KVM: SVM: make the avic parameter a bool
[linux-2.6-block.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
6aa8b732 54
e495606d 55#include <asm/processor.h>
2ea75be3 56#include <asm/ioctl.h>
7c0f6ba6 57#include <linux/uaccess.h>
6aa8b732 58
5f94c174 59#include "coalesced_mmio.h"
af585b92 60#include "async_pf.h"
531810ca 61#include "mmu_lock.h"
3c3c29fd 62#include "vfio.h"
5f94c174 63
229456fc
MT
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
fb04a1ed
PX
67#include <linux/kvm_dirty_ring.h>
68
536a6f88
JF
69/* Worst case buffer size needed for holding an integer. */
70#define ITOA_MAX_LEN 12
71
6aa8b732
AK
72MODULE_AUTHOR("Qumranet");
73MODULE_LICENSE("GPL");
74
920552b2 75/* Architectures should define their poll value according to the halt latency */
ec76d819 76unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 77module_param(halt_poll_ns, uint, 0644);
ec76d819 78EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 79
aca6ff29 80/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 81unsigned int halt_poll_ns_grow = 2;
039c5d1b 82module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 83EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 84
49113d36
NW
85/* The start value to grow halt_poll_ns from */
86unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87module_param(halt_poll_ns_grow_start, uint, 0644);
88EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89
aca6ff29 90/* Default resets per-vcpu halt_poll_ns . */
ec76d819 91unsigned int halt_poll_ns_shrink;
039c5d1b 92module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 93EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 94
fa40a821
MT
95/*
96 * Ordering of locks:
97 *
b7d409de 98 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
99 */
100
0d9ce162 101DEFINE_MUTEX(kvm_lock);
4a937f96 102static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 103LIST_HEAD(vm_list);
133de902 104
7f59f492 105static cpumask_var_t cpus_hardware_enabled;
f4fee932 106static int kvm_usage_count;
10474ae8 107static atomic_t hardware_enable_failed;
1b6c0168 108
aaba298c 109static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 110
15ad7146 111static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 112static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 113
76f7c879 114struct dentry *kvm_debugfs_dir;
e23a808b 115EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 116
536a6f88 117static int kvm_debugfs_num_entries;
09cbcef6 118static const struct file_operations stat_fops_per_vm;
536a6f88 119
bccf2150
AK
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
de8e5d74 122#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
7ddfd3e0
MZ
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
9cb09e7c
MZ
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
7ddfd3e0
MZ
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
1dda606c 143#endif
10474ae8
AG
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
bccf2150 146
e93f8a0f 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
286de8f6
CI
152#define KVM_EVENT_CREATE_VM 0
153#define KVM_EVENT_DESTROY_VM 1
154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155static unsigned long long kvm_createvm_count;
156static unsigned long long kvm_active_vms;
157
e649b3f0
ET
158__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end)
b1394e74
RK
160{
161}
162
a78986aa
SC
163bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164{
165 /*
166 * The metadata used by is_zone_device_page() to determine whether or
167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 * the device has been pinned, e.g. by get_user_pages(). WARN if the
169 * page_count() is zero to help detect bad usage of this helper.
170 */
171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 return false;
173
174 return is_zone_device_page(pfn_to_page(pfn));
175}
176
ba049e93 177bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 178{
a78986aa
SC
179 /*
180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 * perspective they are "normal" pages, albeit with slightly different
182 * usage rules.
183 */
11feeb49 184 if (pfn_valid(pfn))
a78986aa 185 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 186 !is_zero_pfn(pfn) &&
a78986aa 187 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
188
189 return true;
190}
191
005ba37c
SC
192bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193{
194 struct page *page = pfn_to_page(pfn);
195
196 if (!PageTransCompoundMap(page))
197 return false;
198
199 return is_transparent_hugepage(compound_head(page));
200}
201
bccf2150
AK
202/*
203 * Switches to specified vcpu, until a matching vcpu_put()
204 */
ec7660cc 205void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 206{
ec7660cc 207 int cpu = get_cpu();
7495e22b
PB
208
209 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 210 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 211 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 212 put_cpu();
6aa8b732 213}
2f1fe811 214EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 215
313a3dc7 216void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 217{
15ad7146 218 preempt_disable();
313a3dc7 219 kvm_arch_vcpu_put(vcpu);
15ad7146 220 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 221 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 222 preempt_enable();
6aa8b732 223}
2f1fe811 224EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 225
7a97cec2
PB
226/* TODO: merge with kvm_arch_vcpu_should_kick */
227static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228{
229 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231 /*
232 * We need to wait for the VCPU to reenable interrupts and get out of
233 * READING_SHADOW_PAGE_TABLES mode.
234 */
235 if (req & KVM_REQUEST_WAIT)
236 return mode != OUTSIDE_GUEST_MODE;
237
238 /*
239 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 */
241 return mode == IN_GUEST_MODE;
242}
243
d9e368d6
AK
244static void ack_flush(void *_completed)
245{
d9e368d6
AK
246}
247
b49defe8
PB
248static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249{
250 if (unlikely(!cpus))
251 cpus = cpu_online_mask;
252
253 if (cpumask_empty(cpus))
254 return false;
255
256 smp_call_function_many(cpus, ack_flush, NULL, wait);
257 return true;
258}
259
7053df4e 260bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
54163a34 261 struct kvm_vcpu *except,
7053df4e 262 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 263{
597a5f55 264 int i, cpu, me;
d9e368d6 265 struct kvm_vcpu *vcpu;
7053df4e 266 bool called;
6ef7a1bc 267
3cba4130 268 me = get_cpu();
7053df4e 269
988a2cae 270 kvm_for_each_vcpu(i, vcpu, kvm) {
54163a34
SS
271 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 vcpu == except)
7053df4e
VK
273 continue;
274
3cba4130 275 kvm_make_request(req, vcpu);
d9e368d6 276 cpu = vcpu->cpu;
6b7e2d09 277
178f02ff
RK
278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 continue;
6c6e8360 280
7053df4e 281 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 282 kvm_request_needs_ipi(vcpu, req))
7053df4e 283 __cpumask_set_cpu(cpu, tmp);
49846896 284 }
7053df4e
VK
285
286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 287 put_cpu();
7053df4e
VK
288
289 return called;
290}
291
54163a34
SS
292bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 struct kvm_vcpu *except)
7053df4e
VK
294{
295 cpumask_var_t cpus;
296 bool called;
7053df4e
VK
297
298 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
54163a34 300 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
7053df4e 301
6ef7a1bc 302 free_cpumask_var(cpus);
49846896 303 return called;
d9e368d6
AK
304}
305
54163a34
SS
306bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307{
308 return kvm_make_all_cpus_request_except(kvm, req, NULL);
309}
310
a6d51016 311#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 312void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 313{
4ae3cb3a
LT
314 /*
315 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316 * kvm_make_all_cpus_request.
317 */
318 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319
320 /*
321 * We want to publish modifications to the page tables before reading
322 * mode. Pairs with a memory barrier in arch-specific code.
323 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324 * and smp_mb in walk_shadow_page_lockless_begin/end.
325 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326 *
327 * There is already an smp_mb__after_atomic() before
328 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329 * barrier here.
330 */
b08660e5
TL
331 if (!kvm_arch_flush_remote_tlb(kvm)
332 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 333 ++kvm->stat.remote_tlb_flush;
a086f6a1 334 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 335}
2ba9f0d8 336EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 337#endif
2e53d63a 338
49846896
RR
339void kvm_reload_remote_mmus(struct kvm *kvm)
340{
445b8236 341 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 342}
2e53d63a 343
6926f95a
SC
344#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
345static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
346 gfp_t gfp_flags)
347{
348 gfp_flags |= mc->gfp_zero;
349
350 if (mc->kmem_cache)
351 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352 else
353 return (void *)__get_free_page(gfp_flags);
354}
355
356int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
357{
358 void *obj;
359
360 if (mc->nobjs >= min)
361 return 0;
362 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
363 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364 if (!obj)
365 return mc->nobjs >= min ? 0 : -ENOMEM;
366 mc->objects[mc->nobjs++] = obj;
367 }
368 return 0;
369}
370
371int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
372{
373 return mc->nobjs;
374}
375
376void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
377{
378 while (mc->nobjs) {
379 if (mc->kmem_cache)
380 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381 else
382 free_page((unsigned long)mc->objects[--mc->nobjs]);
383 }
384}
385
386void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
387{
388 void *p;
389
390 if (WARN_ON(!mc->nobjs))
391 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392 else
393 p = mc->objects[--mc->nobjs];
394 BUG_ON(!p);
395 return p;
396}
397#endif
398
8bd826d6 399static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 400{
fb3f0f51
RR
401 mutex_init(&vcpu->mutex);
402 vcpu->cpu = -1;
fb3f0f51
RR
403 vcpu->kvm = kvm;
404 vcpu->vcpu_id = id;
34bb10b7 405 vcpu->pid = NULL;
da4ad88c 406 rcuwait_init(&vcpu->wait);
af585b92 407 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 408
bf9f6ac8
FW
409 vcpu->pre_pcpu = -1;
410 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411
4c088493
R
412 kvm_vcpu_set_in_spin_loop(vcpu, false);
413 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 414 vcpu->preempted = false;
d73eb57b 415 vcpu->ready = false;
d5c48deb 416 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fb3f0f51 417}
fb3f0f51 418
4543bdc0
SC
419void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420{
fb04a1ed 421 kvm_dirty_ring_free(&vcpu->dirty_ring);
4543bdc0 422 kvm_arch_vcpu_destroy(vcpu);
e529ef66 423
9941d224
SC
424 /*
425 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
426 * the vcpu->pid pointer, and at destruction time all file descriptors
427 * are already gone.
428 */
429 put_pid(rcu_dereference_protected(vcpu->pid, 1));
430
8bd826d6 431 free_page((unsigned long)vcpu->run);
e529ef66 432 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
433}
434EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
435
e930bffe
AA
436#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
437static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
438{
439 return container_of(mn, struct kvm, mmu_notifier);
440}
441
e649b3f0
ET
442static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
443 struct mm_struct *mm,
444 unsigned long start, unsigned long end)
445{
446 struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 int idx;
448
449 idx = srcu_read_lock(&kvm->srcu);
450 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
451 srcu_read_unlock(&kvm->srcu, idx);
452}
453
3039bcc7
SC
454typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
455
f922bd9b
SC
456typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
457 unsigned long end);
458
3039bcc7
SC
459struct kvm_hva_range {
460 unsigned long start;
461 unsigned long end;
462 pte_t pte;
463 hva_handler_t handler;
f922bd9b 464 on_lock_fn_t on_lock;
3039bcc7
SC
465 bool flush_on_ret;
466 bool may_block;
467};
468
f922bd9b
SC
469/*
470 * Use a dedicated stub instead of NULL to indicate that there is no callback
471 * function/handler. The compiler technically can't guarantee that a real
472 * function will have a non-zero address, and so it will generate code to
473 * check for !NULL, whereas comparing against a stub will be elided at compile
474 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
475 */
476static void kvm_null_fn(void)
477{
478
479}
480#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
481
3039bcc7
SC
482static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
483 const struct kvm_hva_range *range)
484{
8931a454 485 bool ret = false, locked = false;
f922bd9b 486 struct kvm_gfn_range gfn_range;
3039bcc7
SC
487 struct kvm_memory_slot *slot;
488 struct kvm_memslots *slots;
3039bcc7
SC
489 int i, idx;
490
f922bd9b
SC
491 /* A null handler is allowed if and only if on_lock() is provided. */
492 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
493 IS_KVM_NULL_FN(range->handler)))
494 return 0;
495
3039bcc7
SC
496 idx = srcu_read_lock(&kvm->srcu);
497
8931a454 498 /* The on_lock() path does not yet support lock elision. */
f922bd9b 499 if (!IS_KVM_NULL_FN(range->on_lock)) {
8931a454
SC
500 locked = true;
501 KVM_MMU_LOCK(kvm);
502
f922bd9b
SC
503 range->on_lock(kvm, range->start, range->end);
504
505 if (IS_KVM_NULL_FN(range->handler))
506 goto out_unlock;
507 }
508
3039bcc7
SC
509 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
510 slots = __kvm_memslots(kvm, i);
511 kvm_for_each_memslot(slot, slots) {
512 unsigned long hva_start, hva_end;
513
514 hva_start = max(range->start, slot->userspace_addr);
515 hva_end = min(range->end, slot->userspace_addr +
516 (slot->npages << PAGE_SHIFT));
517 if (hva_start >= hva_end)
518 continue;
519
520 /*
521 * To optimize for the likely case where the address
522 * range is covered by zero or one memslots, don't
523 * bother making these conditional (to avoid writes on
524 * the second or later invocation of the handler).
