KVM: Fix NULL-ptr deref after kvm_create_vm fails
[linux-2.6-block.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
6aa8b732 53
e495606d 54#include <asm/processor.h>
2ea75be3 55#include <asm/ioctl.h>
7c0f6ba6 56#include <linux/uaccess.h>
3e021bf5 57#include <asm/pgtable.h>
6aa8b732 58
5f94c174 59#include "coalesced_mmio.h"
af585b92 60#include "async_pf.h"
3c3c29fd 61#include "vfio.h"
5f94c174 62
229456fc
MT
63#define CREATE_TRACE_POINTS
64#include <trace/events/kvm.h>
65
536a6f88
JF
66/* Worst case buffer size needed for holding an integer. */
67#define ITOA_MAX_LEN 12
68
6aa8b732
AK
69MODULE_AUTHOR("Qumranet");
70MODULE_LICENSE("GPL");
71
920552b2 72/* Architectures should define their poll value according to the halt latency */
ec76d819 73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 74module_param(halt_poll_ns, uint, 0644);
ec76d819 75EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 76
aca6ff29 77/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 78unsigned int halt_poll_ns_grow = 2;
039c5d1b 79module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 81
49113d36
NW
82/* The start value to grow halt_poll_ns from */
83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84module_param(halt_poll_ns_grow_start, uint, 0644);
85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
aca6ff29 87/* Default resets per-vcpu halt_poll_ns . */
ec76d819 88unsigned int halt_poll_ns_shrink;
039c5d1b 89module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 91
fa40a821
MT
92/*
93 * Ordering of locks:
94 *
b7d409de 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
96 */
97
0d9ce162 98DEFINE_MUTEX(kvm_lock);
4a937f96 99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 100LIST_HEAD(vm_list);
133de902 101
7f59f492 102static cpumask_var_t cpus_hardware_enabled;
f4fee932 103static int kvm_usage_count;
10474ae8 104static atomic_t hardware_enable_failed;
1b6c0168 105
c16f862d
RR
106struct kmem_cache *kvm_vcpu_cache;
107EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
1165f5fe 108
15ad7146
AK
109static __read_mostly struct preempt_ops kvm_preempt_ops;
110
76f7c879 111struct dentry *kvm_debugfs_dir;
e23a808b 112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 113
536a6f88
JF
114static int kvm_debugfs_num_entries;
115static const struct file_operations *stat_fops_per_vm[];
116
bccf2150
AK
117static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
de8e5d74 119#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
120static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
7ddfd3e0
MZ
122#define KVM_COMPAT(c) .compat_ioctl = (c)
123#else
124static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125 unsigned long arg) { return -EINVAL; }
126#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
1dda606c 127#endif
10474ae8
AG
128static int hardware_enable_all(void);
129static void hardware_disable_all(void);
bccf2150 130
e93f8a0f 131static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 132
bc009e43 133static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
e93f8a0f 134
52480137 135__visible bool kvm_rebooting;
b7c4145b 136EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 137
54dee993
MT
138static bool largepages_enabled = true;
139
286de8f6
CI
140#define KVM_EVENT_CREATE_VM 0
141#define KVM_EVENT_DESTROY_VM 1
142static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143static unsigned long long kvm_createvm_count;
144static unsigned long long kvm_active_vms;
145
93065ac7
MH
146__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147 unsigned long start, unsigned long end, bool blockable)
b1394e74 148{
93065ac7 149 return 0;
b1394e74
RK
150}
151
ba049e93 152bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 153{
11feeb49 154 if (pfn_valid(pfn))
bf4bea8e 155 return PageReserved(pfn_to_page(pfn));
cbff90a7
BAY
156
157 return true;
158}
159
bccf2150
AK
160/*
161 * Switches to specified vcpu, until a matching vcpu_put()
162 */
ec7660cc 163void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 164{
ec7660cc 165 int cpu = get_cpu();
15ad7146 166 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 167 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 168 put_cpu();
6aa8b732 169}
2f1fe811 170EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 171
313a3dc7 172void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 173{
15ad7146 174 preempt_disable();
313a3dc7 175 kvm_arch_vcpu_put(vcpu);
15ad7146
AK
176 preempt_notifier_unregister(&vcpu->preempt_notifier);
177 preempt_enable();
6aa8b732 178}
2f1fe811 179EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 180
7a97cec2
PB
181/* TODO: merge with kvm_arch_vcpu_should_kick */
182static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183{
184 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185
186 /*
187 * We need to wait for the VCPU to reenable interrupts and get out of
188 * READING_SHADOW_PAGE_TABLES mode.
189 */
190 if (req & KVM_REQUEST_WAIT)
191 return mode != OUTSIDE_GUEST_MODE;
192
193 /*
194 * Need to kick a running VCPU, but otherwise there is nothing to do.
195 */
196 return mode == IN_GUEST_MODE;
197}
198
d9e368d6
AK
199static void ack_flush(void *_completed)
200{
d9e368d6
AK
201}
202
b49defe8
PB
203static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204{
205 if (unlikely(!cpus))
206 cpus = cpu_online_mask;
207
208 if (cpumask_empty(cpus))
209 return false;
210
211 smp_call_function_many(cpus, ack_flush, NULL, wait);
212 return true;
213}
214
7053df4e
VK
215bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 217{
597a5f55 218 int i, cpu, me;
d9e368d6 219 struct kvm_vcpu *vcpu;
7053df4e 220 bool called;
6ef7a1bc 221
3cba4130 222 me = get_cpu();
7053df4e 223
988a2cae 224 kvm_for_each_vcpu(i, vcpu, kvm) {
a812297c 225 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
7053df4e
VK
226 continue;
227
3cba4130 228 kvm_make_request(req, vcpu);
d9e368d6 229 cpu = vcpu->cpu;
6b7e2d09 230
178f02ff
RK
231 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232 continue;
6c6e8360 233
7053df4e 234 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 235 kvm_request_needs_ipi(vcpu, req))
7053df4e 236 __cpumask_set_cpu(cpu, tmp);
49846896 237 }
7053df4e
VK
238
239 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 240 put_cpu();
7053df4e
VK
241
242 return called;
243}
244
245bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246{
247 cpumask_var_t cpus;
248 bool called;
7053df4e
VK
249
250 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251
a812297c 252 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
7053df4e 253
6ef7a1bc 254 free_cpumask_var(cpus);
49846896 255 return called;
d9e368d6
AK
256}
257
a6d51016 258#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 259void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 260{
4ae3cb3a
LT
261 /*
262 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263 * kvm_make_all_cpus_request.
264 */
265 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266
267 /*
268 * We want to publish modifications to the page tables before reading
269 * mode. Pairs with a memory barrier in arch-specific code.
270 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271 * and smp_mb in walk_shadow_page_lockless_begin/end.
272 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273 *
274 * There is already an smp_mb__after_atomic() before
275 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276 * barrier here.
277 */
b08660e5
TL
278 if (!kvm_arch_flush_remote_tlb(kvm)
279 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 280 ++kvm->stat.remote_tlb_flush;
a086f6a1 281 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 282}
2ba9f0d8 283EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 284#endif
2e53d63a 285
49846896
RR
286void kvm_reload_remote_mmus(struct kvm *kvm)
287{
445b8236 288 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 289}
2e53d63a 290
fb3f0f51
RR
291int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292{
293 struct page *page;
294 int r;
295
296 mutex_init(&vcpu->mutex);
297 vcpu->cpu = -1;
fb3f0f51
RR
298 vcpu->kvm = kvm;
299 vcpu->vcpu_id = id;
34bb10b7 300 vcpu->pid = NULL;
8577370f 301 init_swait_queue_head(&vcpu->wq);
af585b92 302 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 303
bf9f6ac8
FW
304 vcpu->pre_pcpu = -1;
305 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306
fb3f0f51
RR
307 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308 if (!page) {
309 r = -ENOMEM;
310 goto fail;
311 }
312 vcpu->run = page_address(page);
313
4c088493
R
314 kvm_vcpu_set_in_spin_loop(vcpu, false);
315 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 316 vcpu->preempted = false;
d73eb57b 317 vcpu->ready = false;
4c088493 318
e9b11c17 319 r = kvm_arch_vcpu_init(vcpu);
fb3f0f51 320 if (r < 0)
e9b11c17 321 goto fail_free_run;
fb3f0f51
RR
322 return 0;
323
fb3f0f51
RR
324fail_free_run:
325 free_page((unsigned long)vcpu->run);
326fail:
76fafa5e 327 return r;
fb3f0f51
RR
328}
329EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330
331void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332{
0e4524a5
CB
333 /*
334 * no need for rcu_read_lock as VCPU_RUN is the only place that
335 * will change the vcpu->pid pointer and on uninit all file
336 * descriptors are already gone.
337 */
338 put_pid(rcu_dereference_protected(vcpu->pid, 1));
e9b11c17 339 kvm_arch_vcpu_uninit(vcpu);
fb3f0f51
RR
340 free_page((unsigned long)vcpu->run);
341}
342EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343
e930bffe
AA
344#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346{
347 return container_of(mn, struct kvm, mmu_notifier);
348}
349
3da0dd43
IE
350static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351 struct mm_struct *mm,
352 unsigned long address,
353 pte_t pte)
354{
355 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 356 int idx;
3da0dd43 357
bc6678a3 358 idx = srcu_read_lock(&kvm->srcu);
3da0dd43
IE
359 spin_lock(&kvm->mmu_lock);
360 kvm->mmu_notifier_seq++;
0cf853c5
LT
361
362 if (kvm_set_spte_hva(kvm, address, pte))
363 kvm_flush_remote_tlbs(kvm);
364
3da0dd43 365 spin_unlock(&kvm->mmu_lock);
bc6678a3 366 srcu_read_unlock(&kvm->srcu, idx);
3da0dd43
IE
367}
368
93065ac7 369static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
5d6527a7 370 const struct mmu_notifier_range *range)
e930bffe
AA
371{
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 373 int need_tlb_flush = 0, idx;
93065ac7 374 int ret;
e930bffe 375
bc6678a3 376 idx = srcu_read_lock(&kvm->srcu);
e930bffe
AA
377 spin_lock(&kvm->mmu_lock);
378 /*
379 * The count increase must become visible at unlock time as no
380 * spte can be established without taking the mmu_lock and
381 * count is also read inside the mmu_lock critical section.
382 */
383 kvm->mmu_notifier_count++;
5d6527a7 384 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
a4ee1ca4 385 need_tlb_flush |= kvm->tlbs_dirty;
e930bffe
AA
386 /* we've to flush the tlb before the pages can be freed */
387 if (need_tlb_flush)
388 kvm_flush_remote_tlbs(kvm);
565f3be2
TY
389
390 spin_unlock(&kvm->mmu_lock);
b1394e74 391
5d6527a7 392 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
dfcd6660
JG
393 range->end,
394 mmu_notifier_range_blockable(range));
b1394e74 395
565f3be2 396 srcu_read_unlock(&kvm->srcu, idx);
93065ac7
MH
397
398 return ret;
e930bffe
AA
399}
400
401static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
5d6527a7 402 const struct mmu_notifier_range *range)
e930bffe
AA
403{
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405
406 spin_lock(&kvm->mmu_lock);
407 /*
408 * This sequence increase will notify the kvm page fault that
409 * the page that is going to be mapped in the spte could have
410 * been freed.
411 */
412 kvm->mmu_notifier_seq++;
a355aa54 413 smp_wmb();
e930bffe
AA
414 /*
415 * The above sequence increase must be visible before the
a355aa54
PM
416 * below count decrease, which is ensured by the smp_wmb above
417 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
418 */
419 kvm->mmu_notifier_count--;
420 spin_unlock(&kvm->mmu_lock);
421
422 BUG_ON(kvm->mmu_notifier_count < 0);
423}
424
425static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426 struct mm_struct *mm,
57128468
ALC
427 unsigned long start,
428 unsigned long end)
e930bffe
AA
429{
430 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 431 int young, idx;
e930bffe 432
bc6678a3 433 idx = srcu_read_lock(&kvm->srcu);
e930bffe 434 spin_lock(&kvm->mmu_lock);
e930bffe 435
57128468 436 young = kvm_age_hva(kvm, start, end);
e930bffe
AA
437 if (young)
438 kvm_flush_remote_tlbs(kvm);
439
565f3be2
TY
440 spin_unlock(&kvm->mmu_lock);
441 srcu_read_unlock(&kvm->srcu, idx);
442
e930bffe
AA
443 return young;
444}
445
1d7715c6
VD
446static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447 struct mm_struct *mm,
448 unsigned long start,
449 unsigned long end)
450{
451 struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 int young, idx;
453
454 idx = srcu_read_lock(&kvm->srcu);
455 spin_lock(&kvm->mmu_lock);
456 /*
457 * Even though we do not flush TLB, this will still adversely
458 * affect performance on pre-Haswell Intel EPT, where there is
459 * no EPT Access Bit to clear so that we have to tear down EPT
460 * tables instead. If we find this unacceptable, we can always
461 * add a parameter to kvm_age_hva so that it effectively doesn't
462 * do anything on clear_young.
463 *
464 * Also note that currently we never issue secondary TLB flushes
465 * from clear_young, leaving this job up to the regular system
466 * cadence. If we find this inaccurate, we might come up with a
467 * more sophisticated heuristic later.
468 */
469 young = kvm_age_hva(kvm, start, end);
470 spin_unlock(&kvm->mmu_lock);
471 srcu_read_unlock(&kvm->srcu, idx);
472
473 return young;
474}
475
8ee53820
AA
476static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477 struct mm_struct *mm,
478 unsigned long address)
479{
480 struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 int young, idx;
482
483 idx = srcu_read_lock(&kvm->srcu);
484 spin_lock(&kvm->mmu_lock);
485 young = kvm_test_age_hva(kvm, address);
486 spin_unlock(&kvm->mmu_lock);
487 srcu_read_unlock(&kvm->srcu, idx);
488
489 return young;
490}
491
85db06e5
MT
492static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493 struct mm_struct *mm)
494{
495 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
496 int idx;
497
498 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 499 kvm_arch_flush_shadow_all(kvm);
eda2beda 500 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
501}
502
e930bffe 503static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
504 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
505 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
506 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 507 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 508 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 509 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 510 .release = kvm_mmu_notifier_release,
e930bffe 511};
4c07b0a4
AK
512
513static int kvm_init_mmu_notifier(struct kvm *kvm)
514{
515 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517}
518
519#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520
521static int kvm_init_mmu_notifier(struct kvm *kvm)
522{
523 return 0;
524}
525
e930bffe
AA
526#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527
a47d2b07 528static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
529{
530 int i;
a47d2b07 531 struct kvm_memslots *slots;
bf3e05bc 532
b12ce36a 533 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
534 if (!slots)
535 return NULL;
536
bf3e05bc 537 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
f85e2cb5 538 slots->id_to_index[i] = slots->memslots[i].id = i;
a47d2b07
PB
539
540 return slots;
541}
542
543static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544{
545 if (!memslot->dirty_bitmap)
546 return;
547
548 kvfree(memslot->dirty_bitmap);
549 memslot->dirty_bitmap = NULL;
550}
551
552/*
553 * Free any memory in @free but not in @dont.
