KVM: Pass the name of the VM fd to kvm_create_vm_debugfs()
[linux-2.6-block.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
982ed0de 62#include "kvm_mm.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
fb04a1ed
PX
68#include <linux/kvm_dirty_ring.h>
69
536a6f88
JF
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
6aa8b732
AK
73MODULE_AUTHOR("Qumranet");
74MODULE_LICENSE("GPL");
75
920552b2 76/* Architectures should define their poll value according to the halt latency */
ec76d819 77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 78module_param(halt_poll_ns, uint, 0644);
ec76d819 79EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 80
aca6ff29 81/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 82unsigned int halt_poll_ns_grow = 2;
039c5d1b 83module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 85
49113d36
NW
86/* The start value to grow halt_poll_ns from */
87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88module_param(halt_poll_ns_grow_start, uint, 0644);
89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
aca6ff29 91/* Default resets per-vcpu halt_poll_ns . */
ec76d819 92unsigned int halt_poll_ns_shrink;
039c5d1b 93module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 95
fa40a821
MT
96/*
97 * Ordering of locks:
98 *
b7d409de 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
100 */
101
0d9ce162 102DEFINE_MUTEX(kvm_lock);
4a937f96 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 104LIST_HEAD(vm_list);
133de902 105
7f59f492 106static cpumask_var_t cpus_hardware_enabled;
f4fee932 107static int kvm_usage_count;
10474ae8 108static atomic_t hardware_enable_failed;
1b6c0168 109
aaba298c 110static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 111
15ad7146 112static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 114
76f7c879 115struct dentry *kvm_debugfs_dir;
e23a808b 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 117
09cbcef6 118static const struct file_operations stat_fops_per_vm;
536a6f88 119
5f6de5cb
DM
120static struct file_operations kvm_chardev_ops;
121
bccf2150
AK
122static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
de8e5d74 124#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
125static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
7ddfd3e0
MZ
127#define KVM_COMPAT(c) .compat_ioctl = (c)
128#else
9cb09e7c
MZ
129/*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
7ddfd3e0
MZ
136static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
138
139static int kvm_no_compat_open(struct inode *inode, struct file *file)
140{
141 return is_compat_task() ? -ENODEV : 0;
142}
143#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
1dda606c 145#endif
10474ae8
AG
146static int hardware_enable_all(void);
147static void hardware_disable_all(void);
bccf2150 148
e93f8a0f 149static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 150
52480137 151__visible bool kvm_rebooting;
b7c4145b 152EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 153
286de8f6
CI
154#define KVM_EVENT_CREATE_VM 0
155#define KVM_EVENT_DESTROY_VM 1
156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157static unsigned long long kvm_createvm_count;
158static unsigned long long kvm_active_vms;
159
baff59cc
VK
160static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
e649b3f0
ET
162__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 unsigned long start, unsigned long end)
b1394e74
RK
164{
165}
166
683412cc
MZ
167__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168{
169}
170
284dc493 171bool kvm_is_zone_device_page(struct page *page)
a78986aa
SC
172{
173 /*
174 * The metadata used by is_zone_device_page() to determine whether or
175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 * the device has been pinned, e.g. by get_user_pages(). WARN if the
177 * page_count() is zero to help detect bad usage of this helper.
178 */
284dc493 179 if (WARN_ON_ONCE(!page_count(page)))
a78986aa
SC
180 return false;
181
284dc493 182 return is_zone_device_page(page);
a78986aa
SC
183}
184
b14b2690
SC
185/*
186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
188 * is likely incomplete, it has been compiled purely through people wanting to
189 * back guest with a certain type of memory and encountering issues.
190 */
191struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
cbff90a7 192{
b14b2690
SC
193 struct page *page;
194
195 if (!pfn_valid(pfn))
196 return NULL;
197
198 page = pfn_to_page(pfn);
199 if (!PageReserved(page))
200 return page;
201
202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203 if (is_zero_pfn(pfn))
204 return page;
205
a78986aa
SC
206 /*
207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208 * perspective they are "normal" pages, albeit with slightly different
209 * usage rules.
210 */
b14b2690
SC
211 if (kvm_is_zone_device_page(page))
212 return page;
cbff90a7 213
b14b2690 214 return NULL;
cbff90a7
BAY
215}
216
bccf2150
AK
217/*
218 * Switches to specified vcpu, until a matching vcpu_put()
219 */
ec7660cc 220void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 221{
ec7660cc 222 int cpu = get_cpu();
7495e22b
PB
223
224 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 225 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 226 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 227 put_cpu();
6aa8b732 228}
2f1fe811 229EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 230
313a3dc7 231void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 232{
15ad7146 233 preempt_disable();
313a3dc7 234 kvm_arch_vcpu_put(vcpu);
15ad7146 235 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 236 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 237 preempt_enable();
6aa8b732 238}
2f1fe811 239EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 240
7a97cec2
PB
241/* TODO: merge with kvm_arch_vcpu_should_kick */
242static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243{
244 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245
246 /*
247 * We need to wait for the VCPU to reenable interrupts and get out of
248 * READING_SHADOW_PAGE_TABLES mode.
249 */
250 if (req & KVM_REQUEST_WAIT)
251 return mode != OUTSIDE_GUEST_MODE;
252
253 /*
254 * Need to kick a running VCPU, but otherwise there is nothing to do.
255 */
256 return mode == IN_GUEST_MODE;
257}
258
f24b44e4 259static void ack_kick(void *_completed)
d9e368d6 260{
d9e368d6
AK
261}
262
620b2438 263static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
b49defe8 264{
b49defe8
PB
265 if (cpumask_empty(cpus))
266 return false;
267
f24b44e4 268 smp_call_function_many(cpus, ack_kick, NULL, wait);
b49defe8
PB
269 return true;
270}
271
b56bd8e0
JL
272static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273 struct cpumask *tmp, int current_cpu)
ae0946cd
VK
274{
275 int cpu;
276
df06dae3
SC
277 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278 __kvm_make_request(req, vcpu);
ae0946cd
VK
279
280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281 return;
282
ae0946cd
VK
283 /*
284 * Note, the vCPU could get migrated to a different pCPU at any point
285 * after kvm_request_needs_ipi(), which could result in sending an IPI
286 * to the previous pCPU. But, that's OK because the purpose of the IPI
287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289 * after this point is also OK, as the requirement is only that KVM wait
290 * for vCPUs that were reading SPTEs _before_ any changes were
291 * finalized. See kvm_vcpu_kick() for more details on handling requests.
292 */
293 if (kvm_request_needs_ipi(vcpu, req)) {
294 cpu = READ_ONCE(vcpu->cpu);
295 if (cpu != -1 && cpu != current_cpu)
296 __cpumask_set_cpu(cpu, tmp);
297 }
298}
299
7053df4e 300bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
620b2438 301 unsigned long *vcpu_bitmap)
d9e368d6 302{
d9e368d6 303 struct kvm_vcpu *vcpu;
620b2438 304 struct cpumask *cpus;
ae0946cd 305 int i, me;
7053df4e 306 bool called;
6ef7a1bc 307
3cba4130 308 me = get_cpu();
7053df4e 309
620b2438
VK
310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311 cpumask_clear(cpus);
312
ae0946cd
VK
313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314 vcpu = kvm_get_vcpu(kvm, i);
381cecc5 315 if (!vcpu)
7053df4e 316 continue;
b56bd8e0 317 kvm_make_vcpu_request(vcpu, req, cpus, me);
49846896 318 }
7053df4e 319
620b2438 320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
3cba4130 321 put_cpu();
7053df4e
VK
322
323 return called;
324}
325
54163a34
SS
326bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327 struct kvm_vcpu *except)
7053df4e 328{
ae0946cd 329 struct kvm_vcpu *vcpu;
baff59cc 330 struct cpumask *cpus;
46808a4c 331 unsigned long i;
7053df4e 332 bool called;
46808a4c 333 int me;
7053df4e 334
ae0946cd
VK
335 me = get_cpu();
336
baff59cc
VK
337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338 cpumask_clear(cpus);
339
ae0946cd
VK
340 kvm_for_each_vcpu(i, vcpu, kvm) {
341 if (vcpu == except)
342 continue;
b56bd8e0 343 kvm_make_vcpu_request(vcpu, req, cpus, me);
ae0946cd
VK
344 }
345
346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347 put_cpu();
7053df4e 348
49846896 349 return called;
d9e368d6
AK
350}
351
54163a34
SS
352bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353{
354 return kvm_make_all_cpus_request_except(kvm, req, NULL);
355}
a2486020 356EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 357
a6d51016 358#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 359void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 360{
3cc4e148 361 ++kvm->stat.generic.remote_tlb_flush_requests;
6bc6db00 362
4ae3cb3a
LT
363 /*
364 * We want to publish modifications to the page tables before reading
365 * mode. Pairs with a memory barrier in arch-specific code.
366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367 * and smp_mb in walk_shadow_page_lockless_begin/end.
368 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369 *
370 * There is already an smp_mb__after_atomic() before
371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372 * barrier here.
373 */
b08660e5
TL
374 if (!kvm_arch_flush_remote_tlb(kvm)
375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 376 ++kvm->stat.generic.remote_tlb_flush;
2e53d63a 377}
2ba9f0d8 378EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 379#endif
2e53d63a 380
683412cc
MZ
381static void kvm_flush_shadow_all(struct kvm *kvm)
382{
383 kvm_arch_flush_shadow_all(kvm);
384 kvm_arch_guest_memory_reclaimed(kvm);
385}
386
6926f95a
SC
387#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389 gfp_t gfp_flags)
390{
391 gfp_flags |= mc->gfp_zero;
392
393 if (mc->kmem_cache)
394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395 else
396 return (void *)__get_free_page(gfp_flags);
397}
398
837f66c7 399int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
6926f95a 400{
63f4b210 401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
6926f95a
SC
402 void *obj;
403
404 if (mc->nobjs >= min)
405 return 0;
837f66c7
DM
406
407 if (unlikely(!mc->objects)) {
408 if (WARN_ON_ONCE(!capacity))
409 return -EIO;
410
411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412 if (!mc->objects)
413 return -ENOMEM;
414
415 mc->capacity = capacity;
416 }
417
418 /* It is illegal to request a different capacity across topups. */
419 if (WARN_ON_ONCE(mc->capacity != capacity))
420 return -EIO;
421
422 while (mc->nobjs < mc->capacity) {
423 obj = mmu_memory_cache_alloc_obj(mc, gfp);
6926f95a
SC
424 if (!obj)
425 return mc->nobjs >= min ? 0 : -ENOMEM;
426 mc->objects[mc->nobjs++] = obj;
427 }
428 return 0;
429}
430
837f66c7
DM
431int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432{
433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434}
435
6926f95a
SC
436int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437{
438 return mc->nobjs;
439}
440
441void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442{
443 while (mc->nobjs) {
444 if (mc->kmem_cache)
445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446 else
447 free_page((unsigned long)mc->objects[--mc->nobjs]);
448 }
837f66c7
DM
449
450 kvfree(mc->objects);
451
452 mc->objects = NULL;
453 mc->capacity = 0;
6926f95a
SC
454}
455
456void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457{
458 void *p;
459
460 if (WARN_ON(!mc->nobjs))
461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462 else
463 p = mc->objects[--mc->nobjs];
464 BUG_ON(!p);
465 return p;
466}
467#endif
468
8bd826d6 469static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 470{
fb3f0f51
RR
471 mutex_init(&vcpu->mutex);
472 vcpu->cpu = -1;
fb3f0f51
RR
473 vcpu->kvm = kvm;
474 vcpu->vcpu_id = id;
34bb10b7 475 vcpu->pid = NULL;
510958e9 476#ifndef __KVM_HAVE_ARCH_WQP
da4ad88c 477 rcuwait_init(&vcpu->wait);
510958e9 478#endif
af585b92 479 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 480
4c088493
R
481 kvm_vcpu_set_in_spin_loop(vcpu, false);
482 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 483 vcpu->preempted = false;
d73eb57b 484 vcpu->ready = false;
d5c48deb 485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
a54d8066 486 vcpu->last_used_slot = NULL;
58fc1166
OU
487
488 /* Fill the stats id string for the vcpu */
489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490 task_pid_nr(current), id);
fb3f0f51 491}
fb3f0f51 492
27592ae8 493static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
4543bdc0
SC
494{
495 kvm_arch_vcpu_destroy(vcpu);
5593473a 496 kvm_dirty_ring_free(&vcpu->dirty_ring);
e529ef66 497
9941d224
SC
498 /*
499 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500 * the vcpu->pid pointer, and at destruction time all file descriptors
501 * are already gone.
502 */
503 put_pid(rcu_dereference_protected(vcpu->pid, 1));
504
8bd826d6 505 free_page((unsigned long)vcpu->run);
e529ef66 506 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0 507}
27592ae8
MZ
508
509void kvm_destroy_vcpus(struct kvm *kvm)
510{
46808a4c 511 unsigned long i;
27592ae8
MZ
512 struct kvm_vcpu *vcpu;
513
514 kvm_for_each_vcpu(i, vcpu, kvm) {
515 kvm_vcpu_destroy(vcpu);
c5b07754 516 xa_erase(&kvm->vcpu_array, i);
27592ae8
MZ
517 }
518
519 atomic_set(&kvm->online_vcpus, 0);
520}
521EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
4543bdc0 522
e930bffe
AA
523#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525{
526 return container_of(mn, struct kvm, mmu_notifier);
527}
528
e649b3f0
ET
529static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530 struct mm_struct *mm,
531 unsigned long start, unsigned long end)
532{
533 struct kvm *kvm = mmu_notifier_to_kvm(mn);
534 int idx;
535
536 idx = srcu_read_lock(&kvm->srcu);
537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538 srcu_read_unlock(&kvm->srcu, idx);
539}
540
3039bcc7
SC
541typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542
f922bd9b
SC
543typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544 unsigned long end);
545
683412cc
MZ
546typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547
3039bcc7
SC
548struct kvm_hva_range {
549 unsigned long start;
550 unsigned long end;
551 pte_t pte;
552 hva_handler_t handler;
f922bd9b 553 on_lock_fn_t on_lock;
683412cc 554 on_unlock_fn_t on_unlock;
3039bcc7
SC
555 bool flush_on_ret;
556 bool may_block;
557};
558
f922bd9b
SC
559/*
560 * Use a dedicated stub instead of NULL to indicate that there is no callback
561 * function/handler. The compiler technically can't guarantee that a real
562 * function will have a non-zero address, and so it will generate code to
563 * check for !NULL, whereas comparing against a stub will be elided at compile
564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565 */
566static void kvm_null_fn(void)
567{
568
569}
570#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571
ed922739
MS
572/* Iterate over each memslot intersecting [start, last] (inclusive) range */
573#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575 node; \
576 node = interval_tree_iter_next(node, start, last)) \
577
3039bcc7
SC
578static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579 const struct kvm_hva_range *range)
580{
8931a454 581 bool ret = false, locked = false;
f922bd9b 582 struct kvm_gfn_range gfn_range;
3039bcc7
SC
583 struct kvm_memory_slot *slot;
584 struct kvm_memslots *slots;
3039bcc7
SC
585 int i, idx;
586
ed922739
MS
587 if (WARN_ON_ONCE(range->end <= range->start))
588 return 0;
589
f922bd9b
SC
590 /* A null handler is allowed if and only if on_lock() is provided. */
591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592 IS_KVM_NULL_FN(range->handler)))
593 return 0;
594
3039bcc7
SC
595 idx = srcu_read_lock(&kvm->srcu);
596
597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
ed922739
MS
598 struct interval_tree_node *node;
599
3039bcc7 600 slots = __kvm_memslots(kvm, i);
ed922739
MS
601 kvm_for_each_memslot_in_hva_range(node, slots,
602 range->start, range->end - 1) {
3039bcc7
SC
603 unsigned long hva_start, hva_end;
604
a54d8066 605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
3039bcc7
SC
606 hva_start = max(range->start, slot->userspace_addr);
607 hva_end = min(range->end, slot->userspace_addr +
608 (slot->npages << PAGE_SHIFT));
3039bcc7
SC
609
610 /*
611 * To optimize for the likely case where the address
612 * range is covered by zero or one memslots, don't
613 * bother making these conditional (to avoid writes on
614 * the second or later invocation of the handler).
615 */
616 gfn_range.pte = range->pte;
617 gfn_range.may_block = range->may_block;
618
619 /*
620 * {gfn(page) | page intersects with [hva_start, hva_end)} =
621 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622 */
623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625 gfn_range.slot = slot;
626
8931a454
SC
627 if (!locked) {
628 locked = true;
629 KVM_MMU_LOCK(kvm);
071064f1
PB
630 if (!IS_KVM_NULL_FN(range->on_lock))
631 range->on_lock(kvm, range->start, range->end);
632 if (IS_KVM_NULL_FN(range->handler))
633 break;
8931a454 634 }
3039bcc7
SC
635 ret |= range->handler(kvm, &gfn_range);
636 }
637 }
638
6bc6db00 639 if (range->flush_on_ret && ret)
3039bcc7
SC
640 kvm_flush_remote_tlbs(kvm);
641
683412cc 642 if (locked) {
8931a454 643 KVM_MMU_UNLOCK(kvm);
683412cc
MZ
644 if (!IS_KVM_NULL_FN(range->on_unlock))
645 range->on_unlock(kvm);
646 }
f922bd9b 647
3039bcc7
SC
648 srcu_read_unlock(&kvm->srcu, idx);
649
650 /* The notifiers are averse to booleans. :-( */
651 return (int)ret;
652}
653
654static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655 unsigned long start,
656 unsigned long end,
657 pte_t pte,
658 hva_handler_t handler)
659{
660 struct kvm *kvm = mmu_notifier_to_kvm(mn);
661 const struct kvm_hva_range range = {
662 .start = start,
663 .end = end,
664 .pte = pte,
665 .handler = handler,
f922bd9b 666 .on_lock = (void *)kvm_null_fn,
683412cc 667 .on_unlock = (void *)kvm_null_fn,
3039bcc7
SC
668 .flush_on_ret = true,
669 .may_block = false,
670 };
3039bcc7 671
f922bd9b 672 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
673}
674
675static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676 unsigned long start,
677 unsigned long end,
678 hva_handler_t handler)
679{
680 struct kvm *kvm = mmu_notifier_to_kvm(mn);
681 const struct kvm_hva_range range = {
682 .start = start,
683 .end = end,
684 .pte = __pte(0),
685 .handler = handler,
f922bd9b 686 .on_lock = (void *)kvm_null_fn,
683412cc 687 .on_unlock = (void *)kvm_null_fn,
3039bcc7
SC
688 .flush_on_ret = false,
689 .may_block = false,
690 };
3039bcc7 691
f922bd9b 692 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 693}
3da0dd43
IE
694static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695 struct mm_struct *mm,
696 unsigned long address,
697 pte_t pte)
698{
699 struct kvm *kvm = mmu_notifier_to_kvm(mn);
700
501b9185
SC
701 trace_kvm_set_spte_hva(address);
702
c13fda23 703 /*
52ac8b35 704 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
071064f1
PB
705 * If mmu_notifier_count is zero, then no in-progress invalidations,
706 * including this one, found a relevant memslot at start(); rechecking
707 * memslots here is unnecessary. Note, a false positive (count elevated
708 * by a different invalidation) is sub-optimal but functionally ok.
c13fda23 709 */
52ac8b35 710 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
071064f1
PB
711 if (!READ_ONCE(kvm->mmu_notifier_count))
712 return;
c13fda23 713
3039bcc7 714 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
715}
716
edb298c6 717void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 718 unsigned long end)
e930bffe 719{
e930bffe
AA
720 /*
721 * The count increase must become visible at unlock time as no
722 * spte can be established without taking the mmu_lock and
723 * count is also read inside the mmu_lock critical section.
724 */
725 kvm->mmu_notifier_count++;
4a42d848 726 if (likely(kvm->mmu_notifier_count == 1)) {
f922bd9b
SC
727 kvm->mmu_notifier_range_start = start;
728 kvm->mmu_notifier_range_end = end;
4a42d848
DS
729 } else {
730 /*
a413a625 731 * Fully tracking multiple concurrent ranges has diminishing
4a42d848
DS
732 * returns. Keep things simple and just find the minimal range
733 * which includes the current and new ranges. As there won't be
734 * enough information to subtract a range after its invalidate
735 * completes, any ranges invalidated concurrently will
736 * accumulate and persist until all outstanding invalidates
737 * complete.
738 */
739 kvm->mmu_notifier_range_start =
f922bd9b 740 min(kvm->mmu_notifier_range_start, start);
4a42d848 741 kvm->mmu_notifier_range_end =
f922bd9b 742 max(kvm->mmu_notifier_range_end, end);
4a42d848 743 }
f922bd9b 744}
3039bcc7 745
f922bd9b
SC
746static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
747 const struct mmu_notifier_range *range)
748{
749 struct kvm *kvm = mmu_notifier_to_kvm(mn);
750 const struct kvm_hva_range hva_range = {
751 .start = range->start,
752 .end = range->end,
753 .pte = __pte(0),
754 .handler = kvm_unmap_gfn_range,
755 .on_lock = kvm_inc_notifier_count,
683412cc 756 .on_unlock = kvm_arch_guest_memory_reclaimed,
f922bd9b
SC
757 .flush_on_ret = true,
758 .may_block = mmu_notifier_range_blockable(range),
759 };
565f3be2 760
f922bd9b
SC
761 trace_kvm_unmap_hva_range(range->start, range->end);
762
52ac8b35
PB
763 /*
764 * Prevent memslot modification between range_start() and range_end()
765 * so that conditionally locking provides the same result in both
766 * functions. Without that guarantee, the mmu_notifier_count
767 * adjustments will be imbalanced.
768 *
769 * Pairs with the decrement in range_end().
770 */
771 spin_lock(&kvm->mn_invalidate_lock);
772 kvm->mn_active_invalidate_count++;
773 spin_unlock(&kvm->mn_invalidate_lock);
774
58cd407c
SC
775 /*
776 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
777 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
778 * each cache's lock. There are relatively few caches in existence at
779 * any given time, and the caches themselves can check for hva overlap,
780 * i.e. don't need to rely on memslot overlap checks for performance.
781 * Because this runs without holding mmu_lock, the pfn caches must use
782 * mn_active_invalidate_count (see above) instead of mmu_notifier_count.
783 */
982ed0de
DW
784 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
785 hva_range.may_block);
786
f922bd9b 787 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 788
e649b3f0 789 return 0;
e930bffe
AA
790}
791
edb298c6 792void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 793 unsigned long end)
e930bffe 794{
e930bffe
AA
795 /*
796 * This sequence increase will notify the kvm page fault that
797 * the page that is going to be mapped in the spte could have
798 * been freed.
799 */
800 kvm->mmu_notifier_seq++;
a355aa54 801 smp_wmb();
e930bffe
AA
802 /*
803 * The above sequence increase must be visible before the
a355aa54
PM
804 * below count decrease, which is ensured by the smp_wmb above
805 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
806 */
807 kvm->mmu_notifier_count--;
f922bd9b
SC
808}
809
810static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
811 const struct mmu_notifier_range *range)
812{
813 struct kvm *kvm = mmu_notifier_to_kvm(mn);
814 const struct kvm_hva_range hva_range = {
815 .start = range->start,
816 .end = range->end,
817 .pte = __pte(0),
818 .handler = (void *)kvm_null_fn,
819 .on_lock = kvm_dec_notifier_count,
683412cc 820 .on_unlock = (void *)kvm_null_fn,
f922bd9b
SC
821 .flush_on_ret = false,
822 .may_block = mmu_notifier_range_blockable(range),
823 };
52ac8b35 824 bool wake;
f922bd9b
SC
825
826 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe 827
52ac8b35
PB
828 /* Pairs with the increment in range_start(). */
829 spin_lock(&kvm->mn_invalidate_lock);
830 wake = (--kvm->mn_active_invalidate_count == 0);
831 spin_unlock(&kvm->mn_invalidate_lock);
832
833 /*
834 * There can only be one waiter, since the wait happens under
835 * slots_lock.