525 */
526 gfn_range.pte = range->pte;
527 gfn_range.may_block = range->may_block;
528
529 /*
530 * {gfn(page) | page intersects with [hva_start, hva_end)} =
531 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
532 */
533 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
534 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
535 gfn_range.slot = slot;
536
8931a454
SC
537 if (!locked) {
538 locked = true;
539 KVM_MMU_LOCK(kvm);
540 }
3039bcc7
SC
541 ret |= range->handler(kvm, &gfn_range);
542 }
543 }
544
545 if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
546 kvm_flush_remote_tlbs(kvm);
547
f922bd9b 548out_unlock:
8931a454
SC
549 if (locked)
550 KVM_MMU_UNLOCK(kvm);
f922bd9b 551
3039bcc7
SC
552 srcu_read_unlock(&kvm->srcu, idx);
553
554 /* The notifiers are averse to booleans. :-( */
555 return (int)ret;
556}
557
558static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
559 unsigned long start,
560 unsigned long end,
561 pte_t pte,
562 hva_handler_t handler)
563{
564 struct kvm *kvm = mmu_notifier_to_kvm(mn);
565 const struct kvm_hva_range range = {
566 .start = start,
567 .end = end,
568 .pte = pte,
569 .handler = handler,
f922bd9b 570 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
571 .flush_on_ret = true,
572 .may_block = false,
573 };
3039bcc7 574
f922bd9b 575 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
576}
577
578static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
579 unsigned long start,
580 unsigned long end,
581 hva_handler_t handler)
582{
583 struct kvm *kvm = mmu_notifier_to_kvm(mn);
584 const struct kvm_hva_range range = {
585 .start = start,
586 .end = end,
587 .pte = __pte(0),
588 .handler = handler,
f922bd9b 589 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
590 .flush_on_ret = false,
591 .may_block = false,
592 };
3039bcc7 593
f922bd9b 594 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 595}
3da0dd43
IE
596static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
597 struct mm_struct *mm,
598 unsigned long address,
599 pte_t pte)
600{
601 struct kvm *kvm = mmu_notifier_to_kvm(mn);
602
501b9185
SC
603 trace_kvm_set_spte_hva(address);
604
c13fda23
SC
605 /*
606 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
607 * and so always runs with an elevated notifier count. This obviates
608 * the need to bump the sequence count.
609 */
610 WARN_ON_ONCE(!kvm->mmu_notifier_count);
611
3039bcc7 612 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
613}
614
f922bd9b
SC
615static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
616 unsigned long end)
e930bffe 617{
e930bffe
AA
618 /*
619 * The count increase must become visible at unlock time as no
620 * spte can be established without taking the mmu_lock and
621 * count is also read inside the mmu_lock critical section.
622 */
623 kvm->mmu_notifier_count++;
4a42d848 624 if (likely(kvm->mmu_notifier_count == 1)) {
f922bd9b
SC
625 kvm->mmu_notifier_range_start = start;
626 kvm->mmu_notifier_range_end = end;
4a42d848
DS
627 } else {
628 /*
629 * Fully tracking multiple concurrent ranges has dimishing
630 * returns. Keep things simple and just find the minimal range
631 * which includes the current and new ranges. As there won't be
632 * enough information to subtract a range after its invalidate
633 * completes, any ranges invalidated concurrently will
634 * accumulate and persist until all outstanding invalidates
635 * complete.
636 */
637 kvm->mmu_notifier_range_start =
f922bd9b 638 min(kvm->mmu_notifier_range_start, start);
4a42d848 639 kvm->mmu_notifier_range_end =
f922bd9b 640 max(kvm->mmu_notifier_range_end, end);
4a42d848 641 }
f922bd9b 642}
3039bcc7 643
f922bd9b
SC
644static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
645 const struct mmu_notifier_range *range)
646{
647 struct kvm *kvm = mmu_notifier_to_kvm(mn);
648 const struct kvm_hva_range hva_range = {
649 .start = range->start,
650 .end = range->end,
651 .pte = __pte(0),
652 .handler = kvm_unmap_gfn_range,
653 .on_lock = kvm_inc_notifier_count,
654 .flush_on_ret = true,
655 .may_block = mmu_notifier_range_blockable(range),
656 };
565f3be2 657
f922bd9b
SC
658 trace_kvm_unmap_hva_range(range->start, range->end);
659
660 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 661
e649b3f0 662 return 0;
e930bffe
AA
663}
664
f922bd9b
SC
665static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
666 unsigned long end)
e930bffe 667{
e930bffe
AA
668 /*
669 * This sequence increase will notify the kvm page fault that
670 * the page that is going to be mapped in the spte could have
671 * been freed.
672 */
673 kvm->mmu_notifier_seq++;
a355aa54 674 smp_wmb();
e930bffe
AA
675 /*
676 * The above sequence increase must be visible before the
a355aa54
PM
677 * below count decrease, which is ensured by the smp_wmb above
678 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
679 */
680 kvm->mmu_notifier_count--;
f922bd9b
SC
681}
682
683static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
684 const struct mmu_notifier_range *range)
685{
686 struct kvm *kvm = mmu_notifier_to_kvm(mn);
687 const struct kvm_hva_range hva_range = {
688 .start = range->start,
689 .end = range->end,
690 .pte = __pte(0),
691 .handler = (void *)kvm_null_fn,
692 .on_lock = kvm_dec_notifier_count,
693 .flush_on_ret = false,
694 .may_block = mmu_notifier_range_blockable(range),
695 };
696
697 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe
AA
698
699 BUG_ON(kvm->mmu_notifier_count < 0);
700}
701
702static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
703 struct mm_struct *mm,
57128468
ALC
704 unsigned long start,
705 unsigned long end)
e930bffe 706{
501b9185
SC
707 trace_kvm_age_hva(start, end);
708
3039bcc7 709 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
710}
711
1d7715c6
VD
712static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
713 struct mm_struct *mm,
714 unsigned long start,
715 unsigned long end)
716{
501b9185
SC
717 trace_kvm_age_hva(start, end);
718
1d7715c6
VD
719 /*
720 * Even though we do not flush TLB, this will still adversely
721 * affect performance on pre-Haswell Intel EPT, where there is
722 * no EPT Access Bit to clear so that we have to tear down EPT
723 * tables instead. If we find this unacceptable, we can always
724 * add a parameter to kvm_age_hva so that it effectively doesn't
725 * do anything on clear_young.
726 *
727 * Also note that currently we never issue secondary TLB flushes
728 * from clear_young, leaving this job up to the regular system
729 * cadence. If we find this inaccurate, we might come up with a
730 * more sophisticated heuristic later.
731 */
3039bcc7 732 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
733}
734
8ee53820
AA
735static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
736 struct mm_struct *mm,
737 unsigned long address)
738{
501b9185
SC
739 trace_kvm_test_age_hva(address);
740
3039bcc7
SC
741 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
742 kvm_test_age_gfn);
8ee53820
AA
743}
744
85db06e5
MT
745static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
746 struct mm_struct *mm)
747{
748 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
749 int idx;
750
751 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 752 kvm_arch_flush_shadow_all(kvm);
eda2beda 753 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
754}
755
e930bffe 756static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 757 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
758 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
759 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
760 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 761 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 762 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 763 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 764 .release = kvm_mmu_notifier_release,
e930bffe 765};
4c07b0a4
AK
766
767static int kvm_init_mmu_notifier(struct kvm *kvm)
768{
769 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
770 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
771}
772
773#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
774
775static int kvm_init_mmu_notifier(struct kvm *kvm)
776{
777 return 0;
778}
779
e930bffe
AA
780#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
781
a47d2b07 782static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
783{
784 int i;
a47d2b07 785 struct kvm_memslots *slots;
bf3e05bc 786
b12ce36a 787 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
788 if (!slots)
789 return NULL;
790
bf3e05bc 791 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
36947254 792 slots->id_to_index[i] = -1;
a47d2b07
PB
793
794 return slots;
795}
796
797static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
798{
799 if (!memslot->dirty_bitmap)
800 return;
801
802 kvfree(memslot->dirty_bitmap);
803 memslot->dirty_bitmap = NULL;
804}
805
e96c81ee 806static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 807{
e96c81ee 808 kvm_destroy_dirty_bitmap(slot);
a47d2b07 809
e96c81ee 810 kvm_arch_free_memslot(kvm, slot);
a47d2b07 811
e96c81ee
SC
812 slot->flags = 0;
813 slot->npages = 0;
a47d2b07
PB
814}
815
816static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
817{
818 struct kvm_memory_slot *memslot;
819
820 if (!slots)
821 return;
822
823 kvm_for_each_memslot(memslot, slots)
e96c81ee 824 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
825
826 kvfree(slots);
bf3e05bc
XG
827}
828
536a6f88
JF
829static void kvm_destroy_vm_debugfs(struct kvm *kvm)
830{
831 int i;
832
833 if (!kvm->debugfs_dentry)
834 return;
835
836 debugfs_remove_recursive(kvm->debugfs_dentry);
837
9d5a1dce
LC
838 if (kvm->debugfs_stat_data) {
839 for (i = 0; i < kvm_debugfs_num_entries; i++)
840 kfree(kvm->debugfs_stat_data[i]);
841 kfree(kvm->debugfs_stat_data);
842 }
536a6f88
JF
843}
844
845static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
846{
847 char dir_name[ITOA_MAX_LEN * 2];
848 struct kvm_stat_data *stat_data;
849 struct kvm_stats_debugfs_item *p;
850
851 if (!debugfs_initialized())
852 return 0;
853
854 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 855 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
856
857 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
858 sizeof(*kvm->debugfs_stat_data),
b12ce36a 859 GFP_KERNEL_ACCOUNT);
536a6f88
JF
860 if (!kvm->debugfs_stat_data)
861 return -ENOMEM;
862
863 for (p = debugfs_entries; p->name; p++) {
b12ce36a 864 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
865 if (!stat_data)
866 return -ENOMEM;
867
868 stat_data->kvm = kvm;
09cbcef6 869 stat_data->dbgfs_item = p;
536a6f88 870 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
09cbcef6
MP
871 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
872 kvm->debugfs_dentry, stat_data,
873 &stat_fops_per_vm);
536a6f88
JF
874 }
875 return 0;
876}
877
1aa9b957
JS
878/*
879 * Called after the VM is otherwise initialized, but just before adding it to
880 * the vm_list.
881 */
882int __weak kvm_arch_post_init_vm(struct kvm *kvm)
883{
884 return 0;
885}
886
887/*
888 * Called just after removing the VM from the vm_list, but before doing any
889 * other destruction.
