
5800 r = kvm_async_pf_init();
5801 if (r)
baff59cc 5802 goto out_free_5;
af585b92 5803
6aa8b732
AK
5804 kvm_chardev_ops.owner = module;
5805
5806 r = misc_register(&kvm_dev);
5807 if (r) {
1170adc6 5808 pr_err("kvm: misc device register failed\n");
af585b92 5809 goto out_unreg;
6aa8b732
AK
5810 }
5811
fb3600cc
RW
5812 register_syscore_ops(&kvm_syscore_ops);
5813
15ad7146
AK
5814 kvm_preempt_ops.sched_in = kvm_sched_in;
5815 kvm_preempt_ops.sched_out = kvm_sched_out;
5816
929f45e3 5817 kvm_init_debug();
0ea4ed8e 5818
3c3c29fd
PB
5819 r = kvm_vfio_ops_init();
5820 WARN_ON(r);
5821
c7addb90 5822 return 0;
6aa8b732 5823
af585b92
GN
5824out_unreg:
5825 kvm_async_pf_deinit();
baff59cc
VK
5826out_free_5:
5827 for_each_possible_cpu(cpu)
5828 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5829out_free_4:
c16f862d 5830 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 5831out_free_3:
6aa8b732 5832 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5833 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 5834out_free_2:
e9b11c17 5835 kvm_arch_hardware_unsetup();
faf0be22 5836out_free_1:
7f59f492 5837 free_cpumask_var(cpus_hardware_enabled);
d2308784 5838out_free_0:
a0f155e9 5839 kvm_irqfd_exit();
36343f6e 5840out_irqfd:
7dac16c3
AH
5841 kvm_arch_exit();
5842out_fail:
6aa8b732
AK
5843 return r;
5844}
cb498ea2 5845EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 5846
cb498ea2 5847void kvm_exit(void)
6aa8b732 5848{
baff59cc
VK
5849 int cpu;
5850
4bd33b56 5851 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 5852 misc_deregister(&kvm_dev);
baff59cc
VK
5853 for_each_possible_cpu(cpu)
5854 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 5855 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 5856 kvm_async_pf_deinit();
fb3600cc 5857 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 5858 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5859 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 5860 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 5861 kvm_arch_hardware_unsetup();
f8c16bba 5862 kvm_arch_exit();
a0f155e9 5863 kvm_irqfd_exit();
7f59f492 5864 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 5865 kvm_vfio_ops_exit();
6aa8b732 5866}
cb498ea2 5867EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
5868
5869struct kvm_vm_worker_thread_context {
5870 struct kvm *kvm;
5871 struct task_struct *parent;
5872 struct completion init_done;
5873 kvm_vm_thread_fn_t thread_fn;
5874 uintptr_t data;
5875 int err;
5876};
5877
5878static int kvm_vm_worker_thread(void *context)
5879{
5880 /*
5881 * The init_context is allocated on the stack of the parent thread, so
5882 * we have to locally copy anything that is needed beyond initialization
5883 */
5884 struct kvm_vm_worker_thread_context *init_context = context;
e45cce30 5885 struct task_struct *parent;
c57c8046
JS
5886 struct kvm *kvm = init_context->kvm;
5887 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5888 uintptr_t data = init_context->data;
5889 int err;
5890
5891 err = kthread_park(current);
5892 /* kthread_park(current) is never supposed to return an error */
5893 WARN_ON(err != 0);
5894 if (err)
5895 goto init_complete;
5896
5897 err = cgroup_attach_task_all(init_context->parent, current);
5898 if (err) {
5899 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5900 __func__, err);
5901 goto init_complete;
5902 }
5903
5904 set_user_nice(current, task_nice(init_context->parent));
5905
5906init_complete:
5907 init_context->err = err;
5908 complete(&init_context->init_done);
5909 init_context = NULL;
5910
5911 if (err)
e45cce30 5912 goto out;
c57c8046
JS
5913
5914 /* Wait to be woken up by the spawner before proceeding. */
5915 kthread_parkme();
5916
5917 if (!kthread_should_stop())
5918 err = thread_fn(kvm, data);
5919
e45cce30
VS
5920out:
5921 /*
5922 * Move kthread back to its original cgroup to prevent it lingering in
5923 * the cgroup of the VM process, after the latter finishes its
5924 * execution.
5925 *
5926 * kthread_stop() waits on the 'exited' completion condition which is
5927 * set in exit_mm(), via mm_release(), in do_exit(). However, the
5928 * kthread is removed from the cgroup in the cgroup_exit() which is
5929 * called after the exit_mm(). This causes the kthread_stop() to return
5930 * before the kthread actually quits the cgroup.
5931 */
5932 rcu_read_lock();
5933 parent = rcu_dereference(current->real_parent);
5934 get_task_struct(parent);
5935 rcu_read_unlock();
5936 cgroup_attach_task_all(parent, current);
5937 put_task_struct(parent);
5938
c57c8046
JS
5939 return err;
5940}
5941
5942int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5943 uintptr_t data, const char *name,
5944 struct task_struct **thread_ptr)
5945{
5946 struct kvm_vm_worker_thread_context init_context = {};
5947 struct task_struct *thread;
5948
5949 *thread_ptr = NULL;
5950 init_context.kvm = kvm;
5951 init_context.parent = current;
5952 init_context.thread_fn = thread_fn;
5953 init_context.data = data;
5954 init_completion(&init_context.init_done);
5955
5956 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5957 "%s-%d", name, task_pid_nr(current));
5958 if (IS_ERR(thread))
5959 return PTR_ERR(thread);
5960
5961 /* kthread_run is never supposed to return NULL */
5962 WARN_ON(thread == NULL);
5963
5964 wait_for_completion(&init_context.init_done);
5965
5966 if (!init_context.err)
5967 *thread_ptr = thread;
5968
5969 return init_context.err;
5970}