554 */
555static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556 struct kvm_memory_slot *dont)
557{
558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 kvm_destroy_dirty_bitmap(free);
560
561 kvm_arch_free_memslot(kvm, free, dont);
562
563 free->npages = 0;
564}
565
566static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567{
568 struct kvm_memory_slot *memslot;
569
570 if (!slots)
571 return;
572
573 kvm_for_each_memslot(memslot, slots)
574 kvm_free_memslot(kvm, memslot, NULL);
575
576 kvfree(slots);
bf3e05bc
XG
577}
578
536a6f88
JF
579static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580{
581 int i;
582
583 if (!kvm->debugfs_dentry)
584 return;
585
586 debugfs_remove_recursive(kvm->debugfs_dentry);
587
9d5a1dce
LC
588 if (kvm->debugfs_stat_data) {
589 for (i = 0; i < kvm_debugfs_num_entries; i++)
590 kfree(kvm->debugfs_stat_data[i]);
591 kfree(kvm->debugfs_stat_data);
592 }
536a6f88
JF
593}
594
595static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596{
597 char dir_name[ITOA_MAX_LEN * 2];
598 struct kvm_stat_data *stat_data;
599 struct kvm_stats_debugfs_item *p;
600
601 if (!debugfs_initialized())
602 return 0;
603
604 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 605 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
606
607 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608 sizeof(*kvm->debugfs_stat_data),
b12ce36a 609 GFP_KERNEL_ACCOUNT);
536a6f88
JF
610 if (!kvm->debugfs_stat_data)
611 return -ENOMEM;
612
613 for (p = debugfs_entries; p->name; p++) {
b12ce36a 614 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
615 if (!stat_data)
616 return -ENOMEM;
617
618 stat_data->kvm = kvm;
619 stat_data->offset = p->offset;
833b45de 620 stat_data->mode = p->mode ? p->mode : 0644;
536a6f88 621 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
833b45de 622 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
929f45e3 623 stat_data, stat_fops_per_vm[p->kind]);
536a6f88
JF
624 }
625 return 0;
626}
627
e08b9637 628static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 629{
d89f5eff 630 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
631 int r = -ENOMEM;
632 int i;
6aa8b732 633
d89f5eff
JK
634 if (!kvm)
635 return ERR_PTR(-ENOMEM);
636
e9ad4ec8 637 spin_lock_init(&kvm->mmu_lock);
f1f10076 638 mmgrab(current->mm);
e9ad4ec8
PB
639 kvm->mm = current->mm;
640 kvm_eventfd_init(kvm);
641 mutex_init(&kvm->lock);
642 mutex_init(&kvm->irq_lock);
643 mutex_init(&kvm->slots_lock);
e9ad4ec8
PB
644 INIT_LIST_HEAD(&kvm->devices);
645
9121923c
JM
646 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
647
8a44119a
PB
648 if (init_srcu_struct(&kvm->srcu))
649 goto out_err_no_srcu;
650 if (init_srcu_struct(&kvm->irq_srcu))
651 goto out_err_no_irq_srcu;
652
9121923c
JM
653 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
654 struct kvm_memslots *slots = kvm_alloc_memslots();
655
656 if (!slots)
a97b0e77 657 goto out_err_no_arch_destroy_vm;
9121923c
JM
658 /* Generations must be different for each address space. */
659 slots->generation = i;
660 rcu_assign_pointer(kvm->memslots[i], slots);
661 }
662
663 for (i = 0; i < KVM_NR_BUSES; i++) {
664 rcu_assign_pointer(kvm->buses[i],
665 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
666 if (!kvm->buses[i])
a97b0e77 667 goto out_err_no_arch_destroy_vm;
9121923c
JM
668 }
669
a97b0e77 670 refcount_set(&kvm->users_count, 1);
e08b9637 671 r = kvm_arch_init_vm(kvm, type);
d89f5eff 672 if (r)
a97b0e77 673 goto out_err_no_arch_destroy_vm;
10474ae8
AG
674
675 r = hardware_enable_all();
676 if (r)
719d93cd 677 goto out_err_no_disable;
10474ae8 678
c77dcacb 679#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 680 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 681#endif
6aa8b732 682
74b5c5bf
MW
683 r = kvm_init_mmu_notifier(kvm);
684 if (r)
685 goto out_err;
686
0d9ce162 687 mutex_lock(&kvm_lock);
5e58cfe4 688 list_add(&kvm->vm_list, &vm_list);
0d9ce162 689 mutex_unlock(&kvm_lock);
d89f5eff 690
2ecd9d29
PZ
691 preempt_notifier_inc();
692
f17abe9a 693 return kvm;
10474ae8
AG
694
695out_err:
696 hardware_disable_all();
719d93cd 697out_err_no_disable:
a97b0e77
JM
698 kvm_arch_destroy_vm(kvm);
699 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
700out_err_no_arch_destroy_vm:
e93f8a0f 701 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 702 kfree(kvm_get_bus(kvm, i));
f481b069 703 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 704 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
705 cleanup_srcu_struct(&kvm->irq_srcu);
706out_err_no_irq_srcu:
707 cleanup_srcu_struct(&kvm->srcu);
708out_err_no_srcu:
d89f5eff 709 kvm_arch_free_vm(kvm);
e9ad4ec8 710 mmdrop(current->mm);
10474ae8 711 return ERR_PTR(r);
f17abe9a
AK
712}
713
07f0a7bd
SW
714static void kvm_destroy_devices(struct kvm *kvm)
715{
e6e3b5a6 716 struct kvm_device *dev, *tmp;
07f0a7bd 717
a28ebea2
CD
718 /*
719 * We do not need to take the kvm->lock here, because nobody else
720 * has a reference to the struct kvm at this point and therefore
721 * cannot access the devices list anyhow.
722 */
e6e3b5a6
GT
723 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
724 list_del(&dev->vm_node);
07f0a7bd
SW
725 dev->ops->destroy(dev);
726 }
727}
728
f17abe9a
AK
729static void kvm_destroy_vm(struct kvm *kvm)
730{
e93f8a0f 731 int i;
6d4e4c4f
AK
732 struct mm_struct *mm = kvm->mm;
733
286de8f6 734 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 735 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 736 kvm_arch_sync_events(kvm);
0d9ce162 737 mutex_lock(&kvm_lock);
133de902 738 list_del(&kvm->vm_list);
0d9ce162 739 mutex_unlock(&kvm_lock);
399ec807 740 kvm_free_irq_routing(kvm);
df630b8c 741 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 742 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 743
4a12f951
CB
744 if (bus)
745 kvm_io_bus_destroy(bus);
df630b8c
PX
746 kvm->buses[i] = NULL;
747 }
980da6ce 748 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
749#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
750 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 751#else
2df72e9b 752 kvm_arch_flush_shadow_all(kvm);
5f94c174 753#endif
d19a9cd2 754 kvm_arch_destroy_vm(kvm);
07f0a7bd 755 kvm_destroy_devices(kvm);
f481b069 756 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 757 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 758 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
759 cleanup_srcu_struct(&kvm->srcu);
760 kvm_arch_free_vm(kvm);
2ecd9d29 761 preempt_notifier_dec();
10474ae8 762 hardware_disable_all();
6d4e4c4f 763 mmdrop(mm);
f17abe9a
AK
764}
765
d39f13b0
IE
766void kvm_get_kvm(struct kvm *kvm)
767{
e3736c3e 768 refcount_inc(&kvm->users_count);
d39f13b0
IE
769}
770EXPORT_SYMBOL_GPL(kvm_get_kvm);
771
772void kvm_put_kvm(struct kvm *kvm)
773{
e3736c3e 774 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
775 kvm_destroy_vm(kvm);
776}
777EXPORT_SYMBOL_GPL(kvm_put_kvm);
778
779
f17abe9a
AK
780static int kvm_vm_release(struct inode *inode, struct file *filp)
781{
782 struct kvm *kvm = filp->private_data;
783
721eecbf
GH
784 kvm_irqfd_release(kvm);
785
d39f13b0 786 kvm_put_kvm(kvm);
6aa8b732
AK
787 return 0;
788}
789
515a0127
TY
790/*
791 * Allocation size is twice as large as the actual dirty bitmap size.
93474b25 792 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 793 */
a36a57b1
TY
794static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
795{
515a0127 796 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 797
b12ce36a 798 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
799 if (!memslot->dirty_bitmap)
800 return -ENOMEM;
801
a36a57b1
TY
802 return 0;
803}
804
bf3e05bc 805/*
0e60b079
IM
806 * Insert memslot and re-sort memslots based on their GFN,
807 * so binary search could be used to lookup GFN.
808 * Sorting algorithm takes advantage of having initially
809 * sorted array and known changed memslot position.
bf3e05bc 810 */
5cc15027 811static void update_memslots(struct kvm_memslots *slots,
31fc4f95
WY
812 struct kvm_memory_slot *new,
813 enum kvm_mr_change change)
bf3e05bc 814{
8593176c
PB
815 int id = new->id;
816 int i = slots->id_to_index[id];
063584d4 817 struct kvm_memory_slot *mslots = slots->memslots;
f85e2cb5 818
8593176c 819 WARN_ON(mslots[i].id != id);
31fc4f95
WY
820 switch (change) {
821 case KVM_MR_CREATE:
822 slots->used_slots++;
823 WARN_ON(mslots[i].npages || !new->npages);
824 break;
825 case KVM_MR_DELETE:
826 slots->used_slots--;
827 WARN_ON(new->npages || !mslots[i].npages);
828 break;
829 default:
830 break;
9c1a5d38 831 }
0e60b079 832
7f379cff 833 while (i < KVM_MEM_SLOTS_NUM - 1 &&
0e60b079
IM
834 new->base_gfn <= mslots[i + 1].base_gfn) {
835 if (!mslots[i + 1].npages)
836 break;
7f379cff
IM
837 mslots[i] = mslots[i + 1];
838 slots->id_to_index[mslots[i].id] = i;
839 i++;
840 }
efbeec70
PB
841
842 /*
843 * The ">=" is needed when creating a slot with base_gfn == 0,
844 * so that it moves before all those with base_gfn == npages == 0.
845 *
846 * On the other hand, if new->npages is zero, the above loop has
847 * already left i pointing to the beginning of the empty part of
848 * mslots, and the ">=" would move the hole backwards in this
849 * case---which is wrong. So skip the loop when deleting a slot.
850 */
851 if (new->npages) {
852 while (i > 0 &&
853 new->base_gfn >= mslots[i - 1].base_gfn) {
854 mslots[i] = mslots[i - 1];
855 slots->id_to_index[mslots[i].id] = i;
856 i--;
857 }
dbaff309
PB
858 } else
859 WARN_ON_ONCE(i != slots->used_slots);
f85e2cb5 860
8593176c
PB
861 mslots[i] = *new;
862 slots->id_to_index[mslots[i].id] = i;
bf3e05bc
XG
863}
864
09170a49 865static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 866{
4d8b81ab
XG
867 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
868
0f8a4de3 869#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
870 valid_flags |= KVM_MEM_READONLY;
871#endif
872
873 if (mem->flags & ~valid_flags)
a50d64d6
XG
874 return -EINVAL;
875
876 return 0;
877}
878
7ec4fb44 879static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 880 int as_id, struct kvm_memslots *slots)
7ec4fb44 881{
f481b069 882 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 883 u64 gen = old_memslots->generation;
7ec4fb44 884
361209e0
SC
885 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
886 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 887
f481b069 888 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 889 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 890
ee3d1570 891 /*
361209e0
SC
892 * Increment the new memslot generation a second time, dropping the
893 * update in-progress flag and incrementing then generation based on
894 * the number of address spaces. This provides a unique and easily
895 * identifiable generation number while the memslots are in flux.
896 */
897 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
898
899 /*
4bd518f1
PB
900 * Generations must be unique even across address spaces. We do not need
901 * a global counter for that, instead the generation space is evenly split
902 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
903 * space 0 will use generations 0, 2, 4, ... while address space 1 will
904 * use generations 1, 3, 5, ...
ee3d1570 905 */
164bf7e5 906 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 907
15248258 908 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 909
15248258 910 slots->generation = gen;
e59dbe09
TY
911
912 return old_memslots;
7ec4fb44
GN
913}
914
6aa8b732
AK
915/*
916 * Allocate some memory and give it an address in the guest physical address
917 * space.
918 *
919 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 920 *
02d5d55b 921 * Must be called holding kvm->slots_lock for write.
6aa8b732 922 */
f78e0e2e 923int __kvm_set_memory_region(struct kvm *kvm,
09170a49 924 const struct kvm_userspace_memory_region *mem)
6aa8b732 925{
8234b22e 926 int r;
6aa8b732 927 gfn_t base_gfn;
28bcb112 928 unsigned long npages;
a843fac2 929 struct kvm_memory_slot *slot;
6aa8b732 930 struct kvm_memory_slot old, new;
b7f69c55 931 struct kvm_memslots *slots = NULL, *old_memslots;
f481b069 932 int as_id, id;
f64c0398 933 enum kvm_mr_change change;
6aa8b732 934
a50d64d6
XG
935 r = check_memory_region_flags(mem);
936 if (r)
937 goto out;
938
6aa8b732 939 r = -EINVAL;
f481b069
PB
940 as_id = mem->slot >> 16;
941 id = (u16)mem->slot;
942
6aa8b732
AK
943 /* General sanity checks */
944 if (mem->memory_size & (PAGE_SIZE - 1))
945 goto out;
946 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
947 goto out;
fa3d315a 948 /* We can read the guest memory with __xxx_user() later on. */
f481b069 949 if ((id < KVM_USER_MEM_SLOTS) &&
fa3d315a 950 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
96d4f267 951 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
9e3bb6b6 952 mem->memory_size)))
78749809 953 goto out;
f481b069 954 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
6aa8b732
AK
955 goto out;
956 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
957 goto out;
958
f481b069 959 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
6aa8b732
AK
960 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
961 npages = mem->memory_size >> PAGE_SHIFT;
962
660c22c4
TY
963 if (npages > KVM_MEM_MAX_NR_PAGES)
964 goto out;
965
a843fac2 966 new = old = *slot;
6aa8b732 967
f481b069 968 new.id = id;
6aa8b732
AK
969 new.base_gfn = base_gfn;
970 new.npages = npages;
971 new.flags = mem->flags;
972
f64c0398
TY
973 if (npages) {
974 if (!old.npages)
975 change = KVM_MR_CREATE;
976 else { /* Modify an existing slot. */
977 if ((mem->userspace_addr != old.userspace_addr) ||
75d61fbc
TY
978 (npages != old.npages) ||
979 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
f64c0398
TY
980 goto out;
981
982 if (base_gfn != old.base_gfn)
983 change = KVM_MR_MOVE;
984 else if (new.flags != old.flags)
985 change = KVM_MR_FLAGS_ONLY;
986 else { /* Nothing to change. */
987 r = 0;
988 goto out;
989 }
990 }
09170a49
PB
991 } else {
992 if (!old.npages)
993 goto out;
994
f64c0398 995 change = KVM_MR_DELETE;
09170a49
PB
996 new.base_gfn = 0;
997 new.flags = 0;
998 }
6aa8b732 999
f64c0398 1000 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee
TY
1001 /* Check for overlaps */
1002 r = -EEXIST;
f481b069 1003 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
b28676bb 1004 if (slot->id == id)
0a706bee
TY
1005 continue;
1006 if (!((base_gfn + npages <= slot->base_gfn) ||
1007 (base_gfn >= slot->base_gfn + slot->npages)))
1008 goto out;
1009 }
6aa8b732 1010 }
6aa8b732 1011
6aa8b732
AK
1012 /* Free page dirty bitmap if unneeded */
1013 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
8b6d44c7 1014 new.dirty_bitmap = NULL;
6aa8b732
AK
1015
1016 r = -ENOMEM;
f64c0398 1017 if (change == KVM_MR_CREATE) {
189a2f7b 1018 new.userspace_addr = mem->userspace_addr;
d89cc617 1019
5587027c 1020 if (kvm_arch_create_memslot(kvm, &new, npages))
db3fe4eb 1021 goto out_free;
6aa8b732 1022 }
ec04b260 1023
6aa8b732
AK
1024 /* Allocate page dirty bitmap if needed */
1025 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
a36a57b1 1026 if (kvm_create_dirty_bitmap(&new) < 0)
f78e0e2e 1027 goto out_free;
6aa8b732
AK
1028 }
1029
b12ce36a 1030 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
f2a81036
PB
1031 if (!slots)
1032 goto out_free;
f481b069 1033 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
f2a81036 1034
f64c0398 1035 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
f481b069 1036 slot = id_to_memslot(slots, id);
28a37544
XG
1037 slot->flags |= KVM_MEMSLOT_INVALID;
1038
f481b069 1039 old_memslots = install_new_memslots(kvm, as_id, slots);
bc6678a3 1040
12d6e753
MT
1041 /* From this point no new shadow pages pointing to a deleted,
1042 * or moved, memslot will be created.
bc6678a3
MT
1043 *
1044 * validation of sp->gfn happens in:
b7d409de
XL
1045 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1046 * - kvm_is_visible_gfn (mmu_check_roots)
bc6678a3 1047 */
2df72e9b 1048 kvm_arch_flush_shadow_memslot(kvm, slot);
f2a81036
PB
1049
1050 /*
1051 * We can re-use the old_memslots from above, the only difference
1052 * from the currently installed memslots is the invalid flag. This
1053 * will get overwritten by update_memslots anyway.