890 */
891void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
892{
893}
894
e08b9637 895static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 896{
d89f5eff 897 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
898 int r = -ENOMEM;
899 int i;
6aa8b732 900
d89f5eff
JK
901 if (!kvm)
902 return ERR_PTR(-ENOMEM);
903
531810ca 904 KVM_MMU_LOCK_INIT(kvm);
f1f10076 905 mmgrab(current->mm);
e9ad4ec8
PB
906 kvm->mm = current->mm;
907 kvm_eventfd_init(kvm);
908 mutex_init(&kvm->lock);
909 mutex_init(&kvm->irq_lock);
910 mutex_init(&kvm->slots_lock);
e9ad4ec8
PB
911 INIT_LIST_HEAD(&kvm->devices);
912
1e702d9a
AW
913 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
914
8a44119a
PB
915 if (init_srcu_struct(&kvm->srcu))
916 goto out_err_no_srcu;
917 if (init_srcu_struct(&kvm->irq_srcu))
918 goto out_err_no_irq_srcu;
919
e2d3fcaf 920 refcount_set(&kvm->users_count, 1);
f481b069 921 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 922 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 923
4bd518f1 924 if (!slots)
a97b0e77 925 goto out_err_no_arch_destroy_vm;
0e32958e 926 /* Generations must be different for each address space. */
164bf7e5 927 slots->generation = i;
4bd518f1 928 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 929 }
00f034a1 930
e93f8a0f 931 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 932 rcu_assign_pointer(kvm->buses[i],
b12ce36a 933 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 934 if (!kvm->buses[i])
a97b0e77 935 goto out_err_no_arch_destroy_vm;
e93f8a0f 936 }
e930bffe 937
acd05785
DM
938 kvm->max_halt_poll_ns = halt_poll_ns;
939
e08b9637 940 r = kvm_arch_init_vm(kvm, type);
d89f5eff 941 if (r)
a97b0e77 942 goto out_err_no_arch_destroy_vm;
10474ae8
AG
943
944 r = hardware_enable_all();
945 if (r)
719d93cd 946 goto out_err_no_disable;
10474ae8 947
c77dcacb 948#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 949 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 950#endif
6aa8b732 951
74b5c5bf 952 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
953 if (r)
954 goto out_err_no_mmu_notifier;
955
956 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
957 if (r)
958 goto out_err;
959
0d9ce162 960 mutex_lock(&kvm_lock);
5e58cfe4 961 list_add(&kvm->vm_list, &vm_list);
0d9ce162 962 mutex_unlock(&kvm_lock);
d89f5eff 963
2ecd9d29
PZ
964 preempt_notifier_inc();
965
f17abe9a 966 return kvm;
10474ae8
AG
967
968out_err:
1aa9b957
JS
969#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
970 if (kvm->mmu_notifier.ops)
971 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
972#endif
973out_err_no_mmu_notifier:
10474ae8 974 hardware_disable_all();
719d93cd 975out_err_no_disable:
a97b0e77 976 kvm_arch_destroy_vm(kvm);
a97b0e77 977out_err_no_arch_destroy_vm:
e2d3fcaf 978 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 979 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 980 kfree(kvm_get_bus(kvm, i));
f481b069 981 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 982 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
983 cleanup_srcu_struct(&kvm->irq_srcu);
984out_err_no_irq_srcu:
985 cleanup_srcu_struct(&kvm->srcu);
986out_err_no_srcu:
d89f5eff 987 kvm_arch_free_vm(kvm);
e9ad4ec8 988 mmdrop(current->mm);
10474ae8 989 return ERR_PTR(r);
f17abe9a
AK
990}
991
07f0a7bd
SW
992static void kvm_destroy_devices(struct kvm *kvm)
993{
e6e3b5a6 994 struct kvm_device *dev, *tmp;
07f0a7bd 995
a28ebea2
CD
996 /*
997 * We do not need to take the kvm->lock here, because nobody else
998 * has a reference to the struct kvm at this point and therefore
999 * cannot access the devices list anyhow.
1000 */
e6e3b5a6
GT
1001 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1002 list_del(&dev->vm_node);
07f0a7bd
SW
1003 dev->ops->destroy(dev);
1004 }
1005}
1006
f17abe9a
AK
1007static void kvm_destroy_vm(struct kvm *kvm)
1008{
e93f8a0f 1009 int i;
6d4e4c4f
AK
1010 struct mm_struct *mm = kvm->mm;
1011
286de8f6 1012 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1013 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1014 kvm_arch_sync_events(kvm);
0d9ce162 1015 mutex_lock(&kvm_lock);
133de902 1016 list_del(&kvm->vm_list);
0d9ce162 1017 mutex_unlock(&kvm_lock);
1aa9b957
JS
1018 kvm_arch_pre_destroy_vm(kvm);
1019
399ec807 1020 kvm_free_irq_routing(kvm);
df630b8c 1021 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1022 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1023
4a12f951
CB
1024 if (bus)
1025 kvm_io_bus_destroy(bus);
df630b8c
PX
1026 kvm->buses[i] = NULL;
1027 }
980da6ce 1028 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1029#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1030 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 1031#else
2df72e9b 1032 kvm_arch_flush_shadow_all(kvm);
5f94c174 1033#endif
d19a9cd2 1034 kvm_arch_destroy_vm(kvm);
07f0a7bd 1035 kvm_destroy_devices(kvm);
f481b069 1036 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1037 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 1038 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1039 cleanup_srcu_struct(&kvm->srcu);
1040 kvm_arch_free_vm(kvm);
2ecd9d29 1041 preempt_notifier_dec();
10474ae8 1042 hardware_disable_all();
6d4e4c4f 1043 mmdrop(mm);
f17abe9a
AK
1044}
1045
d39f13b0
IE
1046void kvm_get_kvm(struct kvm *kvm)
1047{
e3736c3e 1048 refcount_inc(&kvm->users_count);
d39f13b0
IE
1049}
1050EXPORT_SYMBOL_GPL(kvm_get_kvm);
1051
1052void kvm_put_kvm(struct kvm *kvm)
1053{
e3736c3e 1054 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1055 kvm_destroy_vm(kvm);
1056}
1057EXPORT_SYMBOL_GPL(kvm_put_kvm);
1058
149487bd
SC
1059/*
1060 * Used to put a reference that was taken on behalf of an object associated
1061 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1062 * of the new file descriptor fails and the reference cannot be transferred to
1063 * its final owner. In such cases, the caller is still actively using @kvm and
1064 * will fail miserably if the refcount unexpectedly hits zero.
1065 */
1066void kvm_put_kvm_no_destroy(struct kvm *kvm)
1067{
1068 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1069}
1070EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1071
f17abe9a
AK
1072static int kvm_vm_release(struct inode *inode, struct file *filp)
1073{
1074 struct kvm *kvm = filp->private_data;
1075
721eecbf
GH
1076 kvm_irqfd_release(kvm);
1077
d39f13b0 1078 kvm_put_kvm(kvm);
6aa8b732
AK
1079 return 0;
1080}
1081
515a0127
TY
1082/*
1083 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1084 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1085 */
3c9bd400 1086static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1087{
515a0127 1088 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1089
b12ce36a 1090 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1091 if (!memslot->dirty_bitmap)
1092 return -ENOMEM;
1093
a36a57b1
TY
1094 return 0;
1095}
1096
bf3e05bc 1097/*
0577d1ab
SC
1098 * Delete a memslot by decrementing the number of used slots and shifting all
1099 * other entries in the array forward one spot.
bf3e05bc 1100 */
0577d1ab
SC
1101static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1102 struct kvm_memory_slot *memslot)
bf3e05bc 1103{
063584d4 1104 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 1105 int i;
f85e2cb5 1106
0577d1ab
SC
1107 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1108 return;
0e60b079 1109
0577d1ab
SC
1110 slots->used_slots--;
1111
0774a964
SC
1112 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1113 atomic_set(&slots->lru_slot, 0);
1114
0577d1ab 1115 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
1116 mslots[i] = mslots[i + 1];
1117 slots->id_to_index[mslots[i].id] = i;
7f379cff 1118 }
0577d1ab
SC
1119 mslots[i] = *memslot;
1120 slots->id_to_index[memslot->id] = -1;
1121}
1122
1123/*
1124 * "Insert" a new memslot by incrementing the number of used slots. Returns
1125 * the new slot's initial index into the memslots array.
1126 */
1127static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1128{
1129 return slots->used_slots++;
1130}
1131
1132/*
1133 * Move a changed memslot backwards in the array by shifting existing slots
1134 * with a higher GFN toward the front of the array. Note, the changed memslot
1135 * itself is not preserved in the array, i.e. not swapped at this time, only
1136 * its new index into the array is tracked. Returns the changed memslot's
1137 * current index into the memslots array.
1138 */
1139static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1140 struct kvm_memory_slot *memslot)
1141{
1142 struct kvm_memory_slot *mslots = slots->memslots;
1143 int i;
1144
1145 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1146 WARN_ON_ONCE(!slots->used_slots))
1147 return -1;
efbeec70
PB
1148
1149 /*
0577d1ab
SC
1150 * Move the target memslot backward in the array by shifting existing
1151 * memslots with a higher GFN (than the target memslot) towards the
1152 * front of the array.
efbeec70 1153 */
0577d1ab
SC
1154 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1155 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1156 break;
1157
1158 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 1159
0577d1ab
SC
1160 /* Shift the next memslot forward one and update its index. */
1161 mslots[i] = mslots[i + 1];
1162 slots->id_to_index[mslots[i].id] = i;
1163 }
1164 return i;
1165}
1166
1167/*
1168 * Move a changed memslot forwards in the array by shifting existing slots with
1169 * a lower GFN toward the back of the array. Note, the changed memslot itself
1170 * is not preserved in the array, i.e. not swapped at this time, only its new
1171 * index into the array is tracked. Returns the changed memslot's final index
1172 * into the memslots array.
1173 */
1174static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1175 struct kvm_memory_slot *memslot,
1176 int start)
1177{
1178 struct kvm_memory_slot *mslots = slots->memslots;
1179 int i;
1180
1181 for (i = start; i > 0; i--) {
1182 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1183 break;
1184
1185 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1186
1187 /* Shift the next memslot back one and update its index. */
1188 mslots[i] = mslots[i - 1];
1189 slots->id_to_index[mslots[i].id] = i;
1190 }
1191 return i;
1192}
1193
1194/*
1195 * Re-sort memslots based on their GFN to account for an added, deleted, or
1196 * moved memslot. Sorting memslots by GFN allows using a binary search during
1197 * memslot lookup.
1198 *
1199 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1200 * at memslots[0] has the highest GFN.
1201 *
1202 * The sorting algorithm takes advantage of having initially sorted memslots
1203 * and knowing the position of the changed memslot. Sorting is also optimized
1204 * by not swapping the updated memslot and instead only shifting other memslots
1205 * and tracking the new index for the update memslot. Only once its final
1206 * index is known is the updated memslot copied into its position in the array.
1207 *
1208 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1209 * the end of the array.
1210 *
1211 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1212 * end of the array and then it forward to its correct location.
1213 *
1214 * - When moving a memslot, the algorithm first moves the updated memslot
1215 * backward to handle the scenario where the memslot's GFN was changed to a
1216 * lower value. update_memslots() then falls through and runs the same flow
1217 * as creating a memslot to move the memslot forward to handle the scenario
1218 * where its GFN was changed to a higher value.
1219 *
1220 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1221 * historical reasons. Originally, invalid memslots where denoted by having
1222 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1223 * to the end of the array. The current algorithm uses dedicated logic to
1224 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1225 *
1226 * The other historical motiviation for highest->lowest was to improve the
1227 * performance of memslot lookup. KVM originally used a linear search starting
1228 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1229 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1230 * single memslot above the 4gb boundary. As the largest memslot is also the
1231 * most likely to be referenced, sorting it to the front of the array was
1232 * advantageous. The current binary search starts from the middle of the array
1233 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1234 */
1235static void update_memslots(struct kvm_memslots *slots,
1236 struct kvm_memory_slot *memslot,
1237 enum kvm_mr_change change)
1238{
1239 int i;
1240
1241 if (change == KVM_MR_DELETE) {
1242 kvm_memslot_delete(slots, memslot);
1243 } else {
1244 if (change == KVM_MR_CREATE)
1245 i = kvm_memslot_insert_back(slots);
1246 else
1247 i = kvm_memslot_move_backward(slots, memslot);
1248 i = kvm_memslot_move_forward(slots, memslot, i);
1249
1250 /*
1251 * Copy the memslot to its new position in memslots and update
1252 * its index accordingly.
1253 */
1254 slots->memslots[i] = *memslot;
1255 slots->id_to_index[memslot->id] = i;
1256 }
bf3e05bc
XG
1257}
1258
09170a49 1259static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1260{
4d8b81ab
XG
1261 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1262
0f8a4de3 1263#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1264 valid_flags |= KVM_MEM_READONLY;
1265#endif
1266
1267 if (mem->flags & ~valid_flags)
a50d64d6
XG
1268 return -EINVAL;
1269
1270 return 0;
1271}
1272
7ec4fb44 1273static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1274 int as_id, struct kvm_memslots *slots)
7ec4fb44 1275{
f481b069 1276 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1277 u64 gen = old_memslots->generation;
7ec4fb44 1278
361209e0
SC
1279 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1280 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1281
f481b069 1282 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 1283 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1284
ee3d1570 1285 /*
361209e0 1286 * Increment the new memslot generation a second time, dropping the
00116795 1287 * update in-progress flag and incrementing the generation based on
361209e0
SC
1288 * the number of address spaces. This provides a unique and easily
1289 * identifiable generation number while the memslots are in flux.
1290 */
1291 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1292
1293 /*
4bd518f1
PB
1294 * Generations must be unique even across address spaces. We do not need
1295 * a global counter for that, instead the generation space is evenly split
1296 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1297 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1298 * use generations 1, 3, 5, ...
ee3d1570 1299 */
164bf7e5 1300 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1301
15248258 1302 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1303
15248258 1304 slots->generation = gen;
e59dbe09
TY
1305
1306 return old_memslots;
7ec4fb44
GN
1307}
1308
36947254
SC
1309/*
1310 * Note, at a minimum, the current number of used slots must be allocated, even
1311 * when deleting a memslot, as we need a complete duplicate of the memslots for
1312 * use when invalidating a memslot prior to deleting/moving the memslot.