836 */
837 if (wake)
838 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
839
e930bffe
AA
840 BUG_ON(kvm->mmu_notifier_count < 0);
841}
842
843static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
844 struct mm_struct *mm,
57128468
ALC
845 unsigned long start,
846 unsigned long end)
e930bffe 847{
501b9185
SC
848 trace_kvm_age_hva(start, end);
849
3039bcc7 850 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
851}
852
1d7715c6
VD
853static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
854 struct mm_struct *mm,
855 unsigned long start,
856 unsigned long end)
857{
501b9185
SC
858 trace_kvm_age_hva(start, end);
859
1d7715c6
VD
860 /*
861 * Even though we do not flush TLB, this will still adversely
862 * affect performance on pre-Haswell Intel EPT, where there is
863 * no EPT Access Bit to clear so that we have to tear down EPT
864 * tables instead. If we find this unacceptable, we can always
865 * add a parameter to kvm_age_hva so that it effectively doesn't
866 * do anything on clear_young.
867 *
868 * Also note that currently we never issue secondary TLB flushes
869 * from clear_young, leaving this job up to the regular system
870 * cadence. If we find this inaccurate, we might come up with a
871 * more sophisticated heuristic later.
872 */
3039bcc7 873 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
874}
875
8ee53820
AA
876static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
877 struct mm_struct *mm,
878 unsigned long address)
879{
501b9185
SC
880 trace_kvm_test_age_hva(address);
881
3039bcc7
SC
882 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
883 kvm_test_age_gfn);
8ee53820
AA
884}
885
85db06e5
MT
886static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
887 struct mm_struct *mm)
888{
889 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
890 int idx;
891
892 idx = srcu_read_lock(&kvm->srcu);
683412cc 893 kvm_flush_shadow_all(kvm);
eda2beda 894 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
895}
896
e930bffe 897static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 898 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
899 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
900 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
901 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 902 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 903 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 904 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 905 .release = kvm_mmu_notifier_release,
e930bffe 906};
4c07b0a4
AK
907
908static int kvm_init_mmu_notifier(struct kvm *kvm)
909{
910 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
911 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
912}
913
914#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
915
916static int kvm_init_mmu_notifier(struct kvm *kvm)
917{
918 return 0;
919}
920
e930bffe
AA
921#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
922
2fdef3a2
SS
923#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
924static int kvm_pm_notifier_call(struct notifier_block *bl,
925 unsigned long state,
926 void *unused)
927{
928 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
929
930 return kvm_arch_pm_notifier(kvm, state);
931}
932
933static void kvm_init_pm_notifier(struct kvm *kvm)
934{
935 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
936 /* Suspend KVM before we suspend ftrace, RCU, etc. */
937 kvm->pm_notifier.priority = INT_MAX;
938 register_pm_notifier(&kvm->pm_notifier);
939}
940
941static void kvm_destroy_pm_notifier(struct kvm *kvm)
942{
943 unregister_pm_notifier(&kvm->pm_notifier);
944}
945#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
946static void kvm_init_pm_notifier(struct kvm *kvm)
947{
948}
949
950static void kvm_destroy_pm_notifier(struct kvm *kvm)
951{
952}
953#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
954
a47d2b07
PB
955static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
956{
957 if (!memslot->dirty_bitmap)
958 return;
959
960 kvfree(memslot->dirty_bitmap);
961 memslot->dirty_bitmap = NULL;
962}
963
a54d8066 964/* This does not remove the slot from struct kvm_memslots data structures */
e96c81ee 965static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 966{
e96c81ee 967 kvm_destroy_dirty_bitmap(slot);
a47d2b07 968
e96c81ee 969 kvm_arch_free_memslot(kvm, slot);
a47d2b07 970
a54d8066 971 kfree(slot);
a47d2b07
PB
972}
973
974static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
975{
a54d8066 976 struct hlist_node *idnode;
a47d2b07 977 struct kvm_memory_slot *memslot;
a54d8066 978 int bkt;
a47d2b07 979
a54d8066
MS
980 /*
981 * The same memslot objects live in both active and inactive sets,
982 * arbitrarily free using index '1' so the second invocation of this
983 * function isn't operating over a structure with dangling pointers
984 * (even though this function isn't actually touching them).
985 */
986 if (!slots->node_idx)
a47d2b07
PB
987 return;
988
a54d8066 989 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
e96c81ee 990 kvm_free_memslot(kvm, memslot);
bf3e05bc
XG
991}
992
bc9e9e67
JZ
993static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
994{
995 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
996 case KVM_STATS_TYPE_INSTANT:
997 return 0444;
998 case KVM_STATS_TYPE_CUMULATIVE:
999 case KVM_STATS_TYPE_PEAK:
1000 default:
1001 return 0644;
1002 }
1003}
1004
1005
536a6f88
JF
1006static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1007{
1008 int i;
bc9e9e67
JZ
1009 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1010 kvm_vcpu_stats_header.num_desc;
536a6f88 1011
a44a4cc1 1012 if (IS_ERR(kvm->debugfs_dentry))
536a6f88
JF
1013 return;
1014
1015 debugfs_remove_recursive(kvm->debugfs_dentry);
1016
9d5a1dce
LC
1017 if (kvm->debugfs_stat_data) {
1018 for (i = 0; i < kvm_debugfs_num_entries; i++)
1019 kfree(kvm->debugfs_stat_data[i]);
1020 kfree(kvm->debugfs_stat_data);
1021 }
536a6f88
JF
1022}
1023
59f82aad 1024static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
536a6f88 1025{
85cd39af
PB
1026 static DEFINE_MUTEX(kvm_debugfs_lock);
1027 struct dentry *dent;
536a6f88
JF
1028 char dir_name[ITOA_MAX_LEN * 2];
1029 struct kvm_stat_data *stat_data;
bc9e9e67 1030 const struct _kvm_stats_desc *pdesc;
3165af73 1031 int i, ret;
bc9e9e67
JZ
1032 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1033 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
1034
1035 if (!debugfs_initialized())
1036 return 0;
1037
59f82aad 1038 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
85cd39af
PB
1039 mutex_lock(&kvm_debugfs_lock);
1040 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1041 if (dent) {
1042 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1043 dput(dent);
1044 mutex_unlock(&kvm_debugfs_lock);
1045 return 0;
1046 }
1047 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1048 mutex_unlock(&kvm_debugfs_lock);
1049 if (IS_ERR(dent))
1050 return 0;
536a6f88 1051
85cd39af 1052 kvm->debugfs_dentry = dent;
536a6f88
JF
1053 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1054 sizeof(*kvm->debugfs_stat_data),
b12ce36a 1055 GFP_KERNEL_ACCOUNT);
536a6f88
JF
1056 if (!kvm->debugfs_stat_data)
1057 return -ENOMEM;
1058
bc9e9e67
JZ
1059 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1060 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 1061 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
1062 if (!stat_data)
1063 return -ENOMEM;
1064
1065 stat_data->kvm = kvm;
bc9e9e67
JZ
1066 stat_data->desc = pdesc;
1067 stat_data->kind = KVM_STAT_VM;
1068 kvm->debugfs_stat_data[i] = stat_data;
1069 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1070 kvm->debugfs_dentry, stat_data,
1071 &stat_fops_per_vm);
1072 }
1073
1074 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1075 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 1076 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
1077 if (!stat_data)
1078 return -ENOMEM;
1079
1080 stat_data->kvm = kvm;
bc9e9e67
JZ
1081 stat_data->desc = pdesc;
1082 stat_data->kind = KVM_STAT_VCPU;
004d62eb 1083 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 1084 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
1085 kvm->debugfs_dentry, stat_data,
1086 &stat_fops_per_vm);
536a6f88 1087 }
3165af73
PX
1088
1089 ret = kvm_arch_create_vm_debugfs(kvm);
1090 if (ret) {
1091 kvm_destroy_vm_debugfs(kvm);
1092 return i;
1093 }
1094
536a6f88
JF
1095 return 0;
1096}
1097
1aa9b957
JS
1098/*
1099 * Called after the VM is otherwise initialized, but just before adding it to
1100 * the vm_list.
1101 */
1102int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1103{
1104 return 0;
1105}
1106
1107/*
1108 * Called just after removing the VM from the vm_list, but before doing any
1109 * other destruction.
1110 */
1111void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1112{
1113}
1114
3165af73
PX
1115/*
1116 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1117 * be setup already, so we can create arch-specific debugfs entries under it.
1118 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1119 * a per-arch destroy interface is not needed.
1120 */
1121int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1122{
1123 return 0;
1124}
1125
e08b9637 1126static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 1127{
d89f5eff 1128 struct kvm *kvm = kvm_arch_alloc_vm();
a54d8066 1129 struct kvm_memslots *slots;
9121923c 1130 int r = -ENOMEM;
a54d8066 1131 int i, j;
6aa8b732 1132
d89f5eff
JK
1133 if (!kvm)
1134 return ERR_PTR(-ENOMEM);
1135
531810ca 1136 KVM_MMU_LOCK_INIT(kvm);
f1f10076 1137 mmgrab(current->mm);
e9ad4ec8
PB
1138 kvm->mm = current->mm;
1139 kvm_eventfd_init(kvm);
1140 mutex_init(&kvm->lock);
1141 mutex_init(&kvm->irq_lock);
1142 mutex_init(&kvm->slots_lock);
b10a038e 1143 mutex_init(&kvm->slots_arch_lock);
52ac8b35
PB
1144 spin_lock_init(&kvm->mn_invalidate_lock);
1145 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
c5b07754 1146 xa_init(&kvm->vcpu_array);
52ac8b35 1147
982ed0de
DW
1148 INIT_LIST_HEAD(&kvm->gpc_list);
1149 spin_lock_init(&kvm->gpc_lock);
52ac8b35 1150
e9ad4ec8 1151 INIT_LIST_HEAD(&kvm->devices);
f502cc56 1152 kvm->max_vcpus = KVM_MAX_VCPUS;
e9ad4ec8 1153
1e702d9a
AW
1154 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1155
5c697c36
SC
1156 /*
1157 * Force subsequent debugfs file creations to fail if the VM directory
1158 * is not created (by kvm_create_vm_debugfs()).
1159 */
1160 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1161
f2759c08
OU
1162 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1163 task_pid_nr(current));
1164
8a44119a
PB
1165 if (init_srcu_struct(&kvm->srcu))
1166 goto out_err_no_srcu;
1167 if (init_srcu_struct(&kvm->irq_srcu))
1168 goto out_err_no_irq_srcu;
1169
e2d3fcaf 1170 refcount_set(&kvm->users_count, 1);
f481b069 1171 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
a54d8066
MS
1172 for (j = 0; j < 2; j++) {
1173 slots = &kvm->__memslots[i][j];
9121923c 1174
a54d8066
MS
1175 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1176 slots->hva_tree = RB_ROOT_CACHED;
1177 slots->gfn_tree = RB_ROOT;
1178 hash_init(slots->id_hash);
1179 slots->node_idx = j;
1180
1181 /* Generations must be different for each address space. */
1182 slots->generation = i;
1183 }
1184
1185 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
f481b069 1186 }
00f034a1 1187
e93f8a0f 1188 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1189 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1190 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1191 if (!kvm->buses[i])
a97b0e77 1192 goto out_err_no_arch_destroy_vm;
e93f8a0f 1193 }
e930bffe 1194
acd05785
DM
1195 kvm->max_halt_poll_ns = halt_poll_ns;
1196
e08b9637 1197 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1198 if (r)
a97b0e77 1199 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1200
1201 r = hardware_enable_all();
1202 if (r)
719d93cd 1203 goto out_err_no_disable;
10474ae8 1204
c77dcacb 1205#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 1206 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1207#endif
6aa8b732 1208
74b5c5bf 1209 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1210 if (r)
1211 goto out_err_no_mmu_notifier;
1212
1213 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
1214 if (r)
1215 goto out_err;
1216
0d9ce162 1217 mutex_lock(&kvm_lock);
5e58cfe4 1218 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1219 mutex_unlock(&kvm_lock);
d89f5eff 1220
2ecd9d29 1221 preempt_notifier_inc();
2fdef3a2 1222 kvm_init_pm_notifier(kvm);
2ecd9d29 1223
5f6de5cb
DM
1224 /*
1225 * When the fd passed to this ioctl() is opened it pins the module,
1226 * but try_module_get() also prevents getting a reference if the module
1227 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1228 */
1229 if (!try_module_get(kvm_chardev_ops.owner)) {
1230 r = -ENODEV;
1231 goto out_err;
1232 }
1233
f17abe9a 1234 return kvm;
10474ae8
AG
1235
1236out_err:
1aa9b957
JS
1237#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1238 if (kvm->mmu_notifier.ops)
1239 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1240#endif
1241out_err_no_mmu_notifier:
10474ae8 1242 hardware_disable_all();
719d93cd 1243out_err_no_disable:
a97b0e77 1244 kvm_arch_destroy_vm(kvm);
a97b0e77 1245out_err_no_arch_destroy_vm:
e2d3fcaf 1246 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1247 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1248 kfree(kvm_get_bus(kvm, i));
8a44119a
PB
1249 cleanup_srcu_struct(&kvm->irq_srcu);
1250out_err_no_irq_srcu:
1251 cleanup_srcu_struct(&kvm->srcu);
1252out_err_no_srcu:
d89f5eff 1253 kvm_arch_free_vm(kvm);
e9ad4ec8 1254 mmdrop(current->mm);
10474ae8 1255 return ERR_PTR(r);
f17abe9a
AK
1256}
1257
07f0a7bd
SW
1258static void kvm_destroy_devices(struct kvm *kvm)
1259{
e6e3b5a6 1260 struct kvm_device *dev, *tmp;
07f0a7bd 1261
a28ebea2
CD
1262 /*
1263 * We do not need to take the kvm->lock here, because nobody else
1264 * has a reference to the struct kvm at this point and therefore
1265 * cannot access the devices list anyhow.
1266 */
e6e3b5a6
GT
1267 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1268 list_del(&dev->vm_node);
07f0a7bd
SW
1269 dev->ops->destroy(dev);
1270 }
1271}
1272
f17abe9a
AK
1273static void kvm_destroy_vm(struct kvm *kvm)
1274{
e93f8a0f 1275 int i;
6d4e4c4f
AK
1276 struct mm_struct *mm = kvm->mm;
1277
2fdef3a2 1278 kvm_destroy_pm_notifier(kvm);
286de8f6 1279 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1280 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1281 kvm_arch_sync_events(kvm);
0d9ce162 1282 mutex_lock(&kvm_lock);
133de902 1283 list_del(&kvm->vm_list);
0d9ce162 1284 mutex_unlock(&kvm_lock);
1aa9b957
JS
1285 kvm_arch_pre_destroy_vm(kvm);
1286
399ec807 1287 kvm_free_irq_routing(kvm);
df630b8c 1288 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1289 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1290
4a12f951
CB
1291 if (bus)
1292 kvm_io_bus_destroy(bus);
df630b8c
PX
1293 kvm->buses[i] = NULL;
1294 }
980da6ce 1295 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1296#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1297 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
52ac8b35
PB
1298 /*
1299 * At this point, pending calls to invalidate_range_start()
1300 * have completed but no more MMU notifiers will run, so
1301 * mn_active_invalidate_count may remain unbalanced.
1302 * No threads can be waiting in install_new_memslots as the
1303 * last reference on KVM has been dropped, but freeing
1304 * memslots would deadlock without this manual intervention.
1305 */
1306 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1307 kvm->mn_active_invalidate_count = 0;
f00be0ca 1308#else
683412cc 1309 kvm_flush_shadow_all(kvm);
5f94c174 1310#endif
d19a9cd2 1311 kvm_arch_destroy_vm(kvm);
07f0a7bd 1312 kvm_destroy_devices(kvm);
a54d8066
MS
1313 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1314 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1315 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1316 }
820b3fcd 1317 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1318 cleanup_srcu_struct(&kvm->srcu);
1319 kvm_arch_free_vm(kvm);
2ecd9d29 1320 preempt_notifier_dec();
10474ae8 1321 hardware_disable_all();
6d4e4c4f 1322 mmdrop(mm);
5f6de5cb 1323 module_put(kvm_chardev_ops.owner);
f17abe9a
AK
1324}
1325
d39f13b0
IE
1326void kvm_get_kvm(struct kvm *kvm)
1327{
e3736c3e 1328 refcount_inc(&kvm->users_count);
d39f13b0
IE
1329}
1330EXPORT_SYMBOL_GPL(kvm_get_kvm);
1331
605c7130
PX
1332/*
1333 * Make sure the vm is not during destruction, which is a safe version of
1334 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1335 */
1336bool kvm_get_kvm_safe(struct kvm *kvm)
1337{
1338 return refcount_inc_not_zero(&kvm->users_count);
1339}
1340EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1341
d39f13b0
IE
1342void kvm_put_kvm(struct kvm *kvm)
1343{
e3736c3e 1344 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1345 kvm_destroy_vm(kvm);
1346}
1347EXPORT_SYMBOL_GPL(kvm_put_kvm);
1348
149487bd
SC
1349/*
1350 * Used to put a reference that was taken on behalf of an object associated
1351 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1352 * of the new file descriptor fails and the reference cannot be transferred to
1353 * its final owner. In such cases, the caller is still actively using @kvm and
1354 * will fail miserably if the refcount unexpectedly hits zero.
1355 */
1356void kvm_put_kvm_no_destroy(struct kvm *kvm)
1357{
1358 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1359}
1360EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1361
f17abe9a
AK
1362static int kvm_vm_release(struct inode *inode, struct file *filp)
1363{
1364 struct kvm *kvm = filp->private_data;
1365
721eecbf
GH
1366 kvm_irqfd_release(kvm);
1367
d39f13b0 1368 kvm_put_kvm(kvm);
6aa8b732
AK
1369 return 0;
1370}
1371
515a0127
TY
1372/*
1373 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1374 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1375 */
3c9bd400 1376static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1377{
37b2a651 1378 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1379
37b2a651 1380 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1381 if (!memslot->dirty_bitmap)
1382 return -ENOMEM;
1383
a36a57b1
TY
1384 return 0;
1385}
1386
a54d8066 1387static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
bf3e05bc 1388{
a54d8066
MS
1389 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1390 int node_idx_inactive = active->node_idx ^ 1;
0e60b079 1391
a54d8066 1392 return &kvm->__memslots[as_id][node_idx_inactive];
0577d1ab
SC
1393}
1394
1395/*
a54d8066
MS
1396 * Helper to get the address space ID when one of memslot pointers may be NULL.
1397 * This also serves as a sanity that at least one of the pointers is non-NULL,
1398 * and that their address space IDs don't diverge.
0577d1ab 1399 */
a54d8066
MS
1400static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1401 struct kvm_memory_slot *b)
0577d1ab 1402{
a54d8066
MS
1403 if (WARN_ON_ONCE(!a && !b))
1404 return 0;
0577d1ab 1405
a54d8066
MS
1406 if (!a)
1407 return b->as_id;
1408 if (!b)
1409 return a->as_id;
0577d1ab 1410
a54d8066
MS
1411 WARN_ON_ONCE(a->as_id != b->as_id);
1412 return a->as_id;
0577d1ab 1413}
efbeec70 1414
a54d8066
MS
1415static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1416 struct kvm_memory_slot *slot)
0577d1ab 1417{
a54d8066
MS
1418 struct rb_root *gfn_tree = &slots->gfn_tree;
1419 struct rb_node **node, *parent;
1420 int idx = slots->node_idx;
0577d1ab 1421
a54d8066
MS
1422 parent = NULL;
1423 for (node = &gfn_tree->rb_node; *node; ) {
1424 struct kvm_memory_slot *tmp;
f85e2cb5 1425
a54d8066
MS
1426 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1427 parent = *node;
1428 if (slot->base_gfn < tmp->base_gfn)
1429 node = &(*node)->rb_left;
1430 else if (slot->base_gfn > tmp->base_gfn)
1431 node = &(*node)->rb_right;
1432 else
1433 BUG();
0577d1ab 1434 }
a54d8066
MS
1435
1436 rb_link_node(&slot->gfn_node[idx], parent, node);
1437 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
0577d1ab
SC
1438}
1439
a54d8066
MS
1440static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1441 struct kvm_memory_slot *slot)
0577d1ab 1442{
a54d8066
MS
1443 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1444}
0577d1ab 1445
a54d8066
MS
1446static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1447 struct kvm_memory_slot *old,
1448 struct kvm_memory_slot *new)
1449{
1450 int idx = slots->node_idx;
0577d1ab 1451
a54d8066 1452 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
0577d1ab 1453
a54d8066
MS
1454 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1455 &slots->gfn_tree);
0577d1ab
SC
1456}
1457
1458/*
a54d8066 1459 * Replace @old with @new in the inactive memslots.
0577d1ab 1460 *
a54d8066
MS
1461 * With NULL @old this simply adds @new.
1462 * With NULL @new this simply removes @old.
0577d1ab 1463 *
a54d8066
MS
1464 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1465 * appropriately.
0577d1ab 1466 */
a54d8066
MS
1467static void kvm_replace_memslot(struct kvm *kvm,
1468 struct kvm_memory_slot *old,
1469 struct kvm_memory_slot *new)
0577d1ab 1470{
a54d8066
MS
1471 int as_id = kvm_memslots_get_as_id(old, new);
1472 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1473 int idx = slots->node_idx;
0577d1ab 1474
a54d8066
MS
1475 if (old) {
1476 hash_del(&old->id_node[idx]);
1477 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
0577d1ab 1478
a54d8066
MS
1479 if ((long)old == atomic_long_read(&slots->last_used_slot))
1480 atomic_long_set(&slots->last_used_slot, (long)new);
0577d1ab 1481
a54d8066
MS
1482 if (!new) {
1483 kvm_erase_gfn_node(slots, old);
1e8617d3 1484 return;
a54d8066
MS
1485 }
1486 }
1e8617d3 1487
a54d8066
MS
1488 /*
1489 * Initialize @new's hva range. Do this even when replacing an @old
1490 * slot, kvm_copy_memslot() deliberately does not touch node data.
1491 */
1492 new->hva_node[idx].start = new->userspace_addr;
1493 new->hva_node[idx].last = new->userspace_addr +
1494 (new->npages << PAGE_SHIFT) - 1;
1495
1496 /*
1497 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1498 * hva_node needs to be swapped with remove+insert even though hva can't
1499 * change when replacing an existing slot.
1500 */
1501 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1502 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1503
1504 /*
1505 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1506 * switch the node in the gfn tree instead of removing the old and
1507 * inserting the new as two separate operations. Replacement is a
1508 * single O(1) operation versus two O(log(n)) operations for
1509 * remove+insert.
1510 */
1511 if (old && old->base_gfn == new->base_gfn) {
1512 kvm_replace_gfn_node(slots, old, new);
1513 } else {
1514 if (old)
1515 kvm_erase_gfn_node(slots, old);
1516 kvm_insert_gfn_node(slots, new);
0577d1ab 1517 }
bf3e05bc
XG
1518}
1519
09170a49 1520static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1521{
4d8b81ab
XG
1522 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1523
0f8a4de3 1524#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1525 valid_flags |= KVM_MEM_READONLY;
1526#endif
1527
1528 if (mem->flags & ~valid_flags)
a50d64d6
XG
1529 return -EINVAL;
1530
1531 return 0;
1532}
1533
a54d8066 1534static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
7ec4fb44 1535{
a54d8066
MS
1536 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1537
1538 /* Grab the generation from the activate memslots. */
1539 u64 gen = __kvm_memslots(kvm, as_id)->generation;
7ec4fb44 1540
361209e0
SC
1541 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1542 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1543
52ac8b35
PB
1544 /*
1545 * Do not store the new memslots while there are invalidations in
071064f1
PB
1546 * progress, otherwise the locking in invalidate_range_start and
1547 * invalidate_range_end will be unbalanced.