1054 */
b7f69c55 1055 slots = old_memslots;
bc6678a3 1056 }
34d4cb8f 1057
7b6195a9 1058 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
f7784b8e 1059 if (r)
b7f69c55 1060 goto out_slots;
f7784b8e 1061
a47d2b07 1062 /* actual memory is freed via old in kvm_free_memslot below */
f64c0398 1063 if (change == KVM_MR_DELETE) {
bc6678a3 1064 new.dirty_bitmap = NULL;
db3fe4eb 1065 memset(&new.arch, 0, sizeof(new.arch));
bc6678a3
MT
1066 }
1067
31fc4f95 1068 update_memslots(slots, &new, change);
f481b069 1069 old_memslots = install_new_memslots(kvm, as_id, slots);
3ad82a7e 1070
f36f3f28 1071 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
82ce2c96 1072
a47d2b07 1073 kvm_free_memslot(kvm, &old, &new);
74496134 1074 kvfree(old_memslots);
6aa8b732
AK
1075 return 0;
1076
e40f193f 1077out_slots:
74496134 1078 kvfree(slots);
f78e0e2e 1079out_free:
a47d2b07 1080 kvm_free_memslot(kvm, &new, &old);
6aa8b732
AK
1081out:
1082 return r;
210c7c4d 1083}
f78e0e2e
SY
1084EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1085
1086int kvm_set_memory_region(struct kvm *kvm,
09170a49 1087 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1088{
1089 int r;
1090
79fac95e 1091 mutex_lock(&kvm->slots_lock);
47ae31e2 1092 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1093 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1094 return r;
1095}
210c7c4d
IE
1096EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1097
7940876e
SH
1098static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1099 struct kvm_userspace_memory_region *mem)
210c7c4d 1100{
f481b069 1101 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1102 return -EINVAL;
09170a49 1103
47ae31e2 1104 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1105}
1106
5bb064dc
ZX
1107int kvm_get_dirty_log(struct kvm *kvm,
1108 struct kvm_dirty_log *log, int *is_dirty)
6aa8b732 1109{
9f6b8029 1110 struct kvm_memslots *slots;
6aa8b732 1111 struct kvm_memory_slot *memslot;
843574a3 1112 int i, as_id, id;
87bf6e7d 1113 unsigned long n;
6aa8b732
AK
1114 unsigned long any = 0;
1115
f481b069
PB
1116 as_id = log->slot >> 16;
1117 id = (u16)log->slot;
1118 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1119 return -EINVAL;
6aa8b732 1120
f481b069
PB
1121 slots = __kvm_memslots(kvm, as_id);
1122 memslot = id_to_memslot(slots, id);
6aa8b732 1123 if (!memslot->dirty_bitmap)
843574a3 1124 return -ENOENT;
6aa8b732 1125
87bf6e7d 1126 n = kvm_dirty_bitmap_bytes(memslot);
6aa8b732 1127
cd1a4a98 1128 for (i = 0; !any && i < n/sizeof(long); ++i)
6aa8b732
AK
1129 any = memslot->dirty_bitmap[i];
1130
6aa8b732 1131 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
843574a3 1132 return -EFAULT;
6aa8b732 1133
5bb064dc
ZX
1134 if (any)
1135 *is_dirty = 1;
843574a3 1136 return 0;
6aa8b732 1137}
2ba9f0d8 1138EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1139
ba0513b5
MS
1140#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1141/**
b8b00220 1142 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1143 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1144 * @kvm: pointer to kvm instance
1145 * @log: slot id and address to which we copy the log
b8b00220 1146 * @flush: true if TLB flush is needed by caller
ba0513b5
MS
1147 *
1148 * We need to keep it in mind that VCPU threads can write to the bitmap
1149 * concurrently. So, to avoid losing track of dirty pages we keep the
1150 * following order:
1151 *
1152 * 1. Take a snapshot of the bit and clear it if needed.
1153 * 2. Write protect the corresponding page.
1154 * 3. Copy the snapshot to the userspace.
1155 * 4. Upon return caller flushes TLB's if needed.
1156 *
1157 * Between 2 and 4, the guest may write to the page using the remaining TLB
1158 * entry. This is not a problem because the page is reported dirty using
1159 * the snapshot taken before and step 4 ensures that writes done after
1160 * exiting to userspace will be logged for the next call.
1161 *
1162 */
1163int kvm_get_dirty_log_protect(struct kvm *kvm,
8fe65a82 1164 struct kvm_dirty_log *log, bool *flush)
ba0513b5 1165{
9f6b8029 1166 struct kvm_memslots *slots;
ba0513b5 1167 struct kvm_memory_slot *memslot;
58d6db34 1168 int i, as_id, id;
ba0513b5
MS
1169 unsigned long n;
1170 unsigned long *dirty_bitmap;
1171 unsigned long *dirty_bitmap_buffer;
1172
f481b069
PB
1173 as_id = log->slot >> 16;
1174 id = (u16)log->slot;
1175 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1176 return -EINVAL;
ba0513b5 1177
f481b069
PB
1178 slots = __kvm_memslots(kvm, as_id);
1179 memslot = id_to_memslot(slots, id);
ba0513b5
MS
1180
1181 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1182 if (!dirty_bitmap)
58d6db34 1183 return -ENOENT;
ba0513b5
MS
1184
1185 n = kvm_dirty_bitmap_bytes(memslot);
2a31b9db
PB
1186 *flush = false;
1187 if (kvm->manual_dirty_log_protect) {
1188 /*
1189 * Unlike kvm_get_dirty_log, we always return false in *flush,
1190 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1191 * is some code duplication between this function and
1192 * kvm_get_dirty_log, but hopefully all architecture
1193 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1194 * can be eliminated.
1195 */
1196 dirty_bitmap_buffer = dirty_bitmap;
1197 } else {
1198 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1199 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1200
2a31b9db
PB
1201 spin_lock(&kvm->mmu_lock);
1202 for (i = 0; i < n / sizeof(long); i++) {
1203 unsigned long mask;
1204 gfn_t offset;
ba0513b5 1205
2a31b9db
PB
1206 if (!dirty_bitmap[i])
1207 continue;
1208
1209 *flush = true;
1210 mask = xchg(&dirty_bitmap[i], 0);
1211 dirty_bitmap_buffer[i] = mask;
1212
a67794ca
LT
1213 offset = i * BITS_PER_LONG;
1214 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1215 offset, mask);
2a31b9db
PB
1216 }
1217 spin_unlock(&kvm->mmu_lock);
1218 }
1219
1220 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1221 return -EFAULT;
1222 return 0;
1223}
1224EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1225
1226/**
1227 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1228 * and reenable dirty page tracking for the corresponding pages.
1229 * @kvm: pointer to kvm instance
1230 * @log: slot id and address from which to fetch the bitmap of dirty pages
b8b00220 1231 * @flush: true if TLB flush is needed by caller
2a31b9db
PB
1232 */
1233int kvm_clear_dirty_log_protect(struct kvm *kvm,
1234 struct kvm_clear_dirty_log *log, bool *flush)
1235{
1236 struct kvm_memslots *slots;
1237 struct kvm_memory_slot *memslot;
98938aa8 1238 int as_id, id;
2a31b9db 1239 gfn_t offset;
98938aa8 1240 unsigned long i, n;
2a31b9db
PB
1241 unsigned long *dirty_bitmap;
1242 unsigned long *dirty_bitmap_buffer;
1243
1244 as_id = log->slot >> 16;
1245 id = (u16)log->slot;
1246 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1247 return -EINVAL;
1248
76d58e0f 1249 if (log->first_page & 63)
2a31b9db
PB
1250 return -EINVAL;
1251
1252 slots = __kvm_memslots(kvm, as_id);
1253 memslot = id_to_memslot(slots, id);
1254
1255 dirty_bitmap = memslot->dirty_bitmap;
1256 if (!dirty_bitmap)
1257 return -ENOENT;
1258
4ddc9204 1259 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
1260
1261 if (log->first_page > memslot->npages ||
76d58e0f
PB
1262 log->num_pages > memslot->npages - log->first_page ||
1263 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1264 return -EINVAL;
98938aa8 1265
8fe65a82 1266 *flush = false;
2a31b9db
PB
1267 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1268 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1269 return -EFAULT;
ba0513b5 1270
2a31b9db 1271 spin_lock(&kvm->mmu_lock);
53eac7a8
PX
1272 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1273 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
1274 i++, offset += BITS_PER_LONG) {
1275 unsigned long mask = *dirty_bitmap_buffer++;
1276 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1277 if (!mask)
ba0513b5
MS
1278 continue;
1279
2a31b9db 1280 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1281
2a31b9db
PB
1282 /*
1283 * mask contains the bits that really have been cleared. This
1284 * never includes any bits beyond the length of the memslot (if
1285 * the length is not aligned to 64 pages), therefore it is not
1286 * a problem if userspace sets them in log->dirty_bitmap.
1287 */
58d2930f 1288 if (mask) {
2a31b9db 1289 *flush = true;
58d2930f
TY
1290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1291 offset, mask);
1292 }
ba0513b5 1293 }
ba0513b5 1294 spin_unlock(&kvm->mmu_lock);
2a31b9db 1295
58d6db34 1296 return 0;
ba0513b5 1297}
2a31b9db 1298EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
ba0513b5
MS
1299#endif
1300
db3fe4eb
TY
1301bool kvm_largepages_enabled(void)
1302{
1303 return largepages_enabled;
1304}
1305
54dee993
MT
1306void kvm_disable_largepages(void)
1307{
1308 largepages_enabled = false;
1309}
1310EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1311
49c7754c
GN
1312struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1313{
1314 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1315}
a1f4d395 1316EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1317
8e73485c
PB
1318struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1319{
1320 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1321}
1322
33e94154 1323bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1324{
bf3e05bc 1325 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1326
bbacc0c1 1327 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
bf3e05bc 1328 memslot->flags & KVM_MEMSLOT_INVALID)
33e94154 1329 return false;
e0d62c7f 1330
33e94154 1331 return true;
e0d62c7f
IE
1332}
1333EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1334
8f0b1ab6
JR
1335unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1336{
1337 struct vm_area_struct *vma;
1338 unsigned long addr, size;
1339
1340 size = PAGE_SIZE;
1341
1342 addr = gfn_to_hva(kvm, gfn);
1343 if (kvm_is_error_hva(addr))
1344 return PAGE_SIZE;
1345
1346 down_read(&current->mm->mmap_sem);
1347 vma = find_vma(current->mm, addr);
1348 if (!vma)
1349 goto out;
1350
1351 size = vma_kernel_pagesize(vma);
1352
1353out:
1354 up_read(&current->mm->mmap_sem);
1355
1356 return size;
1357}
1358
4d8b81ab
XG
1359static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1360{
1361 return slot->flags & KVM_MEM_READONLY;
1362}
1363
4d8b81ab
XG
1364static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1365 gfn_t *nr_pages, bool write)
539cb660 1366{
bc6678a3 1367 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1368 return KVM_HVA_ERR_BAD;
48987781 1369
4d8b81ab
XG
1370 if (memslot_is_readonly(slot) && write)
1371 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1372
1373 if (nr_pages)
1374 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1375
4d8b81ab 1376 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1377}
48987781 1378
4d8b81ab
XG
1379static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1380 gfn_t *nr_pages)
1381{
1382 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1383}
48987781 1384
4d8b81ab 1385unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1386 gfn_t gfn)
4d8b81ab
XG
1387{
1388 return gfn_to_hva_many(slot, gfn, NULL);
1389}
1390EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1391
48987781
XG
1392unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1393{
49c7754c 1394 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1395}
0d150298 1396EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1397
8e73485c
PB
1398unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1399{
1400 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1401}
1402EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1403
86ab8cff 1404/*
970c0d4b
WY
1405 * Return the hva of a @gfn and the R/W attribute if possible.
1406 *
1407 * @slot: the kvm_memory_slot which contains @gfn
1408 * @gfn: the gfn to be translated
1409 * @writable: used to return the read/write attribute of the @slot if the hva
1410 * is valid and @writable is not NULL
86ab8cff 1411 */
64d83126
CD
1412unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1413 gfn_t gfn, bool *writable)
86ab8cff 1414{
a2ac07fe
GN
1415 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1416
1417 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1418 *writable = !memslot_is_readonly(slot);
1419
a2ac07fe 1420 return hva;
86ab8cff
XG
1421}
1422
64d83126
CD
1423unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1424{
1425 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1426
1427 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1428}
1429
8e73485c
PB
1430unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1431{
1432 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1433
1434 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1435}
1436
fafc3dba
HY
1437static inline int check_user_page_hwpoison(unsigned long addr)
1438{
0d731759 1439 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1440
0d731759 1441 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1442 return rc == -EHWPOISON;
1443}
1444
2fc84311 1445/*
b9b33da2
PB
1446 * The fast path to get the writable pfn which will be stored in @pfn,
1447 * true indicates success, otherwise false is returned. It's also the
1448 * only part that runs if we can are in atomic context.
2fc84311 1449 */
b9b33da2
PB
1450static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1451 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1452{
8d4e1288 1453 struct page *page[1];
2fc84311 1454 int npages;
954bbbc2 1455
12ce13fe
XG
1456 /*
1457 * Fast pin a writable pfn only if it is a write fault request
1458 * or the caller allows to map a writable pfn for a read fault
1459 * request.
1460 */
1461 if (!(write_fault || writable))
1462 return false;
612819c3 1463
2fc84311
XG
1464 npages = __get_user_pages_fast(addr, 1, 1, page);
1465 if (npages == 1) {
1466 *pfn = page_to_pfn(page[0]);
612819c3 1467
2fc84311
XG
1468 if (writable)
1469 *writable = true;
1470 return true;
1471 }
af585b92 1472
2fc84311
XG
1473 return false;
1474}
612819c3 1475
2fc84311
XG
1476/*
1477 * The slow path to get the pfn of the specified host virtual address,
1478 * 1 indicates success, -errno is returned if error is detected.
1479 */
1480static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 1481 bool *writable, kvm_pfn_t *pfn)
2fc84311 1482{
ce53053c
AV
1483 unsigned int flags = FOLL_HWPOISON;
1484 struct page *page;
2fc84311 1485 int npages = 0;
612819c3 1486
2fc84311
XG
1487 might_sleep();
1488
1489 if (writable)
1490 *writable = write_fault;
1491
ce53053c
AV
1492 if (write_fault)
1493 flags |= FOLL_WRITE;
1494 if (async)
1495 flags |= FOLL_NOWAIT;
d4944b0e 1496
ce53053c 1497 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
1498 if (npages != 1)
1499 return npages;
1500
1501 /* map read fault as writable if possible */
12ce13fe 1502 if (unlikely(!write_fault) && writable) {
ce53053c 1503 struct page *wpage;
2fc84311 1504
ce53053c 1505 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
2fc84311 1506 *writable = true;
ce53053c
AV
1507 put_page(page);
1508 page = wpage;
612819c3 1509 }
887c08ac 1510 }
ce53053c 1511 *pfn = page_to_pfn(page);
2fc84311
XG
1512 return npages;
1513}
539cb660 1514
4d8b81ab
XG
1515static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1516{
1517 if (unlikely(!(vma->vm_flags & VM_READ)))
1518 return false;
2e2e3738 1519
4d8b81ab
XG
1520 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1521 return false;
887c08ac 1522
4d8b81ab
XG
1523 return true;
1524}
bf998156 1525
92176a8e
PB
1526static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1527 unsigned long addr, bool *async,
a340b3e2
KA
1528 bool write_fault, bool *writable,
1529 kvm_pfn_t *p_pfn)
92176a8e 1530{
add6a0cd
PB
1531 unsigned long pfn;
1532 int r;
1533
1534 r = follow_pfn(vma, addr, &pfn);
1535 if (r) {
1536 /*
1537 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1538 * not call the fault handler, so do it here.
1539 */
1540 bool unlocked = false;
1541 r = fixup_user_fault(current, current->mm, addr,
1542 (write_fault ? FAULT_FLAG_WRITE : 0),
1543 &unlocked);
1544 if (unlocked)
1545 return -EAGAIN;
1546 if (r)
1547 return r;
1548
1549 r = follow_pfn(vma, addr, &pfn);
1550 if (r)
1551 return r;
1552
1553 }
1554
a340b3e2
KA
1555 if (writable)
1556 *writable = true;
add6a0cd
PB
1557
1558 /*
1559 * Get a reference here because callers of *hva_to_pfn* and
1560 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1561 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1562 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1563 * simply do nothing for reserved pfns.
1564 *
1565 * Whoever called remap_pfn_range is also going to call e.g.
1566 * unmap_mapping_range before the underlying pages are freed,
1567 * causing a call to our MMU notifier.
1568 */
1569 kvm_get_pfn(pfn);
1570
1571 *p_pfn = pfn;
92176a8e
PB
1572 return 0;
1573}
1574
12ce13fe
XG
1575/*
1576 * Pin guest page in memory and return its pfn.
1577 * @addr: host virtual address which maps memory to the guest
1578 * @atomic: whether this function can sleep
1579 * @async: whether this function need to wait IO complete if the
1580 * host page is not in the memory
1581 * @write_fault: whether we should get a writable host page
1582 * @writable: whether it allows to map a writable host page for !@write_fault
1583 *
1584 * The function will map a writable host page for these two cases:
1585 * 1): @write_fault = true
1586 * 2): @write_fault = false && @writable, @writable will tell the caller
1587 * whether the mapping is writable.