1313 */
1314static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1315 enum kvm_mr_change change)
1316{
1317 struct kvm_memslots *slots;
1318 size_t old_size, new_size;
1319
1320 old_size = sizeof(struct kvm_memslots) +
1321 (sizeof(struct kvm_memory_slot) * old->used_slots);
1322
1323 if (change == KVM_MR_CREATE)
1324 new_size = old_size + sizeof(struct kvm_memory_slot);
1325 else
1326 new_size = old_size;
1327
1328 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1329 if (likely(slots))
1330 memcpy(slots, old, old_size);
1331
1332 return slots;
1333}
1334
cf47f50b
SC
1335static int kvm_set_memslot(struct kvm *kvm,
1336 const struct kvm_userspace_memory_region *mem,
9d4c197c 1337 struct kvm_memory_slot *old,
cf47f50b
SC
1338 struct kvm_memory_slot *new, int as_id,
1339 enum kvm_mr_change change)
1340{
1341 struct kvm_memory_slot *slot;
1342 struct kvm_memslots *slots;
1343 int r;
1344
36947254 1345 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
cf47f50b
SC
1346 if (!slots)
1347 return -ENOMEM;
cf47f50b
SC
1348
1349 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1350 /*
1351 * Note, the INVALID flag needs to be in the appropriate entry
1352 * in the freshly allocated memslots, not in @old or @new.
1353 */
1354 slot = id_to_memslot(slots, old->id);
1355 slot->flags |= KVM_MEMSLOT_INVALID;
1356
1357 /*
1358 * We can re-use the old memslots, the only difference from the
1359 * newly installed memslots is the invalid flag, which will get
1360 * dropped by update_memslots anyway. We'll also revert to the
1361 * old memslots if preparing the new memory region fails.
1362 */
1363 slots = install_new_memslots(kvm, as_id, slots);
1364
1365 /* From this point no new shadow pages pointing to a deleted,
1366 * or moved, memslot will be created.
1367 *
1368 * validation of sp->gfn happens in:
1369 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1370 * - kvm_is_visible_gfn (mmu_check_root)
1371 */
1372 kvm_arch_flush_shadow_memslot(kvm, slot);
1373 }
1374
1375 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1376 if (r)
1377 goto out_slots;
1378
1379 update_memslots(slots, new, change);
1380 slots = install_new_memslots(kvm, as_id, slots);
1381
1382 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1383
1384 kvfree(slots);
1385 return 0;
1386
1387out_slots:
1388 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1389 slots = install_new_memslots(kvm, as_id, slots);
1390 kvfree(slots);
1391 return r;
1392}
1393
5c0b4f3d
SC
1394static int kvm_delete_memslot(struct kvm *kvm,
1395 const struct kvm_userspace_memory_region *mem,
1396 struct kvm_memory_slot *old, int as_id)
1397{
1398 struct kvm_memory_slot new;
1399 int r;
1400
1401 if (!old->npages)
1402 return -EINVAL;
1403
1404 memset(&new, 0, sizeof(new));
1405 new.id = old->id;
9e9eb226
PX
1406 /*
1407 * This is only for debugging purpose; it should never be referenced
1408 * for a removed memslot.
1409 */
1410 new.as_id = as_id;
5c0b4f3d
SC
1411
1412 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1413 if (r)
1414 return r;
1415
e96c81ee 1416 kvm_free_memslot(kvm, old);
5c0b4f3d
SC
1417 return 0;
1418}
1419
6aa8b732
AK
1420/*
1421 * Allocate some memory and give it an address in the guest physical address
1422 * space.
1423 *
1424 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1425 *
02d5d55b 1426 * Must be called holding kvm->slots_lock for write.
6aa8b732 1427 */
f78e0e2e 1428int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1429 const struct kvm_userspace_memory_region *mem)
6aa8b732 1430{
6aa8b732 1431 struct kvm_memory_slot old, new;
163da372 1432 struct kvm_memory_slot *tmp;
f64c0398 1433 enum kvm_mr_change change;
163da372
SC
1434 int as_id, id;
1435 int r;
6aa8b732 1436
a50d64d6
XG
1437 r = check_memory_region_flags(mem);
1438 if (r)
71a4c30b 1439 return r;
a50d64d6 1440
f481b069
PB
1441 as_id = mem->slot >> 16;
1442 id = (u16)mem->slot;
1443
6aa8b732
AK
1444 /* General sanity checks */
1445 if (mem->memory_size & (PAGE_SIZE - 1))
71a4c30b 1446 return -EINVAL;
6aa8b732 1447 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1448 return -EINVAL;
fa3d315a 1449 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1450 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1451 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1452 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1453 mem->memory_size))
71a4c30b 1454 return -EINVAL;
f481b069 1455 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1456 return -EINVAL;
6aa8b732 1457 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1458 return -EINVAL;
6aa8b732 1459
5c0b4f3d
SC
1460 /*
1461 * Make a full copy of the old memslot, the pointer will become stale
1462 * when the memslots are re-sorted by update_memslots(), and the old
1463 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1464 * to free its resources and for arch specific behavior.
5c0b4f3d 1465 */
0577d1ab
SC
1466 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1467 if (tmp) {
1468 old = *tmp;
1469 tmp = NULL;
1470 } else {
1471 memset(&old, 0, sizeof(old));
1472 old.id = id;
1473 }
163da372 1474
5c0b4f3d
SC
1475 if (!mem->memory_size)
1476 return kvm_delete_memslot(kvm, mem, &old, as_id);
1477
9e9eb226 1478 new.as_id = as_id;
f481b069 1479 new.id = id;
163da372
SC
1480 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1481 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1482 new.flags = mem->flags;
414de7ab 1483 new.userspace_addr = mem->userspace_addr;
6aa8b732 1484
163da372
SC
1485 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1486 return -EINVAL;
1487
5c0b4f3d
SC
1488 if (!old.npages) {
1489 change = KVM_MR_CREATE;
163da372
SC
1490 new.dirty_bitmap = NULL;
1491 memset(&new.arch, 0, sizeof(new.arch));
5c0b4f3d
SC
1492 } else { /* Modify an existing slot. */
1493 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1494 (new.npages != old.npages) ||
5c0b4f3d 1495 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1496 return -EINVAL;
09170a49 1497
163da372 1498 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1499 change = KVM_MR_MOVE;
1500 else if (new.flags != old.flags)
1501 change = KVM_MR_FLAGS_ONLY;
1502 else /* Nothing to change. */
1503 return 0;
163da372
SC
1504
1505 /* Copy dirty_bitmap and arch from the current memslot. */
1506 new.dirty_bitmap = old.dirty_bitmap;
1507 memcpy(&new.arch, &old.arch, sizeof(new.arch));
09170a49 1508 }
6aa8b732 1509
f64c0398 1510 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1511 /* Check for overlaps */
163da372
SC
1512 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1513 if (tmp->id == id)
0a706bee 1514 continue;
163da372
SC
1515 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1516 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1517 return -EEXIST;
0a706bee 1518 }
6aa8b732 1519 }
6aa8b732 1520
414de7ab
SC
1521 /* Allocate/free page dirty bitmap as needed */
1522 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1523 new.dirty_bitmap = NULL;
044c59c4 1524 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
3c9bd400 1525 r = kvm_alloc_dirty_bitmap(&new);
71a4c30b
SC
1526 if (r)
1527 return r;
3c9bd400
JZ
1528
1529 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1530 bitmap_set(new.dirty_bitmap, 0, new.npages);
6aa8b732
AK
1531 }
1532
cf47f50b
SC
1533 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1534 if (r)
1535 goto out_bitmap;
82ce2c96 1536
5c0b4f3d
SC
1537 if (old.dirty_bitmap && !new.dirty_bitmap)
1538 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1539 return 0;
1540
bd0e96fd
SC
1541out_bitmap:
1542 if (new.dirty_bitmap && !old.dirty_bitmap)
1543 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1544 return r;
210c7c4d 1545}
f78e0e2e
SY
1546EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1547
1548int kvm_set_memory_region(struct kvm *kvm,
09170a49 1549 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1550{
1551 int r;
1552
79fac95e 1553 mutex_lock(&kvm->slots_lock);
47ae31e2 1554 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1555 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1556 return r;
1557}
210c7c4d
IE
1558EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1559
7940876e
SH
1560static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1561 struct kvm_userspace_memory_region *mem)
210c7c4d 1562{
f481b069 1563 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1564 return -EINVAL;
09170a49 1565
47ae31e2 1566 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1567}
1568
0dff0846 1569#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1570/**
1571 * kvm_get_dirty_log - get a snapshot of dirty pages
1572 * @kvm: pointer to kvm instance
1573 * @log: slot id and address to which we copy the log
1574 * @is_dirty: set to '1' if any dirty pages were found
1575 * @memslot: set to the associated memslot, always valid on success
1576 */
1577int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1578 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1579{
9f6b8029 1580 struct kvm_memslots *slots;
843574a3 1581 int i, as_id, id;
87bf6e7d 1582 unsigned long n;
6aa8b732
AK
1583 unsigned long any = 0;
1584
b2cc64c4
PX
1585 /* Dirty ring tracking is exclusive to dirty log tracking */
1586 if (kvm->dirty_ring_size)
1587 return -ENXIO;
1588
2a49f61d
SC
1589 *memslot = NULL;
1590 *is_dirty = 0;
1591
f481b069
PB
1592 as_id = log->slot >> 16;
1593 id = (u16)log->slot;
1594 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1595 return -EINVAL;
6aa8b732 1596
f481b069 1597 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1598 *memslot = id_to_memslot(slots, id);
0577d1ab 1599 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1600 return -ENOENT;
6aa8b732 1601
2a49f61d
SC
1602 kvm_arch_sync_dirty_log(kvm, *memslot);
1603
1604 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1605
cd1a4a98 1606 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1607 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1608
2a49f61d 1609 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1610 return -EFAULT;
6aa8b732 1611
5bb064dc
ZX
1612 if (any)
1613 *is_dirty = 1;
843574a3 1614 return 0;
6aa8b732 1615}
2ba9f0d8 1616EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1617
0dff0846 1618#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1619/**
b8b00220 1620 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1621 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1622 * @kvm: pointer to kvm instance
1623 * @log: slot id and address to which we copy the log
ba0513b5
MS
1624 *
1625 * We need to keep it in mind that VCPU threads can write to the bitmap
1626 * concurrently. So, to avoid losing track of dirty pages we keep the
1627 * following order:
1628 *
1629 * 1. Take a snapshot of the bit and clear it if needed.
1630 * 2. Write protect the corresponding page.
1631 * 3. Copy the snapshot to the userspace.
1632 * 4. Upon return caller flushes TLB's if needed.
1633 *
1634 * Between 2 and 4, the guest may write to the page using the remaining TLB
1635 * entry. This is not a problem because the page is reported dirty using
1636 * the snapshot taken before and step 4 ensures that writes done after
1637 * exiting to userspace will be logged for the next call.
1638 *
1639 */
0dff0846 1640static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1641{
9f6b8029 1642 struct kvm_memslots *slots;
ba0513b5 1643 struct kvm_memory_slot *memslot;
58d6db34 1644 int i, as_id, id;
ba0513b5
MS
1645 unsigned long n;
1646 unsigned long *dirty_bitmap;
1647 unsigned long *dirty_bitmap_buffer;
0dff0846 1648 bool flush;
ba0513b5 1649
b2cc64c4
PX
1650 /* Dirty ring tracking is exclusive to dirty log tracking */
1651 if (kvm->dirty_ring_size)
1652 return -ENXIO;
1653
f481b069
PB
1654 as_id = log->slot >> 16;
1655 id = (u16)log->slot;
1656 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1657 return -EINVAL;
ba0513b5 1658
f481b069
PB
1659 slots = __kvm_memslots(kvm, as_id);
1660 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1661 if (!memslot || !memslot->dirty_bitmap)
1662 return -ENOENT;
ba0513b5
MS
1663
1664 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1665
0dff0846
SC
1666 kvm_arch_sync_dirty_log(kvm, memslot);
1667
ba0513b5 1668 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1669 flush = false;
2a31b9db
PB
1670 if (kvm->manual_dirty_log_protect) {
1671 /*
1672 * Unlike kvm_get_dirty_log, we always return false in *flush,
1673 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1674 * is some code duplication between this function and
1675 * kvm_get_dirty_log, but hopefully all architecture
1676 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1677 * can be eliminated.