52ac8b35
PB
1548 */
1549 spin_lock(&kvm->mn_invalidate_lock);
1550 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1551 while (kvm->mn_active_invalidate_count) {
1552 set_current_state(TASK_UNINTERRUPTIBLE);
1553 spin_unlock(&kvm->mn_invalidate_lock);
1554 schedule();
1555 spin_lock(&kvm->mn_invalidate_lock);
1556 }
1557 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
f481b069 1558 rcu_assign_pointer(kvm->memslots[as_id], slots);
52ac8b35 1559 spin_unlock(&kvm->mn_invalidate_lock);
b10a038e
BG
1560
1561 /*
1562 * Acquired in kvm_set_memslot. Must be released before synchronize
1563 * SRCU below in order to avoid deadlock with another thread
1564 * acquiring the slots_arch_lock in an srcu critical section.
1565 */
1566 mutex_unlock(&kvm->slots_arch_lock);
1567
7ec4fb44 1568 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1569
ee3d1570 1570 /*
361209e0 1571 * Increment the new memslot generation a second time, dropping the
00116795 1572 * update in-progress flag and incrementing the generation based on
361209e0
SC
1573 * the number of address spaces. This provides a unique and easily
1574 * identifiable generation number while the memslots are in flux.
1575 */
1576 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1577
1578 /*
4bd518f1
PB
1579 * Generations must be unique even across address spaces. We do not need
1580 * a global counter for that, instead the generation space is evenly split
1581 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1582 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1583 * use generations 1, 3, 5, ...
ee3d1570 1584 */
164bf7e5 1585 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1586
15248258 1587 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1588
15248258 1589 slots->generation = gen;
7ec4fb44
GN
1590}
1591
07921665
SC
1592static int kvm_prepare_memory_region(struct kvm *kvm,
1593 const struct kvm_memory_slot *old,
1594 struct kvm_memory_slot *new,
1595 enum kvm_mr_change change)
ddc12f2a 1596{
07921665
SC
1597 int r;
1598
1599 /*
1600 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1601 * will be freed on "commit". If logging is enabled in both old and
1602 * new, reuse the existing bitmap. If logging is enabled only in the
1603 * new and KVM isn't using a ring buffer, allocate and initialize a
1604 * new bitmap.
1605 */
244893fa
SC
1606 if (change != KVM_MR_DELETE) {
1607 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1608 new->dirty_bitmap = NULL;
1609 else if (old && old->dirty_bitmap)
1610 new->dirty_bitmap = old->dirty_bitmap;
1611 else if (!kvm->dirty_ring_size) {
1612 r = kvm_alloc_dirty_bitmap(new);
1613 if (r)
1614 return r;
1615
1616 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1617 bitmap_set(new->dirty_bitmap, 0, new->npages);
1618 }
07921665
SC
1619 }
1620
1621 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1622
1623 /* Free the bitmap on failure if it was allocated above. */
c87661f8 1624 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
07921665
SC
1625 kvm_destroy_dirty_bitmap(new);
1626
1627 return r;
ddc12f2a
BG
1628}
1629
07921665
SC
1630static void kvm_commit_memory_region(struct kvm *kvm,
1631 struct kvm_memory_slot *old,
1632 const struct kvm_memory_slot *new,
1633 enum kvm_mr_change change)
ddc12f2a 1634{
07921665
SC
1635 /*
1636 * Update the total number of memslot pages before calling the arch
1637 * hook so that architectures can consume the result directly.
1638 */
1639 if (change == KVM_MR_DELETE)
1640 kvm->nr_memslot_pages -= old->npages;
1641 else if (change == KVM_MR_CREATE)
1642 kvm->nr_memslot_pages += new->npages;
1643
1644 kvm_arch_commit_memory_region(kvm, old, new, change);
1645
a54d8066
MS
1646 switch (change) {
1647 case KVM_MR_CREATE:
1648 /* Nothing more to do. */
1649 break;
1650 case KVM_MR_DELETE:
1651 /* Free the old memslot and all its metadata. */
1652 kvm_free_memslot(kvm, old);
1653 break;
1654 case KVM_MR_MOVE:
1655 case KVM_MR_FLAGS_ONLY:
1656 /*
1657 * Free the dirty bitmap as needed; the below check encompasses
1658 * both the flags and whether a ring buffer is being used)
1659 */
1660 if (old->dirty_bitmap && !new->dirty_bitmap)
1661 kvm_destroy_dirty_bitmap(old);
1662
1663 /*
1664 * The final quirk. Free the detached, old slot, but only its
1665 * memory, not any metadata. Metadata, including arch specific
1666 * data, may be reused by @new.
1667 */
1668 kfree(old);
1669 break;
1670 default:
1671 BUG();
1672 }
ddc12f2a
BG
1673}
1674
36947254 1675/*
a54d8066
MS
1676 * Activate @new, which must be installed in the inactive slots by the caller,
1677 * by swapping the active slots and then propagating @new to @old once @old is
1678 * unreachable and can be safely modified.
1679 *
1680 * With NULL @old this simply adds @new to @active (while swapping the sets).
1681 * With NULL @new this simply removes @old from @active and frees it
1682 * (while also swapping the sets).
36947254 1683 */
a54d8066
MS
1684static void kvm_activate_memslot(struct kvm *kvm,
1685 struct kvm_memory_slot *old,
1686 struct kvm_memory_slot *new)
36947254 1687{
a54d8066 1688 int as_id = kvm_memslots_get_as_id(old, new);
36947254 1689
a54d8066
MS
1690 kvm_swap_active_memslots(kvm, as_id);
1691
1692 /* Propagate the new memslot to the now inactive memslots. */
1693 kvm_replace_memslot(kvm, old, new);
1694}
1695
1696static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1697 const struct kvm_memory_slot *src)
1698{
1699 dest->base_gfn = src->base_gfn;
1700 dest->npages = src->npages;
1701 dest->dirty_bitmap = src->dirty_bitmap;
1702 dest->arch = src->arch;
1703 dest->userspace_addr = src->userspace_addr;
1704 dest->flags = src->flags;
1705 dest->id = src->id;
1706 dest->as_id = src->as_id;
1707}
1708
1709static void kvm_invalidate_memslot(struct kvm *kvm,
1710 struct kvm_memory_slot *old,
244893fa 1711 struct kvm_memory_slot *invalid_slot)
a54d8066 1712{
07921665 1713 /*
a54d8066
MS
1714 * Mark the current slot INVALID. As with all memslot modifications,
1715 * this must be done on an unreachable slot to avoid modifying the
1716 * current slot in the active tree.
07921665 1717 */
244893fa
SC
1718 kvm_copy_memslot(invalid_slot, old);
1719 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1720 kvm_replace_memslot(kvm, old, invalid_slot);
a54d8066
MS
1721
1722 /*
1723 * Activate the slot that is now marked INVALID, but don't propagate
1724 * the slot to the now inactive slots. The slot is either going to be
1725 * deleted or recreated as a new slot.
1726 */
1727 kvm_swap_active_memslots(kvm, old->as_id);
1728
1729 /*
1730 * From this point no new shadow pages pointing to a deleted, or moved,
1731 * memslot will be created. Validation of sp->gfn happens in:
1732 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1733 * - kvm_is_visible_gfn (mmu_check_root)
1734 */
bcb63dcd 1735 kvm_arch_flush_shadow_memslot(kvm, old);
683412cc 1736 kvm_arch_guest_memory_reclaimed(kvm);
a54d8066
MS
1737
1738 /* Was released by kvm_swap_active_memslots, reacquire. */
1739 mutex_lock(&kvm->slots_arch_lock);
1740
1741 /*
1742 * Copy the arch-specific field of the newly-installed slot back to the
1743 * old slot as the arch data could have changed between releasing
1744 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1745 * above. Writers are required to retrieve memslots *after* acquiring
1746 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1747 */
244893fa 1748 old->arch = invalid_slot->arch;
a54d8066
MS
1749}
1750
1751static void kvm_create_memslot(struct kvm *kvm,
244893fa 1752 struct kvm_memory_slot *new)
a54d8066 1753{
244893fa
SC
1754 /* Add the new memslot to the inactive set and activate. */
1755 kvm_replace_memslot(kvm, NULL, new);
1756 kvm_activate_memslot(kvm, NULL, new);
a54d8066
MS
1757}
1758
1759static void kvm_delete_memslot(struct kvm *kvm,
1760 struct kvm_memory_slot *old,
1761 struct kvm_memory_slot *invalid_slot)
1762{
1763 /*
1764 * Remove the old memslot (in the inactive memslots) by passing NULL as
244893fa 1765 * the "new" slot, and for the invalid version in the active slots.
a54d8066
MS
1766 */
1767 kvm_replace_memslot(kvm, old, NULL);
a54d8066 1768 kvm_activate_memslot(kvm, invalid_slot, NULL);
a54d8066 1769}
36947254 1770
244893fa
SC
1771static void kvm_move_memslot(struct kvm *kvm,
1772 struct kvm_memory_slot *old,
1773 struct kvm_memory_slot *new,
1774 struct kvm_memory_slot *invalid_slot)
a54d8066 1775{
a54d8066 1776 /*
244893fa
SC
1777 * Replace the old memslot in the inactive slots, and then swap slots
1778 * and replace the current INVALID with the new as well.
a54d8066 1779 */
244893fa
SC
1780 kvm_replace_memslot(kvm, old, new);
1781 kvm_activate_memslot(kvm, invalid_slot, new);
a54d8066 1782}
36947254 1783
a54d8066
MS
1784static void kvm_update_flags_memslot(struct kvm *kvm,
1785 struct kvm_memory_slot *old,
244893fa 1786 struct kvm_memory_slot *new)
a54d8066
MS
1787{
1788 /*
1789 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1790 * an intermediate step. Instead, the old memslot is simply replaced
1791 * with a new, updated copy in both memslot sets.
1792 */
244893fa
SC
1793 kvm_replace_memslot(kvm, old, new);
1794 kvm_activate_memslot(kvm, old, new);
36947254
SC
1795}
1796
cf47f50b 1797static int kvm_set_memslot(struct kvm *kvm,
a54d8066 1798 struct kvm_memory_slot *old,
ce5f0215 1799 struct kvm_memory_slot *new,
cf47f50b
SC
1800 enum kvm_mr_change change)
1801{
244893fa 1802 struct kvm_memory_slot *invalid_slot;
cf47f50b
SC
1803 int r;
1804
b10a038e 1805 /*
a54d8066 1806 * Released in kvm_swap_active_memslots.
b10a038e
BG
1807 *
1808 * Must be held from before the current memslots are copied until
1809 * after the new memslots are installed with rcu_assign_pointer,
a54d8066 1810 * then released before the synchronize srcu in kvm_swap_active_memslots.
b10a038e
BG
1811 *
1812 * When modifying memslots outside of the slots_lock, must be held
1813 * before reading the pointer to the current memslots until after all
1814 * changes to those memslots are complete.
1815 *
1816 * These rules ensure that installing new memslots does not lose
1817 * changes made to the previous memslots.
1818 */
1819 mutex_lock(&kvm->slots_arch_lock);
1820
a54d8066
MS
1821 /*
1822 * Invalidate the old slot if it's being deleted or moved. This is
1823 * done prior to actually deleting/moving the memslot to allow vCPUs to
1824 * continue running by ensuring there are no mappings or shadow pages
1825 * for the memslot when it is deleted/moved. Without pre-invalidation
1826 * (and without a lock), a window would exist between effecting the
1827 * delete/move and committing the changes in arch code where KVM or a
1828 * guest could access a non-existent memslot.
244893fa
SC
1829 *
1830 * Modifications are done on a temporary, unreachable slot. The old
1831 * slot needs to be preserved in case a later step fails and the
1832 * invalidation needs to be reverted.
a54d8066 1833 */
cf47f50b 1834 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
244893fa
SC
1835 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1836 if (!invalid_slot) {
1837 mutex_unlock(&kvm->slots_arch_lock);
1838 return -ENOMEM;
1839 }
1840 kvm_invalidate_memslot(kvm, old, invalid_slot);
1841 }
b10a038e 1842
a54d8066
MS
1843 r = kvm_prepare_memory_region(kvm, old, new, change);
1844 if (r) {
b10a038e 1845 /*
a54d8066
MS
1846 * For DELETE/MOVE, revert the above INVALID change. No
1847 * modifications required since the original slot was preserved
1848 * in the inactive slots. Changing the active memslots also
1849 * release slots_arch_lock.
b10a038e 1850 */
244893fa
SC
1851 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1852 kvm_activate_memslot(kvm, invalid_slot, old);
1853 kfree(invalid_slot);
1854 } else {
a54d8066 1855 mutex_unlock(&kvm->slots_arch_lock);
244893fa 1856 }
a54d8066 1857 return r;
cf47f50b
SC
1858 }
1859
bda44d84 1860 /*
a54d8066
MS
1861 * For DELETE and MOVE, the working slot is now active as the INVALID
1862 * version of the old slot. MOVE is particularly special as it reuses
1863 * the old slot and returns a copy of the old slot (in working_slot).
1864 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1865 * old slot is detached but otherwise preserved.
bda44d84 1866 */
a54d8066 1867 if (change == KVM_MR_CREATE)
244893fa 1868 kvm_create_memslot(kvm, new);
a54d8066 1869 else if (change == KVM_MR_DELETE)
244893fa 1870 kvm_delete_memslot(kvm, old, invalid_slot);
a54d8066 1871 else if (change == KVM_MR_MOVE)
244893fa 1872 kvm_move_memslot(kvm, old, new, invalid_slot);
a54d8066 1873 else if (change == KVM_MR_FLAGS_ONLY)
244893fa 1874 kvm_update_flags_memslot(kvm, old, new);
a54d8066
MS
1875 else
1876 BUG();
cf47f50b 1877
244893fa
SC
1878 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1879 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1880 kfree(invalid_slot);
bda44d84 1881
a54d8066
MS
1882 /*
1883 * No need to refresh new->arch, changes after dropping slots_arch_lock
a413a625 1884 * will directly hit the final, active memslot. Architectures are
a54d8066
MS
1885 * responsible for knowing that new->arch may be stale.
1886 */
1887 kvm_commit_memory_region(kvm, old, new, change);
cf47f50b 1888
cf47f50b 1889 return 0;
cf47f50b
SC
1890}
1891
44401a20
MS
1892static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1893 gfn_t start, gfn_t end)
5c0b4f3d 1894{
44401a20 1895 struct kvm_memslot_iter iter;
5c0b4f3d 1896
44401a20
MS
1897 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1898 if (iter.slot->id != id)
1899 return true;
1900 }
5c0b4f3d 1901
44401a20 1902 return false;
5c0b4f3d
SC
1903}
1904
6aa8b732
AK
1905/*
1906 * Allocate some memory and give it an address in the guest physical address
1907 * space.
1908 *
1909 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1910 *
02d5d55b 1911 * Must be called holding kvm->slots_lock for write.
6aa8b732 1912 */
f78e0e2e 1913int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1914 const struct kvm_userspace_memory_region *mem)
6aa8b732 1915{
244893fa 1916 struct kvm_memory_slot *old, *new;
44401a20 1917 struct kvm_memslots *slots;
f64c0398 1918 enum kvm_mr_change change;
0f9bdef3
SC
1919 unsigned long npages;
1920 gfn_t base_gfn;
163da372
SC
1921 int as_id, id;
1922 int r;
6aa8b732 1923
a50d64d6
XG
1924 r = check_memory_region_flags(mem);
1925 if (r)
71a4c30b 1926 return r;
a50d64d6 1927
f481b069
PB
1928 as_id = mem->slot >> 16;
1929 id = (u16)mem->slot;
1930
6aa8b732 1931 /* General sanity checks */
6b285a55
SC
1932 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1933 (mem->memory_size != (unsigned long)mem->memory_size))
71a4c30b 1934 return -EINVAL;
6aa8b732 1935 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1936 return -EINVAL;
fa3d315a 1937 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1938 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1939 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1940 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1941 mem->memory_size))
71a4c30b 1942 return -EINVAL;
f481b069 1943 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1944 return -EINVAL;
6aa8b732 1945 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1946 return -EINVAL;
0f9bdef3
SC
1947 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1948 return -EINVAL;
6aa8b732 1949
44401a20 1950 slots = __kvm_memslots(kvm, as_id);
6aa8b732 1951
5c0b4f3d 1952 /*
7cd08553
SC
1953 * Note, the old memslot (and the pointer itself!) may be invalidated
1954 * and/or destroyed by kvm_set_memslot().
5c0b4f3d 1955 */
44401a20 1956 old = id_to_memslot(slots, id);
163da372 1957
47ea7d90 1958 if (!mem->memory_size) {
7cd08553 1959 if (!old || !old->npages)
47ea7d90 1960 return -EINVAL;
5c0b4f3d 1961
7cd08553 1962 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
47ea7d90 1963 return -EIO;
6aa8b732 1964
244893fa 1965 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
47ea7d90 1966 }
5c0b4f3d 1967
0f9bdef3
SC
1968 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1969 npages = (mem->memory_size >> PAGE_SHIFT);
163da372 1970
7cd08553 1971 if (!old || !old->npages) {
5c0b4f3d 1972 change = KVM_MR_CREATE;
afa319a5
SC
1973
1974 /*
1975 * To simplify KVM internals, the total number of pages across
1976 * all memslots must fit in an unsigned long.
1977 */
0f9bdef3 1978 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
afa319a5 1979 return -EINVAL;
5c0b4f3d 1980 } else { /* Modify an existing slot. */
0f9bdef3
SC
1981 if ((mem->userspace_addr != old->userspace_addr) ||
1982 (npages != old->npages) ||
1983 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
71a4c30b 1984 return -EINVAL;
09170a49 1985
0f9bdef3 1986 if (base_gfn != old->base_gfn)
5c0b4f3d 1987 change = KVM_MR_MOVE;
0f9bdef3 1988 else if (mem->flags != old->flags)
5c0b4f3d
SC
1989 change = KVM_MR_FLAGS_ONLY;
1990 else /* Nothing to change. */
1991 return 0;
09170a49 1992 }
6aa8b732 1993
44401a20 1994 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
0f9bdef3 1995 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
44401a20 1996 return -EEXIST;
6aa8b732 1997
244893fa
SC
1998 /* Allocate a slot that will persist in the memslot. */
1999 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2000 if (!new)
2001 return -ENOMEM;
3c9bd400 2002
244893fa
SC
2003 new->as_id = as_id;
2004 new->id = id;
2005 new->base_gfn = base_gfn;
2006 new->npages = npages;
2007 new->flags = mem->flags;
2008 new->userspace_addr = mem->userspace_addr;
6aa8b732 2009
244893fa 2010 r = kvm_set_memslot(kvm, old, new, change);
cf47f50b 2011 if (r)
244893fa 2012 kfree(new);
6aa8b732 2013 return r;
210c7c4d 2014}
f78e0e2e
SY
2015EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2016
2017int kvm_set_memory_region(struct kvm *kvm,
09170a49 2018 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
2019{
2020 int r;
2021
79fac95e 2022 mutex_lock(&kvm->slots_lock);
47ae31e2 2023 r = __kvm_set_memory_region(kvm, mem);
79fac95e 2024 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
2025 return r;
2026}
210c7c4d
IE
2027EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2028
7940876e
SH
2029static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2030 struct kvm_userspace_memory_region *mem)
210c7c4d 2031{
f481b069 2032 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 2033 return -EINVAL;
09170a49 2034
47ae31e2 2035 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
2036}
2037
0dff0846 2038#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
2039/**
2040 * kvm_get_dirty_log - get a snapshot of dirty pages
2041 * @kvm: pointer to kvm instance
2042 * @log: slot id and address to which we copy the log
2043 * @is_dirty: set to '1' if any dirty pages were found
2044 * @memslot: set to the associated memslot, always valid on success
2045 */
2046int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2047 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 2048{
9f6b8029 2049 struct kvm_memslots *slots;
843574a3 2050 int i, as_id, id;
87bf6e7d 2051 unsigned long n;
6aa8b732
AK
2052 unsigned long any = 0;
2053
b2cc64c4
PX
2054 /* Dirty ring tracking is exclusive to dirty log tracking */
2055 if (kvm->dirty_ring_size)
2056 return -ENXIO;
2057
2a49f61d
SC
2058 *memslot = NULL;
2059 *is_dirty = 0;
2060
f481b069
PB
2061 as_id = log->slot >> 16;
2062 id = (u16)log->slot;
2063 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 2064 return -EINVAL;
6aa8b732 2065
f481b069 2066 slots = __kvm_memslots(kvm, as_id);
2a49f61d 2067 *memslot = id_to_memslot(slots, id);
0577d1ab 2068 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 2069 return -ENOENT;
6aa8b732 2070
2a49f61d
SC
2071 kvm_arch_sync_dirty_log(kvm, *memslot);
2072
2073 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 2074
cd1a4a98 2075 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 2076 any = (*memslot)->dirty_bitmap[i];
6aa8b732 2077
2a49f61d 2078 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 2079 return -EFAULT;
6aa8b732 2080
5bb064dc
ZX
2081 if (any)
2082 *is_dirty = 1;
843574a3 2083 return 0;
6aa8b732 2084}
2ba9f0d8 2085EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 2086
0dff0846 2087#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2088/**
b8b00220 2089 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 2090 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
2091 * @kvm: pointer to kvm instance
2092 * @log: slot id and address to which we copy the log
ba0513b5
MS
2093 *
2094 * We need to keep it in mind that VCPU threads can write to the bitmap
2095 * concurrently. So, to avoid losing track of dirty pages we keep the
2096 * following order:
2097 *
2098 * 1. Take a snapshot of the bit and clear it if needed.
2099 * 2. Write protect the corresponding page.
2100 * 3. Copy the snapshot to the userspace.
2101 * 4. Upon return caller flushes TLB's if needed.
2102 *
2103 * Between 2 and 4, the guest may write to the page using the remaining TLB
2104 * entry. This is not a problem because the page is reported dirty using
2105 * the snapshot taken before and step 4 ensures that writes done after
2106 * exiting to userspace will be logged for the next call.
2107 *
2108 */
0dff0846 2109static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 2110{
9f6b8029 2111 struct kvm_memslots *slots;
ba0513b5 2112 struct kvm_memory_slot *memslot;
58d6db34 2113 int i, as_id, id;
ba0513b5
MS
2114 unsigned long n;
2115 unsigned long *dirty_bitmap;
2116 unsigned long *dirty_bitmap_buffer;
0dff0846 2117 bool flush;
ba0513b5 2118
b2cc64c4
PX
2119 /* Dirty ring tracking is exclusive to dirty log tracking */
2120 if (kvm->dirty_ring_size)
2121 return -ENXIO;
2122
f481b069
PB
2123 as_id = log->slot >> 16;
2124 id = (u16)log->slot;
2125 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 2126 return -EINVAL;
ba0513b5 2127
f481b069
PB
2128 slots = __kvm_memslots(kvm, as_id);
2129 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2130 if (!memslot || !memslot->dirty_bitmap)
2131 return -ENOENT;
ba0513b5
MS
2132
2133 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 2134
0dff0846
SC
2135 kvm_arch_sync_dirty_log(kvm, memslot);
2136
ba0513b5 2137 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 2138 flush = false;
2a31b9db
PB
2139 if (kvm->manual_dirty_log_protect) {
2140 /*
2141 * Unlike kvm_get_dirty_log, we always return false in *flush,
2142 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2143 * is some code duplication between this function and
2144 * kvm_get_dirty_log, but hopefully all architecture
2145 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2146 * can be eliminated.