1588 */
ba049e93 1589static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
1590 bool write_fault, bool *writable)
1591{
1592 struct vm_area_struct *vma;
ba049e93 1593 kvm_pfn_t pfn = 0;
92176a8e 1594 int npages, r;
2e2e3738 1595
2fc84311
XG
1596 /* we can do it either atomically or asynchronously, not both */
1597 BUG_ON(atomic && async);
8d4e1288 1598
b9b33da2 1599 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
1600 return pfn;
1601
1602 if (atomic)
1603 return KVM_PFN_ERR_FAULT;
1604
1605 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1606 if (npages == 1)
1607 return pfn;
8d4e1288 1608
2fc84311
XG
1609 down_read(&current->mm->mmap_sem);
1610 if (npages == -EHWPOISON ||
1611 (!async && check_user_page_hwpoison(addr))) {
1612 pfn = KVM_PFN_ERR_HWPOISON;
1613 goto exit;
1614 }
1615
add6a0cd 1616retry:
2fc84311
XG
1617 vma = find_vma_intersection(current->mm, addr, addr + 1);
1618
1619 if (vma == NULL)
1620 pfn = KVM_PFN_ERR_FAULT;
92176a8e 1621 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 1622 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
add6a0cd
PB
1623 if (r == -EAGAIN)
1624 goto retry;
92176a8e
PB
1625 if (r < 0)
1626 pfn = KVM_PFN_ERR_FAULT;
2fc84311 1627 } else {
4d8b81ab 1628 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
1629 *async = true;
1630 pfn = KVM_PFN_ERR_FAULT;
1631 }
1632exit:
1633 up_read(&current->mm->mmap_sem);
2e2e3738 1634 return pfn;
35149e21
AL
1635}
1636
ba049e93
DW
1637kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1638 bool atomic, bool *async, bool write_fault,
1639 bool *writable)
887c08ac 1640{
4d8b81ab
XG
1641 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1642
b2740d35
PB
1643 if (addr == KVM_HVA_ERR_RO_BAD) {
1644 if (writable)
1645 *writable = false;
4d8b81ab 1646 return KVM_PFN_ERR_RO_FAULT;
b2740d35 1647 }
4d8b81ab 1648
b2740d35
PB
1649 if (kvm_is_error_hva(addr)) {
1650 if (writable)
1651 *writable = false;
81c52c56 1652 return KVM_PFN_NOSLOT;
b2740d35 1653 }
4d8b81ab
XG
1654
1655 /* Do not map writable pfn in the readonly memslot. */
1656 if (writable && memslot_is_readonly(slot)) {
1657 *writable = false;
1658 writable = NULL;
1659 }
1660
1661 return hva_to_pfn(addr, atomic, async, write_fault,
1662 writable);
887c08ac 1663}
3520469d 1664EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 1665
ba049e93 1666kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
1667 bool *writable)
1668{
e37afc6e
PB
1669 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1670 write_fault, writable);
612819c3
MT
1671}
1672EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1673
ba049e93 1674kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1675{
4d8b81ab 1676 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
506f0d6f 1677}
e37afc6e 1678EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 1679
ba049e93 1680kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1681{
4d8b81ab 1682 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
506f0d6f 1683}
037d92dc 1684EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 1685
ba049e93 1686kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1687{
1688 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1689}
1690EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1691
ba049e93 1692kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1693{
1694 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1695}
1696EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1697
ba049e93 1698kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1699{
1700 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1701}
1702EXPORT_SYMBOL_GPL(gfn_to_pfn);
1703
ba049e93 1704kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1705{
1706 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1707}
1708EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1709
d9ef13c2
PB
1710int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1711 struct page **pages, int nr_pages)
48987781
XG
1712{
1713 unsigned long addr;
076b925d 1714 gfn_t entry = 0;
48987781 1715
d9ef13c2 1716 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
1717 if (kvm_is_error_hva(addr))
1718 return -1;
1719
1720 if (entry < nr_pages)
1721 return 0;
1722
1723 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1724}
1725EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1726
ba049e93 1727static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 1728{
81c52c56 1729 if (is_error_noslot_pfn(pfn))
cb9aaa30 1730 return KVM_ERR_PTR_BAD_PAGE;
a2766325 1731
bf4bea8e 1732 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 1733 WARN_ON(1);
6cede2e6 1734 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 1735 }
a2766325
XG
1736
1737 return pfn_to_page(pfn);
1738}
1739
35149e21
AL
1740struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1741{
ba049e93 1742 kvm_pfn_t pfn;
2e2e3738
AL
1743
1744 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 1745
a2766325 1746 return kvm_pfn_to_page(pfn);
954bbbc2
AK
1747}
1748EXPORT_SYMBOL_GPL(gfn_to_page);
1749
e45adf66
KA
1750static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1751 struct kvm_host_map *map)
1752{
1753 kvm_pfn_t pfn;
1754 void *hva = NULL;
1755 struct page *page = KVM_UNMAPPED_PAGE;
1756
1757 if (!map)
1758 return -EINVAL;
1759
1760 pfn = gfn_to_pfn_memslot(slot, gfn);
1761 if (is_error_noslot_pfn(pfn))
1762 return -EINVAL;
1763
1764 if (pfn_valid(pfn)) {
1765 page = pfn_to_page(pfn);
1766 hva = kmap(page);
d30b214d 1767#ifdef CONFIG_HAS_IOMEM
e45adf66
KA
1768 } else {
1769 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
d30b214d 1770#endif
e45adf66
KA
1771 }
1772
1773 if (!hva)
1774 return -EFAULT;
1775
1776 map->page = page;
1777 map->hva = hva;
1778 map->pfn = pfn;
1779 map->gfn = gfn;
1780
1781 return 0;
1782}
1783
1784int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1785{
1786 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1787}
1788EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1789
1790void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1791 bool dirty)
1792{
1793 if (!map)
1794 return;
1795
1796 if (!map->hva)
1797 return;
1798
b614c602 1799 if (map->page != KVM_UNMAPPED_PAGE)
e45adf66 1800 kunmap(map->page);
eb1f2f38 1801#ifdef CONFIG_HAS_IOMEM
e45adf66
KA
1802 else
1803 memunmap(map->hva);
eb1f2f38 1804#endif
e45adf66
KA
1805
1806 if (dirty) {
1807 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1808 kvm_release_pfn_dirty(map->pfn);
1809 } else {
1810 kvm_release_pfn_clean(map->pfn);
1811 }
1812
1813 map->hva = NULL;
1814 map->page = NULL;
1815}
1816EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1817
8e73485c
PB
1818struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1819{
ba049e93 1820 kvm_pfn_t pfn;
8e73485c
PB
1821
1822 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1823
1824 return kvm_pfn_to_page(pfn);
1825}
1826EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1827
b4231d61
IE
1828void kvm_release_page_clean(struct page *page)
1829{
32cad84f
XG
1830 WARN_ON(is_error_page(page));
1831
35149e21 1832 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
1833}
1834EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1835
ba049e93 1836void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 1837{
bf4bea8e 1838 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 1839 put_page(pfn_to_page(pfn));
35149e21
AL
1840}
1841EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1842
b4231d61 1843void kvm_release_page_dirty(struct page *page)
8a7ae055 1844{
a2766325
XG
1845 WARN_ON(is_error_page(page));
1846
35149e21
AL
1847 kvm_release_pfn_dirty(page_to_pfn(page));
1848}
1849EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1850
f7a6509f 1851void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
1852{
1853 kvm_set_pfn_dirty(pfn);
1854 kvm_release_pfn_clean(pfn);
1855}
f7a6509f 1856EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 1857
ba049e93 1858void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 1859{
bf4bea8e 1860 if (!kvm_is_reserved_pfn(pfn)) {
2e2e3738 1861 struct page *page = pfn_to_page(pfn);
f95ef0cd 1862
8f946da7 1863 SetPageDirty(page);
2e2e3738 1864 }
8a7ae055 1865}
35149e21
AL
1866EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1867
ba049e93 1868void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 1869{
bf4bea8e 1870 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 1871 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
1872}
1873EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1874
ba049e93 1875void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 1876{
bf4bea8e 1877 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 1878 get_page(pfn_to_page(pfn));
35149e21
AL
1879}
1880EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 1881
195aefde
IE
1882static int next_segment(unsigned long len, int offset)
1883{
1884 if (len > PAGE_SIZE - offset)
1885 return PAGE_SIZE - offset;
1886 else
1887 return len;
1888}
1889
8e73485c
PB
1890static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1891 void *data, int offset, int len)
195aefde 1892{
e0506bcb
IE
1893 int r;
1894 unsigned long addr;
195aefde 1895
8e73485c 1896 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
1897 if (kvm_is_error_hva(addr))
1898 return -EFAULT;
3180a7fc 1899 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 1900 if (r)
195aefde 1901 return -EFAULT;
195aefde
IE
1902 return 0;
1903}
8e73485c
PB
1904
1905int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1906 int len)
1907{
1908 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1909
1910 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1911}
195aefde
IE
1912EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1913
8e73485c
PB
1914int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1915 int offset, int len)
1916{
1917 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1918
1919 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1920}
1921EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1922
195aefde
IE
1923int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1924{
1925 gfn_t gfn = gpa >> PAGE_SHIFT;
1926 int seg;
1927 int offset = offset_in_page(gpa);
1928 int ret;
1929
1930 while ((seg = next_segment(len, offset)) != 0) {
1931 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1932 if (ret < 0)
1933 return ret;
1934 offset = 0;
1935 len -= seg;
1936 data += seg;
1937 ++gfn;
1938 }
1939 return 0;
1940}
1941EXPORT_SYMBOL_GPL(kvm_read_guest);
1942
8e73485c 1943int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 1944{
7ec54588 1945 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 1946 int seg;
7ec54588 1947 int offset = offset_in_page(gpa);
8e73485c
PB
1948 int ret;
1949
1950 while ((seg = next_segment(len, offset)) != 0) {
1951 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1952 if (ret < 0)
1953 return ret;
1954 offset = 0;
1955 len -= seg;
1956 data += seg;
1957 ++gfn;
1958 }
1959 return 0;
1960}
1961EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 1962
8e73485c
PB
1963static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1964 void *data, int offset, unsigned long len)
1965{
1966 int r;
1967 unsigned long addr;
1968
1969 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
1970 if (kvm_is_error_hva(addr))
1971 return -EFAULT;
0aac03f0 1972 pagefault_disable();
3180a7fc 1973 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 1974 pagefault_enable();
7ec54588
MT
1975 if (r)
1976 return -EFAULT;
1977 return 0;
1978}
7ec54588 1979
8e73485c
PB
1980int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1981 unsigned long len)
1982{
1983 gfn_t gfn = gpa >> PAGE_SHIFT;
1984 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1985 int offset = offset_in_page(gpa);
1986
1987 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1988}
1989EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1990
1991int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1992 void *data, unsigned long len)
1993{
1994 gfn_t gfn = gpa >> PAGE_SHIFT;
1995 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1996 int offset = offset_in_page(gpa);
1997
1998 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1999}
2000EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2001
2002static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2003 const void *data, int offset, int len)
195aefde 2004{
e0506bcb
IE
2005 int r;
2006 unsigned long addr;
195aefde 2007
251eb841 2008 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2009 if (kvm_is_error_hva(addr))
2010 return -EFAULT;
8b0cedff 2011 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2012 if (r)
195aefde 2013 return -EFAULT;
bc009e43 2014 mark_page_dirty_in_slot(memslot, gfn);
195aefde
IE
2015 return 0;
2016}
8e73485c
PB
2017
2018int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2019 const void *data, int offset, int len)
2020{
2021 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2022
2023 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2024}
195aefde
IE
2025EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2026
8e73485c
PB
2027int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2028 const void *data, int offset, int len)
2029{
2030 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2031
2032 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2033}
2034EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2035
195aefde
IE
2036int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2037 unsigned long len)
2038{
2039 gfn_t gfn = gpa >> PAGE_SHIFT;
2040 int seg;
2041 int offset = offset_in_page(gpa);
2042 int ret;
2043
2044 while ((seg = next_segment(len, offset)) != 0) {
2045 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2046 if (ret < 0)
2047 return ret;
2048 offset = 0;
2049 len -= seg;
2050 data += seg;
2051 ++gfn;
2052 }
2053 return 0;
2054}
ff651cb6 2055EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2056
8e73485c
PB
2057int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2058 unsigned long len)
2059{
2060 gfn_t gfn = gpa >> PAGE_SHIFT;
2061 int seg;
2062 int offset = offset_in_page(gpa);
2063 int ret;
2064
2065 while ((seg = next_segment(len, offset)) != 0) {
2066 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2067 if (ret < 0)
2068 return ret;
2069 offset = 0;
2070 len -= seg;
2071 data += seg;
2072 ++gfn;
2073 }
2074 return 0;
2075}
2076EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2077
5a2d4365
PB
2078static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2079 struct gfn_to_hva_cache *ghc,
2080 gpa_t gpa, unsigned long len)
49c7754c 2081{
49c7754c 2082 int offset = offset_in_page(gpa);
8f964525
AH
2083 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2084 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2085 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2086 gfn_t nr_pages_avail;
f1b9dd5e 2087 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
49c7754c
GN
2088
2089 ghc->gpa = gpa;
2090 ghc->generation = slots->generation;
8f964525 2091 ghc->len = len;
f1b9dd5e
JM
2092 ghc->hva = KVM_HVA_ERR_BAD;
2093
2094 /*
2095 * If the requested region crosses two memslots, we still
2096 * verify that the entire region is valid here.
2097 */
2098 while (!r && start_gfn <= end_gfn) {
2099 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2100 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2101 &nr_pages_avail);
2102 if (kvm_is_error_hva(ghc->hva))
2103 r = -EFAULT;
2104 start_gfn += nr_pages_avail;
2105 }
2106
2107 /* Use the slow path for cross page reads and writes. */
2108 if (!r && nr_pages_needed == 1)
49c7754c 2109 ghc->hva += offset;
f1b9dd5e 2110 else
8f964525 2111 ghc->memslot = NULL;
f1b9dd5e
JM
2112
2113 return r;
49c7754c 2114}
5a2d4365 2115
4e335d9e 2116int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2117 gpa_t gpa, unsigned long len)
2118{
4e335d9e 2119 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2120 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2121}
4e335d9e 2122EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2123
4e335d9e 2124int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2125 void *data, unsigned int offset,
2126 unsigned long len)
49c7754c 2127{
4e335d9e 2128 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2129 int r;
4ec6e863 2130 gpa_t gpa = ghc->gpa + offset;
49c7754c 2131
4ec6e863 2132 BUG_ON(len + offset > ghc->len);
8f964525 2133
49c7754c 2134 if (slots->generation != ghc->generation)
5a2d4365 2135 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
8f964525
AH
2136
2137 if (unlikely(!ghc->memslot))
4e335d9e 2138 return kvm_write_guest(kvm, gpa, data, len);
49c7754c
GN
2139
2140 if (kvm_is_error_hva(ghc->hva))
2141 return -EFAULT;
2142
4ec6e863 2143 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2144 if (r)
2145 return -EFAULT;
4ec6e863 2146 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2147
2148 return 0;
2149}
4e335d9e 2150EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2151
4e335d9e
PB
2152int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2153 void *data, unsigned long len)
4ec6e863 2154{
4e335d9e 2155 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2156}
4e335d9e 2157EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2158
4e335d9e
PB
2159int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2160 void *data, unsigned long len)
e03b644f 2161{
4e335d9e 2162 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f
GN
2163 int r;
2164
8f964525
AH
2165 BUG_ON(len > ghc->len);
2166
e03b644f 2167 if (slots->generation != ghc->generation)
5a2d4365 2168 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
8f964525
AH
2169
2170 if (unlikely(!ghc->memslot))
4e335d9e 2171 return kvm_read_guest(kvm, ghc->gpa, data, len);
e03b644f
GN
2172
2173 if (kvm_is_error_hva(ghc->hva))
2174 return -EFAULT;
2175
2176 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2177 if (r)
2178 return -EFAULT;
2179
2180 return 0;
2181}
4e335d9e 2182EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2183
195aefde
IE
2184int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2185{
8a3caa6d
HC
2186 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2187
2188 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2189}
2190EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2191
2192int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2193{
2194 gfn_t gfn = gpa >> PAGE_SHIFT;
2195 int seg;
2196 int offset = offset_in_page(gpa);
2197 int ret;
2198
bfda0e84 2199 while ((seg = next_segment(len, offset)) != 0) {
195aefde
IE
2200 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2201 if (ret < 0)
2202 return ret;
2203 offset = 0;
2204 len -= seg;
2205 ++gfn;
2206 }
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(kvm_clear_guest);
2210
bc009e43 2211static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
7940876e 2212 gfn_t gfn)
6aa8b732 2213{
7e9d619d
RR
2214 if (memslot && memslot->dirty_bitmap) {
2215 unsigned long rel_gfn = gfn - memslot->base_gfn;
6aa8b732 2216
b74ca3b3 2217 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2218 }
2219}
2220
49c7754c
GN
2221void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2222{
2223 struct kvm_memory_slot *memslot;
2224
2225 memslot = gfn_to_memslot(kvm, gfn);
bc009e43 2226 mark_page_dirty_in_slot(memslot, gfn);
49c7754c 2227}
2ba9f0d8 2228EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2229
8e73485c
PB
2230void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2231{
2232 struct kvm_memory_slot *memslot;
2233
2234 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2235 mark_page_dirty_in_slot(memslot, gfn);
2236}
2237EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2238
20b7035c
JS
2239void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2240{
2241 if (!vcpu->sigset_active)
2242 return;
2243
2244 /*
2245 * This does a lockless modification of ->real_blocked, which is fine
2246 * because, only current can change ->real_blocked and all readers of
2247 * ->real_blocked don't care as long ->real_blocked is always a subset
2248 * of ->blocked.