1678 */
1679 dirty_bitmap_buffer = dirty_bitmap;
1680 } else {
1681 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1682 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1683
531810ca 1684 KVM_MMU_LOCK(kvm);
2a31b9db
PB
1685 for (i = 0; i < n / sizeof(long); i++) {
1686 unsigned long mask;
1687 gfn_t offset;
ba0513b5 1688
2a31b9db
PB
1689 if (!dirty_bitmap[i])
1690 continue;
1691
0dff0846 1692 flush = true;
2a31b9db
PB
1693 mask = xchg(&dirty_bitmap[i], 0);
1694 dirty_bitmap_buffer[i] = mask;
1695
a67794ca
LT
1696 offset = i * BITS_PER_LONG;
1697 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1698 offset, mask);
2a31b9db 1699 }
531810ca 1700 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
1701 }
1702
0dff0846
SC
1703 if (flush)
1704 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1705
2a31b9db
PB
1706 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1707 return -EFAULT;
1708 return 0;
1709}
0dff0846
SC
1710
1711
1712/**
1713 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1714 * @kvm: kvm instance
1715 * @log: slot id and address to which we copy the log
1716 *
1717 * Steps 1-4 below provide general overview of dirty page logging. See
1718 * kvm_get_dirty_log_protect() function description for additional details.
1719 *
1720 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1721 * always flush the TLB (step 4) even if previous step failed and the dirty
1722 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1723 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1724 * writes will be marked dirty for next log read.
1725 *
1726 * 1. Take a snapshot of the bit and clear it if needed.
1727 * 2. Write protect the corresponding page.
1728 * 3. Copy the snapshot to the userspace.
1729 * 4. Flush TLB's if needed.
1730 */
1731static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1732 struct kvm_dirty_log *log)
1733{
1734 int r;
1735
1736 mutex_lock(&kvm->slots_lock);
1737
1738 r = kvm_get_dirty_log_protect(kvm, log);
1739
1740 mutex_unlock(&kvm->slots_lock);
1741 return r;
1742}
2a31b9db
PB
1743
1744/**
1745 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1746 * and reenable dirty page tracking for the corresponding pages.
1747 * @kvm: pointer to kvm instance
1748 * @log: slot id and address from which to fetch the bitmap of dirty pages
1749 */
0dff0846
SC
1750static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1751 struct kvm_clear_dirty_log *log)
2a31b9db
PB
1752{
1753 struct kvm_memslots *slots;
1754 struct kvm_memory_slot *memslot;
98938aa8 1755 int as_id, id;
2a31b9db 1756 gfn_t offset;
98938aa8 1757 unsigned long i, n;
2a31b9db
PB
1758 unsigned long *dirty_bitmap;
1759 unsigned long *dirty_bitmap_buffer;
0dff0846 1760 bool flush;
2a31b9db 1761
b2cc64c4
PX
1762 /* Dirty ring tracking is exclusive to dirty log tracking */
1763 if (kvm->dirty_ring_size)
1764 return -ENXIO;
1765
2a31b9db
PB
1766 as_id = log->slot >> 16;
1767 id = (u16)log->slot;
1768 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1769 return -EINVAL;
1770
76d58e0f 1771 if (log->first_page & 63)
2a31b9db
PB
1772 return -EINVAL;
1773
1774 slots = __kvm_memslots(kvm, as_id);
1775 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1776 if (!memslot || !memslot->dirty_bitmap)
1777 return -ENOENT;
2a31b9db
PB
1778
1779 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 1780
4ddc9204 1781 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
1782
1783 if (log->first_page > memslot->npages ||
76d58e0f
PB
1784 log->num_pages > memslot->npages - log->first_page ||
1785 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1786 return -EINVAL;
98938aa8 1787
0dff0846
SC
1788 kvm_arch_sync_dirty_log(kvm, memslot);
1789
1790 flush = false;
2a31b9db
PB
1791 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1792 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1793 return -EFAULT;
ba0513b5 1794
531810ca 1795 KVM_MMU_LOCK(kvm);
53eac7a8
PX
1796 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1797 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
1798 i++, offset += BITS_PER_LONG) {
1799 unsigned long mask = *dirty_bitmap_buffer++;
1800 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1801 if (!mask)
ba0513b5
MS
1802 continue;
1803
2a31b9db 1804 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1805
2a31b9db
PB
1806 /*
1807 * mask contains the bits that really have been cleared. This
1808 * never includes any bits beyond the length of the memslot (if
1809 * the length is not aligned to 64 pages), therefore it is not
1810 * a problem if userspace sets them in log->dirty_bitmap.
1811 */
58d2930f 1812 if (mask) {
0dff0846 1813 flush = true;
58d2930f
TY
1814 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1815 offset, mask);
1816 }
ba0513b5 1817 }
531810ca 1818 KVM_MMU_UNLOCK(kvm);
2a31b9db 1819
0dff0846
SC
1820 if (flush)
1821 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1822
58d6db34 1823 return 0;
ba0513b5 1824}
0dff0846
SC
1825
1826static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1827 struct kvm_clear_dirty_log *log)
1828{
1829 int r;
1830
1831 mutex_lock(&kvm->slots_lock);
1832
1833 r = kvm_clear_dirty_log_protect(kvm, log);
1834
1835 mutex_unlock(&kvm->slots_lock);
1836 return r;
1837}
1838#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1839
49c7754c
GN
1840struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1841{
1842 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1843}
a1f4d395 1844EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1845
8e73485c
PB
1846struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1847{
1848 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1849}
e72436bc 1850EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
8e73485c 1851
33e94154 1852bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1853{
bf3e05bc 1854 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1855
c36b7150 1856 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
1857}
1858EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1859
995decb6
VK
1860bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1861{
1862 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1863
1864 return kvm_is_visible_memslot(memslot);
1865}
1866EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1867
f9b84e19 1868unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
1869{
1870 struct vm_area_struct *vma;
1871 unsigned long addr, size;
1872
1873 size = PAGE_SIZE;
1874
42cde48b 1875 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
1876 if (kvm_is_error_hva(addr))
1877 return PAGE_SIZE;
1878
d8ed45c5 1879 mmap_read_lock(current->mm);
8f0b1ab6
JR
1880 vma = find_vma(current->mm, addr);
1881 if (!vma)
1882 goto out;
1883
1884 size = vma_kernel_pagesize(vma);
1885
1886out:
d8ed45c5 1887 mmap_read_unlock(current->mm);
8f0b1ab6
JR
1888
1889 return size;
1890}
1891
4d8b81ab
XG
1892static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1893{
1894 return slot->flags & KVM_MEM_READONLY;
1895}
1896
4d8b81ab
XG
1897static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1898 gfn_t *nr_pages, bool write)
539cb660 1899{
bc6678a3 1900 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1901 return KVM_HVA_ERR_BAD;
48987781 1902
4d8b81ab
XG
1903 if (memslot_is_readonly(slot) && write)
1904 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1905
1906 if (nr_pages)
1907 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1908
4d8b81ab 1909 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1910}
48987781 1911
4d8b81ab
XG
1912static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1913 gfn_t *nr_pages)
1914{
1915 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1916}
48987781 1917
4d8b81ab 1918unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1919 gfn_t gfn)
4d8b81ab
XG
1920{
1921 return gfn_to_hva_many(slot, gfn, NULL);
1922}
1923EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1924
48987781
XG
1925unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1926{
49c7754c 1927 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1928}
0d150298 1929EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1930
8e73485c
PB
1931unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1932{
1933 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1934}
1935EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1936
86ab8cff 1937/*
970c0d4b
WY
1938 * Return the hva of a @gfn and the R/W attribute if possible.
1939 *
1940 * @slot: the kvm_memory_slot which contains @gfn
1941 * @gfn: the gfn to be translated
1942 * @writable: used to return the read/write attribute of the @slot if the hva
1943 * is valid and @writable is not NULL
86ab8cff 1944 */
64d83126
CD
1945unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1946 gfn_t gfn, bool *writable)
86ab8cff 1947{
a2ac07fe
GN
1948 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1949
1950 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1951 *writable = !memslot_is_readonly(slot);
1952
a2ac07fe 1953 return hva;
86ab8cff
XG
1954}
1955
64d83126
CD
1956unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1957{
1958 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1959
1960 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1961}
1962
8e73485c
PB
1963unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1964{
1965 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1966
1967 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1968}
1969
fafc3dba
HY
1970static inline int check_user_page_hwpoison(unsigned long addr)
1971{
0d731759 1972 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1973
0d731759 1974 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1975 return rc == -EHWPOISON;
1976}
1977
2fc84311 1978/*
b9b33da2
PB
1979 * The fast path to get the writable pfn which will be stored in @pfn,
1980 * true indicates success, otherwise false is returned. It's also the
311497e0 1981 * only part that runs if we can in atomic context.
2fc84311 1982 */
b9b33da2
PB
1983static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1984 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1985{
8d4e1288 1986 struct page *page[1];
954bbbc2 1987
12ce13fe
XG
1988 /*
1989 * Fast pin a writable pfn only if it is a write fault request
1990 * or the caller allows to map a writable pfn for a read fault
1991 * request.
1992 */
1993 if (!(write_fault || writable))
1994 return false;
612819c3 1995
dadbb612 1996 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 1997 *pfn = page_to_pfn(page[0]);
612819c3 1998
2fc84311
XG
1999 if (writable)
2000 *writable = true;
2001 return true;
2002 }
af585b92 2003
2fc84311
XG
2004 return false;
2005}
612819c3 2006
2fc84311
XG
2007/*
2008 * The slow path to get the pfn of the specified host virtual address,
2009 * 1 indicates success, -errno is returned if error is detected.
2010 */
2011static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 2012 bool *writable, kvm_pfn_t *pfn)
2fc84311 2013{
ce53053c
AV
2014 unsigned int flags = FOLL_HWPOISON;
2015 struct page *page;
2fc84311 2016 int npages = 0;
612819c3 2017
2fc84311
XG
2018 might_sleep();
2019
2020 if (writable)
2021 *writable = write_fault;
2022
ce53053c
AV
2023 if (write_fault)
2024 flags |= FOLL_WRITE;
2025 if (async)
2026 flags |= FOLL_NOWAIT;
d4944b0e 2027
ce53053c 2028 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2029 if (npages != 1)
2030 return npages;
2031
2032 /* map read fault as writable if possible */
12ce13fe 2033 if (unlikely(!write_fault) && writable) {
ce53053c 2034 struct page *wpage;
2fc84311 2035
dadbb612 2036 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2037 *writable = true;
ce53053c
AV
2038 put_page(page);
2039 page = wpage;
612819c3 2040 }
887c08ac 2041 }
ce53053c 2042 *pfn = page_to_pfn(page);
2fc84311
XG
2043 return npages;
2044}
539cb660 2045
4d8b81ab
XG
2046static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2047{
2048 if (unlikely(!(vma->vm_flags & VM_READ)))
2049 return false;
2e2e3738 2050
4d8b81ab
XG
2051 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2052 return false;
887c08ac 2053
4d8b81ab
XG
2054 return true;
2055}
bf998156 2056
92176a8e
PB
2057static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2058 unsigned long addr, bool *async,
a340b3e2
KA
2059 bool write_fault, bool *writable,
2060 kvm_pfn_t *p_pfn)
92176a8e 2061{
a9545779 2062 kvm_pfn_t pfn;
bd2fae8d
PB
2063 pte_t *ptep;
2064 spinlock_t *ptl;
add6a0cd
PB
2065 int r;
2066
9fd6dad1 2067 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2068 if (r) {
2069 /*
2070 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2071 * not call the fault handler, so do it here.
2072 */
2073 bool unlocked = false;
64019a2e 2074 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2075 (write_fault ? FAULT_FLAG_WRITE : 0),
2076 &unlocked);
a8387d0b
PB
2077 if (unlocked)
2078 return -EAGAIN;
add6a0cd
PB
2079 if (r)
2080 return r;
2081
9fd6dad1 2082 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2083 if (r)
2084 return r;
bd2fae8d 2085 }
add6a0cd 2086
bd2fae8d
PB
2087 if (write_fault && !pte_write(*ptep)) {
2088 pfn = KVM_PFN_ERR_RO_FAULT;
2089 goto out;
add6a0cd
PB
2090 }
2091
a340b3e2 2092 if (writable)
bd2fae8d
PB
2093 *writable = pte_write(*ptep);
2094 pfn = pte_pfn(*ptep);
add6a0cd
PB
2095
2096 /*
2097 * Get a reference here because callers of *hva_to_pfn* and
2098 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2099 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2100 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2101 * simply do nothing for reserved pfns.