2147 */
2148 dirty_bitmap_buffer = dirty_bitmap;
2149 } else {
2150 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2151 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 2152
531810ca 2153 KVM_MMU_LOCK(kvm);
2a31b9db
PB
2154 for (i = 0; i < n / sizeof(long); i++) {
2155 unsigned long mask;
2156 gfn_t offset;
ba0513b5 2157
2a31b9db
PB
2158 if (!dirty_bitmap[i])
2159 continue;
2160
0dff0846 2161 flush = true;
2a31b9db
PB
2162 mask = xchg(&dirty_bitmap[i], 0);
2163 dirty_bitmap_buffer[i] = mask;
2164
a67794ca
LT
2165 offset = i * BITS_PER_LONG;
2166 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2167 offset, mask);
2a31b9db 2168 }
531810ca 2169 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
2170 }
2171
0dff0846
SC
2172 if (flush)
2173 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2174
2a31b9db
PB
2175 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2176 return -EFAULT;
2177 return 0;
2178}
0dff0846
SC
2179
2180
2181/**
2182 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2183 * @kvm: kvm instance
2184 * @log: slot id and address to which we copy the log
2185 *
2186 * Steps 1-4 below provide general overview of dirty page logging. See
2187 * kvm_get_dirty_log_protect() function description for additional details.
2188 *
2189 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2190 * always flush the TLB (step 4) even if previous step failed and the dirty
2191 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2192 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2193 * writes will be marked dirty for next log read.
2194 *
2195 * 1. Take a snapshot of the bit and clear it if needed.
2196 * 2. Write protect the corresponding page.
2197 * 3. Copy the snapshot to the userspace.
2198 * 4. Flush TLB's if needed.
2199 */
2200static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2201 struct kvm_dirty_log *log)
2202{
2203 int r;
2204
2205 mutex_lock(&kvm->slots_lock);
2206
2207 r = kvm_get_dirty_log_protect(kvm, log);
2208
2209 mutex_unlock(&kvm->slots_lock);
2210 return r;
2211}
2a31b9db
PB
2212
2213/**
2214 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2215 * and reenable dirty page tracking for the corresponding pages.
2216 * @kvm: pointer to kvm instance
2217 * @log: slot id and address from which to fetch the bitmap of dirty pages
2218 */
0dff0846
SC
2219static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2220 struct kvm_clear_dirty_log *log)
2a31b9db
PB
2221{
2222 struct kvm_memslots *slots;
2223 struct kvm_memory_slot *memslot;
98938aa8 2224 int as_id, id;
2a31b9db 2225 gfn_t offset;
98938aa8 2226 unsigned long i, n;
2a31b9db
PB
2227 unsigned long *dirty_bitmap;
2228 unsigned long *dirty_bitmap_buffer;
0dff0846 2229 bool flush;
2a31b9db 2230
b2cc64c4
PX
2231 /* Dirty ring tracking is exclusive to dirty log tracking */
2232 if (kvm->dirty_ring_size)
2233 return -ENXIO;
2234
2a31b9db
PB
2235 as_id = log->slot >> 16;
2236 id = (u16)log->slot;
2237 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2238 return -EINVAL;
2239
76d58e0f 2240 if (log->first_page & 63)
2a31b9db
PB
2241 return -EINVAL;
2242
2243 slots = __kvm_memslots(kvm, as_id);
2244 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2245 if (!memslot || !memslot->dirty_bitmap)
2246 return -ENOENT;
2a31b9db
PB
2247
2248 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 2249
4ddc9204 2250 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
2251
2252 if (log->first_page > memslot->npages ||
76d58e0f
PB
2253 log->num_pages > memslot->npages - log->first_page ||
2254 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2255 return -EINVAL;
98938aa8 2256
0dff0846
SC
2257 kvm_arch_sync_dirty_log(kvm, memslot);
2258
2259 flush = false;
2a31b9db
PB
2260 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2261 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2262 return -EFAULT;
ba0513b5 2263
531810ca 2264 KVM_MMU_LOCK(kvm);
53eac7a8
PX
2265 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2266 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
2267 i++, offset += BITS_PER_LONG) {
2268 unsigned long mask = *dirty_bitmap_buffer++;
2269 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2270 if (!mask)
ba0513b5
MS
2271 continue;
2272
2a31b9db 2273 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 2274
2a31b9db
PB
2275 /*
2276 * mask contains the bits that really have been cleared. This
2277 * never includes any bits beyond the length of the memslot (if
2278 * the length is not aligned to 64 pages), therefore it is not
2279 * a problem if userspace sets them in log->dirty_bitmap.
2280 */
58d2930f 2281 if (mask) {
0dff0846 2282 flush = true;
58d2930f
TY
2283 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2284 offset, mask);
2285 }
ba0513b5 2286 }
531810ca 2287 KVM_MMU_UNLOCK(kvm);
2a31b9db 2288
0dff0846
SC
2289 if (flush)
2290 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2291
58d6db34 2292 return 0;
ba0513b5 2293}
0dff0846
SC
2294
2295static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2296 struct kvm_clear_dirty_log *log)
2297{
2298 int r;
2299
2300 mutex_lock(&kvm->slots_lock);
2301
2302 r = kvm_clear_dirty_log_protect(kvm, log);
2303
2304 mutex_unlock(&kvm->slots_lock);
2305 return r;
2306}
2307#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2308
49c7754c
GN
2309struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2310{
2311 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2312}
a1f4d395 2313EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 2314
8e73485c
PB
2315struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2316{
fe22ed82 2317 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
a54d8066 2318 u64 gen = slots->generation;
fe22ed82 2319 struct kvm_memory_slot *slot;
fe22ed82 2320
a54d8066
MS
2321 /*
2322 * This also protects against using a memslot from a different address space,
2323 * since different address spaces have different generation numbers.
2324 */
2325 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2326 vcpu->last_used_slot = NULL;
2327 vcpu->last_used_slot_gen = gen;
2328 }
2329
2330 slot = try_get_memslot(vcpu->last_used_slot, gfn);
fe22ed82
DM
2331 if (slot)
2332 return slot;
2333
2334 /*
2335 * Fall back to searching all memslots. We purposely use
2336 * search_memslots() instead of __gfn_to_memslot() to avoid
a54d8066 2337 * thrashing the VM-wide last_used_slot in kvm_memslots.
fe22ed82 2338 */
a54d8066 2339 slot = search_memslots(slots, gfn, false);
fe22ed82 2340 if (slot) {
a54d8066 2341 vcpu->last_used_slot = slot;
fe22ed82
DM
2342 return slot;
2343 }
2344
2345 return NULL;
8e73485c
PB
2346}
2347
33e94154 2348bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 2349{
bf3e05bc 2350 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 2351
c36b7150 2352 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
2353}
2354EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2355
995decb6
VK
2356bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2357{
2358 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2359
2360 return kvm_is_visible_memslot(memslot);
2361}
2362EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2363
f9b84e19 2364unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
2365{
2366 struct vm_area_struct *vma;
2367 unsigned long addr, size;
2368
2369 size = PAGE_SIZE;
2370
42cde48b 2371 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
2372 if (kvm_is_error_hva(addr))
2373 return PAGE_SIZE;
2374
d8ed45c5 2375 mmap_read_lock(current->mm);
8f0b1ab6
JR
2376 vma = find_vma(current->mm, addr);
2377 if (!vma)
2378 goto out;
2379
2380 size = vma_kernel_pagesize(vma);
2381
2382out:
d8ed45c5 2383 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2384
2385 return size;
2386}
2387
8283e36a 2388static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
4d8b81ab
XG
2389{
2390 return slot->flags & KVM_MEM_READONLY;
2391}
2392
8283e36a 2393static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
4d8b81ab 2394 gfn_t *nr_pages, bool write)
539cb660 2395{
bc6678a3 2396 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2397 return KVM_HVA_ERR_BAD;
48987781 2398
4d8b81ab
XG
2399 if (memslot_is_readonly(slot) && write)
2400 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2401
2402 if (nr_pages)
2403 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2404
4d8b81ab 2405 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2406}
48987781 2407
4d8b81ab
XG
2408static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2409 gfn_t *nr_pages)
2410{
2411 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2412}
48987781 2413
4d8b81ab 2414unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2415 gfn_t gfn)
4d8b81ab
XG
2416{
2417 return gfn_to_hva_many(slot, gfn, NULL);
2418}
2419EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2420
48987781
XG
2421unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2422{
49c7754c 2423 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2424}
0d150298 2425EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2426
8e73485c
PB
2427unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2428{
2429 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2430}
2431EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2432
86ab8cff 2433/*
970c0d4b
WY
2434 * Return the hva of a @gfn and the R/W attribute if possible.
2435 *
2436 * @slot: the kvm_memory_slot which contains @gfn
2437 * @gfn: the gfn to be translated
2438 * @writable: used to return the read/write attribute of the @slot if the hva
2439 * is valid and @writable is not NULL
86ab8cff 2440 */
64d83126
CD
2441unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2442 gfn_t gfn, bool *writable)
86ab8cff 2443{
a2ac07fe
GN
2444 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2445
2446 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2447 *writable = !memslot_is_readonly(slot);
2448
a2ac07fe 2449 return hva;
86ab8cff
XG
2450}
2451
64d83126
CD
2452unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2453{
2454 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2455
2456 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2457}
2458
8e73485c
PB
2459unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2460{
2461 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2462
2463 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2464}
2465
fafc3dba
HY
2466static inline int check_user_page_hwpoison(unsigned long addr)
2467{
0d731759 2468 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2469
0d731759 2470 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
2471 return rc == -EHWPOISON;
2472}
2473
2fc84311 2474/*
b9b33da2
PB
2475 * The fast path to get the writable pfn which will be stored in @pfn,
2476 * true indicates success, otherwise false is returned. It's also the
311497e0 2477 * only part that runs if we can in atomic context.
2fc84311 2478 */
b9b33da2
PB
2479static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2480 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2481{
8d4e1288 2482 struct page *page[1];
954bbbc2 2483
12ce13fe
XG
2484 /*
2485 * Fast pin a writable pfn only if it is a write fault request
2486 * or the caller allows to map a writable pfn for a read fault
2487 * request.
2488 */
2489 if (!(write_fault || writable))
2490 return false;
612819c3 2491
dadbb612 2492 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2493 *pfn = page_to_pfn(page[0]);
612819c3 2494
2fc84311
XG
2495 if (writable)
2496 *writable = true;
2497 return true;
2498 }
af585b92 2499
2fc84311
XG
2500 return false;
2501}
612819c3 2502
2fc84311
XG
2503/*
2504 * The slow path to get the pfn of the specified host virtual address,
2505 * 1 indicates success, -errno is returned if error is detected.
2506 */
2507static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 2508 bool *writable, kvm_pfn_t *pfn)
2fc84311 2509{
ce53053c
AV
2510 unsigned int flags = FOLL_HWPOISON;
2511 struct page *page;
2fc84311 2512 int npages = 0;
612819c3 2513
2fc84311
XG
2514 might_sleep();
2515
2516 if (writable)
2517 *writable = write_fault;
2518
ce53053c
AV
2519 if (write_fault)
2520 flags |= FOLL_WRITE;
2521 if (async)
2522 flags |= FOLL_NOWAIT;
d4944b0e 2523
ce53053c 2524 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2525 if (npages != 1)
2526 return npages;
2527
2528 /* map read fault as writable if possible */
12ce13fe 2529 if (unlikely(!write_fault) && writable) {
ce53053c 2530 struct page *wpage;
2fc84311 2531
dadbb612 2532 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2533 *writable = true;
ce53053c
AV
2534 put_page(page);
2535 page = wpage;
612819c3 2536 }
887c08ac 2537 }
ce53053c 2538 *pfn = page_to_pfn(page);
2fc84311
XG
2539 return npages;
2540}
539cb660 2541
4d8b81ab
XG
2542static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2543{
2544 if (unlikely(!(vma->vm_flags & VM_READ)))
2545 return false;
2e2e3738 2546
4d8b81ab
XG
2547 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2548 return false;
887c08ac 2549
4d8b81ab
XG
2550 return true;
2551}
bf998156 2552
f8be156b
NP
2553static int kvm_try_get_pfn(kvm_pfn_t pfn)
2554{
b14b2690
SC
2555 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2556
2557 if (!page)
f8be156b 2558 return 1;
b14b2690
SC
2559
2560 return get_page_unless_zero(page);
f8be156b
NP
2561}
2562
92176a8e 2563static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1625566e
XT
2564 unsigned long addr, bool write_fault,
2565 bool *writable, kvm_pfn_t *p_pfn)
92176a8e 2566{
a9545779 2567 kvm_pfn_t pfn;
bd2fae8d
PB
2568 pte_t *ptep;
2569 spinlock_t *ptl;
add6a0cd
PB
2570 int r;
2571
9fd6dad1 2572 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2573 if (r) {
2574 /*
2575 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2576 * not call the fault handler, so do it here.
2577 */
2578 bool unlocked = false;
64019a2e 2579 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2580 (write_fault ? FAULT_FLAG_WRITE : 0),
2581 &unlocked);
a8387d0b
PB
2582 if (unlocked)
2583 return -EAGAIN;
add6a0cd
PB
2584 if (r)
2585 return r;
2586
9fd6dad1 2587 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2588 if (r)
2589 return r;
bd2fae8d 2590 }
add6a0cd 2591
bd2fae8d
PB
2592 if (write_fault && !pte_write(*ptep)) {
2593 pfn = KVM_PFN_ERR_RO_FAULT;
2594 goto out;
add6a0cd
PB
2595 }
2596
a340b3e2 2597 if (writable)
bd2fae8d
PB
2598 *writable = pte_write(*ptep);
2599 pfn = pte_pfn(*ptep);
add6a0cd
PB
2600
2601 /*
2602 * Get a reference here because callers of *hva_to_pfn* and
2603 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2604 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
36c3ce6c 2605 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
add6a0cd
PB
2606 * simply do nothing for reserved pfns.
2607 *
2608 * Whoever called remap_pfn_range is also going to call e.g.
2609 * unmap_mapping_range before the underlying pages are freed,
2610 * causing a call to our MMU notifier.
f8be156b
NP
2611 *
2612 * Certain IO or PFNMAP mappings can be backed with valid
2613 * struct pages, but be allocated without refcounting e.g.,
2614 * tail pages of non-compound higher order allocations, which
2615 * would then underflow the refcount when the caller does the
2616 * required put_page. Don't allow those pages here.
add6a0cd 2617 */
f8be156b
NP
2618 if (!kvm_try_get_pfn(pfn))
2619 r = -EFAULT;
add6a0cd 2620
bd2fae8d
PB
2621out:
2622 pte_unmap_unlock(ptep, ptl);
add6a0cd 2623 *p_pfn = pfn;
f8be156b
NP
2624
2625 return r;
92176a8e
PB
2626}
2627
12ce13fe
XG
2628/*
2629 * Pin guest page in memory and return its pfn.
2630 * @addr: host virtual address which maps memory to the guest
2631 * @atomic: whether this function can sleep
2632 * @async: whether this function need to wait IO complete if the
2633 * host page is not in the memory
2634 * @write_fault: whether we should get a writable host page
2635 * @writable: whether it allows to map a writable host page for !@write_fault
2636 *
2637 * The function will map a writable host page for these two cases:
2638 * 1): @write_fault = true
2639 * 2): @write_fault = false && @writable, @writable will tell the caller
2640 * whether the mapping is writable.
2641 */
982ed0de
DW
2642kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2643 bool write_fault, bool *writable)
2fc84311
XG
2644{
2645 struct vm_area_struct *vma;
943dfea8 2646 kvm_pfn_t pfn;
92176a8e 2647 int npages, r;
2e2e3738 2648
2fc84311
XG
2649 /* we can do it either atomically or asynchronously, not both */
2650 BUG_ON(atomic && async);
8d4e1288 2651
b9b33da2 2652 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2653 return pfn;
2654
2655 if (atomic)
2656 return KVM_PFN_ERR_FAULT;
2657
2658 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2659 if (npages == 1)
2660 return pfn;
8d4e1288 2661
d8ed45c5 2662 mmap_read_lock(current->mm);
2fc84311
XG
2663 if (npages == -EHWPOISON ||
2664 (!async && check_user_page_hwpoison(addr))) {
2665 pfn = KVM_PFN_ERR_HWPOISON;
2666 goto exit;
2667 }
2668
a8387d0b 2669retry:
fc98c03b 2670 vma = vma_lookup(current->mm, addr);
2fc84311
XG
2671
2672 if (vma == NULL)
2673 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2674 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1625566e 2675 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
a8387d0b
PB
2676 if (r == -EAGAIN)
2677 goto retry;
92176a8e
PB
2678 if (r < 0)
2679 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2680 } else {
4d8b81ab 2681 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2682 *async = true;
2683 pfn = KVM_PFN_ERR_FAULT;
2684 }
2685exit:
d8ed45c5 2686 mmap_read_unlock(current->mm);
2e2e3738 2687 return pfn;
35149e21
AL
2688}
2689
8283e36a 2690kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
ba049e93 2691 bool atomic, bool *async, bool write_fault,
4a42d848 2692 bool *writable, hva_t *hva)
887c08ac 2693{
4d8b81ab
XG
2694 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2695
4a42d848
DS
2696 if (hva)
2697 *hva = addr;
2698
b2740d35
PB
2699 if (addr == KVM_HVA_ERR_RO_BAD) {
2700 if (writable)
2701 *writable = false;
4d8b81ab 2702 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2703 }
4d8b81ab 2704
b2740d35
PB
2705 if (kvm_is_error_hva(addr)) {
2706 if (writable)
2707 *writable = false;
81c52c56 2708 return KVM_PFN_NOSLOT;
b2740d35 2709 }
4d8b81ab
XG
2710
2711 /* Do not map writable pfn in the readonly memslot. */
2712 if (writable && memslot_is_readonly(slot)) {
2713 *writable = false;
2714 writable = NULL;
2715 }
2716
2717 return hva_to_pfn(addr, atomic, async, write_fault,
2718 writable);
887c08ac 2719}
3520469d 2720EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2721
ba049e93 2722kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2723 bool *writable)
2724{
e37afc6e 2725 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
4a42d848 2726 write_fault, writable, NULL);
612819c3
MT
2727}
2728EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2729
8283e36a 2730kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2731{
4a42d848 2732 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
506f0d6f 2733}
e37afc6e 2734EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2735
8283e36a 2736kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2737{
4a42d848 2738 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
506f0d6f 2739}
037d92dc 2740EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2741
ba049e93 2742kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2743{
2744 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2745}
2746EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2747
ba049e93 2748kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2749{
2750 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2751}
2752EXPORT_SYMBOL_GPL(gfn_to_pfn);
2753
ba049e93 2754kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2755{
2756 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2757}
2758EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2759
d9ef13c2
PB
2760int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2761 struct page **pages, int nr_pages)
48987781
XG
2762{
2763 unsigned long addr;
076b925d 2764 gfn_t entry = 0;
48987781 2765
d9ef13c2 2766 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2767 if (kvm_is_error_hva(addr))
2768 return -1;
2769
2770 if (entry < nr_pages)
2771 return 0;
2772
dadbb612 2773 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2774}
2775EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2776
b1624f99
SC
2777/*
2778 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2779 * backed by 'struct page'. A valid example is if the backing memslot is
2780 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2781 * been elevated by gfn_to_pfn().
2782 */
35149e21
AL
2783struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2784{
b14b2690 2785 struct page *page;
ba049e93 2786 kvm_pfn_t pfn;
2e2e3738
AL
2787
2788 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2789
81c52c56 2790 if (is_error_noslot_pfn(pfn))
cb9aaa30 2791 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2792
b14b2690
SC
2793 page = kvm_pfn_to_refcounted_page(pfn);
2794 if (!page)
6cede2e6 2795 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2796
b14b2690 2797 return page;
954bbbc2
AK
2798}
2799EXPORT_SYMBOL_GPL(gfn_to_page);
2800
357a18ad 2801void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
91724814 2802{
91724814
BO
2803 if (dirty)
2804 kvm_release_pfn_dirty(pfn);
2805 else
2806 kvm_release_pfn_clean(pfn);
2807}
2808
357a18ad 2809int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
e45adf66
KA
2810{
2811 kvm_pfn_t pfn;
2812 void *hva = NULL;
2813 struct page *page = KVM_UNMAPPED_PAGE;
2814
2815 if (!map)
2816 return -EINVAL;
2817
357a18ad 2818 pfn = gfn_to_pfn(vcpu->kvm, gfn);
e45adf66
KA
2819 if (is_error_noslot_pfn(pfn))
2820 return -EINVAL;
2821
2822 if (pfn_valid(pfn)) {
2823 page = pfn_to_page(pfn);
357a18ad 2824 hva = kmap(page);
d30b214d 2825#ifdef CONFIG_HAS_IOMEM
91724814 2826 } else {
357a18ad 2827 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
d30b214d 2828#endif
e45adf66
KA
2829 }
2830
2831 if (!hva)
2832 return -EFAULT;
2833
2834 map->page = page;
2835 map->hva = hva;
2836 map->pfn = pfn;
2837 map->gfn = gfn;
2838
2839 return 0;
2840}
e45adf66
KA
2841EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2842
357a18ad 2843void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
e45adf66
KA
2844{
2845 if (!map)
2846 return;
2847
2848 if (!map->hva)
2849 return;
2850
357a18ad
DW
2851 if (map->page != KVM_UNMAPPED_PAGE)
2852 kunmap(map->page);
eb1f2f38 2853#ifdef CONFIG_HAS_IOMEM
91724814 2854 else
357a18ad 2855 memunmap(map->hva);
eb1f2f38 2856#endif
e45adf66 2857
91724814 2858 if (dirty)
357a18ad 2859 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
91724814 2860
357a18ad 2861 kvm_release_pfn(map->pfn, dirty);
e45adf66
KA
2862
2863 map->hva = NULL;
2864 map->page = NULL;
2865}
2866EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2867
8e1c6914 2868static bool kvm_is_ad_tracked_page(struct page *page)
8e73485c 2869{
8e1c6914
SC
2870 /*
2871 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2872 * touched (e.g. set dirty) except by its owner".
2873 */
2874 return !PageReserved(page);
2875}
8e73485c 2876
8e1c6914
SC
2877static void kvm_set_page_dirty(struct page *page)
2878{
2879 if (kvm_is_ad_tracked_page(page))
2880 SetPageDirty(page);
2881}
8e73485c 2882
8e1c6914
SC
2883static void kvm_set_page_accessed(struct page *page)
2884{
2885 if (kvm_is_ad_tracked_page(page))
2886 mark_page_accessed(page);
8e73485c 2887}
8e73485c 2888
b4231d61
IE
2889void kvm_release_page_clean(struct page *page)
2890{
32cad84f
XG
2891 WARN_ON(is_error_page(page));
2892
8e1c6914
SC
2893 kvm_set_page_accessed(page);
2894 put_page(page);
b4231d61
IE
2895}
2896EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2897
ba049e93 2898void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2899{
b14b2690
SC
2900 struct page *page;
2901
2902 if (is_error_noslot_pfn(pfn))
2903 return;
2904
2905 page = kvm_pfn_to_refcounted_page(pfn);
2906 if (!page)
2907 return;
2908
2909 kvm_release_page_clean(page);
35149e21
AL
2910}
2911EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2912
b4231d61 2913void kvm_release_page_dirty(struct page *page)
8a7ae055 2914{
a2766325
XG
2915 WARN_ON(is_error_page(page));
2916
8e1c6914
SC
2917 kvm_set_page_dirty(page);
2918 kvm_release_page_clean(page);
35149e21
AL
2919}
2920EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2921
f7a6509f 2922void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21 2923{
b14b2690
SC
2924 struct page *page;
2925
2926 if (is_error_noslot_pfn(pfn))
2927 return;
2928
2929 page = kvm_pfn_to_refcounted_page(pfn);
2930 if (!page)
2931 return;
2932
2933 kvm_release_page_dirty(page);
35149e21 2934}
f7a6509f 2935EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2936
8e1c6914
SC
2937/*
2938 * Note, checking for an error/noslot pfn is the caller's responsibility when
2939 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2940 * "set" helpers are not to be used when the pfn might point at garbage.