2249 */
2250 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2251}
2252
2253void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2254{
2255 if (!vcpu->sigset_active)
2256 return;
2257
2258 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2259 sigemptyset(&current->real_blocked);
2260}
2261
aca6ff29
WL
2262static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2263{
dee339b5 2264 unsigned int old, val, grow, grow_start;
aca6ff29 2265
2cbd7824 2266 old = val = vcpu->halt_poll_ns;
dee339b5 2267 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 2268 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
2269 if (!grow)
2270 goto out;
2271
dee339b5
NW
2272 val *= grow;
2273 if (val < grow_start)
2274 val = grow_start;
aca6ff29 2275
313f636d
DM
2276 if (val > halt_poll_ns)
2277 val = halt_poll_ns;
2278
aca6ff29 2279 vcpu->halt_poll_ns = val;
7fa08e71 2280out:
2cbd7824 2281 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2282}
2283
2284static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2285{
6b6de68c 2286 unsigned int old, val, shrink;
aca6ff29 2287
2cbd7824 2288 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2289 shrink = READ_ONCE(halt_poll_ns_shrink);
2290 if (shrink == 0)
aca6ff29
WL
2291 val = 0;
2292 else
6b6de68c 2293 val /= shrink;
aca6ff29
WL
2294
2295 vcpu->halt_poll_ns = val;
2cbd7824 2296 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2297}
2298
f7819512
PB
2299static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2300{
50c28f21
JS
2301 int ret = -EINTR;
2302 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2303
f7819512
PB
2304 if (kvm_arch_vcpu_runnable(vcpu)) {
2305 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2306 goto out;
f7819512
PB
2307 }
2308 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2309 goto out;
f7819512 2310 if (signal_pending(current))
50c28f21 2311 goto out;
f7819512 2312
50c28f21
JS
2313 ret = 0;
2314out:
2315 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2316 return ret;
f7819512
PB
2317}
2318
b6958ce4
ED
2319/*
2320 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2321 */
8776e519 2322void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2323{
f7819512 2324 ktime_t start, cur;
8577370f 2325 DECLARE_SWAITQUEUE(wait);
f7819512 2326 bool waited = false;
aca6ff29 2327 u64 block_ns;
f7819512 2328
07ab0f8d
MZ
2329 kvm_arch_vcpu_blocking(vcpu);
2330
f7819512 2331 start = cur = ktime_get();
cdd6ad3a 2332 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 2333 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2334
62bea5bf 2335 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2336 do {
2337 /*
2338 * This sets KVM_REQ_UNHALT if an interrupt
2339 * arrives.
2340 */
2341 if (kvm_vcpu_check_block(vcpu) < 0) {
2342 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2343 if (!vcpu_valid_wakeup(vcpu))
2344 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2345 goto out;
2346 }
2347 cur = ktime_get();
2348 } while (single_task_running() && ktime_before(cur, stop));
2349 }
e5c239cf
MT
2350
2351 for (;;) {
b3dae109 2352 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
e5c239cf 2353
f7819512 2354 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2355 break;
2356
f7819512 2357 waited = true;
b6958ce4 2358 schedule();
b6958ce4 2359 }
d3bef15f 2360
8577370f 2361 finish_swait(&vcpu->wq, &wait);
f7819512 2362 cur = ktime_get();
f7819512 2363out:
07ab0f8d 2364 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
2365 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2366
44551b2f
WL
2367 if (!kvm_arch_no_poll(vcpu)) {
2368 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 2369 shrink_halt_poll_ns(vcpu);
44551b2f
WL
2370 } else if (halt_poll_ns) {
2371 if (block_ns <= vcpu->halt_poll_ns)
2372 ;
2373 /* we had a long block, shrink polling */
2374 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2375 shrink_halt_poll_ns(vcpu);
2376 /* we had a short halt and our poll time is too small */
2377 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2378 block_ns < halt_poll_ns)
2379 grow_halt_poll_ns(vcpu);
2380 } else {
2381 vcpu->halt_poll_ns = 0;
2382 }
2383 }
aca6ff29 2384
3491caf2
CB
2385 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2386 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 2387}
2ba9f0d8 2388EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 2389
178f02ff 2390bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 2391{
8577370f 2392 struct swait_queue_head *wqp;
b6d33834
CD
2393
2394 wqp = kvm_arch_vcpu_wq(vcpu);
5e0018b3 2395 if (swq_has_sleeper(wqp)) {
b3dae109 2396 swake_up_one(wqp);
d73eb57b 2397 WRITE_ONCE(vcpu->ready, true);
b6d33834 2398 ++vcpu->stat.halt_wakeup;
178f02ff 2399 return true;
b6d33834
CD
2400 }
2401
178f02ff 2402 return false;
dd1a4cc1
RK
2403}
2404EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2405
0266c894 2406#ifndef CONFIG_S390
dd1a4cc1
RK
2407/*
2408 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2409 */
2410void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2411{
2412 int me;
2413 int cpu = vcpu->cpu;
2414
178f02ff
RK
2415 if (kvm_vcpu_wake_up(vcpu))
2416 return;
2417
b6d33834
CD
2418 me = get_cpu();
2419 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2420 if (kvm_arch_vcpu_should_kick(vcpu))
2421 smp_send_reschedule(cpu);
2422 put_cpu();
2423}
a20ed54d 2424EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 2425#endif /* !CONFIG_S390 */
b6d33834 2426
fa93384f 2427int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
2428{
2429 struct pid *pid;
2430 struct task_struct *task = NULL;
fa93384f 2431 int ret = 0;
41628d33
KW
2432
2433 rcu_read_lock();
2434 pid = rcu_dereference(target->pid);
2435 if (pid)
27fbe64b 2436 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
2437 rcu_read_unlock();
2438 if (!task)
c45c528e 2439 return ret;
c45c528e 2440 ret = yield_to(task, 1);
41628d33 2441 put_task_struct(task);
c45c528e
R
2442
2443 return ret;
41628d33
KW
2444}
2445EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2446
06e48c51
R
2447/*
2448 * Helper that checks whether a VCPU is eligible for directed yield.
2449 * Most eligible candidate to yield is decided by following heuristics:
2450 *
2451 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2452 * (preempted lock holder), indicated by @in_spin_loop.
2453 * Set at the beiginning and cleared at the end of interception/PLE handler.
2454 *
2455 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2456 * chance last time (mostly it has become eligible now since we have probably
2457 * yielded to lockholder in last iteration. This is done by toggling
2458 * @dy_eligible each time a VCPU checked for eligibility.)
2459 *
2460 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2461 * to preempted lock-holder could result in wrong VCPU selection and CPU
2462 * burning. Giving priority for a potential lock-holder increases lock
2463 * progress.
2464 *
2465 * Since algorithm is based on heuristics, accessing another VCPU data without
2466 * locking does not harm. It may result in trying to yield to same VCPU, fail
2467 * and continue with next VCPU and so on.
2468 */
7940876e 2469static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 2470{
4a55dd72 2471#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
2472 bool eligible;
2473
2474 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 2475 vcpu->spin_loop.dy_eligible;
06e48c51
R
2476
2477 if (vcpu->spin_loop.in_spin_loop)
2478 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2479
2480 return eligible;
4a55dd72
SW
2481#else
2482 return true;
06e48c51 2483#endif
4a55dd72 2484}
c45c528e 2485
17e433b5
WL
2486/*
2487 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2488 * a vcpu_load/vcpu_put pair. However, for most architectures
2489 * kvm_arch_vcpu_runnable does not require vcpu_load.
2490 */
2491bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2492{
2493 return kvm_arch_vcpu_runnable(vcpu);
2494}
2495
2496static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2497{
2498 if (kvm_arch_dy_runnable(vcpu))
2499 return true;
2500
2501#ifdef CONFIG_KVM_ASYNC_PF
2502 if (!list_empty_careful(&vcpu->async_pf.done))
2503 return true;
2504#endif
2505
2506 return false;
2507}
2508
199b5763 2509void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 2510{
217ece61
RR
2511 struct kvm *kvm = me->kvm;
2512 struct kvm_vcpu *vcpu;
2513 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2514 int yielded = 0;
c45c528e 2515 int try = 3;
217ece61
RR
2516 int pass;
2517 int i;
d255f4f2 2518
4c088493 2519 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
2520 /*
2521 * We boost the priority of a VCPU that is runnable but not
2522 * currently running, because it got preempted by something
2523 * else and called schedule in __vcpu_run. Hopefully that
2524 * VCPU is holding the lock that we need and will release it.
2525 * We approximate round-robin by starting at the last boosted VCPU.
2526 */
c45c528e 2527 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 2528 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 2529 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
2530 i = last_boosted_vcpu;
2531 continue;
2532 } else if (pass && i > last_boosted_vcpu)
2533 break;
d73eb57b 2534 if (!READ_ONCE(vcpu->ready))
7bc7ae25 2535 continue;
217ece61
RR
2536 if (vcpu == me)
2537 continue;
17e433b5 2538 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
217ece61 2539 continue;
046ddeed
WL
2540 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2541 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 2542 continue;
06e48c51
R
2543 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2544 continue;
c45c528e
R
2545
2546 yielded = kvm_vcpu_yield_to(vcpu);
2547 if (yielded > 0) {
217ece61 2548 kvm->last_boosted_vcpu = i;
217ece61 2549 break;
c45c528e
R
2550 } else if (yielded < 0) {
2551 try--;
2552 if (!try)
2553 break;
217ece61 2554 }
217ece61
RR
2555 }
2556 }
4c088493 2557 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
2558
2559 /* Ensure vcpu is not eligible during next spinloop */
2560 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
2561}
2562EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2563
1499fa80 2564static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 2565{
11bac800 2566 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
2567 struct page *page;
2568
e4a533a4 2569 if (vmf->pgoff == 0)
039576c0 2570 page = virt_to_page(vcpu->run);
09566765 2571#ifdef CONFIG_X86
e4a533a4 2572 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 2573 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 2574#endif
4b4357e0 2575#ifdef CONFIG_KVM_MMIO
5f94c174
LV
2576 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2577 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 2578#endif
039576c0 2579 else
5b1c1493 2580 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 2581 get_page(page);
e4a533a4 2582 vmf->page = page;
2583 return 0;
9a2bb7f4
AK
2584}
2585
f0f37e2f 2586static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 2587 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
2588};
2589
2590static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2591{
2592 vma->vm_ops = &kvm_vcpu_vm_ops;
2593 return 0;
2594}
2595
bccf2150
AK
2596static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2597{
2598 struct kvm_vcpu *vcpu = filp->private_data;
2599
45b5939e 2600 debugfs_remove_recursive(vcpu->debugfs_dentry);
66c0b394 2601 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
2602 return 0;
2603}
2604
3d3aab1b 2605static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
2606 .release = kvm_vcpu_release,
2607 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 2608 .mmap = kvm_vcpu_mmap,
6038f373 2609 .llseek = noop_llseek,
7ddfd3e0 2610 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
2611};
2612
2613/*
2614 * Allocates an inode for the vcpu.
2615 */
2616static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2617{
e46b4692
MY
2618 char name[8 + 1 + ITOA_MAX_LEN + 1];
2619
2620 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2621 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
2622}
2623
3e7093d0 2624static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 2625{
741cbbae 2626#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
45b5939e 2627 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 2628
45b5939e 2629 if (!debugfs_initialized())
3e7093d0 2630 return;
45b5939e
LC
2631
2632 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2633 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3e7093d0 2634 vcpu->kvm->debugfs_dentry);
45b5939e 2635
3e7093d0 2636 kvm_arch_create_vcpu_debugfs(vcpu);
741cbbae 2637#endif
45b5939e
LC
2638}
2639
c5ea7660
AK
2640/*
2641 * Creates some virtual cpus. Good luck creating more than one.
2642 */
73880c80 2643static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
2644{
2645 int r;
e09fefde 2646 struct kvm_vcpu *vcpu;
c5ea7660 2647
0b1b1dfd 2648 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
2649 return -EINVAL;
2650
6c7caebc
PB
2651 mutex_lock(&kvm->lock);
2652 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2653 mutex_unlock(&kvm->lock);
2654 return -EINVAL;
2655 }
2656
2657 kvm->created_vcpus++;
2658 mutex_unlock(&kvm->lock);
2659
73880c80 2660 vcpu = kvm_arch_vcpu_create(kvm, id);
6c7caebc
PB
2661 if (IS_ERR(vcpu)) {
2662 r = PTR_ERR(vcpu);
2663 goto vcpu_decrement;
2664 }
c5ea7660 2665
15ad7146
AK
2666 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2667
26e5215f
AK
2668 r = kvm_arch_vcpu_setup(vcpu);
2669 if (r)
d780592b 2670 goto vcpu_destroy;
26e5215f 2671
3e7093d0 2672 kvm_create_vcpu_debugfs(vcpu);
45b5939e 2673
11ec2804 2674 mutex_lock(&kvm->lock);
e09fefde
DH
2675 if (kvm_get_vcpu_by_id(kvm, id)) {
2676 r = -EEXIST;
2677 goto unlock_vcpu_destroy;
2678 }
73880c80
GN
2679
2680 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
c5ea7660 2681
fb3f0f51 2682 /* Now it's all set up, let userspace reach it */
66c0b394 2683 kvm_get_kvm(kvm);
bccf2150 2684 r = create_vcpu_fd(vcpu);
73880c80
GN
2685 if (r < 0) {
2686 kvm_put_kvm(kvm);
d780592b 2687 goto unlock_vcpu_destroy;
73880c80
GN
2688 }
2689
2690 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
dd489240
PB
2691
2692 /*
2693 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2694 * before kvm->online_vcpu's incremented value.
2695 */
73880c80
GN
2696 smp_wmb();
2697 atomic_inc(&kvm->online_vcpus);
2698
73880c80 2699 mutex_unlock(&kvm->lock);
42897d86 2700 kvm_arch_vcpu_postcreate(vcpu);
fb3f0f51 2701 return r;
39c3b86e 2702
d780592b 2703unlock_vcpu_destroy:
7d8fece6 2704 mutex_unlock(&kvm->lock);
45b5939e 2705 debugfs_remove_recursive(vcpu->debugfs_dentry);
d780592b 2706vcpu_destroy:
d40ccc62 2707 kvm_arch_vcpu_destroy(vcpu);
6c7caebc
PB
2708vcpu_decrement:
2709 mutex_lock(&kvm->lock);
2710 kvm->created_vcpus--;
2711 mutex_unlock(&kvm->lock);
c5ea7660
AK
2712 return r;
2713}
2714
1961d276
AK
2715static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2716{
2717 if (sigset) {
2718 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2719 vcpu->sigset_active = 1;
2720 vcpu->sigset = *sigset;
2721 } else
2722 vcpu->sigset_active = 0;
2723 return 0;
2724}
2725
bccf2150
AK
2726static long kvm_vcpu_ioctl(struct file *filp,
2727 unsigned int ioctl, unsigned long arg)
6aa8b732 2728{
bccf2150 2729 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 2730 void __user *argp = (void __user *)arg;
313a3dc7 2731 int r;
fa3795a7
DH
2732 struct kvm_fpu *fpu = NULL;
2733 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 2734
6d4e4c4f
AK
2735 if (vcpu->kvm->mm != current->mm)
2736 return -EIO;
2122ff5e 2737
2ea75be3
DM
2738 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2739 return -EINVAL;
2740
2122ff5e 2741 /*
5cb0944c
PB
2742 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2743 * execution; mutex_lock() would break them.