2102 *
2103 * Whoever called remap_pfn_range is also going to call e.g.
2104 * unmap_mapping_range before the underlying pages are freed,
2105 * causing a call to our MMU notifier.
2106 */
2107 kvm_get_pfn(pfn);
2108
bd2fae8d
PB
2109out:
2110 pte_unmap_unlock(ptep, ptl);
add6a0cd 2111 *p_pfn = pfn;
92176a8e
PB
2112 return 0;
2113}
2114
12ce13fe
XG
2115/*
2116 * Pin guest page in memory and return its pfn.
2117 * @addr: host virtual address which maps memory to the guest
2118 * @atomic: whether this function can sleep
2119 * @async: whether this function need to wait IO complete if the
2120 * host page is not in the memory
2121 * @write_fault: whether we should get a writable host page
2122 * @writable: whether it allows to map a writable host page for !@write_fault
2123 *
2124 * The function will map a writable host page for these two cases:
2125 * 1): @write_fault = true
2126 * 2): @write_fault = false && @writable, @writable will tell the caller
2127 * whether the mapping is writable.
2128 */
ba049e93 2129static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
2130 bool write_fault, bool *writable)
2131{
2132 struct vm_area_struct *vma;
ba049e93 2133 kvm_pfn_t pfn = 0;
92176a8e 2134 int npages, r;
2e2e3738 2135
2fc84311
XG
2136 /* we can do it either atomically or asynchronously, not both */
2137 BUG_ON(atomic && async);
8d4e1288 2138
b9b33da2 2139 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2140 return pfn;
2141
2142 if (atomic)
2143 return KVM_PFN_ERR_FAULT;
2144
2145 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2146 if (npages == 1)
2147 return pfn;
8d4e1288 2148
d8ed45c5 2149 mmap_read_lock(current->mm);
2fc84311
XG
2150 if (npages == -EHWPOISON ||
2151 (!async && check_user_page_hwpoison(addr))) {
2152 pfn = KVM_PFN_ERR_HWPOISON;
2153 goto exit;
2154 }
2155
a8387d0b 2156retry:
2fc84311
XG
2157 vma = find_vma_intersection(current->mm, addr, addr + 1);
2158
2159 if (vma == NULL)
2160 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2161 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 2162 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
a8387d0b
PB
2163 if (r == -EAGAIN)
2164 goto retry;
92176a8e
PB
2165 if (r < 0)
2166 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2167 } else {
4d8b81ab 2168 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2169 *async = true;
2170 pfn = KVM_PFN_ERR_FAULT;
2171 }
2172exit:
d8ed45c5 2173 mmap_read_unlock(current->mm);
2e2e3738 2174 return pfn;
35149e21
AL
2175}
2176
ba049e93
DW
2177kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2178 bool atomic, bool *async, bool write_fault,
4a42d848 2179 bool *writable, hva_t *hva)
887c08ac 2180{
4d8b81ab
XG
2181 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2182
4a42d848
DS
2183 if (hva)
2184 *hva = addr;
2185
b2740d35
PB
2186 if (addr == KVM_HVA_ERR_RO_BAD) {
2187 if (writable)
2188 *writable = false;
4d8b81ab 2189 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2190 }
4d8b81ab 2191
b2740d35
PB
2192 if (kvm_is_error_hva(addr)) {
2193 if (writable)
2194 *writable = false;
81c52c56 2195 return KVM_PFN_NOSLOT;
b2740d35 2196 }
4d8b81ab
XG
2197
2198 /* Do not map writable pfn in the readonly memslot. */
2199 if (writable && memslot_is_readonly(slot)) {
2200 *writable = false;
2201 writable = NULL;
2202 }
2203
2204 return hva_to_pfn(addr, atomic, async, write_fault,
2205 writable);
887c08ac 2206}
3520469d 2207EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2208
ba049e93 2209kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2210 bool *writable)
2211{
e37afc6e 2212 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
4a42d848 2213 write_fault, writable, NULL);
612819c3
MT
2214}
2215EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2216
ba049e93 2217kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2218{
4a42d848 2219 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
506f0d6f 2220}
e37afc6e 2221EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2222
ba049e93 2223kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2224{
4a42d848 2225 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
506f0d6f 2226}
037d92dc 2227EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2228
ba049e93 2229kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2230{
2231 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2232}
2233EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2234
ba049e93 2235kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2236{
2237 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2238}
2239EXPORT_SYMBOL_GPL(gfn_to_pfn);
2240
ba049e93 2241kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2242{
2243 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2244}
2245EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2246
d9ef13c2
PB
2247int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2248 struct page **pages, int nr_pages)
48987781
XG
2249{
2250 unsigned long addr;
076b925d 2251 gfn_t entry = 0;
48987781 2252
d9ef13c2 2253 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2254 if (kvm_is_error_hva(addr))
2255 return -1;
2256
2257 if (entry < nr_pages)
2258 return 0;
2259
dadbb612 2260 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2261}
2262EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2263
ba049e93 2264static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 2265{
81c52c56 2266 if (is_error_noslot_pfn(pfn))
cb9aaa30 2267 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2268
bf4bea8e 2269 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 2270 WARN_ON(1);
6cede2e6 2271 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2272 }
a2766325
XG
2273
2274 return pfn_to_page(pfn);
2275}
2276
35149e21
AL
2277struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2278{
ba049e93 2279 kvm_pfn_t pfn;
2e2e3738
AL
2280
2281 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2282
a2766325 2283 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2284}
2285EXPORT_SYMBOL_GPL(gfn_to_page);
2286
91724814
BO
2287void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2288{
2289 if (pfn == 0)
2290 return;
2291
2292 if (cache)
2293 cache->pfn = cache->gfn = 0;
2294
2295 if (dirty)
2296 kvm_release_pfn_dirty(pfn);
2297 else
2298 kvm_release_pfn_clean(pfn);
2299}
2300
2301static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2302 struct gfn_to_pfn_cache *cache, u64 gen)
2303{
2304 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2305
2306 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2307 cache->gfn = gfn;
2308 cache->dirty = false;
2309 cache->generation = gen;
2310}
2311
1eff70a9 2312static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
2313 struct kvm_host_map *map,
2314 struct gfn_to_pfn_cache *cache,
2315 bool atomic)
e45adf66
KA
2316{
2317 kvm_pfn_t pfn;
2318 void *hva = NULL;
2319 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 2320 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 2321 u64 gen = slots->generation;
e45adf66
KA
2322
2323 if (!map)
2324 return -EINVAL;
2325
91724814
BO
2326 if (cache) {
2327 if (!cache->pfn || cache->gfn != gfn ||
2328 cache->generation != gen) {
2329 if (atomic)
2330 return -EAGAIN;
2331 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2332 }
2333 pfn = cache->pfn;
2334 } else {
2335 if (atomic)
2336 return -EAGAIN;
2337 pfn = gfn_to_pfn_memslot(slot, gfn);
2338 }
e45adf66
KA
2339 if (is_error_noslot_pfn(pfn))
2340 return -EINVAL;
2341
2342 if (pfn_valid(pfn)) {
2343 page = pfn_to_page(pfn);
91724814
BO
2344 if (atomic)
2345 hva = kmap_atomic(page);
2346 else
2347 hva = kmap(page);
d30b214d 2348#ifdef CONFIG_HAS_IOMEM
91724814 2349 } else if (!atomic) {
e45adf66 2350 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
2351 } else {
2352 return -EINVAL;
d30b214d 2353#endif
e45adf66
KA
2354 }
2355
2356 if (!hva)
2357 return -EFAULT;
2358
2359 map->page = page;
2360 map->hva = hva;
2361 map->pfn = pfn;
2362 map->gfn = gfn;
2363
2364 return 0;
2365}
2366
91724814
BO
2367int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2368 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 2369{
91724814
BO
2370 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2371 cache, atomic);
1eff70a9
BO
2372}
2373EXPORT_SYMBOL_GPL(kvm_map_gfn);
2374
e45adf66
KA
2375int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2376{
91724814
BO
2377 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2378 NULL, false);
e45adf66
KA
2379}
2380EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2381
28bd726a
PX
2382static void __kvm_unmap_gfn(struct kvm *kvm,
2383 struct kvm_memory_slot *memslot,
91724814
BO
2384 struct kvm_host_map *map,
2385 struct gfn_to_pfn_cache *cache,
2386 bool dirty, bool atomic)
e45adf66
KA
2387{
2388 if (!map)
2389 return;
2390
2391 if (!map->hva)
2392 return;
2393
91724814
BO
2394 if (map->page != KVM_UNMAPPED_PAGE) {
2395 if (atomic)
2396 kunmap_atomic(map->hva);
2397 else
2398 kunmap(map->page);
2399 }
eb1f2f38 2400#ifdef CONFIG_HAS_IOMEM
91724814 2401 else if (!atomic)
e45adf66 2402 memunmap(map->hva);
91724814
BO
2403 else
2404 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 2405#endif
e45adf66 2406
91724814 2407 if (dirty)
28bd726a 2408 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
91724814
BO
2409
2410 if (cache)
2411 cache->dirty |= dirty;
2412 else
2413 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
2414
2415 map->hva = NULL;
2416 map->page = NULL;
2417}
1eff70a9 2418
91724814
BO
2419int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2420 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 2421{
28bd726a 2422 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
91724814 2423 cache, dirty, atomic);
1eff70a9
BO
2424 return 0;
2425}
2426EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2427
2428void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2429{
28bd726a
PX
2430 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2431 map, NULL, dirty, false);
1eff70a9 2432}
e45adf66
KA
2433EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2434
8e73485c
PB
2435struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2436{
ba049e93 2437 kvm_pfn_t pfn;
8e73485c
PB
2438
2439 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2440
2441 return kvm_pfn_to_page(pfn);
2442}
2443EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2444
b4231d61
IE
2445void kvm_release_page_clean(struct page *page)
2446{
32cad84f
XG
2447 WARN_ON(is_error_page(page));
2448
35149e21 2449 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2450}
2451EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2452
ba049e93 2453void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2454{
bf4bea8e 2455 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2456 put_page(pfn_to_page(pfn));
35149e21
AL
2457}
2458EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2459
b4231d61 2460void kvm_release_page_dirty(struct page *page)
8a7ae055 2461{
a2766325
XG
2462 WARN_ON(is_error_page(page));
2463
35149e21
AL
2464 kvm_release_pfn_dirty(page_to_pfn(page));
2465}
2466EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2467
f7a6509f 2468void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2469{
2470 kvm_set_pfn_dirty(pfn);
2471 kvm_release_pfn_clean(pfn);
2472}
f7a6509f 2473EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2474
ba049e93 2475void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2476{
d29c03a5
ML
2477 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2478 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2479}
35149e21
AL
2480EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2481
ba049e93 2482void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2483{
a78986aa 2484 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2485 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2486}
2487EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2488
ba049e93 2489void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 2490{
bf4bea8e 2491 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 2492 get_page(pfn_to_page(pfn));
35149e21
AL
2493}
2494EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 2495
195aefde
IE
2496static int next_segment(unsigned long len, int offset)
2497{
2498 if (len > PAGE_SIZE - offset)
2499 return PAGE_SIZE - offset;
2500 else
2501 return len;
2502}
2503
8e73485c
PB
2504static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2505 void *data, int offset, int len)
195aefde 2506{
e0506bcb
IE
2507 int r;
2508 unsigned long addr;
195aefde 2509
8e73485c 2510 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2511 if (kvm_is_error_hva(addr))
2512 return -EFAULT;
3180a7fc 2513 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2514 if (r)
195aefde 2515 return -EFAULT;
195aefde
IE
2516 return 0;
2517}
8e73485c
PB
2518
2519int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2520 int len)
2521{
2522 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2523
2524 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2525}
195aefde
IE
2526EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2527
8e73485c
PB
2528int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2529 int offset, int len)
2530{
2531 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2532
2533 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2534}
2535EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2536