2941 */
ba049e93 2942void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2943{
8e1c6914
SC
2944 if (WARN_ON(is_error_noslot_pfn(pfn)))
2945 return;
2946
2947 if (pfn_valid(pfn))
2948 kvm_set_page_dirty(pfn_to_page(pfn));
8a7ae055 2949}
35149e21
AL
2950EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2951
ba049e93 2952void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2953{
8e1c6914
SC
2954 if (WARN_ON(is_error_noslot_pfn(pfn)))
2955 return;
2956
2957 if (pfn_valid(pfn))
2958 kvm_set_page_accessed(pfn_to_page(pfn));
35149e21
AL
2959}
2960EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2961
195aefde
IE
2962static int next_segment(unsigned long len, int offset)
2963{
2964 if (len > PAGE_SIZE - offset)
2965 return PAGE_SIZE - offset;
2966 else
2967 return len;
2968}
2969
8e73485c
PB
2970static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2971 void *data, int offset, int len)
195aefde 2972{
e0506bcb
IE
2973 int r;
2974 unsigned long addr;
195aefde 2975
8e73485c 2976 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2977 if (kvm_is_error_hva(addr))
2978 return -EFAULT;
3180a7fc 2979 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2980 if (r)
195aefde 2981 return -EFAULT;
195aefde
IE
2982 return 0;
2983}
8e73485c
PB
2984
2985int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2986 int len)
2987{
2988 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2989
2990 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2991}
195aefde
IE
2992EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2993
8e73485c
PB
2994int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2995 int offset, int len)
2996{
2997 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2998
2999 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3000}
3001EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3002
195aefde
IE
3003int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3004{
3005 gfn_t gfn = gpa >> PAGE_SHIFT;
3006 int seg;
3007 int offset = offset_in_page(gpa);
3008 int ret;
3009
3010 while ((seg = next_segment(len, offset)) != 0) {
3011 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3012 if (ret < 0)
3013 return ret;
3014 offset = 0;
3015 len -= seg;
3016 data += seg;
3017 ++gfn;
3018 }
3019 return 0;
3020}
3021EXPORT_SYMBOL_GPL(kvm_read_guest);
3022
8e73485c 3023int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 3024{
7ec54588 3025 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 3026 int seg;
7ec54588 3027 int offset = offset_in_page(gpa);
8e73485c
PB
3028 int ret;
3029
3030 while ((seg = next_segment(len, offset)) != 0) {
3031 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3032 if (ret < 0)
3033 return ret;
3034 offset = 0;
3035 len -= seg;
3036 data += seg;
3037 ++gfn;
3038 }
3039 return 0;
3040}
3041EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 3042
8e73485c
PB
3043static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3044 void *data, int offset, unsigned long len)
3045{
3046 int r;
3047 unsigned long addr;
3048
3049 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
3050 if (kvm_is_error_hva(addr))
3051 return -EFAULT;
0aac03f0 3052 pagefault_disable();
3180a7fc 3053 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 3054 pagefault_enable();
7ec54588
MT
3055 if (r)
3056 return -EFAULT;
3057 return 0;
3058}
7ec54588 3059
8e73485c
PB
3060int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3061 void *data, unsigned long len)
3062{
3063 gfn_t gfn = gpa >> PAGE_SHIFT;
3064 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3065 int offset = offset_in_page(gpa);
3066
3067 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3068}
3069EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3070
28bd726a
PX
3071static int __kvm_write_guest_page(struct kvm *kvm,
3072 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 3073 const void *data, int offset, int len)
195aefde 3074{
e0506bcb
IE
3075 int r;
3076 unsigned long addr;
195aefde 3077
251eb841 3078 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
3079 if (kvm_is_error_hva(addr))
3080 return -EFAULT;
8b0cedff 3081 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 3082 if (r)
195aefde 3083 return -EFAULT;
28bd726a 3084 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
3085 return 0;
3086}
8e73485c
PB
3087
3088int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3089 const void *data, int offset, int len)
3090{
3091 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3092
28bd726a 3093 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 3094}
195aefde
IE
3095EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3096
8e73485c
PB
3097int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3098 const void *data, int offset, int len)
3099{
3100 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3101
28bd726a 3102 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
3103}
3104EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3105
195aefde
IE
3106int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3107 unsigned long len)
3108{
3109 gfn_t gfn = gpa >> PAGE_SHIFT;
3110 int seg;
3111 int offset = offset_in_page(gpa);
3112 int ret;
3113
3114 while ((seg = next_segment(len, offset)) != 0) {
3115 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3116 if (ret < 0)
3117 return ret;
3118 offset = 0;
3119 len -= seg;
3120 data += seg;
3121 ++gfn;
3122 }
3123 return 0;
3124}
ff651cb6 3125EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 3126
8e73485c
PB
3127int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3128 unsigned long len)
3129{
3130 gfn_t gfn = gpa >> PAGE_SHIFT;
3131 int seg;
3132 int offset = offset_in_page(gpa);
3133 int ret;
3134
3135 while ((seg = next_segment(len, offset)) != 0) {
3136 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3137 if (ret < 0)
3138 return ret;
3139 offset = 0;
3140 len -= seg;
3141 data += seg;
3142 ++gfn;
3143 }
3144 return 0;
3145}
3146EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3147
5a2d4365
PB
3148static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3149 struct gfn_to_hva_cache *ghc,
3150 gpa_t gpa, unsigned long len)
49c7754c 3151{
49c7754c 3152 int offset = offset_in_page(gpa);
8f964525
AH
3153 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3154 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3155 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3156 gfn_t nr_pages_avail;
49c7754c 3157
6ad1e29f 3158 /* Update ghc->generation before performing any error checks. */
49c7754c 3159 ghc->generation = slots->generation;
6ad1e29f
SC
3160
3161 if (start_gfn > end_gfn) {
3162 ghc->hva = KVM_HVA_ERR_BAD;
3163 return -EINVAL;
3164 }
f1b9dd5e
JM
3165
3166 /*
3167 * If the requested region crosses two memslots, we still
3168 * verify that the entire region is valid here.
3169 */
6ad1e29f 3170 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
3171 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3172 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3173 &nr_pages_avail);
3174 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 3175 return -EFAULT;
f1b9dd5e
JM
3176 }
3177
3178 /* Use the slow path for cross page reads and writes. */
6ad1e29f 3179 if (nr_pages_needed == 1)
49c7754c 3180 ghc->hva += offset;
f1b9dd5e 3181 else
8f964525 3182 ghc->memslot = NULL;
f1b9dd5e 3183
6ad1e29f
SC
3184 ghc->gpa = gpa;
3185 ghc->len = len;
3186 return 0;
49c7754c 3187}
5a2d4365 3188
4e335d9e 3189int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
3190 gpa_t gpa, unsigned long len)
3191{
4e335d9e 3192 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
3193 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3194}
4e335d9e 3195EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 3196
4e335d9e 3197int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
3198 void *data, unsigned int offset,
3199 unsigned long len)
49c7754c 3200{
4e335d9e 3201 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 3202 int r;
4ec6e863 3203 gpa_t gpa = ghc->gpa + offset;
49c7754c 3204
5f25e71e
PB
3205 if (WARN_ON_ONCE(len + offset > ghc->len))
3206 return -EINVAL;
8f964525 3207
dc9ce71e
SC
3208 if (slots->generation != ghc->generation) {
3209 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3210 return -EFAULT;
3211 }
8f964525 3212
49c7754c
GN
3213 if (kvm_is_error_hva(ghc->hva))
3214 return -EFAULT;
3215
fcfbc617
SC
3216 if (unlikely(!ghc->memslot))
3217 return kvm_write_guest(kvm, gpa, data, len);
3218
4ec6e863 3219 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
3220 if (r)
3221 return -EFAULT;
28bd726a 3222 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
3223
3224 return 0;
3225}
4e335d9e 3226EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 3227
4e335d9e
PB
3228int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3229 void *data, unsigned long len)
4ec6e863 3230{
4e335d9e 3231 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 3232}
4e335d9e 3233EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 3234
0958f0ce
VK
3235int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3236 void *data, unsigned int offset,
3237 unsigned long len)
e03b644f 3238{
4e335d9e 3239 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 3240 int r;
0958f0ce 3241 gpa_t gpa = ghc->gpa + offset;
e03b644f 3242
5f25e71e
PB
3243 if (WARN_ON_ONCE(len + offset > ghc->len))
3244 return -EINVAL;
8f964525 3245
dc9ce71e
SC
3246 if (slots->generation != ghc->generation) {
3247 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3248 return -EFAULT;
3249 }
8f964525 3250
e03b644f
GN
3251 if (kvm_is_error_hva(ghc->hva))
3252 return -EFAULT;
3253
fcfbc617 3254 if (unlikely(!ghc->memslot))
0958f0ce 3255 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 3256
0958f0ce 3257 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
3258 if (r)
3259 return -EFAULT;
3260
3261 return 0;
3262}
0958f0ce
VK
3263EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3264
3265int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3266 void *data, unsigned long len)
3267{
3268 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3269}
4e335d9e 3270EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 3271
195aefde
IE
3272int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3273{
2f541442 3274 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
3275 gfn_t gfn = gpa >> PAGE_SHIFT;
3276 int seg;
3277 int offset = offset_in_page(gpa);
3278 int ret;
3279
bfda0e84 3280 while ((seg = next_segment(len, offset)) != 0) {
2f541442 3281 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
3282 if (ret < 0)
3283 return ret;
3284 offset = 0;
3285 len -= seg;
3286 ++gfn;
3287 }
3288 return 0;
3289}
3290EXPORT_SYMBOL_GPL(kvm_clear_guest);
3291
28bd726a 3292void mark_page_dirty_in_slot(struct kvm *kvm,
8283e36a 3293 const struct kvm_memory_slot *memslot,
28bd726a 3294 gfn_t gfn)
6aa8b732 3295{
2efd61a6
DW
3296 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3297
e09fccb5 3298#ifdef CONFIG_HAVE_KVM_DIRTY_RING
2efd61a6
DW
3299 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3300 return;
e09fccb5 3301#endif
2efd61a6 3302
044c59c4 3303 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 3304 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 3305 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 3306
fb04a1ed 3307 if (kvm->dirty_ring_size)
2efd61a6 3308 kvm_dirty_ring_push(&vcpu->dirty_ring,
fb04a1ed
PX
3309 slot, rel_gfn);
3310 else
3311 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
3312 }
3313}
a6a0b05d 3314EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 3315
49c7754c
GN
3316void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3317{
3318 struct kvm_memory_slot *memslot;
3319
3320 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 3321 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 3322}
2ba9f0d8 3323EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 3324
8e73485c
PB
3325void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3326{
3327 struct kvm_memory_slot *memslot;
3328
3329 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 3330 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
3331}
3332EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3333
20b7035c
JS
3334void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3335{
3336 if (!vcpu->sigset_active)
3337 return;
3338
3339 /*
3340 * This does a lockless modification of ->real_blocked, which is fine
3341 * because, only current can change ->real_blocked and all readers of
3342 * ->real_blocked don't care as long ->real_blocked is always a subset
3343 * of ->blocked.
3344 */
3345 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3346}
3347
3348void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3349{
3350 if (!vcpu->sigset_active)
3351 return;
3352
3353 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3354 sigemptyset(&current->real_blocked);
3355}
3356
aca6ff29
WL
3357static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3358{
dee339b5 3359 unsigned int old, val, grow, grow_start;
aca6ff29 3360
2cbd7824 3361 old = val = vcpu->halt_poll_ns;
dee339b5 3362 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3363 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3364 if (!grow)
3365 goto out;
3366
dee339b5
NW
3367 val *= grow;
3368 if (val < grow_start)
3369 val = grow_start;
aca6ff29 3370
258785ef
DM
3371 if (val > vcpu->kvm->max_halt_poll_ns)
3372 val = vcpu->kvm->max_halt_poll_ns;
313f636d 3373
aca6ff29 3374 vcpu->halt_poll_ns = val;
7fa08e71 3375out:
2cbd7824 3376 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3377}
3378
3379static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3380{
ae232ea4 3381 unsigned int old, val, shrink, grow_start;
aca6ff29 3382
2cbd7824 3383 old = val = vcpu->halt_poll_ns;
6b6de68c 3384 shrink = READ_ONCE(halt_poll_ns_shrink);
ae232ea4 3385 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3386 if (shrink == 0)
aca6ff29
WL
3387 val = 0;
3388 else
6b6de68c 3389 val /= shrink;
aca6ff29 3390
ae232ea4
SS
3391 if (val < grow_start)
3392 val = 0;
3393
aca6ff29 3394 vcpu->halt_poll_ns = val;
2cbd7824 3395 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3396}
3397
f7819512
PB
3398static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3399{
50c28f21
JS
3400 int ret = -EINTR;
3401 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3402
f7819512
PB
3403 if (kvm_arch_vcpu_runnable(vcpu)) {
3404 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 3405 goto out;
f7819512
PB
3406 }
3407 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3408 goto out;
f7819512 3409 if (signal_pending(current))
50c28f21 3410 goto out;
084071d5
MT
3411 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3412 goto out;
f7819512 3413
50c28f21
JS
3414 ret = 0;
3415out:
3416 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3417 return ret;
f7819512
PB
3418}
3419
fac42688
SC
3420/*
3421 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3422 * pending. This is mostly used when halting a vCPU, but may also be used
3423 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3424 */
3425bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
cb953129 3426{
fac42688
SC
3427 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3428 bool waited = false;
3429
c3858335
JZ
3430 vcpu->stat.generic.blocking = 1;
3431
18869f26 3432 preempt_disable();
fac42688 3433 kvm_arch_vcpu_blocking(vcpu);
fac42688 3434 prepare_to_rcuwait(wait);
18869f26
ML
3435 preempt_enable();
3436
fac42688
SC
3437 for (;;) {
3438 set_current_state(TASK_INTERRUPTIBLE);
3439
3440 if (kvm_vcpu_check_block(vcpu) < 0)
3441 break;
3442
3443 waited = true;
3444 schedule();
3445 }
fac42688 3446
18869f26
ML
3447 preempt_disable();
3448 finish_rcuwait(wait);
fac42688 3449 kvm_arch_vcpu_unblocking(vcpu);
18869f26 3450 preempt_enable();
fac42688 3451
c3858335
JZ
3452 vcpu->stat.generic.blocking = 0;
3453
fac42688
SC
3454 return waited;
3455}
3456
29e72893
SC
3457static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3458 ktime_t end, bool success)
cb953129 3459{
30c94347 3460 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
29e72893
SC
3461 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3462
30c94347
SC
3463 ++vcpu->stat.generic.halt_attempted_poll;
3464
3465 if (success) {
3466 ++vcpu->stat.generic.halt_successful_poll;
3467
3468 if (!vcpu_valid_wakeup(vcpu))
3469 ++vcpu->stat.generic.halt_poll_invalid;
3470
3471 stats->halt_poll_success_ns += poll_ns;
3472 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3473 } else {
3474 stats->halt_poll_fail_ns += poll_ns;
3475 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3476 }
cb953129
DM
3477}
3478
b6958ce4 3479/*
fac42688
SC
3480 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3481 * polling is enabled, busy wait for a short time before blocking to avoid the
3482 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3483 * is halted.
b6958ce4 3484 */
91b99ea7 3485void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
d3bef15f 3486{
6f390916 3487 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
8df6a61c 3488 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
cb953129 3489 ktime_t start, cur, poll_end;
f7819512 3490 bool waited = false;
91b99ea7 3491 u64 halt_ns;
07ab0f8d 3492
cb953129 3493 start = cur = poll_end = ktime_get();
8df6a61c 3494 if (do_halt_poll) {
109a9826 3495 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
f95ef0cd 3496
f7819512
PB
3497 do {
3498 /*
3499 * This sets KVM_REQ_UNHALT if an interrupt
3500 * arrives.
3501 */
30c94347 3502 if (kvm_vcpu_check_block(vcpu) < 0)
f7819512 3503 goto out;
74775654 3504 cpu_relax();
cb953129 3505 poll_end = cur = ktime_get();
6bd5b743 3506 } while (kvm_vcpu_can_poll(cur, stop));
f7819512 3507 }
e5c239cf 3508
fac42688 3509 waited = kvm_vcpu_block(vcpu);
8ccba534 3510
f7819512 3511 cur = ktime_get();
87bcc5fa
JZ
3512 if (waited) {
3513 vcpu->stat.generic.halt_wait_ns +=
3514 ktime_to_ns(cur) - ktime_to_ns(poll_end);
8ccba534
JZ
3515 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3516 ktime_to_ns(cur) - ktime_to_ns(poll_end));
87bcc5fa 3517 }
f7819512 3518out:
91b99ea7
SC
3519 /* The total time the vCPU was "halted", including polling time. */
3520 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
aca6ff29 3521
29e72893
SC
3522 /*
3523 * Note, halt-polling is considered successful so long as the vCPU was
3524 * never actually scheduled out, i.e. even if the wake event arrived
3525 * after of the halt-polling loop itself, but before the full wait.
3526 */
8df6a61c 3527 if (do_halt_poll)
29e72893 3528 update_halt_poll_stats(vcpu, start, poll_end, !waited);
cb953129 3529
6f390916 3530 if (halt_poll_allowed) {
44551b2f 3531 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3532 shrink_halt_poll_ns(vcpu);
acd05785 3533 } else if (vcpu->kvm->max_halt_poll_ns) {
91b99ea7 3534 if (halt_ns <= vcpu->halt_poll_ns)
44551b2f
WL
3535 ;
3536 /* we had a long block, shrink polling */
acd05785 3537 else if (vcpu->halt_poll_ns &&
91b99ea7 3538 halt_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3539 shrink_halt_poll_ns(vcpu);
3540 /* we had a short halt and our poll time is too small */
acd05785 3541 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
91b99ea7 3542 halt_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3543 grow_halt_poll_ns(vcpu);
3544 } else {
3545 vcpu->halt_poll_ns = 0;
3546 }
3547 }
aca6ff29 3548
91b99ea7 3549 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
b6958ce4 3550}
91b99ea7 3551EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
b6958ce4 3552
178f02ff 3553bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3554{
d92a5d1c 3555 if (__kvm_vcpu_wake_up(vcpu)) {
d73eb57b 3556 WRITE_ONCE(vcpu->ready, true);
0193cc90 3557 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3558 return true;
b6d33834
CD
3559 }
3560
178f02ff 3561 return false;
dd1a4cc1
RK
3562}
3563EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3564
0266c894 3565#ifndef CONFIG_S390
dd1a4cc1
RK
3566/*
3567 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3568 */
3569void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3570{
85b64045 3571 int me, cpu;
dd1a4cc1 3572
178f02ff
RK
3573 if (kvm_vcpu_wake_up(vcpu))
3574 return;
3575
aefdc2ed
PB
3576 me = get_cpu();
3577 /*
3578 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3579 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3580 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3581 * within the vCPU thread itself.
3582 */
3583 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3584 if (vcpu->mode == IN_GUEST_MODE)
3585 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3586 goto out;
3587 }
3588
85b64045
SC
3589 /*
3590 * Note, the vCPU could get migrated to a different pCPU at any point
3591 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3592 * IPI to the previous pCPU. But, that's ok because the purpose of the
3593 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3594 * vCPU also requires it to leave IN_GUEST_MODE.
3595 */
85b64045
SC
3596 if (kvm_arch_vcpu_should_kick(vcpu)) {
3597 cpu = READ_ONCE(vcpu->cpu);
3598 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
b6d33834 3599 smp_send_reschedule(cpu);
85b64045 3600 }
aefdc2ed 3601out:
b6d33834
CD
3602 put_cpu();
3603}
a20ed54d 3604EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3605#endif /* !CONFIG_S390 */
b6d33834 3606
fa93384f 3607int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3608{
3609 struct pid *pid;
3610 struct task_struct *task = NULL;
fa93384f 3611 int ret = 0;
41628d33
KW
3612
3613 rcu_read_lock();
3614 pid = rcu_dereference(target->pid);
3615 if (pid)
27fbe64b 3616 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3617 rcu_read_unlock();
3618 if (!task)
c45c528e 3619 return ret;
c45c528e 3620 ret = yield_to(task, 1);
41628d33 3621 put_task_struct(task);
c45c528e
R
3622
3623 return ret;
41628d33
KW
3624}
3625EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3626
06e48c51
R
3627/*
3628 * Helper that checks whether a VCPU is eligible for directed yield.
3629 * Most eligible candidate to yield is decided by following heuristics:
3630 *
3631 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3632 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3633 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3634 *
3635 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3636 * chance last time (mostly it has become eligible now since we have probably
3637 * yielded to lockholder in last iteration. This is done by toggling
3638 * @dy_eligible each time a VCPU checked for eligibility.)
3639 *
3640 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3641 * to preempted lock-holder could result in wrong VCPU selection and CPU
3642 * burning. Giving priority for a potential lock-holder increases lock
3643 * progress.
3644 *
3645 * Since algorithm is based on heuristics, accessing another VCPU data without
3646 * locking does not harm. It may result in trying to yield to same VCPU, fail
3647 * and continue with next VCPU and so on.
3648 */
7940876e 3649static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3650{
4a55dd72 3651#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3652 bool eligible;
3653
3654 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3655 vcpu->spin_loop.dy_eligible;
06e48c51
R
3656
3657 if (vcpu->spin_loop.in_spin_loop)
3658 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3659
3660 return eligible;
4a55dd72
SW
3661#else
3662 return true;
06e48c51 3663#endif
4a55dd72 3664}
c45c528e 3665
17e433b5
WL
3666/*
3667 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3668 * a vcpu_load/vcpu_put pair. However, for most architectures
3669 * kvm_arch_vcpu_runnable does not require vcpu_load.
3670 */
3671bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3672{
3673 return kvm_arch_vcpu_runnable(vcpu);
3674}
3675
3676static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3677{
3678 if (kvm_arch_dy_runnable(vcpu))
3679 return true;
3680
3681#ifdef CONFIG_KVM_ASYNC_PF
3682 if (!list_empty_careful(&vcpu->async_pf.done))
3683 return true;
3684#endif
3685
3686 return false;
3687}
3688
52acd22f
WL
3689bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3690{
3691 return false;
3692}
3693
199b5763 3694void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3695{
217ece61
RR
3696 struct kvm *kvm = me->kvm;
3697 struct kvm_vcpu *vcpu;
3698 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
46808a4c 3699 unsigned long i;
217ece61 3700 int yielded = 0;
c45c528e 3701 int try = 3;
217ece61 3702 int pass;
d255f4f2 3703
4c088493 3704 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3705 /*
3706 * We boost the priority of a VCPU that is runnable but not
3707 * currently running, because it got preempted by something
3708 * else and called schedule in __vcpu_run. Hopefully that
3709 * VCPU is holding the lock that we need and will release it.