2122ff5e 2744 */
5cb0944c
PB
2745 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2746 if (r != -ENOIOCTLCMD)
9fc77441 2747 return r;
2122ff5e 2748
ec7660cc
CD
2749 if (mutex_lock_killable(&vcpu->mutex))
2750 return -EINTR;
6aa8b732 2751 switch (ioctl) {
0e4524a5
CB
2752 case KVM_RUN: {
2753 struct pid *oldpid;
f0fe5108
AK
2754 r = -EINVAL;
2755 if (arg)
2756 goto out;
0e4524a5 2757 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 2758 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 2759 /* The thread running this VCPU changed. */
bd2a6394 2760 struct pid *newpid;
f95ef0cd 2761
bd2a6394
CD
2762 r = kvm_arch_vcpu_run_pid_change(vcpu);
2763 if (r)
2764 break;
2765
2766 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
2767 rcu_assign_pointer(vcpu->pid, newpid);
2768 if (oldpid)
2769 synchronize_rcu();
2770 put_pid(oldpid);
2771 }
b6c7a5dc 2772 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
64be5007 2773 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 2774 break;
0e4524a5 2775 }
6aa8b732 2776 case KVM_GET_REGS: {
3e4bb3ac 2777 struct kvm_regs *kvm_regs;
6aa8b732 2778
3e4bb3ac 2779 r = -ENOMEM;
b12ce36a 2780 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 2781 if (!kvm_regs)
6aa8b732 2782 goto out;
3e4bb3ac
XZ
2783 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2784 if (r)
2785 goto out_free1;
6aa8b732 2786 r = -EFAULT;
3e4bb3ac
XZ
2787 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2788 goto out_free1;
6aa8b732 2789 r = 0;
3e4bb3ac
XZ
2790out_free1:
2791 kfree(kvm_regs);
6aa8b732
AK
2792 break;
2793 }
2794 case KVM_SET_REGS: {
3e4bb3ac 2795 struct kvm_regs *kvm_regs;
6aa8b732 2796
3e4bb3ac 2797 r = -ENOMEM;
ff5c2c03
SL
2798 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2799 if (IS_ERR(kvm_regs)) {
2800 r = PTR_ERR(kvm_regs);
6aa8b732 2801 goto out;
ff5c2c03 2802 }
3e4bb3ac 2803 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 2804 kfree(kvm_regs);
6aa8b732
AK
2805 break;
2806 }
2807 case KVM_GET_SREGS: {
b12ce36a
BG
2808 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2809 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
2810 r = -ENOMEM;
2811 if (!kvm_sregs)
2812 goto out;
2813 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2814 if (r)
2815 goto out;
2816 r = -EFAULT;
fa3795a7 2817 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
2818 goto out;
2819 r = 0;
2820 break;
2821 }
2822 case KVM_SET_SREGS: {
ff5c2c03
SL
2823 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2824 if (IS_ERR(kvm_sregs)) {
2825 r = PTR_ERR(kvm_sregs);
18595411 2826 kvm_sregs = NULL;
6aa8b732 2827 goto out;
ff5c2c03 2828 }
fa3795a7 2829 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2830 break;
2831 }
62d9f0db
MT
2832 case KVM_GET_MP_STATE: {
2833 struct kvm_mp_state mp_state;
2834
2835 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2836 if (r)
2837 goto out;
2838 r = -EFAULT;
893bdbf1 2839 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
2840 goto out;
2841 r = 0;
2842 break;
2843 }
2844 case KVM_SET_MP_STATE: {
2845 struct kvm_mp_state mp_state;
2846
2847 r = -EFAULT;
893bdbf1 2848 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
2849 goto out;
2850 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
2851 break;
2852 }
6aa8b732
AK
2853 case KVM_TRANSLATE: {
2854 struct kvm_translation tr;
2855
2856 r = -EFAULT;
893bdbf1 2857 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 2858 goto out;
8b006791 2859 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
2860 if (r)
2861 goto out;
2862 r = -EFAULT;
893bdbf1 2863 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
2864 goto out;
2865 r = 0;
2866 break;
2867 }
d0bfb940
JK
2868 case KVM_SET_GUEST_DEBUG: {
2869 struct kvm_guest_debug dbg;
6aa8b732
AK
2870
2871 r = -EFAULT;
893bdbf1 2872 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 2873 goto out;
d0bfb940 2874 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
2875 break;
2876 }
1961d276
AK
2877 case KVM_SET_SIGNAL_MASK: {
2878 struct kvm_signal_mask __user *sigmask_arg = argp;
2879 struct kvm_signal_mask kvm_sigmask;
2880 sigset_t sigset, *p;
2881
2882 p = NULL;
2883 if (argp) {
2884 r = -EFAULT;
2885 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 2886 sizeof(kvm_sigmask)))
1961d276
AK
2887 goto out;
2888 r = -EINVAL;
893bdbf1 2889 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
2890 goto out;
2891 r = -EFAULT;
2892 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 2893 sizeof(sigset)))
1961d276
AK
2894 goto out;
2895 p = &sigset;
2896 }
376d41ff 2897 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
2898 break;
2899 }
b8836737 2900 case KVM_GET_FPU: {
b12ce36a 2901 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
2902 r = -ENOMEM;
2903 if (!fpu)
2904 goto out;
2905 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
2906 if (r)
2907 goto out;
2908 r = -EFAULT;
fa3795a7 2909 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
2910 goto out;
2911 r = 0;
2912 break;
2913 }
2914 case KVM_SET_FPU: {
ff5c2c03
SL
2915 fpu = memdup_user(argp, sizeof(*fpu));
2916 if (IS_ERR(fpu)) {
2917 r = PTR_ERR(fpu);
18595411 2918 fpu = NULL;
b8836737 2919 goto out;
ff5c2c03 2920 }
fa3795a7 2921 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
2922 break;
2923 }
bccf2150 2924 default:
313a3dc7 2925 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
2926 }
2927out:
ec7660cc 2928 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
2929 kfree(fpu);
2930 kfree(kvm_sregs);
bccf2150
AK
2931 return r;
2932}
2933
de8e5d74 2934#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
2935static long kvm_vcpu_compat_ioctl(struct file *filp,
2936 unsigned int ioctl, unsigned long arg)
2937{
2938 struct kvm_vcpu *vcpu = filp->private_data;
2939 void __user *argp = compat_ptr(arg);
2940 int r;
2941
2942 if (vcpu->kvm->mm != current->mm)
2943 return -EIO;
2944
2945 switch (ioctl) {
2946 case KVM_SET_SIGNAL_MASK: {
2947 struct kvm_signal_mask __user *sigmask_arg = argp;
2948 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
2949 sigset_t sigset;
2950
2951 if (argp) {
2952 r = -EFAULT;
2953 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 2954 sizeof(kvm_sigmask)))
1dda606c
AG
2955 goto out;
2956 r = -EINVAL;
3968cf62 2957 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
2958 goto out;
2959 r = -EFAULT;
3968cf62 2960 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
1dda606c 2961 goto out;
760a9a30
AC
2962 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2963 } else
2964 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
2965 break;
2966 }
2967 default:
2968 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2969 }
2970
2971out:
2972 return r;
2973}
2974#endif
2975
a1cd3f08
CLG
2976static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2977{
2978 struct kvm_device *dev = filp->private_data;
2979
2980 if (dev->ops->mmap)
2981 return dev->ops->mmap(dev, vma);
2982
2983 return -ENODEV;
2984}
2985
852b6d57
SW
2986static int kvm_device_ioctl_attr(struct kvm_device *dev,
2987 int (*accessor)(struct kvm_device *dev,
2988 struct kvm_device_attr *attr),
2989 unsigned long arg)
2990{
2991 struct kvm_device_attr attr;
2992
2993 if (!accessor)
2994 return -EPERM;
2995
2996 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2997 return -EFAULT;
2998
2999 return accessor(dev, &attr);
3000}
3001
3002static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3003 unsigned long arg)
3004{
3005 struct kvm_device *dev = filp->private_data;
3006
ddba9180
SC
3007 if (dev->kvm->mm != current->mm)
3008 return -EIO;
3009
852b6d57
SW
3010 switch (ioctl) {
3011 case KVM_SET_DEVICE_ATTR:
3012 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3013 case KVM_GET_DEVICE_ATTR:
3014 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3015 case KVM_HAS_DEVICE_ATTR:
3016 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3017 default:
3018 if (dev->ops->ioctl)
3019 return dev->ops->ioctl(dev, ioctl, arg);
3020
3021 return -ENOTTY;
3022 }
3023}
3024
852b6d57
SW
3025static int kvm_device_release(struct inode *inode, struct file *filp)
3026{
3027 struct kvm_device *dev = filp->private_data;
3028 struct kvm *kvm = dev->kvm;
3029
2bde9b3e
CLG
3030 if (dev->ops->release) {
3031 mutex_lock(&kvm->lock);
3032 list_del(&dev->vm_node);
3033 dev->ops->release(dev);
3034 mutex_unlock(&kvm->lock);
3035 }
3036
852b6d57
SW
3037 kvm_put_kvm(kvm);
3038 return 0;
3039}
3040
3041static const struct file_operations kvm_device_fops = {
3042 .unlocked_ioctl = kvm_device_ioctl,
3043 .release = kvm_device_release,
7ddfd3e0 3044 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 3045 .mmap = kvm_device_mmap,
852b6d57
SW
3046};
3047
3048struct kvm_device *kvm_device_from_filp(struct file *filp)
3049{
3050 if (filp->f_op != &kvm_device_fops)
3051 return NULL;
3052
3053 return filp->private_data;
3054}
3055
d60eacb0 3056static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 3057#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
3058 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3059 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 3060#endif
d60eacb0
WD
3061};
3062
3063int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3064{
3065 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3066 return -ENOSPC;
3067
3068 if (kvm_device_ops_table[type] != NULL)
3069 return -EEXIST;
3070
3071 kvm_device_ops_table[type] = ops;
3072 return 0;
3073}
3074
571ee1b6
WL
3075void kvm_unregister_device_ops(u32 type)
3076{
3077 if (kvm_device_ops_table[type] != NULL)
3078 kvm_device_ops_table[type] = NULL;
3079}
3080
852b6d57
SW
3081static int kvm_ioctl_create_device(struct kvm *kvm,
3082 struct kvm_create_device *cd)
3083{
3084 struct kvm_device_ops *ops = NULL;
3085 struct kvm_device *dev;
3086 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 3087 int type;
852b6d57
SW
3088 int ret;
3089
d60eacb0
WD
3090 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3091 return -ENODEV;
3092
1d487e9b
PB
3093 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3094 ops = kvm_device_ops_table[type];
d60eacb0 3095 if (ops == NULL)
852b6d57 3096 return -ENODEV;
852b6d57
SW
3097
3098 if (test)
3099 return 0;
3100
b12ce36a 3101 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
3102 if (!dev)
3103 return -ENOMEM;
3104
3105 dev->ops = ops;
3106 dev->kvm = kvm;
852b6d57 3107
a28ebea2 3108 mutex_lock(&kvm->lock);
1d487e9b 3109 ret = ops->create(dev, type);
852b6d57 3110 if (ret < 0) {
a28ebea2 3111 mutex_unlock(&kvm->lock);
852b6d57
SW
3112 kfree(dev);
3113 return ret;
3114 }
a28ebea2
CD
3115 list_add(&dev->vm_node, &kvm->devices);
3116 mutex_unlock(&kvm->lock);
852b6d57 3117
023e9fdd
CD
3118 if (ops->init)
3119 ops->init(dev);
3120
cfa39381 3121 kvm_get_kvm(kvm);
24009b05 3122 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3123 if (ret < 0) {
cfa39381 3124 kvm_put_kvm(kvm);
a28ebea2
CD
3125 mutex_lock(&kvm->lock);
3126 list_del(&dev->vm_node);
3127 mutex_unlock(&kvm->lock);
a0f1d21c 3128 ops->destroy(dev);
852b6d57
SW
3129 return ret;
3130 }
3131
852b6d57
SW
3132 cd->fd = ret;
3133 return 0;
3134}
3135
92b591a4
AG
3136static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3137{
3138 switch (arg) {
3139 case KVM_CAP_USER_MEMORY:
3140 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3141 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3142 case KVM_CAP_INTERNAL_ERROR_DATA:
3143#ifdef CONFIG_HAVE_KVM_MSI
3144 case KVM_CAP_SIGNAL_MSI:
3145#endif
297e2105 3146#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3147 case KVM_CAP_IRQFD:
92b591a4
AG
3148 case KVM_CAP_IRQFD_RESAMPLE:
3149#endif
e9ea5069 3150 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3151 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3152 case KVM_CAP_ENABLE_CAP_VM:
2a31b9db 3153#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
d7547c55 3154 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
2a31b9db 3155#endif
92b591a4 3156 return 1;
4b4357e0 3157#ifdef CONFIG_KVM_MMIO
30422558
PB
3158 case KVM_CAP_COALESCED_MMIO:
3159 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3160 case KVM_CAP_COALESCED_PIO:
3161 return 1;
30422558 3162#endif
92b591a4
AG
3163#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3164 case KVM_CAP_IRQ_ROUTING:
3165 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3166#endif
3167#if KVM_ADDRESS_SPACE_NUM > 1
3168 case KVM_CAP_MULTI_ADDRESS_SPACE:
3169 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3170#endif
c110ae57
PB
3171 case KVM_CAP_NR_MEMSLOTS:
3172 return KVM_USER_MEM_SLOTS;
92b591a4
AG
3173 default:
3174 break;
3175 }
3176 return kvm_vm_ioctl_check_extension(kvm, arg);
3177}
3178
e5d83c74
PB
3179int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3180 struct kvm_enable_cap *cap)
3181{
3182 return -EINVAL;
3183}
3184
3185static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3186 struct kvm_enable_cap *cap)
3187{
3188 switch (cap->cap) {
2a31b9db 3189#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
d7547c55 3190 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
2a31b9db
PB
3191 if (cap->flags || (cap->args[0] & ~1))
3192 return -EINVAL;
3193 kvm->manual_dirty_log_protect = cap->args[0];
3194 return 0;
3195#endif
e5d83c74
PB
3196 default:
3197 return kvm_vm_ioctl_enable_cap(kvm, cap);
3198 }
3199}
3200
bccf2150
AK
3201static long kvm_vm_ioctl(struct file *filp,
3202 unsigned int ioctl, unsigned long arg)
3203{
3204 struct kvm *kvm = filp->private_data;
3205 void __user *argp = (void __user *)arg;
1fe779f8 3206 int r;
bccf2150 3207
6d4e4c4f
AK
3208 if (kvm->mm != current->mm)
3209 return -EIO;
bccf2150
AK
3210 switch (ioctl) {
3211 case KVM_CREATE_VCPU:
3212 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3213 break;
e5d83c74
PB
3214 case KVM_ENABLE_CAP: {
3215 struct kvm_enable_cap cap;
3216
3217 r = -EFAULT;
3218 if (copy_from_user(&cap, argp, sizeof(cap)))
3219 goto out;
3220 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3221 break;
3222 }
6fc138d2
IE
3223 case KVM_SET_USER_MEMORY_REGION: {
3224 struct kvm_userspace_memory_region kvm_userspace_mem;
3225
3226 r = -EFAULT;
3227 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3228 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3229 goto out;
3230
47ae31e2 3231 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
3232 break;
3233 }
3234 case KVM_GET_DIRTY_LOG: {
3235 struct kvm_dirty_log log;
3236
3237 r = -EFAULT;
893bdbf1 3238 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 3239 goto out;
2c6f5df9 3240 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
3241 break;
3242 }
2a31b9db
PB
3243#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3244 case KVM_CLEAR_DIRTY_LOG: {
3245 struct kvm_clear_dirty_log log;
3246
3247 r = -EFAULT;
3248 if (copy_from_user(&log, argp, sizeof(log)))
3249 goto out;
3250 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3251 break;
3252 }
3253#endif
4b4357e0 3254#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3255 case KVM_REGISTER_COALESCED_MMIO: {
3256 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3257
5f94c174 3258 r = -EFAULT;
893bdbf1 3259 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3260 goto out;
5f94c174 3261 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
3262 break;
3263 }
3264 case KVM_UNREGISTER_COALESCED_MMIO: {
3265 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3266
5f94c174 3267 r = -EFAULT;
893bdbf1 3268 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3269 goto out;
5f94c174 3270 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
3271 break;
3272 }
3273#endif
721eecbf
GH
3274 case KVM_IRQFD: {
3275 struct kvm_irqfd data;
3276
3277 r = -EFAULT;
893bdbf1 3278 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 3279 goto out;
d4db2935 3280 r = kvm_irqfd(kvm, &data);
721eecbf
GH
3281 break;
3282 }
d34e6b17
GH
3283 case KVM_IOEVENTFD: {
3284 struct kvm_ioeventfd data;
3285
3286 r = -EFAULT;
893bdbf1 3287 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
3288 goto out;
3289 r = kvm_ioeventfd(kvm, &data);
3290 break;
3291 }
07975ad3
JK
3292#ifdef CONFIG_HAVE_KVM_MSI
3293 case KVM_SIGNAL_MSI: {
3294 struct kvm_msi msi;
3295
3296 r = -EFAULT;
893bdbf1 3297 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
3298 goto out;
3299 r = kvm_send_userspace_msi(kvm, &msi);
3300 break;
3301 }
23d43cf9
CD
3302#endif
3303#ifdef __KVM_HAVE_IRQ_LINE
3304 case KVM_IRQ_LINE_STATUS:
3305 case KVM_IRQ_LINE: {
3306 struct kvm_irq_level irq_event;
3307
3308 r = -EFAULT;
893bdbf1 3309 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
3310 goto out;
3311
aa2fbe6d
YZ
3312 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3313 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
3314 if (r)
3315 goto out;
3316
3317 r = -EFAULT;
3318 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 3319 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
3320 goto out;
3321 }
3322
3323 r = 0;
3324 break;
3325 }
73880c80 3326#endif
aa8d5944
AG
3327#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3328 case KVM_SET_GSI_ROUTING: {
3329 struct kvm_irq_routing routing;
3330 struct kvm_irq_routing __user *urouting;
f8c1b85b 3331 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
3332
3333 r = -EFAULT;
3334 if (copy_from_user(&routing, argp, sizeof(routing)))
3335 goto out;
3336 r = -EINVAL;
5c0aea0e
DH