195aefde
IE
2537int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2538{
2539 gfn_t gfn = gpa >> PAGE_SHIFT;
2540 int seg;
2541 int offset = offset_in_page(gpa);
2542 int ret;
2543
2544 while ((seg = next_segment(len, offset)) != 0) {
2545 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2546 if (ret < 0)
2547 return ret;
2548 offset = 0;
2549 len -= seg;
2550 data += seg;
2551 ++gfn;
2552 }
2553 return 0;
2554}
2555EXPORT_SYMBOL_GPL(kvm_read_guest);
2556
8e73485c 2557int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2558{
7ec54588 2559 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2560 int seg;
7ec54588 2561 int offset = offset_in_page(gpa);
8e73485c
PB
2562 int ret;
2563
2564 while ((seg = next_segment(len, offset)) != 0) {
2565 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2566 if (ret < 0)
2567 return ret;
2568 offset = 0;
2569 len -= seg;
2570 data += seg;
2571 ++gfn;
2572 }
2573 return 0;
2574}
2575EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2576
8e73485c
PB
2577static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2578 void *data, int offset, unsigned long len)
2579{
2580 int r;
2581 unsigned long addr;
2582
2583 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2584 if (kvm_is_error_hva(addr))
2585 return -EFAULT;
0aac03f0 2586 pagefault_disable();
3180a7fc 2587 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2588 pagefault_enable();
7ec54588
MT
2589 if (r)
2590 return -EFAULT;
2591 return 0;
2592}
7ec54588 2593
8e73485c
PB
2594int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2595 void *data, unsigned long len)
2596{
2597 gfn_t gfn = gpa >> PAGE_SHIFT;
2598 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2599 int offset = offset_in_page(gpa);
2600
2601 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2602}
2603EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2604
28bd726a
PX
2605static int __kvm_write_guest_page(struct kvm *kvm,
2606 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 2607 const void *data, int offset, int len)
195aefde 2608{
e0506bcb
IE
2609 int r;
2610 unsigned long addr;
195aefde 2611
251eb841 2612 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2613 if (kvm_is_error_hva(addr))
2614 return -EFAULT;
8b0cedff 2615 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2616 if (r)
195aefde 2617 return -EFAULT;
28bd726a 2618 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
2619 return 0;
2620}
8e73485c
PB
2621
2622int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2623 const void *data, int offset, int len)
2624{
2625 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2626
28bd726a 2627 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 2628}
195aefde
IE
2629EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2630
8e73485c
PB
2631int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2632 const void *data, int offset, int len)
2633{
2634 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2635
28bd726a 2636 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
2637}
2638EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2639
195aefde
IE
2640int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2641 unsigned long len)
2642{
2643 gfn_t gfn = gpa >> PAGE_SHIFT;
2644 int seg;
2645 int offset = offset_in_page(gpa);
2646 int ret;
2647
2648 while ((seg = next_segment(len, offset)) != 0) {
2649 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2650 if (ret < 0)
2651 return ret;
2652 offset = 0;
2653 len -= seg;
2654 data += seg;
2655 ++gfn;
2656 }
2657 return 0;
2658}
ff651cb6 2659EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2660
8e73485c
PB
2661int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2662 unsigned long len)
2663{
2664 gfn_t gfn = gpa >> PAGE_SHIFT;
2665 int seg;
2666 int offset = offset_in_page(gpa);
2667 int ret;
2668
2669 while ((seg = next_segment(len, offset)) != 0) {
2670 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2671 if (ret < 0)
2672 return ret;
2673 offset = 0;
2674 len -= seg;
2675 data += seg;
2676 ++gfn;
2677 }
2678 return 0;
2679}
2680EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2681
5a2d4365
PB
2682static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2683 struct gfn_to_hva_cache *ghc,
2684 gpa_t gpa, unsigned long len)
49c7754c 2685{
49c7754c 2686 int offset = offset_in_page(gpa);
8f964525
AH
2687 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2688 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2689 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2690 gfn_t nr_pages_avail;
49c7754c 2691
6ad1e29f 2692 /* Update ghc->generation before performing any error checks. */
49c7754c 2693 ghc->generation = slots->generation;
6ad1e29f
SC
2694
2695 if (start_gfn > end_gfn) {
2696 ghc->hva = KVM_HVA_ERR_BAD;
2697 return -EINVAL;
2698 }
f1b9dd5e
JM
2699
2700 /*
2701 * If the requested region crosses two memslots, we still
2702 * verify that the entire region is valid here.
2703 */
6ad1e29f 2704 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2705 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2706 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2707 &nr_pages_avail);
2708 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2709 return -EFAULT;
f1b9dd5e
JM
2710 }
2711
2712 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2713 if (nr_pages_needed == 1)
49c7754c 2714 ghc->hva += offset;
f1b9dd5e 2715 else
8f964525 2716 ghc->memslot = NULL;
f1b9dd5e 2717
6ad1e29f
SC
2718 ghc->gpa = gpa;
2719 ghc->len = len;
2720 return 0;
49c7754c 2721}
5a2d4365 2722
4e335d9e 2723int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2724 gpa_t gpa, unsigned long len)
2725{
4e335d9e 2726 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2727 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2728}
4e335d9e 2729EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2730
4e335d9e 2731int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2732 void *data, unsigned int offset,
2733 unsigned long len)
49c7754c 2734{
4e335d9e 2735 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2736 int r;
4ec6e863 2737 gpa_t gpa = ghc->gpa + offset;
49c7754c 2738
4ec6e863 2739 BUG_ON(len + offset > ghc->len);
8f964525 2740
dc9ce71e
SC
2741 if (slots->generation != ghc->generation) {
2742 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2743 return -EFAULT;
2744 }
8f964525 2745
49c7754c
GN
2746 if (kvm_is_error_hva(ghc->hva))
2747 return -EFAULT;
2748
fcfbc617
SC
2749 if (unlikely(!ghc->memslot))
2750 return kvm_write_guest(kvm, gpa, data, len);
2751
4ec6e863 2752 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2753 if (r)
2754 return -EFAULT;
28bd726a 2755 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2756
2757 return 0;
2758}
4e335d9e 2759EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2760
4e335d9e
PB
2761int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2762 void *data, unsigned long len)
4ec6e863 2763{
4e335d9e 2764 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2765}
4e335d9e 2766EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2767
0958f0ce
VK
2768int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2769 void *data, unsigned int offset,
2770 unsigned long len)
e03b644f 2771{
4e335d9e 2772 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 2773 int r;
0958f0ce 2774 gpa_t gpa = ghc->gpa + offset;
e03b644f 2775
0958f0ce 2776 BUG_ON(len + offset > ghc->len);
8f964525 2777
dc9ce71e
SC
2778 if (slots->generation != ghc->generation) {
2779 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2780 return -EFAULT;
2781 }
8f964525 2782
e03b644f
GN
2783 if (kvm_is_error_hva(ghc->hva))
2784 return -EFAULT;
2785
fcfbc617 2786 if (unlikely(!ghc->memslot))
0958f0ce 2787 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 2788
0958f0ce 2789 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
2790 if (r)
2791 return -EFAULT;
2792
2793 return 0;
2794}
0958f0ce
VK
2795EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2796
2797int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2798 void *data, unsigned long len)
2799{
2800 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2801}
4e335d9e 2802EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2803
195aefde
IE
2804int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2805{
2f541442 2806 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
2807 gfn_t gfn = gpa >> PAGE_SHIFT;
2808 int seg;
2809 int offset = offset_in_page(gpa);
2810 int ret;
2811
bfda0e84 2812 while ((seg = next_segment(len, offset)) != 0) {
2f541442 2813 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2814 if (ret < 0)
2815 return ret;
2816 offset = 0;
2817 len -= seg;
2818 ++gfn;
2819 }
2820 return 0;
2821}
2822EXPORT_SYMBOL_GPL(kvm_clear_guest);
2823
28bd726a
PX
2824void mark_page_dirty_in_slot(struct kvm *kvm,
2825 struct kvm_memory_slot *memslot,
2826 gfn_t gfn)
6aa8b732 2827{
044c59c4 2828 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 2829 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 2830 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 2831
fb04a1ed
PX
2832 if (kvm->dirty_ring_size)
2833 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2834 slot, rel_gfn);
2835 else
2836 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2837 }
2838}
a6a0b05d 2839EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 2840
49c7754c
GN
2841void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2842{
2843 struct kvm_memory_slot *memslot;
2844
2845 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 2846 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 2847}
2ba9f0d8 2848EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2849
8e73485c
PB
2850void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2851{
2852 struct kvm_memory_slot *memslot;
2853
2854 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 2855 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
2856}
2857EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2858
20b7035c
JS
2859void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2860{
2861 if (!vcpu->sigset_active)
2862 return;
2863
2864 /*
2865 * This does a lockless modification of ->real_blocked, which is fine
2866 * because, only current can change ->real_blocked and all readers of
2867 * ->real_blocked don't care as long ->real_blocked is always a subset
2868 * of ->blocked.
2869 */
2870 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2871}
2872
2873void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2874{
2875 if (!vcpu->sigset_active)
2876 return;
2877
2878 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2879 sigemptyset(&current->real_blocked);
2880}
2881
aca6ff29
WL
2882static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2883{
dee339b5 2884 unsigned int old, val, grow, grow_start;
aca6ff29 2885
2cbd7824 2886 old = val = vcpu->halt_poll_ns;
dee339b5 2887 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 2888 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
2889 if (!grow)
2890 goto out;
2891
dee339b5
NW
2892 val *= grow;
2893 if (val < grow_start)
2894 val = grow_start;
aca6ff29 2895
258785ef
DM
2896 if (val > vcpu->kvm->max_halt_poll_ns)
2897 val = vcpu->kvm->max_halt_poll_ns;
313f636d 2898
aca6ff29 2899 vcpu->halt_poll_ns = val;
7fa08e71 2900out:
2cbd7824 2901 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2902}
2903
2904static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2905{
6b6de68c 2906 unsigned int old, val, shrink;
aca6ff29 2907
2cbd7824 2908 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2909 shrink = READ_ONCE(halt_poll_ns_shrink);
2910 if (shrink == 0)
aca6ff29
WL
2911 val = 0;
2912 else
6b6de68c 2913 val /= shrink;
aca6ff29
WL
2914
2915 vcpu->halt_poll_ns = val;
2cbd7824 2916 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2917}
2918
f7819512
PB
2919static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2920{
50c28f21
JS
2921 int ret = -EINTR;
2922 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2923
f7819512
PB
2924 if (kvm_arch_vcpu_runnable(vcpu)) {
2925 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2926 goto out;
f7819512
PB
2927 }
2928 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2929 goto out;
f7819512 2930 if (signal_pending(current))
50c28f21 2931 goto out;
f7819512 2932
50c28f21
JS
2933 ret = 0;
2934out:
2935 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2936 return ret;
f7819512
PB
2937}
2938
cb953129
DM
2939static inline void
2940update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2941{
2942 if (waited)
2943 vcpu->stat.halt_poll_fail_ns += poll_ns;
2944 else
2945 vcpu->stat.halt_poll_success_ns += poll_ns;
2946}
2947
b6958ce4
ED
2948/*
2949 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2950 */
8776e519 2951void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2952{
cb953129 2953 ktime_t start, cur, poll_end;
f7819512 2954 bool waited = false;
aca6ff29 2955 u64 block_ns;
f7819512 2956
07ab0f8d
MZ
2957 kvm_arch_vcpu_blocking(vcpu);
2958
cb953129 2959 start = cur = poll_end = ktime_get();
cdd6ad3a 2960 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 2961 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2962
62bea5bf 2963 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2964 do {
2965 /*
2966 * This sets KVM_REQ_UNHALT if an interrupt
2967 * arrives.