3710 * We approximate round-robin by starting at the last boosted VCPU.
3711 */
c45c528e 3712 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3713 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3714 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3715 i = last_boosted_vcpu;
3716 continue;
3717 } else if (pass && i > last_boosted_vcpu)
3718 break;
d73eb57b 3719 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3720 continue;
217ece61
RR
3721 if (vcpu == me)
3722 continue;
d92a5d1c 3723 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
217ece61 3724 continue;
046ddeed 3725 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3726 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3727 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3728 continue;
06e48c51
R
3729 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3730 continue;
c45c528e
R
3731
3732 yielded = kvm_vcpu_yield_to(vcpu);
3733 if (yielded > 0) {
217ece61 3734 kvm->last_boosted_vcpu = i;
217ece61 3735 break;
c45c528e
R
3736 } else if (yielded < 0) {
3737 try--;
3738 if (!try)
3739 break;
217ece61 3740 }
217ece61
RR
3741 }
3742 }
4c088493 3743 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3744
3745 /* Ensure vcpu is not eligible during next spinloop */
3746 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3747}
3748EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3749
fb04a1ed
PX
3750static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3751{
dc70ec21 3752#ifdef CONFIG_HAVE_KVM_DIRTY_RING
fb04a1ed
PX
3753 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3754 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3755 kvm->dirty_ring_size / PAGE_SIZE);
3756#else
3757 return false;
3758#endif
3759}
3760
1499fa80 3761static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3762{
11bac800 3763 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3764 struct page *page;
3765
e4a533a4 3766 if (vmf->pgoff == 0)
039576c0 3767 page = virt_to_page(vcpu->run);
09566765 3768#ifdef CONFIG_X86
e4a533a4 3769 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3770 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3771#endif
4b4357e0 3772#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3773 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3774 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3775#endif
fb04a1ed
PX
3776 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3777 page = kvm_dirty_ring_get_page(
3778 &vcpu->dirty_ring,
3779 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3780 else
5b1c1493 3781 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3782 get_page(page);
e4a533a4 3783 vmf->page = page;
3784 return 0;
9a2bb7f4
AK
3785}
3786
f0f37e2f 3787static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3788 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3789};
3790
3791static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3792{
fb04a1ed 3793 struct kvm_vcpu *vcpu = file->private_data;
11476d27 3794 unsigned long pages = vma_pages(vma);
fb04a1ed
PX
3795
3796 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3797 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3798 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3799 return -EINVAL;
3800
9a2bb7f4
AK
3801 vma->vm_ops = &kvm_vcpu_vm_ops;
3802 return 0;
3803}
3804
bccf2150
AK
3805static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3806{
3807 struct kvm_vcpu *vcpu = filp->private_data;
3808
66c0b394 3809 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3810 return 0;
3811}
3812
70375c2d 3813static const struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3814 .release = kvm_vcpu_release,
3815 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3816 .mmap = kvm_vcpu_mmap,
6038f373 3817 .llseek = noop_llseek,
7ddfd3e0 3818 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3819};
3820
3821/*
3822 * Allocates an inode for the vcpu.
3823 */
3824static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3825{
e46b4692
MY
3826 char name[8 + 1 + ITOA_MAX_LEN + 1];
3827
3828 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3829 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3830}
3831
e36de87d
VP
3832#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3833static int vcpu_get_pid(void *data, u64 *val)
3834{
3835 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3836 *val = pid_nr(rcu_access_pointer(vcpu->pid));
3837 return 0;
3838}
3839
3840DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3841
3e7093d0 3842static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3843{
d56f5136 3844 struct dentry *debugfs_dentry;
45b5939e 3845 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3846
45b5939e 3847 if (!debugfs_initialized())
3e7093d0 3848 return;
45b5939e
LC
3849
3850 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3851 debugfs_dentry = debugfs_create_dir(dir_name,
3852 vcpu->kvm->debugfs_dentry);
e36de87d
VP
3853 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3854 &vcpu_get_pid_fops);
45b5939e 3855
d56f5136 3856 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
45b5939e 3857}
e36de87d 3858#endif
45b5939e 3859
c5ea7660
AK
3860/*
3861 * Creates some virtual cpus. Good luck creating more than one.
3862 */
73880c80 3863static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3864{
3865 int r;
e09fefde 3866 struct kvm_vcpu *vcpu;
8bd826d6 3867 struct page *page;
c5ea7660 3868
a1c42dde 3869 if (id >= KVM_MAX_VCPU_IDS)
338c7dba
AH
3870 return -EINVAL;
3871
6c7caebc 3872 mutex_lock(&kvm->lock);
f502cc56 3873 if (kvm->created_vcpus >= kvm->max_vcpus) {
6c7caebc
PB
3874 mutex_unlock(&kvm->lock);
3875 return -EINVAL;
3876 }
3877
1d5e740d
ZG
3878 r = kvm_arch_vcpu_precreate(kvm, id);
3879 if (r) {
3880 mutex_unlock(&kvm->lock);
3881 return r;
3882 }
3883
6c7caebc
PB
3884 kvm->created_vcpus++;
3885 mutex_unlock(&kvm->lock);
3886
85f47930 3887 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3888 if (!vcpu) {
3889 r = -ENOMEM;
6c7caebc
PB
3890 goto vcpu_decrement;
3891 }
c5ea7660 3892
fcd97ad5 3893 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3894 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3895 if (!page) {
3896 r = -ENOMEM;
e529ef66 3897 goto vcpu_free;
8bd826d6
SC
3898 }
3899 vcpu->run = page_address(page);
3900
3901 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3902
3903 r = kvm_arch_vcpu_create(vcpu);
3904 if (r)
8bd826d6 3905 goto vcpu_free_run_page;
e529ef66 3906
fb04a1ed
PX
3907 if (kvm->dirty_ring_size) {
3908 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3909 id, kvm->dirty_ring_size);
3910 if (r)
3911 goto arch_vcpu_destroy;
3912 }
3913
11ec2804 3914 mutex_lock(&kvm->lock);
e09fefde
DH
3915 if (kvm_get_vcpu_by_id(kvm, id)) {
3916 r = -EEXIST;
3917 goto unlock_vcpu_destroy;
3918 }
73880c80 3919
8750e72a 3920 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
c5b07754
MZ
3921 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3922 BUG_ON(r == -EBUSY);
3923 if (r)
3924 goto unlock_vcpu_destroy;
c5ea7660 3925
fb3f0f51 3926 /* Now it's all set up, let userspace reach it */
66c0b394 3927 kvm_get_kvm(kvm);
bccf2150 3928 r = create_vcpu_fd(vcpu);
73880c80 3929 if (r < 0) {
c5b07754 3930 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
149487bd 3931 kvm_put_kvm_no_destroy(kvm);
d780592b 3932 goto unlock_vcpu_destroy;
73880c80
GN
3933 }
3934
dd489240 3935 /*
c5b07754
MZ
3936 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3937 * pointer before kvm->online_vcpu's incremented value.
dd489240 3938 */
73880c80
GN
3939 smp_wmb();
3940 atomic_inc(&kvm->online_vcpus);
3941
73880c80 3942 mutex_unlock(&kvm->lock);
42897d86 3943 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3944 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3945 return r;
39c3b86e 3946
d780592b 3947unlock_vcpu_destroy:
7d8fece6 3948 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3949 kvm_dirty_ring_free(&vcpu->dirty_ring);
3950arch_vcpu_destroy:
d40ccc62 3951 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3952vcpu_free_run_page:
3953 free_page((unsigned long)vcpu->run);
e529ef66
SC
3954vcpu_free:
3955 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3956vcpu_decrement:
3957 mutex_lock(&kvm->lock);
3958 kvm->created_vcpus--;
3959 mutex_unlock(&kvm->lock);
c5ea7660
AK
3960 return r;
3961}
3962
1961d276
AK
3963static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3964{
3965 if (sigset) {
3966 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3967 vcpu->sigset_active = 1;
3968 vcpu->sigset = *sigset;
3969 } else
3970 vcpu->sigset_active = 0;
3971 return 0;
3972}
3973
ce55c049
JZ
3974static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3975 size_t size, loff_t *offset)
3976{
3977 struct kvm_vcpu *vcpu = file->private_data;
3978
3979 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3980 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3981 sizeof(vcpu->stat), user_buffer, size, offset);
3982}
3983
3984static const struct file_operations kvm_vcpu_stats_fops = {
3985 .read = kvm_vcpu_stats_read,
3986 .llseek = noop_llseek,
3987};
3988
3989static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3990{
3991 int fd;
3992 struct file *file;
3993 char name[15 + ITOA_MAX_LEN + 1];
3994
3995 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3996
3997 fd = get_unused_fd_flags(O_CLOEXEC);
3998 if (fd < 0)
3999 return fd;
4000
4001 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4002 if (IS_ERR(file)) {
4003 put_unused_fd(fd);
4004 return PTR_ERR(file);
4005 }
4006 file->f_mode |= FMODE_PREAD;
4007 fd_install(fd, file);
4008
4009 return fd;
4010}
4011
bccf2150
AK
4012static long kvm_vcpu_ioctl(struct file *filp,
4013 unsigned int ioctl, unsigned long arg)
6aa8b732 4014{
bccf2150 4015 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 4016 void __user *argp = (void __user *)arg;
313a3dc7 4017 int r;
fa3795a7
DH
4018 struct kvm_fpu *fpu = NULL;
4019 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 4020
f4d31653 4021 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
6d4e4c4f 4022 return -EIO;
2122ff5e 4023
2ea75be3
DM
4024 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4025 return -EINVAL;
4026
2122ff5e 4027 /*
5cb0944c
PB
4028 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4029 * execution; mutex_lock() would break them.
2122ff5e 4030 */
5cb0944c
PB
4031 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4032 if (r != -ENOIOCTLCMD)
9fc77441 4033 return r;
2122ff5e 4034
ec7660cc
CD
4035 if (mutex_lock_killable(&vcpu->mutex))
4036 return -EINTR;
6aa8b732 4037 switch (ioctl) {
0e4524a5
CB
4038 case KVM_RUN: {
4039 struct pid *oldpid;
f0fe5108
AK
4040 r = -EINVAL;
4041 if (arg)
4042 goto out;
0e4524a5 4043 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 4044 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 4045 /* The thread running this VCPU changed. */
bd2a6394 4046 struct pid *newpid;
f95ef0cd 4047
bd2a6394
CD
4048 r = kvm_arch_vcpu_run_pid_change(vcpu);
4049 if (r)
4050 break;
4051
4052 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
4053 rcu_assign_pointer(vcpu->pid, newpid);
4054 if (oldpid)
4055 synchronize_rcu();
4056 put_pid(oldpid);
4057 }
1b94f6f8 4058 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 4059 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 4060 break;
0e4524a5 4061 }
6aa8b732 4062 case KVM_GET_REGS: {
3e4bb3ac 4063 struct kvm_regs *kvm_regs;
6aa8b732 4064
3e4bb3ac 4065 r = -ENOMEM;
b12ce36a 4066 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 4067 if (!kvm_regs)
6aa8b732 4068 goto out;
3e4bb3ac
XZ
4069 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4070 if (r)
4071 goto out_free1;
6aa8b732 4072 r = -EFAULT;
3e4bb3ac
XZ
4073 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4074 goto out_free1;
6aa8b732 4075 r = 0;
3e4bb3ac
XZ
4076out_free1:
4077 kfree(kvm_regs);
6aa8b732
AK
4078 break;
4079 }
4080 case KVM_SET_REGS: {
3e4bb3ac 4081 struct kvm_regs *kvm_regs;
6aa8b732 4082
ff5c2c03
SL
4083 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4084 if (IS_ERR(kvm_regs)) {
4085 r = PTR_ERR(kvm_regs);
6aa8b732 4086 goto out;
ff5c2c03 4087 }
3e4bb3ac 4088 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 4089 kfree(kvm_regs);
6aa8b732
AK
4090 break;
4091 }
4092 case KVM_GET_SREGS: {
b12ce36a
BG
4093 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4094 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4095 r = -ENOMEM;
4096 if (!kvm_sregs)
4097 goto out;
4098 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4099 if (r)
4100 goto out;
4101 r = -EFAULT;
fa3795a7 4102 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
4103 goto out;
4104 r = 0;
4105 break;
4106 }
4107 case KVM_SET_SREGS: {
ff5c2c03
SL
4108 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4109 if (IS_ERR(kvm_sregs)) {
4110 r = PTR_ERR(kvm_sregs);
18595411 4111 kvm_sregs = NULL;
6aa8b732 4112 goto out;
ff5c2c03 4113 }
fa3795a7 4114 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
4115 break;
4116 }
62d9f0db
MT
4117 case KVM_GET_MP_STATE: {
4118 struct kvm_mp_state mp_state;
4119
4120 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4121 if (r)
4122 goto out;
4123 r = -EFAULT;
893bdbf1 4124 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
4125 goto out;
4126 r = 0;
4127 break;
4128 }
4129 case KVM_SET_MP_STATE: {
4130 struct kvm_mp_state mp_state;
4131
4132 r = -EFAULT;
893bdbf1 4133 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
4134 goto out;
4135 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
4136 break;
4137 }
6aa8b732
AK
4138 case KVM_TRANSLATE: {
4139 struct kvm_translation tr;
4140
4141 r = -EFAULT;
893bdbf1 4142 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 4143 goto out;
8b006791 4144 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
4145 if (r)
4146 goto out;
4147 r = -EFAULT;
893bdbf1 4148 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
4149 goto out;
4150 r = 0;
4151 break;
4152 }
d0bfb940
JK
4153 case KVM_SET_GUEST_DEBUG: {
4154 struct kvm_guest_debug dbg;
6aa8b732
AK
4155
4156 r = -EFAULT;
893bdbf1 4157 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 4158 goto out;
d0bfb940 4159 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
4160 break;
4161 }
1961d276
AK
4162 case KVM_SET_SIGNAL_MASK: {
4163 struct kvm_signal_mask __user *sigmask_arg = argp;
4164 struct kvm_signal_mask kvm_sigmask;
4165 sigset_t sigset, *p;
4166
4167 p = NULL;
4168 if (argp) {
4169 r = -EFAULT;
4170 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4171 sizeof(kvm_sigmask)))
1961d276
AK
4172 goto out;
4173 r = -EINVAL;
893bdbf1 4174 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
4175 goto out;
4176 r = -EFAULT;
4177 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 4178 sizeof(sigset)))
1961d276
AK
4179 goto out;
4180 p = &sigset;
4181 }
376d41ff 4182 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
4183 break;
4184 }
b8836737 4185 case KVM_GET_FPU: {
b12ce36a 4186 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
4187 r = -ENOMEM;
4188 if (!fpu)
4189 goto out;
4190 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
4191 if (r)
4192 goto out;
4193 r = -EFAULT;
fa3795a7 4194 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
4195 goto out;
4196 r = 0;
4197 break;
4198 }
4199 case KVM_SET_FPU: {
ff5c2c03
SL
4200 fpu = memdup_user(argp, sizeof(*fpu));
4201 if (IS_ERR(fpu)) {
4202 r = PTR_ERR(fpu);
18595411 4203 fpu = NULL;
b8836737 4204 goto out;
ff5c2c03 4205 }
fa3795a7 4206 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
4207 break;
4208 }
ce55c049
JZ
4209 case KVM_GET_STATS_FD: {
4210 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4211 break;
4212 }
bccf2150 4213 default:
313a3dc7 4214 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
4215 }
4216out:
ec7660cc 4217 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
4218 kfree(fpu);
4219 kfree(kvm_sregs);
bccf2150
AK
4220 return r;
4221}
4222
de8e5d74 4223#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
4224static long kvm_vcpu_compat_ioctl(struct file *filp,
4225 unsigned int ioctl, unsigned long arg)
4226{
4227 struct kvm_vcpu *vcpu = filp->private_data;
4228 void __user *argp = compat_ptr(arg);
4229 int r;
4230
f4d31653 4231 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
1dda606c
AG
4232 return -EIO;
4233
4234 switch (ioctl) {
4235 case KVM_SET_SIGNAL_MASK: {
4236 struct kvm_signal_mask __user *sigmask_arg = argp;
4237 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
4238 sigset_t sigset;
4239
4240 if (argp) {
4241 r = -EFAULT;
4242 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 4243 sizeof(kvm_sigmask)))
1dda606c
AG
4244 goto out;
4245 r = -EINVAL;
3968cf62 4246 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
4247 goto out;
4248 r = -EFAULT;
1393b4aa
PB
4249 if (get_compat_sigset(&sigset,
4250 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 4251 goto out;
760a9a30
AC
4252 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4253 } else
4254 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
4255 break;
4256 }
4257 default:
4258 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4259 }
4260
4261out:
4262 return r;
4263}
4264#endif
4265
a1cd3f08
CLG
4266static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4267{
4268 struct kvm_device *dev = filp->private_data;
4269
4270 if (dev->ops->mmap)
4271 return dev->ops->mmap(dev, vma);
4272
4273 return -ENODEV;
4274}
4275
852b6d57
SW
4276static int kvm_device_ioctl_attr(struct kvm_device *dev,
4277 int (*accessor)(struct kvm_device *dev,
4278 struct kvm_device_attr *attr),
4279 unsigned long arg)
4280{
4281 struct kvm_device_attr attr;
4282
4283 if (!accessor)
4284 return -EPERM;
4285
4286 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4287 return -EFAULT;
4288
4289 return accessor(dev, &attr);
4290}
4291
4292static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4293 unsigned long arg)
4294{
4295 struct kvm_device *dev = filp->private_data;
4296
f4d31653 4297 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
ddba9180
SC
4298 return -EIO;
4299
852b6d57
SW
4300 switch (ioctl) {
4301 case KVM_SET_DEVICE_ATTR:
4302 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4303 case KVM_GET_DEVICE_ATTR:
4304 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4305 case KVM_HAS_DEVICE_ATTR:
4306 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4307 default:
4308 if (dev->ops->ioctl)
4309 return dev->ops->ioctl(dev, ioctl, arg);
4310
4311 return -ENOTTY;
4312 }
4313}
4314
852b6d57
SW
4315static int kvm_device_release(struct inode *inode, struct file *filp)
4316{
4317 struct kvm_device *dev = filp->private_data;
4318 struct kvm *kvm = dev->kvm;
4319
2bde9b3e
CLG
4320 if (dev->ops->release) {
4321 mutex_lock(&kvm->lock);
4322 list_del(&dev->vm_node);
4323 dev->ops->release(dev);
4324 mutex_unlock(&kvm->lock);
4325 }
4326
852b6d57
SW
4327 kvm_put_kvm(kvm);
4328 return 0;
4329}
4330
4331static const struct file_operations kvm_device_fops = {
4332 .unlocked_ioctl = kvm_device_ioctl,
4333 .release = kvm_device_release,
7ddfd3e0 4334 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 4335 .mmap = kvm_device_mmap,
852b6d57
SW
4336};
4337
4338struct kvm_device *kvm_device_from_filp(struct file *filp)
4339{
4340 if (filp->f_op != &kvm_device_fops)
4341 return NULL;
4342
4343 return filp->private_data;
4344}
4345
8538cb22 4346static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 4347#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
4348 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4349 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 4350#endif
d60eacb0
WD
4351};
4352
8538cb22 4353int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
4354{
4355 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4356 return -ENOSPC;
4357
4358 if (kvm_device_ops_table[type] != NULL)
4359 return -EEXIST;
4360
4361 kvm_device_ops_table[type] = ops;
4362 return 0;
4363}
4364
571ee1b6
WL
4365void kvm_unregister_device_ops(u32 type)
4366{
4367 if (kvm_device_ops_table[type] != NULL)
4368 kvm_device_ops_table[type] = NULL;
4369}
4370
852b6d57
SW
4371static int kvm_ioctl_create_device(struct kvm *kvm,
4372 struct kvm_create_device *cd)
4373{
8538cb22 4374 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
4375 struct kvm_device *dev;
4376 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 4377 int type;
852b6d57
SW
4378 int ret;
4379
d60eacb0
WD
4380 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4381 return -ENODEV;
4382
1d487e9b
PB
4383 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4384 ops = kvm_device_ops_table[type];
d60eacb0 4385 if (ops == NULL)
852b6d57 4386 return -ENODEV;
852b6d57
SW
4387
4388 if (test)
4389 return 0;
4390
b12ce36a 4391 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
4392 if (!dev)
4393 return -ENOMEM;
4394
4395 dev->ops = ops;
4396 dev->kvm = kvm;
852b6d57 4397
a28ebea2 4398 mutex_lock(&kvm->lock);
1d487e9b 4399 ret = ops->create(dev, type);
852b6d57 4400 if (ret < 0) {
a28ebea2 4401 mutex_unlock(&kvm->lock);
852b6d57
SW
4402 kfree(dev);
4403 return ret;
4404 }
a28ebea2
CD
4405 list_add(&dev->vm_node, &kvm->devices);
4406 mutex_unlock(&kvm->lock);
852b6d57 4407
023e9fdd
CD
4408 if (ops->init)
4409 ops->init(dev);
4410
cfa39381 4411 kvm_get_kvm(kvm);
24009b05 4412 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 4413 if (ret < 0) {
149487bd 4414 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
4415 mutex_lock(&kvm->lock);
4416 list_del(&dev->vm_node);
e8bc2427
AK
4417 if (ops->release)
4418 ops->release(dev);
a28ebea2 4419 mutex_unlock(&kvm->lock);
e8bc2427
AK
4420 if (ops->destroy)
4421 ops->destroy(dev);
852b6d57
SW
4422 return ret;
4423 }
4424
852b6d57
SW
4425 cd->fd = ret;
4426 return 0;
4427}
4428
92b591a4
AG
4429static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4430{
4431 switch (arg) {
4432 case KVM_CAP_USER_MEMORY:
4433 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4434 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4435 case KVM_CAP_INTERNAL_ERROR_DATA:
4436#ifdef CONFIG_HAVE_KVM_MSI
4437 case KVM_CAP_SIGNAL_MSI:
4438#endif
297e2105 4439#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 4440 case KVM_CAP_IRQFD:
92b591a4
AG
4441 case KVM_CAP_IRQFD_RESAMPLE:
4442#endif
e9ea5069 4443 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4444 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4445 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4446 case KVM_CAP_HALT_POLL:
92b591a4 4447 return 1;
4b4357e0 4448#ifdef CONFIG_KVM_MMIO