3337 if (!kvm_arch_can_set_irq_routing(kvm))
3338 goto out;
caf1ff26 3339 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
3340 goto out;
3341 if (routing.flags)
3342 goto out;
f8c1b85b
PB
3343 if (routing.nr) {
3344 r = -ENOMEM;
42bc47b3
KC
3345 entries = vmalloc(array_size(sizeof(*entries),
3346 routing.nr));
f8c1b85b
PB
3347 if (!entries)
3348 goto out;
3349 r = -EFAULT;
3350 urouting = argp;
3351 if (copy_from_user(entries, urouting->entries,
3352 routing.nr * sizeof(*entries)))
3353 goto out_free_irq_routing;
3354 }
aa8d5944
AG
3355 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3356 routing.flags);
a642a175 3357out_free_irq_routing:
aa8d5944
AG
3358 vfree(entries);
3359 break;
3360 }
3361#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
3362 case KVM_CREATE_DEVICE: {
3363 struct kvm_create_device cd;
3364
3365 r = -EFAULT;
3366 if (copy_from_user(&cd, argp, sizeof(cd)))
3367 goto out;
3368
3369 r = kvm_ioctl_create_device(kvm, &cd);
3370 if (r)
3371 goto out;
3372
3373 r = -EFAULT;
3374 if (copy_to_user(argp, &cd, sizeof(cd)))
3375 goto out;
3376
3377 r = 0;
3378 break;
3379 }
92b591a4
AG
3380 case KVM_CHECK_EXTENSION:
3381 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3382 break;
f17abe9a 3383 default:
1fe779f8 3384 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
3385 }
3386out:
3387 return r;
3388}
3389
de8e5d74 3390#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
3391struct compat_kvm_dirty_log {
3392 __u32 slot;
3393 __u32 padding1;
3394 union {
3395 compat_uptr_t dirty_bitmap; /* one bit per page */
3396 __u64 padding2;
3397 };
3398};
3399
3400static long kvm_vm_compat_ioctl(struct file *filp,
3401 unsigned int ioctl, unsigned long arg)
3402{
3403 struct kvm *kvm = filp->private_data;
3404 int r;
3405
3406 if (kvm->mm != current->mm)
3407 return -EIO;
3408 switch (ioctl) {
3409 case KVM_GET_DIRTY_LOG: {
3410 struct compat_kvm_dirty_log compat_log;
3411 struct kvm_dirty_log log;
3412
6ff5894c
AB
3413 if (copy_from_user(&compat_log, (void __user *)arg,
3414 sizeof(compat_log)))
f6a3b168 3415 return -EFAULT;
6ff5894c
AB
3416 log.slot = compat_log.slot;
3417 log.padding1 = compat_log.padding1;
3418 log.padding2 = compat_log.padding2;
3419 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3420
3421 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
3422 break;
3423 }
3424 default:
3425 r = kvm_vm_ioctl(filp, ioctl, arg);
3426 }
6ff5894c
AB
3427 return r;
3428}
3429#endif
3430
3d3aab1b 3431static struct file_operations kvm_vm_fops = {
f17abe9a
AK
3432 .release = kvm_vm_release,
3433 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 3434 .llseek = noop_llseek,
7ddfd3e0 3435 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
3436};
3437
e08b9637 3438static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 3439{
aac87636 3440 int r;
f17abe9a 3441 struct kvm *kvm;
506cfba9 3442 struct file *file;
f17abe9a 3443
e08b9637 3444 kvm = kvm_create_vm(type);
d6d28168
AK
3445 if (IS_ERR(kvm))
3446 return PTR_ERR(kvm);
4b4357e0 3447#ifdef CONFIG_KVM_MMIO
6ce5a090 3448 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
3449 if (r < 0)
3450 goto put_kvm;
6ce5a090 3451#endif
506cfba9 3452 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
3453 if (r < 0)
3454 goto put_kvm;
3455
506cfba9
AV
3456 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3457 if (IS_ERR(file)) {
3458 put_unused_fd(r);
78588335
ME
3459 r = PTR_ERR(file);
3460 goto put_kvm;
506cfba9 3461 }
536a6f88 3462
525df861
PB
3463 /*
3464 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3465 * already set, with ->release() being kvm_vm_release(). In error
3466 * cases it will be called by the final fput(file) and will take
3467 * care of doing kvm_put_kvm(kvm).
3468 */
536a6f88 3469 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
3470 put_unused_fd(r);
3471 fput(file);
536a6f88
JF
3472 return -ENOMEM;
3473 }
286de8f6 3474 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 3475
506cfba9 3476 fd_install(r, file);
aac87636 3477 return r;
78588335
ME
3478
3479put_kvm:
3480 kvm_put_kvm(kvm);
3481 return r;
f17abe9a
AK
3482}
3483
3484static long kvm_dev_ioctl(struct file *filp,
3485 unsigned int ioctl, unsigned long arg)
3486{
07c45a36 3487 long r = -EINVAL;
f17abe9a
AK
3488
3489 switch (ioctl) {
3490 case KVM_GET_API_VERSION:
f0fe5108
AK
3491 if (arg)
3492 goto out;
f17abe9a
AK
3493 r = KVM_API_VERSION;
3494 break;
3495 case KVM_CREATE_VM:
e08b9637 3496 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 3497 break;
018d00d2 3498 case KVM_CHECK_EXTENSION:
784aa3d7 3499 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 3500 break;
07c45a36 3501 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
3502 if (arg)
3503 goto out;
adb1ff46
AK
3504 r = PAGE_SIZE; /* struct kvm_run */
3505#ifdef CONFIG_X86
3506 r += PAGE_SIZE; /* pio data page */
5f94c174 3507#endif
4b4357e0 3508#ifdef CONFIG_KVM_MMIO
5f94c174 3509 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 3510#endif
07c45a36 3511 break;
d4c9ff2d
FEL
3512 case KVM_TRACE_ENABLE:
3513 case KVM_TRACE_PAUSE:
3514 case KVM_TRACE_DISABLE:
2023a29c 3515 r = -EOPNOTSUPP;
d4c9ff2d 3516 break;
6aa8b732 3517 default:
043405e1 3518 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
3519 }
3520out:
3521 return r;
3522}
3523
6aa8b732 3524static struct file_operations kvm_chardev_ops = {
6aa8b732 3525 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 3526 .llseek = noop_llseek,
7ddfd3e0 3527 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
3528};
3529
3530static struct miscdevice kvm_dev = {
bbe4432e 3531 KVM_MINOR,
6aa8b732
AK
3532 "kvm",
3533 &kvm_chardev_ops,
3534};
3535
75b7127c 3536static void hardware_enable_nolock(void *junk)
1b6c0168
AK
3537{
3538 int cpu = raw_smp_processor_id();
10474ae8 3539 int r;
1b6c0168 3540
7f59f492 3541 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3542 return;
10474ae8 3543
7f59f492 3544 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 3545
13a34e06 3546 r = kvm_arch_hardware_enable();
10474ae8
AG
3547
3548 if (r) {
3549 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3550 atomic_inc(&hardware_enable_failed);
1170adc6 3551 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 3552 }
1b6c0168
AK
3553}
3554
8c18b2d2 3555static int kvm_starting_cpu(unsigned int cpu)
75b7127c 3556{
4a937f96 3557 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3558 if (kvm_usage_count)
3559 hardware_enable_nolock(NULL);
4a937f96 3560 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3561 return 0;
75b7127c
TY
3562}
3563
3564static void hardware_disable_nolock(void *junk)
1b6c0168
AK
3565{
3566 int cpu = raw_smp_processor_id();
3567
7f59f492 3568 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3569 return;
7f59f492 3570 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 3571 kvm_arch_hardware_disable();
1b6c0168
AK
3572}
3573
8c18b2d2 3574static int kvm_dying_cpu(unsigned int cpu)
75b7127c 3575{
4a937f96 3576 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3577 if (kvm_usage_count)
3578 hardware_disable_nolock(NULL);
4a937f96 3579 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3580 return 0;
75b7127c
TY
3581}
3582
10474ae8
AG
3583static void hardware_disable_all_nolock(void)
3584{
3585 BUG_ON(!kvm_usage_count);
3586
3587 kvm_usage_count--;
3588 if (!kvm_usage_count)
75b7127c 3589 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
3590}
3591
3592static void hardware_disable_all(void)
3593{
4a937f96 3594 raw_spin_lock(&kvm_count_lock);
10474ae8 3595 hardware_disable_all_nolock();
4a937f96 3596 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3597}
3598
3599static int hardware_enable_all(void)
3600{
3601 int r = 0;
3602
4a937f96 3603 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
3604
3605 kvm_usage_count++;
3606 if (kvm_usage_count == 1) {
3607 atomic_set(&hardware_enable_failed, 0);
75b7127c 3608 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
3609
3610 if (atomic_read(&hardware_enable_failed)) {
3611 hardware_disable_all_nolock();
3612 r = -EBUSY;
3613 }
3614 }
3615
4a937f96 3616 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3617
3618 return r;
3619}
3620
9a2b85c6 3621static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 3622 void *v)
9a2b85c6 3623{
8e1c1815
SY
3624 /*
3625 * Some (well, at least mine) BIOSes hang on reboot if
3626 * in vmx root mode.
3627 *
3628 * And Intel TXT required VMX off for all cpu when system shutdown.
3629 */
1170adc6 3630 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 3631 kvm_rebooting = true;
75b7127c 3632 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
3633 return NOTIFY_OK;
3634}
3635
3636static struct notifier_block kvm_reboot_notifier = {
3637 .notifier_call = kvm_reboot,
3638 .priority = 0,
3639};
3640
e93f8a0f 3641static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
3642{
3643 int i;
3644
3645 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 3646 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
3647
3648 kvm_iodevice_destructor(pos);
3649 }
e93f8a0f 3650 kfree(bus);
2eeb2e94
GH
3651}
3652
c21fbff1 3653static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 3654 const struct kvm_io_range *r2)
743eeb0b 3655{
8f4216c7
JW
3656 gpa_t addr1 = r1->addr;
3657 gpa_t addr2 = r2->addr;
3658
3659 if (addr1 < addr2)
743eeb0b 3660 return -1;
8f4216c7
JW
3661
3662 /* If r2->len == 0, match the exact address. If r2->len != 0,
3663 * accept any overlapping write. Any order is acceptable for
3664 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3665 * we process all of them.
3666 */
3667 if (r2->len) {
3668 addr1 += r1->len;
3669 addr2 += r2->len;
3670 }
3671
3672 if (addr1 > addr2)
743eeb0b 3673 return 1;
8f4216c7 3674
743eeb0b
SL
3675 return 0;
3676}
3677
a343c9b7
PB
3678static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3679{
c21fbff1 3680 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
3681}
3682
39369f7a 3683static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
3684 gpa_t addr, int len)
3685{
3686 struct kvm_io_range *range, key;
3687 int off;
3688
3689 key = (struct kvm_io_range) {
3690 .addr = addr,
3691 .len = len,
3692 };
3693
3694 range = bsearch(&key, bus->range, bus->dev_count,
3695 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3696 if (range == NULL)
3697 return -ENOENT;
3698
3699 off = range - bus->range;
3700
c21fbff1 3701 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
3702 off--;
3703
3704 return off;
3705}
3706
e32edf4f 3707static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
3708 struct kvm_io_range *range, const void *val)
3709{
3710 int idx;
3711
3712 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3713 if (idx < 0)
3714 return -EOPNOTSUPP;
3715
3716 while (idx < bus->dev_count &&
c21fbff1 3717 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3718 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3719 range->len, val))
3720 return idx;
3721 idx++;
3722 }
3723
3724 return -EOPNOTSUPP;
3725}
3726
bda9020e 3727/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 3728int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 3729 int len, const void *val)
2eeb2e94 3730{
90d83dc3 3731 struct kvm_io_bus *bus;
743eeb0b 3732 struct kvm_io_range range;
126a5af5 3733 int r;
743eeb0b
SL
3734
3735 range = (struct kvm_io_range) {
3736 .addr = addr,
3737 .len = len,
3738 };
90d83dc3 3739
e32edf4f 3740 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3741 if (!bus)
3742 return -ENOMEM;
e32edf4f 3743 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3744 return r < 0 ? r : 0;
3745}
a2420107 3746EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
3747
3748/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
3749int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3750 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
3751{
3752 struct kvm_io_bus *bus;
3753 struct kvm_io_range range;
3754
3755 range = (struct kvm_io_range) {
3756 .addr = addr,
3757 .len = len,
3758 };
3759
e32edf4f 3760 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3761 if (!bus)
3762 return -ENOMEM;
126a5af5
CH
3763
3764 /* First try the device referenced by cookie. */
3765 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 3766 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 3767 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
3768 val))
3769 return cookie;
3770
3771 /*
3772 * cookie contained garbage; fall back to search and return the
3773 * correct cookie value.
3774 */
e32edf4f 3775 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3776}
3777
e32edf4f
NN
3778static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3779 struct kvm_io_range *range, void *val)
126a5af5
CH
3780{
3781 int idx;
3782
3783 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
3784 if (idx < 0)
3785 return -EOPNOTSUPP;
3786
3787 while (idx < bus->dev_count &&
c21fbff1 3788 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3789 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3790 range->len, val))
3791 return idx;
743eeb0b
SL
3792 idx++;
3793 }
3794
bda9020e
MT
3795 return -EOPNOTSUPP;
3796}
2eeb2e94 3797
bda9020e 3798/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 3799int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 3800 int len, void *val)
bda9020e 3801{
90d83dc3 3802 struct kvm_io_bus *bus;
743eeb0b 3803 struct kvm_io_range range;
126a5af5 3804 int r;
743eeb0b
SL
3805
3806 range = (struct kvm_io_range) {
3807 .addr = addr,
3808 .len = len,
3809 };
e93f8a0f 3810
e32edf4f 3811 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3812 if (!bus)
3813 return -ENOMEM;
e32edf4f 3814 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
3815 return r < 0 ? r : 0;
3816}
743eeb0b 3817
79fac95e 3818/* Caller must hold slots_lock. */
743eeb0b
SL
3819int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3820 int len, struct kvm_io_device *dev)
6c474694 3821{
d4c67a7a 3822 int i;
e93f8a0f 3823 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 3824 struct kvm_io_range range;
090b7aff 3825
4a12f951 3826 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
3827 if (!bus)
3828 return -ENOMEM;
3829
6ea34c9b
AK
3830 /* exclude ioeventfd which is limited by maximum fd */
3831 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 3832 return -ENOSPC;
2eeb2e94 3833
90952cd3 3834 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 3835 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
3836 if (!new_bus)
3837 return -ENOMEM;
d4c67a7a
GH
3838
3839 range = (struct kvm_io_range) {
3840 .addr = addr,
3841 .len = len,
3842 .dev = dev,
3843 };
3844
3845 for (i = 0; i < bus->dev_count; i++)
3846 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3847 break;
3848
3849 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3850 new_bus->dev_count++;
3851 new_bus->range[i] = range;
3852 memcpy(new_bus->range + i + 1, bus->range + i,
3853 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
3854 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3855 synchronize_srcu_expedited(&kvm->srcu);
3856 kfree(bus);
090b7aff
GH
3857
3858 return 0;
3859}
3860
79fac95e 3861/* Caller must hold slots_lock. */
90db1043
DH
3862void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3863 struct kvm_io_device *dev)
090b7aff 3864{
90db1043 3865 int i;
e93f8a0f 3866 struct kvm_io_bus *new_bus, *bus;
090b7aff 3867
4a12f951 3868 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 3869 if (!bus)
90db1043 3870 return;
df630b8c 3871
a1300716
AK
3872 for (i = 0; i < bus->dev_count; i++)
3873 if (bus->range[i].dev == dev) {
090b7aff
GH
3874 break;
3875 }
e93f8a0f 3876
90db1043
DH
3877 if (i == bus->dev_count)
3878 return;
a1300716 3879
90952cd3 3880 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 3881 GFP_KERNEL_ACCOUNT);
90db1043
DH
3882 if (!new_bus) {
3883 pr_err("kvm: failed to shrink bus, removing it completely\n");
3884 goto broken;
3885 }
a1300716
AK
3886
3887 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3888 new_bus->dev_count--;
3889 memcpy(new_bus->range + i, bus->range + i + 1,
3890 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f 3891
90db1043 3892broken:
e93f8a0f
MT
3893 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3894 synchronize_srcu_expedited(&kvm->srcu);
3895 kfree(bus);
90db1043 3896 return;
2eeb2e94
GH
3897}
3898
8a39d006
AP
3899struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3900 gpa_t addr)
3901{
3902 struct kvm_io_bus *bus;
3903 int dev_idx, srcu_idx;
3904 struct kvm_io_device *iodev = NULL;
3905
3906 srcu_idx = srcu_read_lock(&kvm->srcu);
3907
3908 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
3909 if (!bus)
3910 goto out_unlock;
8a39d006
AP
3911
3912 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3913 if (dev_idx < 0)
3914 goto out_unlock;
3915
3916 iodev = bus->range[dev_idx].dev;
3917
3918out_unlock:
3919 srcu_read_unlock(&kvm->srcu, srcu_idx);
3920
3921 return iodev;
3922}
3923EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3924
536a6f88
JF
3925static int kvm_debugfs_open(struct inode *inode, struct file *file,
3926 int (*get)(void *, u64 *), int (*set)(void *, u64),
3927 const char *fmt)
3928{
3929 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3930 inode->i_private;
3931
3932 /* The debugfs files are a reference to the kvm struct which
3933 * is still valid when kvm_destroy_vm is called.
3934 * To avoid the race between open and the removal of the debugfs
3935 * directory we test against the users count.
3936 */
e3736c3e 3937 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
3938 return -ENOENT;
3939
833b45de
PB
3940 if (simple_attr_open(inode, file, get,
3941 stat_data->mode & S_IWUGO ? set : NULL,
3942 fmt)) {
536a6f88
JF
3943 kvm_put_kvm(stat_data->kvm);
3944 return -ENOMEM;
3945 }
3946
3947 return 0;
3948}
3949
3950static int kvm_debugfs_release(struct inode *inode, struct file *file)
3951{
3952 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3953 inode->i_private;
3954
3955 simple_attr_release(inode, file);
3956 kvm_put_kvm(stat_data->kvm);
3957
3958 return 0;
3959}
3960
3961static int vm_stat_get_per_vm(void *data, u64 *val)
3962{
3963 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3964
8a7e75d4 3965 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
536a6f88
JF
3966
3967 return 0;
3968}
3969
ce35ef27
SJS
3970static int vm_stat_clear_per_vm(void *data, u64 val)
3971{
3972 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3973
3974 if (val)
3975 return -EINVAL;
3976
3977 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3978
3979 return 0;
3980}
3981
536a6f88
JF
3982static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3983{
3984 __simple_attr_check_format("%llu\n", 0ull);
3985 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
ce35ef27 3986 vm_stat_clear_per_vm, "%llu\n");
536a6f88
JF
3987}
3988
3989static const struct file_operations vm_stat_get_per_vm_fops = {
3990 .owner = THIS_MODULE,
3991 .open = vm_stat_get_per_vm_open,
3992 .release = kvm_debugfs_release,
3993 .read = simple_attr_read,
3994 .write = simple_attr_write,
3bed8888 3995 .llseek = no_llseek,
536a6f88
JF
3996};
3997
3998static int vcpu_stat_get_per_vm(void *data, u64 *val)
3999{
4000 int i;
4001 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4002 struct kvm_vcpu *vcpu;
4003
4004 *val = 0;
4005
4006 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
8a7e75d4 4007 *val += *(u64 *)((void *)vcpu + stat_data->offset);
536a6f88
JF
4008
4009 return 0;
4010}
4011
ce35ef27
SJS
4012static int vcpu_stat_clear_per_vm(void *data, u64 val)
4013{
4014 int i;
4015 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4016 struct kvm_vcpu *vcpu;
4017
4018 if (val)
4019 return -EINVAL;
4020
4021 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4022 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4023
4024 return 0;
4025}
4026
536a6f88
JF
4027static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4028{
4029 __simple_attr_check_format("%llu\n", 0ull);
4030 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
ce35ef27 4031 vcpu_stat_clear_per_vm, "%llu\n");
536a6f88
JF
4032}
4033
4034static const struct file_operations vcpu_stat_get_per_vm_fops = {
4035 .owner = THIS_MODULE,
4036 .open = vcpu_stat_get_per_vm_open,
4037 .release = kvm_debugfs_release,
4038 .read = simple_attr_read,
4039 .write = simple_attr_write,
3bed8888 4040 .llseek = no_llseek,
536a6f88
JF
4041};
4042
4043static const struct file_operations *stat_fops_per_vm[] = {
4044 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4045 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4046};
4047
8b88b099 4048static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
4049{
4050 unsigned offset = (long)_offset;
ba1389b7 4051 struct kvm *kvm;
536a6f88
JF
4052 struct kvm_stat_data stat_tmp = {.offset = offset};
4053 u64 tmp_val;
ba1389b7 4054
8b88b099 4055 *val = 0;
0d9ce162 4056 mutex_lock(&kvm_lock);
536a6f88
JF
4057 list_for_each_entry(kvm, &vm_list, vm_list) {
4058 stat_tmp.kvm = kvm;
4059 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4060 *val += tmp_val;
4061 }
0d9ce162 4062 mutex_unlock(&kvm_lock);
8b88b099 4063 return 0;
ba1389b7
AK
4064}
4065
ce35ef27
SJS
4066static int vm_stat_clear(void *_offset, u64 val)
4067{
4068 unsigned offset = (long)_offset;
4069 struct kvm *kvm;
4070 struct kvm_stat_data stat_tmp = {.offset = offset};
4071
4072 if (val)
4073 return -EINVAL;
4074
0d9ce162 4075 mutex_lock(&kvm_lock);
ce35ef27
SJS
4076 list_for_each_entry(kvm, &vm_list, vm_list) {
4077 stat_tmp.kvm = kvm;
4078 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4079 }
0d9ce162 4080 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4081
4082 return 0;
4083}
4084
4085DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 4086
8b88b099 4087static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
4088{
4089 unsigned offset = (long)_offset;
1165f5fe 4090 struct kvm *kvm;
536a6f88
JF
4091 struct kvm_stat_data stat_tmp = {.offset = offset};
4092 u64 tmp_val;
1165f5fe 4093
8b88b099 4094 *val = 0;
0d9ce162 4095 mutex_lock(&kvm_lock);
536a6f88
JF
4096 list_for_each_entry(kvm, &vm_list, vm_list) {
4097 stat_tmp.kvm = kvm;
4098 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4099 *val += tmp_val;
4100 }
0d9ce162 4101 mutex_unlock(&kvm_lock);
8b88b099 4102 return 0;
1165f5fe
AK
4103}
4104
ce35ef27
SJS
4105static int vcpu_stat_clear(void *_offset, u64 val)
4106{
4107 unsigned offset = (long)_offset;
4108 struct kvm *kvm;
4109 struct kvm_stat_data stat_tmp = {.offset = offset};
4110
4111 if (val)
4112 return -EINVAL;
4113
0d9ce162 4114 mutex_lock(&kvm_lock);
ce35ef27
SJS
4115 list_for_each_entry(kvm, &vm_list, vm_list) {
4116 stat_tmp.kvm = kvm;
4117 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4118 }
0d9ce162 4119 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4120
4121 return 0;
4122}
4123
4124DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4125 "%llu\n");
ba1389b7 4126
828c0950 4127static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4128 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4129 [KVM_STAT_VM] = &vm_stat_fops,
4130};
1165f5fe 4131
286de8f6
CI
4132static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4133{
4134 struct kobj_uevent_env *env;
286de8f6
CI
4135 unsigned long long created, active;
4136
4137 if (!kvm_dev.this_device || !kvm)
4138 return;
4139
0d9ce162 4140 mutex_lock(&kvm_lock);
286de8f6
CI
4141 if (type == KVM_EVENT_CREATE_VM) {
4142 kvm_createvm_count++;
4143 kvm_active_vms++;
4144 } else if (type == KVM_EVENT_DESTROY_VM) {
4145 kvm_active_vms--;
4146 }
4147 created = kvm_createvm_count;
4148 active = kvm_active_vms;
0d9ce162 4149 mutex_unlock(&kvm_lock);
286de8f6 4150
b12ce36a 4151 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
4152 if (!env)
4153 return;
4154
4155 add_uevent_var(env, "CREATED=%llu", created);
4156 add_uevent_var(env, "COUNT=%llu", active);
4157
fdeaf7e3 4158 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4159 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4160 kvm->userspace_pid = task_pid_nr(current);
4161 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4162 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4163 }
4164 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 4165
8ed0579c 4166 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 4167 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
4168
4169 if (p) {
4170 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4171 if (!IS_ERR(tmp))
4172 add_uevent_var(env, "STATS_PATH=%s", tmp);
4173 kfree(p);
286de8f6
CI
4174 }
4175 }
4176 /* no need for checks, since we are adding at most only 5 keys */
4177 env->envp[env->envp_idx++] = NULL;
4178 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4179 kfree(env);
286de8f6
CI
4180}
4181
929f45e3 4182static void kvm_init_debug(void)
6aa8b732
AK
4183{
4184 struct kvm_stats_debugfs_item *p;
4185
76f7c879 4186 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4187
536a6f88
JF
4188 kvm_debugfs_num_entries = 0;
4189 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
833b45de
PB
4190 int mode = p->mode ? p->mode : 0644;
4191 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
929f45e3
GKH
4192 (void *)(long)p->offset,
4193 stat_fops[p->kind]);
4f69b680 4194 }
6aa8b732
AK
4195}
4196
fb3600cc 4197static int kvm_suspend(void)
59ae6c6b 4198{
10474ae8 4199 if (kvm_usage_count)
75b7127c 4200 hardware_disable_nolock(NULL);
59ae6c6b
AK
4201 return 0;
4202}
4203
fb3600cc 4204static void kvm_resume(void)
59ae6c6b 4205{
ca84d1a2 4206 if (kvm_usage_count) {
2eb06c30
WL
4207#ifdef CONFIG_LOCKDEP
4208 WARN_ON(lockdep_is_held(&kvm_count_lock));
4209#endif
75b7127c 4210 hardware_enable_nolock(NULL);
ca84d1a2 4211 }
59ae6c6b
AK
4212}
4213
fb3600cc 4214static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4215 .suspend = kvm_suspend,
4216 .resume = kvm_resume,
4217};
4218
15ad7146
AK
4219static inline
4220struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4221{
4222 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4223}
4224
4225static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4226{
4227 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 4228
046ddeed 4229 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 4230 WRITE_ONCE(vcpu->ready, false);
15ad7146 4231
e790d9ef
RK
4232 kvm_arch_sched_in(vcpu, cpu);
4233
e9b11c17 4234 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
4235}
4236
4237static void kvm_sched_out(struct preempt_notifier *pn,
4238 struct task_struct *next)
4239{
4240 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4241
d73eb57b 4242 if (current->state == TASK_RUNNING) {
046ddeed 4243 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
4244 WRITE_ONCE(vcpu->ready, true);
4245 }
e9b11c17 4246 kvm_arch_vcpu_put(vcpu);
15ad7146
AK
4247}
4248
f257d6dc
SC
4249static void check_processor_compat(void *rtn)
4250{
4251 *(int *)rtn = kvm_arch_check_processor_compat();
4252}
4253
0ee75bea 4254int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 4255 struct module *module)
6aa8b732
AK
4256{
4257 int r;
002c7f7c 4258 int cpu;
6aa8b732 4259
f8c16bba
ZX
4260 r = kvm_arch_init(opaque);
4261 if (r)
d2308784 4262 goto out_fail;
cb498ea2 4263
7dac16c3
AH
4264 /*
4265 * kvm_arch_init makes sure there's at most one caller
4266 * for architectures that support multiple implementations,
4267 * like intel and amd on x86.
36343f6e
PB
4268 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4269 * conflicts in case kvm is already setup for another implementation.
7dac16c3 4270 */
36343f6e
PB
4271 r = kvm_irqfd_init();
4272 if (r)
4273 goto out_irqfd;
7dac16c3 4274
8437a617 4275 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
4276 r = -ENOMEM;
4277 goto out_free_0;
4278 }
4279
e9b11c17 4280 r = kvm_arch_hardware_setup();
6aa8b732 4281 if (r < 0)
7f59f492 4282 goto out_free_0a;
6aa8b732 4283
002c7f7c 4284 for_each_online_cpu(cpu) {
f257d6dc 4285 smp_call_function_single(cpu, check_processor_compat, &r, 1);
002c7f7c 4286 if (r < 0)
d2308784 4287 goto out_free_1;
002c7f7c
YS
4288 }
4289
73c1b41e 4290 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 4291 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 4292 if (r)
d2308784 4293 goto out_free_2;
6aa8b732
AK
4294 register_reboot_notifier(&kvm_reboot_notifier);
4295
c16f862d 4296 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
4297 if (!vcpu_align)
4298 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
4299 kvm_vcpu_cache =
4300 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4301 SLAB_ACCOUNT,
4302 offsetof(struct kvm_vcpu, arch),
4303 sizeof_field(struct kvm_vcpu, arch),
4304 NULL);
c16f862d
RR
4305 if (!kvm_vcpu_cache) {
4306 r = -ENOMEM;
fb3600cc 4307 goto out_free_3;
c16f862d
RR
4308 }
4309
af585b92
GN
4310 r = kvm_async_pf_init();
4311 if (r)
4312 goto out_free;
4313
6aa8b732 4314 kvm_chardev_ops.owner = module;
3d3aab1b
CB
4315 kvm_vm_fops.owner = module;
4316 kvm_vcpu_fops.owner = module;
6aa8b732
AK
4317
4318 r = misc_register(&kvm_dev);
4319 if (r) {
1170adc6 4320 pr_err("kvm: misc device register failed\n");
af585b92 4321 goto out_unreg;
6aa8b732
AK
4322 }
4323
fb3600cc
RW
4324 register_syscore_ops(&kvm_syscore_ops);
4325
15ad7146
AK
4326 kvm_preempt_ops.sched_in = kvm_sched_in;
4327 kvm_preempt_ops.sched_out = kvm_sched_out;
4328
929f45e3 4329 kvm_init_debug();
0ea4ed8e 4330
3c3c29fd
PB
4331 r = kvm_vfio_ops_init();
4332 WARN_ON(r);
4333
c7addb90 4334 return 0;
6aa8b732 4335
af585b92
GN
4336out_unreg:
4337 kvm_async_pf_deinit();
6aa8b732 4338out_free:
c16f862d 4339 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 4340out_free_3:
6aa8b732 4341 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4342 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 4343out_free_2:
d2308784 4344out_free_1:
e9b11c17 4345 kvm_arch_hardware_unsetup();
7f59f492
RR
4346out_free_0a:
4347 free_cpumask_var(cpus_hardware_enabled);
d2308784 4348out_free_0:
a0f155e9 4349 kvm_irqfd_exit();
36343f6e 4350out_irqfd:
7dac16c3
AH
4351 kvm_arch_exit();
4352out_fail:
6aa8b732
AK
4353 return r;
4354}
cb498ea2 4355EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 4356
cb498ea2 4357void kvm_exit(void)
6aa8b732 4358{
4bd33b56 4359 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 4360 misc_deregister(&kvm_dev);
c16f862d 4361 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 4362 kvm_async_pf_deinit();
fb3600cc 4363 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 4364 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4365 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 4366 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 4367 kvm_arch_hardware_unsetup();
f8c16bba 4368 kvm_arch_exit();
a0f155e9 4369 kvm_irqfd_exit();
7f59f492 4370 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 4371 kvm_vfio_ops_exit();
6aa8b732 4372}
cb498ea2 4373EXPORT_SYMBOL_GPL(kvm_exit);