30422558
PB
4449 case KVM_CAP_COALESCED_MMIO:
4450 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4451 case KVM_CAP_COALESCED_PIO:
4452 return 1;
30422558 4453#endif
3c9bd400
JZ
4454#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4455 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4456 return KVM_DIRTY_LOG_MANUAL_CAPS;
4457#endif
92b591a4
AG
4458#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4459 case KVM_CAP_IRQ_ROUTING:
4460 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
4461#endif
4462#if KVM_ADDRESS_SPACE_NUM > 1
4463 case KVM_CAP_MULTI_ADDRESS_SPACE:
4464 return KVM_ADDRESS_SPACE_NUM;
92b591a4 4465#endif
c110ae57
PB
4466 case KVM_CAP_NR_MEMSLOTS:
4467 return KVM_USER_MEM_SLOTS;
fb04a1ed 4468 case KVM_CAP_DIRTY_LOG_RING:
dc70ec21 4469#ifdef CONFIG_HAVE_KVM_DIRTY_RING
fb04a1ed
PX
4470 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4471#else
4472 return 0;
4473#endif
ce55c049 4474 case KVM_CAP_BINARY_STATS_FD:
d495f942 4475 case KVM_CAP_SYSTEM_EVENT_DATA:
ce55c049 4476 return 1;
92b591a4
AG
4477 default:
4478 break;
4479 }
4480 return kvm_vm_ioctl_check_extension(kvm, arg);
4481}
4482
fb04a1ed
PX
4483static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4484{
4485 int r;
4486
4487 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4488 return -EINVAL;
4489
4490 /* the size should be power of 2 */
4491 if (!size || (size & (size - 1)))
4492 return -EINVAL;
4493
4494 /* Should be bigger to keep the reserved entries, or a page */
4495 if (size < kvm_dirty_ring_get_rsvd_entries() *
4496 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4497 return -EINVAL;
4498
4499 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4500 sizeof(struct kvm_dirty_gfn))
4501 return -E2BIG;
4502
4503 /* We only allow it to set once */
4504 if (kvm->dirty_ring_size)
4505 return -EINVAL;
4506
4507 mutex_lock(&kvm->lock);
4508
4509 if (kvm->created_vcpus) {
4510 /* We don't allow to change this value after vcpu created */
4511 r = -EINVAL;
4512 } else {
4513 kvm->dirty_ring_size = size;
4514 r = 0;
4515 }
4516
4517 mutex_unlock(&kvm->lock);
4518 return r;
4519}
4520
4521static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4522{
46808a4c 4523 unsigned long i;
fb04a1ed
PX
4524 struct kvm_vcpu *vcpu;
4525 int cleared = 0;
4526
4527 if (!kvm->dirty_ring_size)
4528 return -EINVAL;
4529
4530 mutex_lock(&kvm->slots_lock);
4531
4532 kvm_for_each_vcpu(i, vcpu, kvm)
4533 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4534
4535 mutex_unlock(&kvm->slots_lock);
4536
4537 if (cleared)
4538 kvm_flush_remote_tlbs(kvm);
4539
4540 return cleared;
4541}
4542
e5d83c74
PB
4543int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4544 struct kvm_enable_cap *cap)
4545{
4546 return -EINVAL;
4547}
4548
4549static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4550 struct kvm_enable_cap *cap)
4551{
4552 switch (cap->cap) {
2a31b9db 4553#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4554 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4555 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4556
4557 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4558 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4559
4560 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4561 return -EINVAL;
4562 kvm->manual_dirty_log_protect = cap->args[0];
4563 return 0;
3c9bd400 4564 }
2a31b9db 4565#endif
acd05785
DM
4566 case KVM_CAP_HALT_POLL: {
4567 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4568 return -EINVAL;
4569
4570 kvm->max_halt_poll_ns = cap->args[0];
4571 return 0;
4572 }
fb04a1ed
PX
4573 case KVM_CAP_DIRTY_LOG_RING:
4574 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
e5d83c74
PB
4575 default:
4576 return kvm_vm_ioctl_enable_cap(kvm, cap);
4577 }
4578}
4579
fcfe1bae
JZ
4580static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4581 size_t size, loff_t *offset)
4582{
4583 struct kvm *kvm = file->private_data;
4584
4585 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4586 &kvm_vm_stats_desc[0], &kvm->stat,
4587 sizeof(kvm->stat), user_buffer, size, offset);
4588}
4589
4590static const struct file_operations kvm_vm_stats_fops = {
4591 .read = kvm_vm_stats_read,
4592 .llseek = noop_llseek,
4593};
4594
4595static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4596{
4597 int fd;
4598 struct file *file;
4599
4600 fd = get_unused_fd_flags(O_CLOEXEC);
4601 if (fd < 0)
4602 return fd;
4603
4604 file = anon_inode_getfile("kvm-vm-stats",
4605 &kvm_vm_stats_fops, kvm, O_RDONLY);
4606 if (IS_ERR(file)) {
4607 put_unused_fd(fd);
4608 return PTR_ERR(file);
4609 }
4610 file->f_mode |= FMODE_PREAD;
4611 fd_install(fd, file);
4612
4613 return fd;
4614}
4615
bccf2150
AK
4616static long kvm_vm_ioctl(struct file *filp,
4617 unsigned int ioctl, unsigned long arg)
4618{
4619 struct kvm *kvm = filp->private_data;
4620 void __user *argp = (void __user *)arg;
1fe779f8 4621 int r;
bccf2150 4622
f4d31653 4623 if (kvm->mm != current->mm || kvm->vm_dead)
6d4e4c4f 4624 return -EIO;
bccf2150
AK
4625 switch (ioctl) {
4626 case KVM_CREATE_VCPU:
4627 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 4628 break;
e5d83c74
PB
4629 case KVM_ENABLE_CAP: {
4630 struct kvm_enable_cap cap;
4631
4632 r = -EFAULT;
4633 if (copy_from_user(&cap, argp, sizeof(cap)))
4634 goto out;
4635 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4636 break;
4637 }
6fc138d2
IE
4638 case KVM_SET_USER_MEMORY_REGION: {
4639 struct kvm_userspace_memory_region kvm_userspace_mem;
4640
4641 r = -EFAULT;
4642 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 4643 sizeof(kvm_userspace_mem)))
6fc138d2
IE
4644 goto out;
4645
47ae31e2 4646 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4647 break;
4648 }
4649 case KVM_GET_DIRTY_LOG: {
4650 struct kvm_dirty_log log;
4651
4652 r = -EFAULT;
893bdbf1 4653 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4654 goto out;
2c6f5df9 4655 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4656 break;
4657 }
2a31b9db
PB
4658#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4659 case KVM_CLEAR_DIRTY_LOG: {
4660 struct kvm_clear_dirty_log log;
4661
4662 r = -EFAULT;
4663 if (copy_from_user(&log, argp, sizeof(log)))
4664 goto out;
4665 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4666 break;
4667 }
4668#endif
4b4357e0 4669#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4670 case KVM_REGISTER_COALESCED_MMIO: {
4671 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4672
5f94c174 4673 r = -EFAULT;
893bdbf1 4674 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4675 goto out;
5f94c174 4676 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4677 break;
4678 }
4679 case KVM_UNREGISTER_COALESCED_MMIO: {
4680 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4681
5f94c174 4682 r = -EFAULT;
893bdbf1 4683 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4684 goto out;
5f94c174 4685 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4686 break;
4687 }
4688#endif
721eecbf
GH
4689 case KVM_IRQFD: {
4690 struct kvm_irqfd data;
4691
4692 r = -EFAULT;
893bdbf1 4693 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4694 goto out;
d4db2935 4695 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4696 break;
4697 }
d34e6b17
GH
4698 case KVM_IOEVENTFD: {
4699 struct kvm_ioeventfd data;
4700
4701 r = -EFAULT;
893bdbf1 4702 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4703 goto out;
4704 r = kvm_ioeventfd(kvm, &data);
4705 break;
4706 }
07975ad3
JK
4707#ifdef CONFIG_HAVE_KVM_MSI
4708 case KVM_SIGNAL_MSI: {
4709 struct kvm_msi msi;
4710
4711 r = -EFAULT;
893bdbf1 4712 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4713 goto out;
4714 r = kvm_send_userspace_msi(kvm, &msi);
4715 break;
4716 }
23d43cf9
CD
4717#endif
4718#ifdef __KVM_HAVE_IRQ_LINE
4719 case KVM_IRQ_LINE_STATUS:
4720 case KVM_IRQ_LINE: {
4721 struct kvm_irq_level irq_event;
4722
4723 r = -EFAULT;
893bdbf1 4724 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4725 goto out;
4726
aa2fbe6d
YZ
4727 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4728 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4729 if (r)
4730 goto out;
4731
4732 r = -EFAULT;
4733 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4734 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4735 goto out;
4736 }
4737
4738 r = 0;
4739 break;
4740 }
73880c80 4741#endif
aa8d5944
AG
4742#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4743 case KVM_SET_GSI_ROUTING: {
4744 struct kvm_irq_routing routing;
4745 struct kvm_irq_routing __user *urouting;
f8c1b85b 4746 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4747
4748 r = -EFAULT;
4749 if (copy_from_user(&routing, argp, sizeof(routing)))
4750 goto out;
4751 r = -EINVAL;
5c0aea0e
DH
4752 if (!kvm_arch_can_set_irq_routing(kvm))
4753 goto out;
caf1ff26 4754 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4755 goto out;
4756 if (routing.flags)
4757 goto out;
f8c1b85b 4758 if (routing.nr) {
f8c1b85b 4759 urouting = argp;
7ec28e26
DE
4760 entries = vmemdup_user(urouting->entries,
4761 array_size(sizeof(*entries),
4762 routing.nr));
4763 if (IS_ERR(entries)) {
4764 r = PTR_ERR(entries);
4765 goto out;
4766 }
f8c1b85b 4767 }
aa8d5944
AG
4768 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4769 routing.flags);
7ec28e26 4770 kvfree(entries);
aa8d5944
AG
4771 break;
4772 }
4773#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4774 case KVM_CREATE_DEVICE: {
4775 struct kvm_create_device cd;
4776
4777 r = -EFAULT;
4778 if (copy_from_user(&cd, argp, sizeof(cd)))
4779 goto out;
4780
4781 r = kvm_ioctl_create_device(kvm, &cd);
4782 if (r)
4783 goto out;
4784
4785 r = -EFAULT;
4786 if (copy_to_user(argp, &cd, sizeof(cd)))
4787 goto out;
4788
4789 r = 0;
4790 break;
4791 }
92b591a4
AG
4792 case KVM_CHECK_EXTENSION:
4793 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4794 break;
fb04a1ed
PX
4795 case KVM_RESET_DIRTY_RINGS:
4796 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4797 break;
fcfe1bae
JZ
4798 case KVM_GET_STATS_FD:
4799 r = kvm_vm_ioctl_get_stats_fd(kvm);
4800 break;
f17abe9a 4801 default:
1fe779f8 4802 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4803 }
4804out:
4805 return r;
4806}
4807
de8e5d74 4808#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4809struct compat_kvm_dirty_log {
4810 __u32 slot;
4811 __u32 padding1;
4812 union {
4813 compat_uptr_t dirty_bitmap; /* one bit per page */
4814 __u64 padding2;
4815 };
4816};
4817
8750f9bb
PB
4818struct compat_kvm_clear_dirty_log {
4819 __u32 slot;
4820 __u32 num_pages;
4821 __u64 first_page;
4822 union {
4823 compat_uptr_t dirty_bitmap; /* one bit per page */
4824 __u64 padding2;
4825 };
4826};
4827
6ff5894c
AB
4828static long kvm_vm_compat_ioctl(struct file *filp,
4829 unsigned int ioctl, unsigned long arg)
4830{
4831 struct kvm *kvm = filp->private_data;
4832 int r;
4833
f4d31653 4834 if (kvm->mm != current->mm || kvm->vm_dead)
6ff5894c
AB
4835 return -EIO;
4836 switch (ioctl) {
8750f9bb
PB
4837#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4838 case KVM_CLEAR_DIRTY_LOG: {
4839 struct compat_kvm_clear_dirty_log compat_log;
4840 struct kvm_clear_dirty_log log;
4841
4842 if (copy_from_user(&compat_log, (void __user *)arg,
4843 sizeof(compat_log)))
4844 return -EFAULT;
4845 log.slot = compat_log.slot;
4846 log.num_pages = compat_log.num_pages;
4847 log.first_page = compat_log.first_page;
4848 log.padding2 = compat_log.padding2;
4849 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4850
4851 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4852 break;
4853 }
4854#endif
6ff5894c
AB
4855 case KVM_GET_DIRTY_LOG: {
4856 struct compat_kvm_dirty_log compat_log;
4857 struct kvm_dirty_log log;
4858
6ff5894c
AB
4859 if (copy_from_user(&compat_log, (void __user *)arg,
4860 sizeof(compat_log)))
f6a3b168 4861 return -EFAULT;
6ff5894c
AB
4862 log.slot = compat_log.slot;
4863 log.padding1 = compat_log.padding1;
4864 log.padding2 = compat_log.padding2;
4865 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4866
4867 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4868 break;
4869 }
4870 default:
4871 r = kvm_vm_ioctl(filp, ioctl, arg);
4872 }
6ff5894c
AB
4873 return r;
4874}
4875#endif
4876
70375c2d 4877static const struct file_operations kvm_vm_fops = {
f17abe9a
AK
4878 .release = kvm_vm_release,
4879 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4880 .llseek = noop_llseek,
7ddfd3e0 4881 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4882};
4883
54526d1f
NT
4884bool file_is_kvm(struct file *file)
4885{
4886 return file && file->f_op == &kvm_vm_fops;
4887}
4888EXPORT_SYMBOL_GPL(file_is_kvm);
4889
e08b9637 4890static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 4891{
59f82aad 4892 char fdname[ITOA_MAX_LEN + 1];
20020f4c 4893 int r, fd;
f17abe9a 4894 struct kvm *kvm;
506cfba9 4895 struct file *file;
f17abe9a 4896
20020f4c
OU
4897 fd = get_unused_fd_flags(O_CLOEXEC);
4898 if (fd < 0)
4899 return fd;
4900
59f82aad
OU
4901 snprintf(fdname, sizeof(fdname), "%d", fd);
4902
e08b9637 4903 kvm = kvm_create_vm(type);
20020f4c
OU
4904 if (IS_ERR(kvm)) {
4905 r = PTR_ERR(kvm);
4906 goto put_fd;
4907 }
4908
4b4357e0 4909#ifdef CONFIG_KVM_MMIO
6ce5a090 4910 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
4911 if (r < 0)
4912 goto put_kvm;
6ce5a090 4913#endif
506cfba9
AV
4914 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4915 if (IS_ERR(file)) {
78588335
ME
4916 r = PTR_ERR(file);
4917 goto put_kvm;
506cfba9 4918 }
536a6f88 4919
525df861
PB
4920 /*
4921 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4922 * already set, with ->release() being kvm_vm_release(). In error
4923 * cases it will be called by the final fput(file) and will take
4924 * care of doing kvm_put_kvm(kvm).
4925 */
59f82aad 4926 if (kvm_create_vm_debugfs(kvm, fdname) < 0) {
506cfba9 4927 fput(file);
20020f4c
OU
4928 r = -ENOMEM;
4929 goto put_fd;
536a6f88 4930 }
286de8f6 4931 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 4932
20020f4c
OU
4933 fd_install(fd, file);
4934 return fd;
78588335
ME
4935
4936put_kvm:
4937 kvm_put_kvm(kvm);
20020f4c
OU
4938put_fd:
4939 put_unused_fd(fd);
78588335 4940 return r;
f17abe9a
AK
4941}
4942
4943static long kvm_dev_ioctl(struct file *filp,
4944 unsigned int ioctl, unsigned long arg)
4945{
07c45a36 4946 long r = -EINVAL;
f17abe9a
AK
4947
4948 switch (ioctl) {
4949 case KVM_GET_API_VERSION:
f0fe5108
AK
4950 if (arg)
4951 goto out;
f17abe9a
AK
4952 r = KVM_API_VERSION;
4953 break;
4954 case KVM_CREATE_VM:
e08b9637 4955 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 4956 break;
018d00d2 4957 case KVM_CHECK_EXTENSION:
784aa3d7 4958 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 4959 break;
07c45a36 4960 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
4961 if (arg)
4962 goto out;
adb1ff46
AK
4963 r = PAGE_SIZE; /* struct kvm_run */
4964#ifdef CONFIG_X86
4965 r += PAGE_SIZE; /* pio data page */
5f94c174 4966#endif
4b4357e0 4967#ifdef CONFIG_KVM_MMIO
5f94c174 4968 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 4969#endif
07c45a36 4970 break;
d4c9ff2d
FEL
4971 case KVM_TRACE_ENABLE:
4972 case KVM_TRACE_PAUSE:
4973 case KVM_TRACE_DISABLE:
2023a29c 4974 r = -EOPNOTSUPP;
d4c9ff2d 4975 break;
6aa8b732 4976 default:
043405e1 4977 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
4978 }
4979out:
4980 return r;
4981}
4982
6aa8b732 4983static struct file_operations kvm_chardev_ops = {
6aa8b732 4984 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 4985 .llseek = noop_llseek,
7ddfd3e0 4986 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
4987};
4988
4989static struct miscdevice kvm_dev = {
bbe4432e 4990 KVM_MINOR,
6aa8b732
AK
4991 "kvm",
4992 &kvm_chardev_ops,
4993};
4994
75b7127c 4995static void hardware_enable_nolock(void *junk)
1b6c0168
AK
4996{
4997 int cpu = raw_smp_processor_id();
10474ae8 4998 int r;
1b6c0168 4999
7f59f492 5000 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 5001 return;
10474ae8 5002
7f59f492 5003 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 5004
13a34e06 5005 r = kvm_arch_hardware_enable();
10474ae8
AG
5006
5007 if (r) {
5008 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5009 atomic_inc(&hardware_enable_failed);
1170adc6 5010 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 5011 }
1b6c0168
AK
5012}
5013
8c18b2d2 5014static int kvm_starting_cpu(unsigned int cpu)
75b7127c 5015{
4a937f96 5016 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
5017 if (kvm_usage_count)
5018 hardware_enable_nolock(NULL);
4a937f96 5019 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 5020 return 0;
75b7127c
TY
5021}
5022
5023static void hardware_disable_nolock(void *junk)
1b6c0168
AK
5024{
5025 int cpu = raw_smp_processor_id();
5026
7f59f492 5027 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 5028 return;
7f59f492 5029 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 5030 kvm_arch_hardware_disable();
1b6c0168
AK
5031}
5032
8c18b2d2 5033static int kvm_dying_cpu(unsigned int cpu)
75b7127c 5034{
4a937f96 5035 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
5036 if (kvm_usage_count)
5037 hardware_disable_nolock(NULL);
4a937f96 5038 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 5039 return 0;
75b7127c
TY
5040}
5041
10474ae8
AG
5042static void hardware_disable_all_nolock(void)
5043{
5044 BUG_ON(!kvm_usage_count);
5045
5046 kvm_usage_count--;
5047 if (!kvm_usage_count)
75b7127c 5048 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
5049}
5050
5051static void hardware_disable_all(void)
5052{
4a937f96 5053 raw_spin_lock(&kvm_count_lock);
10474ae8 5054 hardware_disable_all_nolock();
4a937f96 5055 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
5056}
5057
5058static int hardware_enable_all(void)
5059{
5060 int r = 0;
5061
4a937f96 5062 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
5063
5064 kvm_usage_count++;
5065 if (kvm_usage_count == 1) {
5066 atomic_set(&hardware_enable_failed, 0);
75b7127c 5067 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
5068
5069 if (atomic_read(&hardware_enable_failed)) {
5070 hardware_disable_all_nolock();
5071 r = -EBUSY;
5072 }
5073 }
5074
4a937f96 5075 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
5076
5077 return r;
5078}
5079
9a2b85c6 5080static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 5081 void *v)
9a2b85c6 5082{
8e1c1815
SY
5083 /*
5084 * Some (well, at least mine) BIOSes hang on reboot if
5085 * in vmx root mode.
5086 *
5087 * And Intel TXT required VMX off for all cpu when system shutdown.
5088 */
1170adc6 5089 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 5090 kvm_rebooting = true;
75b7127c 5091 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
5092 return NOTIFY_OK;
5093}
5094
5095static struct notifier_block kvm_reboot_notifier = {
5096 .notifier_call = kvm_reboot,
5097 .priority = 0,
5098};
5099
e93f8a0f 5100static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
5101{
5102 int i;
5103
5104 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 5105 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
5106
5107 kvm_iodevice_destructor(pos);
5108 }
e93f8a0f 5109 kfree(bus);
2eeb2e94
GH
5110}
5111
c21fbff1 5112static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 5113 const struct kvm_io_range *r2)
743eeb0b 5114{
8f4216c7
JW
5115 gpa_t addr1 = r1->addr;
5116 gpa_t addr2 = r2->addr;
5117
5118 if (addr1 < addr2)
743eeb0b 5119 return -1;
8f4216c7
JW
5120
5121 /* If r2->len == 0, match the exact address. If r2->len != 0,
5122 * accept any overlapping write. Any order is acceptable for
5123 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5124 * we process all of them.
5125 */
5126 if (r2->len) {
5127 addr1 += r1->len;
5128 addr2 += r2->len;
5129 }
5130
5131 if (addr1 > addr2)
743eeb0b 5132 return 1;
8f4216c7 5133
743eeb0b
SL
5134 return 0;
5135}
5136
a343c9b7
PB
5137static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5138{
c21fbff1 5139 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
5140}
5141
39369f7a 5142static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
5143 gpa_t addr, int len)
5144{
5145 struct kvm_io_range *range, key;
5146 int off;
5147
5148 key = (struct kvm_io_range) {
5149 .addr = addr,
5150 .len = len,
5151 };
5152
5153 range = bsearch(&key, bus->range, bus->dev_count,
5154 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5155 if (range == NULL)
5156 return -ENOENT;
5157
5158 off = range - bus->range;
5159
c21fbff1 5160 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
5161 off--;
5162
5163 return off;
5164}
5165
e32edf4f 5166static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
5167 struct kvm_io_range *range, const void *val)
5168{
5169 int idx;
5170
5171 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5172 if (idx < 0)
5173 return -EOPNOTSUPP;
5174
5175 while (idx < bus->dev_count &&
c21fbff1 5176 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5177 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5178 range->len, val))
5179 return idx;
5180 idx++;
5181 }
5182
5183 return -EOPNOTSUPP;
5184}
5185
bda9020e 5186/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 5187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 5188 int len, const void *val)
2eeb2e94 5189{
90d83dc3 5190 struct kvm_io_bus *bus;
743eeb0b 5191 struct kvm_io_range range;
126a5af5 5192 int r;
743eeb0b
SL
5193
5194 range = (struct kvm_io_range) {
5195 .addr = addr,
5196 .len = len,
5197 };
90d83dc3 5198
e32edf4f 5199 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5200 if (!bus)
5201 return -ENOMEM;
e32edf4f 5202 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5203 return r < 0 ? r : 0;
5204}
a2420107 5205EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
5206
5207/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
5208int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5209 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
5210{
5211 struct kvm_io_bus *bus;
5212 struct kvm_io_range range;
5213
5214 range = (struct kvm_io_range) {
5215 .addr = addr,
5216 .len = len,
5217 };
5218
e32edf4f 5219 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5220 if (!bus)
5221 return -ENOMEM;
126a5af5
CH
5222
5223 /* First try the device referenced by cookie. */
5224 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 5225 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 5226 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
5227 val))
5228 return cookie;
5229
5230 /*
5231 * cookie contained garbage; fall back to search and return the
5232 * correct cookie value.
5233 */
e32edf4f 5234 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
5235}
5236
e32edf4f
NN
5237static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5238 struct kvm_io_range *range, void *val)
126a5af5
CH
5239{
5240 int idx;
5241
5242 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
5243 if (idx < 0)
5244 return -EOPNOTSUPP;
5245
5246 while (idx < bus->dev_count &&
c21fbff1 5247 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 5248 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
5249 range->len, val))
5250 return idx;
743eeb0b
SL
5251 idx++;
5252 }
5253
bda9020e
MT
5254 return -EOPNOTSUPP;
5255}
2eeb2e94 5256
bda9020e 5257/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 5258int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 5259 int len, void *val)
bda9020e 5260{
90d83dc3 5261 struct kvm_io_bus *bus;
743eeb0b 5262 struct kvm_io_range range;
126a5af5 5263 int r;
743eeb0b
SL
5264
5265 range = (struct kvm_io_range) {
5266 .addr = addr,
5267 .len = len,
5268 };
e93f8a0f 5269
e32edf4f 5270 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5271 if (!bus)
5272 return -ENOMEM;
e32edf4f 5273 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
5274 return r < 0 ? r : 0;
5275}
743eeb0b 5276
79fac95e 5277/* Caller must hold slots_lock. */
743eeb0b
SL
5278int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5279 int len, struct kvm_io_device *dev)
6c474694 5280{
d4c67a7a 5281 int i;
e93f8a0f 5282 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 5283 struct kvm_io_range range;
090b7aff 5284
4a12f951 5285 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
5286 if (!bus)
5287 return -ENOMEM;
5288
6ea34c9b
AK
5289 /* exclude ioeventfd which is limited by maximum fd */
5290 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 5291 return -ENOSPC;
2eeb2e94 5292
90952cd3 5293 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 5294 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
5295 if (!new_bus)
5296 return -ENOMEM;
d4c67a7a
GH
5297
5298 range = (struct kvm_io_range) {
5299 .addr = addr,
5300 .len = len,
5301 .dev = dev,
5302 };
5303
5304 for (i = 0; i < bus->dev_count; i++)
5305 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5306 break;
5307
5308 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5309 new_bus->dev_count++;
5310 new_bus->range[i] = range;
5311 memcpy(new_bus->range + i + 1, bus->range + i,
5312 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
5313 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5314 synchronize_srcu_expedited(&kvm->srcu);
5315 kfree(bus);
090b7aff
GH
5316
5317 return 0;
5318}
5319
5d3c4c79
SC
5320int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5321 struct kvm_io_device *dev)
090b7aff 5322{
f6588660 5323 int i, j;
e93f8a0f 5324 struct kvm_io_bus *new_bus, *bus;
090b7aff 5325
7c896d37
SC
5326 lockdep_assert_held(&kvm->slots_lock);
5327
4a12f951 5328 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 5329 if (!bus)
5d3c4c79 5330 return 0;
df630b8c 5331
7c896d37 5332 for (i = 0; i < bus->dev_count; i++) {
a1300716 5333 if (bus->range[i].dev == dev) {
090b7aff
GH
5334 break;
5335 }
7c896d37 5336 }
e93f8a0f 5337
90db1043 5338 if (i == bus->dev_count)
5d3c4c79 5339 return 0;
a1300716 5340
90952cd3 5341 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 5342 GFP_KERNEL_ACCOUNT);
f6588660 5343 if (new_bus) {
871c433b 5344 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
5345 new_bus->dev_count--;
5346 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 5347 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
5348 }
5349
5350 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5351 synchronize_srcu_expedited(&kvm->srcu);
5352
5353 /* Destroy the old bus _after_ installing the (null) bus. */
5354 if (!new_bus) {
90db1043 5355 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
5356 for (j = 0; j < bus->dev_count; j++) {
5357 if (j == i)
5358 continue;
5359 kvm_iodevice_destructor(bus->range[j].dev);
5360 }
90db1043 5361 }
a1300716 5362
e93f8a0f 5363 kfree(bus);
5d3c4c79 5364 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
5365}
5366
8a39d006
AP
5367struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5368 gpa_t addr)
5369{
5370 struct kvm_io_bus *bus;
5371 int dev_idx, srcu_idx;
5372 struct kvm_io_device *iodev = NULL;
5373
5374 srcu_idx = srcu_read_lock(&kvm->srcu);
5375
5376 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
5377 if (!bus)
5378 goto out_unlock;
8a39d006
AP
5379
5380 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5381 if (dev_idx < 0)
5382 goto out_unlock;
5383
5384 iodev = bus->range[dev_idx].dev;
5385
5386out_unlock:
5387 srcu_read_unlock(&kvm->srcu, srcu_idx);
5388
5389 return iodev;
5390}
5391EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5392
536a6f88
JF
5393static int kvm_debugfs_open(struct inode *inode, struct file *file,
5394 int (*get)(void *, u64 *), int (*set)(void *, u64),
5395 const char *fmt)
5396{
5397 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5398 inode->i_private;
5399
605c7130
PX
5400 /*
5401 * The debugfs files are a reference to the kvm struct which
5402 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5403 * avoids the race between open and the removal of the debugfs directory.
536a6f88 5404 */
605c7130 5405 if (!kvm_get_kvm_safe(stat_data->kvm))
536a6f88
JF
5406 return -ENOENT;
5407
833b45de 5408 if (simple_attr_open(inode, file, get,
bc9e9e67 5409 kvm_stats_debugfs_mode(stat_data->desc) & 0222
09cbcef6
MP
5410 ? set : NULL,
5411 fmt)) {
536a6f88
JF
5412 kvm_put_kvm(stat_data->kvm);
5413 return -ENOMEM;
5414 }
5415
5416 return 0;
5417}
5418
5419static int kvm_debugfs_release(struct inode *inode, struct file *file)
5420{
5421 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5422 inode->i_private;
5423
5424 simple_attr_release(inode, file);
5425 kvm_put_kvm(stat_data->kvm);
5426
5427 return 0;
5428}
5429
09cbcef6 5430static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 5431{
bc9e9e67 5432 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 5433
09cbcef6
MP
5434 return 0;
5435}
5436
5437static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5438{
bc9e9e67 5439 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
5440
5441 return 0;
5442}
5443
09cbcef6 5444static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 5445{
46808a4c 5446 unsigned long i;
09cbcef6 5447 struct kvm_vcpu *vcpu;
ce35ef27 5448
09cbcef6 5449 *val = 0;
ce35ef27 5450
09cbcef6 5451 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5452 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
5453
5454 return 0;
5455}
5456
09cbcef6 5457static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 5458{
46808a4c 5459 unsigned long i;
09cbcef6 5460 struct kvm_vcpu *vcpu;
536a6f88 5461
09cbcef6 5462 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5463 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
5464
5465 return 0;
5466}
536a6f88 5467
09cbcef6 5468static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 5469{
09cbcef6 5470 int r = -EFAULT;
536a6f88 5471 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 5472
bc9e9e67 5473 switch (stat_data->kind) {
09cbcef6
MP
5474 case KVM_STAT_VM:
5475 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 5476 stat_data->desc->desc.offset, val);
09cbcef6
MP
5477 break;
5478 case KVM_STAT_VCPU:
5479 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5480 stat_data->desc->desc.offset, val);
09cbcef6
MP
5481 break;
5482 }
536a6f88 5483
09cbcef6 5484 return r;
536a6f88
JF
5485}
5486
09cbcef6 5487static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 5488{
09cbcef6 5489 int r = -EFAULT;
ce35ef27 5490 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
5491
5492 if (val)
5493 return -EINVAL;
5494
bc9e9e67 5495 switch (stat_data->kind) {
09cbcef6
MP
5496 case KVM_STAT_VM:
5497 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 5498 stat_data->desc->desc.offset);
09cbcef6
MP
5499 break;
5500 case KVM_STAT_VCPU:
5501 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5502 stat_data->desc->desc.offset);
09cbcef6
MP
5503 break;
5504 }
ce35ef27 5505
09cbcef6 5506 return r;
ce35ef27
SJS
5507}
5508
09cbcef6 5509static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
5510{
5511 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
5512 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5513 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
5514}
5515
09cbcef6
MP
5516static const struct file_operations stat_fops_per_vm = {
5517 .owner = THIS_MODULE,
5518 .open = kvm_stat_data_open,
536a6f88 5519 .release = kvm_debugfs_release,
09cbcef6
MP
5520 .read = simple_attr_read,
5521 .write = simple_attr_write,
5522 .llseek = no_llseek,
536a6f88
JF
5523};
5524
8b88b099 5525static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
5526{
5527 unsigned offset = (long)_offset;
ba1389b7 5528 struct kvm *kvm;
536a6f88 5529 u64 tmp_val;
ba1389b7 5530
8b88b099 5531 *val = 0;
0d9ce162 5532 mutex_lock(&kvm_lock);
536a6f88 5533 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5534 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
5535 *val += tmp_val;
5536 }
0d9ce162 5537 mutex_unlock(&kvm_lock);
8b88b099 5538 return 0;
ba1389b7
AK
5539}
5540
ce35ef27
SJS
5541static int vm_stat_clear(void *_offset, u64 val)
5542{
5543 unsigned offset = (long)_offset;
5544 struct kvm *kvm;
ce35ef27
SJS
5545
5546 if (val)
5547 return -EINVAL;
5548
0d9ce162 5549 mutex_lock(&kvm_lock);
ce35ef27 5550 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5551 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 5552 }
0d9ce162 5553 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5554
5555 return 0;
5556}
5557
5558DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 5559DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 5560
8b88b099 5561static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
5562{
5563 unsigned offset = (long)_offset;
1165f5fe 5564 struct kvm *kvm;
536a6f88 5565 u64 tmp_val;
1165f5fe 5566
8b88b099 5567 *val = 0;
0d9ce162 5568 mutex_lock(&kvm_lock);
536a6f88 5569 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5570 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
5571 *val += tmp_val;
5572 }
0d9ce162 5573 mutex_unlock(&kvm_lock);
8b88b099 5574 return 0;
1165f5fe
AK
5575}
5576
ce35ef27
SJS
5577static int vcpu_stat_clear(void *_offset, u64 val)
5578{
5579 unsigned offset = (long)_offset;
5580 struct kvm *kvm;
ce35ef27
SJS
5581
5582 if (val)
5583 return -EINVAL;
5584
0d9ce162 5585 mutex_lock(&kvm_lock);
ce35ef27 5586 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5587 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 5588 }
0d9ce162 5589 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5590
5591 return 0;
5592}
5593
5594DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5595 "%llu\n");
bc9e9e67 5596DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 5597
286de8f6
CI
5598static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5599{
5600 struct kobj_uevent_env *env;
286de8f6
CI
5601 unsigned long long created, active;
5602
5603 if (!kvm_dev.this_device || !kvm)
5604 return;
5605
0d9ce162 5606 mutex_lock(&kvm_lock);
286de8f6
CI
5607 if (type == KVM_EVENT_CREATE_VM) {
5608 kvm_createvm_count++;
5609 kvm_active_vms++;
5610 } else if (type == KVM_EVENT_DESTROY_VM) {
5611 kvm_active_vms--;
5612 }
5613 created = kvm_createvm_count;
5614 active = kvm_active_vms;
0d9ce162 5615 mutex_unlock(&kvm_lock);
286de8f6 5616
b12ce36a 5617 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
5618 if (!env)
5619 return;
5620
5621 add_uevent_var(env, "CREATED=%llu", created);
5622 add_uevent_var(env, "COUNT=%llu", active);
5623
fdeaf7e3 5624 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 5625 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
5626 kvm->userspace_pid = task_pid_nr(current);
5627 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 5628 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
5629 }
5630 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 5631
a44a4cc1 5632 if (!IS_ERR(kvm->debugfs_dentry)) {
b12ce36a 5633 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
5634
5635 if (p) {
5636 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5637 if (!IS_ERR(tmp))
5638 add_uevent_var(env, "STATS_PATH=%s", tmp);
5639 kfree(p);
286de8f6
CI
5640 }
5641 }
5642 /* no need for checks, since we are adding at most only 5 keys */
5643 env->envp[env->envp_idx++] = NULL;
5644 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5645 kfree(env);
286de8f6
CI
5646}
5647
929f45e3 5648static void kvm_init_debug(void)
6aa8b732 5649{
bc9e9e67
JZ
5650 const struct file_operations *fops;
5651 const struct _kvm_stats_desc *pdesc;
5652 int i;
6aa8b732 5653
76f7c879 5654 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 5655
bc9e9e67
JZ
5656 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5657 pdesc = &kvm_vm_stats_desc[i];
5658 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5659 fops = &vm_stat_fops;
5660 else
5661 fops = &vm_stat_readonly_fops;
5662 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5663 kvm_debugfs_dir,
5664 (void *)(long)pdesc->desc.offset, fops);
5665 }
5666
5667 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5668 pdesc = &kvm_vcpu_stats_desc[i];
5669 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5670 fops = &vcpu_stat_fops;
5671 else
5672 fops = &vcpu_stat_readonly_fops;
5673 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5674 kvm_debugfs_dir,
5675 (void *)(long)pdesc->desc.offset, fops);
4f69b680 5676 }
6aa8b732
AK
5677}
5678
fb3600cc 5679static int kvm_suspend(void)
59ae6c6b 5680{
10474ae8 5681 if (kvm_usage_count)
75b7127c 5682 hardware_disable_nolock(NULL);
59ae6c6b
AK
5683 return 0;
5684}
5685
fb3600cc 5686static void kvm_resume(void)
59ae6c6b 5687{
ca84d1a2 5688 if (kvm_usage_count) {
4cb9a998 5689 lockdep_assert_not_held(&kvm_count_lock);
75b7127c 5690 hardware_enable_nolock(NULL);
ca84d1a2 5691 }
59ae6c6b
AK
5692}
5693
fb3600cc 5694static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
5695 .suspend = kvm_suspend,
5696 .resume = kvm_resume,
5697};
5698
15ad7146
AK
5699static inline
5700struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5701{
5702 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5703}
5704
5705static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5706{
5707 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5708
046ddeed 5709 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5710 WRITE_ONCE(vcpu->ready, false);
15ad7146 5711
7495e22b 5712 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5713 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5714 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5715}
5716
5717static void kvm_sched_out(struct preempt_notifier *pn,
5718 struct task_struct *next)
5719{
5720 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5721
3ba9f93b 5722 if (current->on_rq) {
046ddeed 5723 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5724 WRITE_ONCE(vcpu->ready, true);
5725 }
e9b11c17 5726 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5727 __this_cpu_write(kvm_running_vcpu, NULL);
5728}
5729
5730/**
5731 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5732 *
5733 * We can disable preemption locally around accessing the per-CPU variable,
5734 * and use the resolved vcpu pointer after enabling preemption again,
5735 * because even if the current thread is migrated to another CPU, reading
5736 * the per-CPU value later will give us the same value as we update the
5737 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5738 */
5739struct kvm_vcpu *kvm_get_running_vcpu(void)
5740{
1f03b2bc
MZ
5741 struct kvm_vcpu *vcpu;
5742
5743 preempt_disable();
5744 vcpu = __this_cpu_read(kvm_running_vcpu);
5745 preempt_enable();
5746
5747 return vcpu;
7495e22b 5748}
379a3c8e 5749EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5750
5751/**
5752 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5753 */
5754struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5755{
5756 return &kvm_running_vcpu;
15ad7146
AK
5757}
5758
e1bfc245
SC
5759#ifdef CONFIG_GUEST_PERF_EVENTS
5760static unsigned int kvm_guest_state(void)
5761{
5762 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5763 unsigned int state;
5764
5765 if (!kvm_arch_pmi_in_guest(vcpu))
5766 return 0;
5767
5768 state = PERF_GUEST_ACTIVE;
5769 if (!kvm_arch_vcpu_in_kernel(vcpu))
5770 state |= PERF_GUEST_USER;
5771
5772 return state;
5773}
5774
5775static unsigned long kvm_guest_get_ip(void)
5776{
5777 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5778
5779 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5780 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5781 return 0;
5782
5783 return kvm_arch_vcpu_get_ip(vcpu);
5784}
5785
5786static struct perf_guest_info_callbacks kvm_guest_cbs = {
5787 .state = kvm_guest_state,
5788 .get_ip = kvm_guest_get_ip,
5789 .handle_intel_pt_intr = NULL,
5790};
5791
5792void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5793{
5794 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5795 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5796}
5797void kvm_unregister_perf_callbacks(void)
5798{
5799 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5800}
5801#endif
5802
b9904085
SC
5803struct kvm_cpu_compat_check {
5804 void *opaque;
5805 int *ret;
5806};
5807
5808static void check_processor_compat(void *data)
f257d6dc 5809{
b9904085
SC
5810 struct kvm_cpu_compat_check *c = data;
5811
5812 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
5813}
5814
0ee75bea 5815int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 5816 struct module *module)
6aa8b732 5817{
b9904085 5818 struct kvm_cpu_compat_check c;
6aa8b732 5819 int r;
002c7f7c 5820 int cpu;
6aa8b732 5821
f8c16bba
ZX
5822 r = kvm_arch_init(opaque);
5823 if (r)
d2308784 5824 goto out_fail;
cb498ea2 5825
7dac16c3
AH
5826 /*
5827 * kvm_arch_init makes sure there's at most one caller
5828 * for architectures that support multiple implementations,
5829 * like intel and amd on x86.
36343f6e
PB
5830 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5831 * conflicts in case kvm is already setup for another implementation.
7dac16c3 5832 */
36343f6e
PB
5833 r = kvm_irqfd_init();
5834 if (r)
5835 goto out_irqfd;
7dac16c3 5836
8437a617 5837 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
5838 r = -ENOMEM;
5839 goto out_free_0;
5840 }
5841
b9904085 5842 r = kvm_arch_hardware_setup(opaque);
6aa8b732 5843 if (r < 0)
faf0be22 5844 goto out_free_1;
6aa8b732 5845
b9904085
SC
5846 c.ret = &r;
5847 c.opaque = opaque;
002c7f7c 5848 for_each_online_cpu(cpu) {
b9904085 5849 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 5850 if (r < 0)
faf0be22 5851 goto out_free_2;
002c7f7c
YS
5852 }
5853
73c1b41e 5854 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 5855 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 5856 if (r)
d2308784 5857 goto out_free_2;
6aa8b732
AK
5858 register_reboot_notifier(&kvm_reboot_notifier);
5859
c16f862d 5860 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5861 if (!vcpu_align)
5862 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5863 kvm_vcpu_cache =
5864 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5865 SLAB_ACCOUNT,
5866 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
5867 offsetofend(struct kvm_vcpu, stats_id)
5868 - offsetof(struct kvm_vcpu, arch),
46515736 5869 NULL);
c16f862d
RR
5870 if (!kvm_vcpu_cache) {
5871 r = -ENOMEM;
fb3600cc 5872 goto out_free_3;
c16f862d
RR
5873 }
5874
baff59cc
VK
5875 for_each_possible_cpu(cpu) {
5876 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5877 GFP_KERNEL, cpu_to_node(cpu))) {
5878 r = -ENOMEM;
5879 goto out_free_4;
5880 }
5881 }
5882
af585b92
GN
5883 r = kvm_async_pf_init();
5884 if (r)
baff59cc 5885 goto out_free_5;
af585b92 5886
6aa8b732
AK
5887 kvm_chardev_ops.owner = module;
5888
5889 r = misc_register(&kvm_dev);
5890 if (r) {
1170adc6 5891 pr_err("kvm: misc device register failed\n");
af585b92 5892 goto out_unreg;
6aa8b732
AK
5893 }
5894
fb3600cc
RW
5895 register_syscore_ops(&kvm_syscore_ops);
5896
15ad7146
AK
5897 kvm_preempt_ops.sched_in = kvm_sched_in;
5898 kvm_preempt_ops.sched_out = kvm_sched_out;
5899
929f45e3 5900 kvm_init_debug();
0ea4ed8e 5901
3c3c29fd
PB
5902 r = kvm_vfio_ops_init();
5903 WARN_ON(r);
5904
c7addb90 5905 return 0;
6aa8b732 5906
af585b92
GN
5907out_unreg:
5908 kvm_async_pf_deinit();
baff59cc
VK
5909out_free_5:
5910 for_each_possible_cpu(cpu)
5911 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5912out_free_4:
c16f862d 5913 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 5914out_free_3:
6aa8b732 5915 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5916 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 5917out_free_2:
e9b11c17 5918 kvm_arch_hardware_unsetup();
faf0be22 5919out_free_1:
7f59f492 5920 free_cpumask_var(cpus_hardware_enabled);
d2308784 5921out_free_0:
a0f155e9 5922 kvm_irqfd_exit();
36343f6e 5923out_irqfd:
7dac16c3
AH
5924 kvm_arch_exit();
5925out_fail:
6aa8b732
AK
5926 return r;
5927}
cb498ea2 5928EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 5929
cb498ea2 5930void kvm_exit(void)
6aa8b732 5931{
baff59cc
VK
5932 int cpu;
5933
4bd33b56 5934 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 5935 misc_deregister(&kvm_dev);
baff59cc
VK
5936 for_each_possible_cpu(cpu)
5937 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 5938 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 5939 kvm_async_pf_deinit();
fb3600cc 5940 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 5941 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5942 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 5943 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 5944 kvm_arch_hardware_unsetup();
f8c16bba 5945 kvm_arch_exit();
a0f155e9 5946 kvm_irqfd_exit();
7f59f492 5947 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 5948 kvm_vfio_ops_exit();
6aa8b732 5949}
cb498ea2 5950EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
5951
5952struct kvm_vm_worker_thread_context {
5953 struct kvm *kvm;
5954 struct task_struct *parent;
5955 struct completion init_done;
5956 kvm_vm_thread_fn_t thread_fn;
5957 uintptr_t data;
5958 int err;
5959};
5960
5961static int kvm_vm_worker_thread(void *context)
5962{
5963 /*
5964 * The init_context is allocated on the stack of the parent thread, so
5965 * we have to locally copy anything that is needed beyond initialization
5966 */
5967 struct kvm_vm_worker_thread_context *init_context = context;
e45cce30 5968 struct task_struct *parent;
c57c8046
JS
5969 struct kvm *kvm = init_context->kvm;
5970 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5971 uintptr_t data = init_context->data;
5972 int err;
5973
5974 err = kthread_park(current);
5975 /* kthread_park(current) is never supposed to return an error */
5976 WARN_ON(err != 0);
5977 if (err)
5978 goto init_complete;
5979
5980 err = cgroup_attach_task_all(init_context->parent, current);
5981 if (err) {
5982 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5983 __func__, err);
5984 goto init_complete;
5985 }
5986
5987 set_user_nice(current, task_nice(init_context->parent));
5988
5989init_complete:
5990 init_context->err = err;
5991 complete(&init_context->init_done);
5992 init_context = NULL;
5993
5994 if (err)
e45cce30 5995 goto out;
c57c8046
JS
5996
5997 /* Wait to be woken up by the spawner before proceeding. */
5998 kthread_parkme();
5999
6000 if (!kthread_should_stop())
6001 err = thread_fn(kvm, data);
6002
e45cce30
VS
6003out:
6004 /*
6005 * Move kthread back to its original cgroup to prevent it lingering in
6006 * the cgroup of the VM process, after the latter finishes its
6007 * execution.
6008 *
6009 * kthread_stop() waits on the 'exited' completion condition which is
6010 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6011 * kthread is removed from the cgroup in the cgroup_exit() which is
6012 * called after the exit_mm(). This causes the kthread_stop() to return
6013 * before the kthread actually quits the cgroup.
6014 */
6015 rcu_read_lock();
6016 parent = rcu_dereference(current->real_parent);
6017 get_task_struct(parent);
6018 rcu_read_unlock();
6019 cgroup_attach_task_all(parent, current);
6020 put_task_struct(parent);
6021
c57c8046
JS
6022 return err;
6023}
6024
6025int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6026 uintptr_t data, const char *name,
6027 struct task_struct **thread_ptr)
6028{
6029 struct kvm_vm_worker_thread_context init_context = {};
6030 struct task_struct *thread;
6031
6032 *thread_ptr = NULL;
6033 init_context.kvm = kvm;
6034 init_context.parent = current;
6035 init_context.thread_fn = thread_fn;
6036 init_context.data = data;
6037 init_completion(&init_context.init_done);
6038
6039 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6040 "%s-%d", name, task_pid_nr(current));
6041 if (IS_ERR(thread))
6042 return PTR_ERR(thread);
6043
6044 /* kthread_run is never supposed to return NULL */
6045 WARN_ON(thread == NULL);
6046
6047 wait_for_completion(&init_context.init_done);
6048
6049 if (!init_context.err)
6050 *thread_ptr = thread;
6051
6052 return init_context.err;
6053}