2968 */
2969 if (kvm_vcpu_check_block(vcpu) < 0) {
2970 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2971 if (!vcpu_valid_wakeup(vcpu))
2972 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2973 goto out;
2974 }
cb953129 2975 poll_end = cur = ktime_get();
262de410
BS
2976 } while (single_task_running() && !need_resched() &&
2977 ktime_before(cur, stop));
f7819512 2978 }
e5c239cf 2979
da4ad88c 2980 prepare_to_rcuwait(&vcpu->wait);
e5c239cf 2981 for (;;) {
da4ad88c 2982 set_current_state(TASK_INTERRUPTIBLE);
e5c239cf 2983
f7819512 2984 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2985 break;
2986
f7819512 2987 waited = true;
b6958ce4 2988 schedule();
b6958ce4 2989 }
da4ad88c 2990 finish_rcuwait(&vcpu->wait);
f7819512 2991 cur = ktime_get();
f7819512 2992out:
07ab0f8d 2993 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
2994 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2995
cb953129
DM
2996 update_halt_poll_stats(
2997 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2998
44551b2f
WL
2999 if (!kvm_arch_no_poll(vcpu)) {
3000 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3001 shrink_halt_poll_ns(vcpu);
acd05785 3002 } else if (vcpu->kvm->max_halt_poll_ns) {
44551b2f
WL
3003 if (block_ns <= vcpu->halt_poll_ns)
3004 ;
3005 /* we had a long block, shrink polling */
acd05785
DM
3006 else if (vcpu->halt_poll_ns &&
3007 block_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3008 shrink_halt_poll_ns(vcpu);
3009 /* we had a short halt and our poll time is too small */
acd05785
DM
3010 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3011 block_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3012 grow_halt_poll_ns(vcpu);
3013 } else {
3014 vcpu->halt_poll_ns = 0;
3015 }
3016 }
aca6ff29 3017
3491caf2
CB
3018 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3019 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 3020}
2ba9f0d8 3021EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 3022
178f02ff 3023bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3024{
da4ad88c 3025 struct rcuwait *waitp;
b6d33834 3026
da4ad88c
DB
3027 waitp = kvm_arch_vcpu_get_wait(vcpu);
3028 if (rcuwait_wake_up(waitp)) {
d73eb57b 3029 WRITE_ONCE(vcpu->ready, true);
b6d33834 3030 ++vcpu->stat.halt_wakeup;
178f02ff 3031 return true;
b6d33834
CD
3032 }
3033
178f02ff 3034 return false;
dd1a4cc1
RK
3035}
3036EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3037
0266c894 3038#ifndef CONFIG_S390
dd1a4cc1
RK
3039/*
3040 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3041 */
3042void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3043{
3044 int me;
3045 int cpu = vcpu->cpu;
3046
178f02ff
RK
3047 if (kvm_vcpu_wake_up(vcpu))
3048 return;
3049
b6d33834
CD
3050 me = get_cpu();
3051 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3052 if (kvm_arch_vcpu_should_kick(vcpu))
3053 smp_send_reschedule(cpu);
3054 put_cpu();
3055}
a20ed54d 3056EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3057#endif /* !CONFIG_S390 */
b6d33834 3058
fa93384f 3059int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3060{
3061 struct pid *pid;
3062 struct task_struct *task = NULL;
fa93384f 3063 int ret = 0;
41628d33
KW
3064
3065 rcu_read_lock();
3066 pid = rcu_dereference(target->pid);
3067 if (pid)
27fbe64b 3068 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3069 rcu_read_unlock();
3070 if (!task)
c45c528e 3071 return ret;
c45c528e 3072 ret = yield_to(task, 1);
41628d33 3073 put_task_struct(task);
c45c528e
R
3074
3075 return ret;
41628d33
KW
3076}
3077EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3078
06e48c51
R
3079/*
3080 * Helper that checks whether a VCPU is eligible for directed yield.
3081 * Most eligible candidate to yield is decided by following heuristics:
3082 *
3083 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3084 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3085 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3086 *
3087 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3088 * chance last time (mostly it has become eligible now since we have probably
3089 * yielded to lockholder in last iteration. This is done by toggling
3090 * @dy_eligible each time a VCPU checked for eligibility.)
3091 *
3092 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3093 * to preempted lock-holder could result in wrong VCPU selection and CPU
3094 * burning. Giving priority for a potential lock-holder increases lock
3095 * progress.
3096 *
3097 * Since algorithm is based on heuristics, accessing another VCPU data without
3098 * locking does not harm. It may result in trying to yield to same VCPU, fail
3099 * and continue with next VCPU and so on.
3100 */
7940876e 3101static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3102{
4a55dd72 3103#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3104 bool eligible;
3105
3106 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3107 vcpu->spin_loop.dy_eligible;
06e48c51
R
3108
3109 if (vcpu->spin_loop.in_spin_loop)
3110 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3111
3112 return eligible;
4a55dd72
SW
3113#else
3114 return true;
06e48c51 3115#endif
4a55dd72 3116}
c45c528e 3117
17e433b5
WL
3118/*
3119 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3120 * a vcpu_load/vcpu_put pair. However, for most architectures
3121 * kvm_arch_vcpu_runnable does not require vcpu_load.
3122 */
3123bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3124{
3125 return kvm_arch_vcpu_runnable(vcpu);
3126}
3127
3128static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3129{
3130 if (kvm_arch_dy_runnable(vcpu))
3131 return true;
3132
3133#ifdef CONFIG_KVM_ASYNC_PF
3134 if (!list_empty_careful(&vcpu->async_pf.done))
3135 return true;
3136#endif
3137
3138 return false;
3139}
3140
52acd22f
WL
3141bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3142{
3143 return false;
3144}
3145
199b5763 3146void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3147{
217ece61
RR
3148 struct kvm *kvm = me->kvm;
3149 struct kvm_vcpu *vcpu;
3150 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3151 int yielded = 0;
c45c528e 3152 int try = 3;
217ece61
RR
3153 int pass;
3154 int i;
d255f4f2 3155
4c088493 3156 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3157 /*
3158 * We boost the priority of a VCPU that is runnable but not
3159 * currently running, because it got preempted by something
3160 * else and called schedule in __vcpu_run. Hopefully that
3161 * VCPU is holding the lock that we need and will release it.
3162 * We approximate round-robin by starting at the last boosted VCPU.
3163 */
c45c528e 3164 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3165 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3166 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3167 i = last_boosted_vcpu;
3168 continue;
3169 } else if (pass && i > last_boosted_vcpu)
3170 break;
d73eb57b 3171 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3172 continue;
217ece61
RR
3173 if (vcpu == me)
3174 continue;
da4ad88c
DB
3175 if (rcuwait_active(&vcpu->wait) &&
3176 !vcpu_dy_runnable(vcpu))
217ece61 3177 continue;
046ddeed 3178 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3179 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3180 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3181 continue;
06e48c51
R
3182 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3183 continue;
c45c528e
R
3184
3185 yielded = kvm_vcpu_yield_to(vcpu);
3186 if (yielded > 0) {
217ece61 3187 kvm->last_boosted_vcpu = i;
217ece61 3188 break;
c45c528e
R
3189 } else if (yielded < 0) {
3190 try--;
3191 if (!try)
3192 break;
217ece61 3193 }
217ece61
RR
3194 }
3195 }
4c088493 3196 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3197
3198 /* Ensure vcpu is not eligible during next spinloop */
3199 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3200}
3201EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3202
fb04a1ed
PX
3203static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3204{
3205#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3206 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3207 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3208 kvm->dirty_ring_size / PAGE_SIZE);
3209#else
3210 return false;
3211#endif
3212}
3213
1499fa80 3214static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3215{
11bac800 3216 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3217 struct page *page;
3218
e4a533a4 3219 if (vmf->pgoff == 0)
039576c0 3220 page = virt_to_page(vcpu->run);
09566765 3221#ifdef CONFIG_X86
e4a533a4 3222 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3223 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3224#endif
4b4357e0 3225#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3226 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3227 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3228#endif
fb04a1ed
PX
3229 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3230 page = kvm_dirty_ring_get_page(
3231 &vcpu->dirty_ring,
3232 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3233 else
5b1c1493 3234 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3235 get_page(page);
e4a533a4 3236 vmf->page = page;
3237 return 0;
9a2bb7f4
AK
3238}
3239
f0f37e2f 3240static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3241 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3242};
3243
3244static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3245{
fb04a1ed
PX
3246 struct kvm_vcpu *vcpu = file->private_data;
3247 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3248
3249 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3250 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3251 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3252 return -EINVAL;
3253
9a2bb7f4
AK
3254 vma->vm_ops = &kvm_vcpu_vm_ops;
3255 return 0;
3256}
3257
bccf2150
AK
3258static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3259{
3260 struct kvm_vcpu *vcpu = filp->private_data;
3261
66c0b394 3262 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3263 return 0;
3264}
3265
3d3aab1b 3266static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3267 .release = kvm_vcpu_release,
3268 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3269 .mmap = kvm_vcpu_mmap,
6038f373 3270 .llseek = noop_llseek,
7ddfd3e0 3271 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3272};
3273
3274/*
3275 * Allocates an inode for the vcpu.
3276 */
3277static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3278{
e46b4692
MY
3279 char name[8 + 1 + ITOA_MAX_LEN + 1];
3280
3281 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3282 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3283}
3284
3e7093d0 3285static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3286{
741cbbae 3287#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
d56f5136 3288 struct dentry *debugfs_dentry;
45b5939e 3289 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3290
45b5939e 3291 if (!debugfs_initialized())
3e7093d0 3292 return;
45b5939e
LC
3293
3294 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3295 debugfs_dentry = debugfs_create_dir(dir_name,
3296 vcpu->kvm->debugfs_dentry);
45b5939e 3297
d56f5136 3298 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
741cbbae 3299#endif
45b5939e
LC
3300}
3301
c5ea7660
AK
3302/*
3303 * Creates some virtual cpus. Good luck creating more than one.
3304 */
73880c80 3305static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3306{
3307 int r;
e09fefde 3308 struct kvm_vcpu *vcpu;
8bd826d6 3309 struct page *page;
c5ea7660 3310
0b1b1dfd 3311 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
3312 return -EINVAL;
3313
6c7caebc
PB
3314 mutex_lock(&kvm->lock);
3315 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3316 mutex_unlock(&kvm->lock);
3317 return -EINVAL;
3318 }
3319
3320 kvm->created_vcpus++;
3321 mutex_unlock(&kvm->lock);
3322
897cc38e
SC
3323 r = kvm_arch_vcpu_precreate(kvm, id);
3324 if (r)
3325 goto vcpu_decrement;
3326
85f47930 3327 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3328 if (!vcpu) {
3329 r = -ENOMEM;
6c7caebc
PB
3330 goto vcpu_decrement;
3331 }
c5ea7660 3332
fcd97ad5 3333 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3334 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3335 if (!page) {
3336 r = -ENOMEM;
e529ef66 3337 goto vcpu_free;
8bd826d6
SC
3338 }
3339 vcpu->run = page_address(page);
3340
3341 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3342
3343 r = kvm_arch_vcpu_create(vcpu);
3344 if (r)
8bd826d6 3345 goto vcpu_free_run_page;
e529ef66 3346
fb04a1ed
PX
3347 if (kvm->dirty_ring_size) {
3348 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3349 id, kvm->dirty_ring_size);
3350 if (r)
3351 goto arch_vcpu_destroy;
3352 }
3353
11ec2804 3354 mutex_lock(&kvm->lock);
e09fefde
DH
3355 if (kvm_get_vcpu_by_id(kvm, id)) {
3356 r = -EEXIST;
3357 goto unlock_vcpu_destroy;
3358 }
73880c80 3359
8750e72a
RK
3360 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3361 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 3362
fb3f0f51 3363 /* Now it's all set up, let userspace reach it */
66c0b394 3364 kvm_get_kvm(kvm);
bccf2150 3365 r = create_vcpu_fd(vcpu);
73880c80 3366 if (r < 0) {
149487bd 3367 kvm_put_kvm_no_destroy(kvm);
d780592b 3368 goto unlock_vcpu_destroy;
73880c80
GN
3369 }
3370
8750e72a 3371 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
3372
3373 /*
3374 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3375 * before kvm->online_vcpu's incremented value.
3376 */
73880c80
GN
3377 smp_wmb();
3378 atomic_inc(&kvm->online_vcpus);
3379
73880c80 3380 mutex_unlock(&kvm->lock);
42897d86 3381 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3382 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3383 return r;
39c3b86e 3384
d780592b 3385unlock_vcpu_destroy:
7d8fece6 3386 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3387 kvm_dirty_ring_free(&vcpu->dirty_ring);
3388arch_vcpu_destroy:
d40ccc62 3389 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3390vcpu_free_run_page:
3391 free_page((unsigned long)vcpu->run);
e529ef66
SC
3392vcpu_free:
3393 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3394vcpu_decrement:
3395 mutex_lock(&kvm->lock);
3396 kvm->created_vcpus--;
3397 mutex_unlock(&kvm->lock);
c5ea7660
AK
3398 return r;
3399}
3400
1961d276
AK
3401static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3402{
3403 if (sigset) {
3404 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3405 vcpu->sigset_active = 1;
3406 vcpu->sigset = *sigset;
3407 } else
3408 vcpu->sigset_active = 0;
3409 return 0;
3410}
3411
bccf2150
AK
3412static long kvm_vcpu_ioctl(struct file *filp,
3413 unsigned int ioctl, unsigned long arg)
6aa8b732 3414{
bccf2150 3415 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3416 void __user *argp = (void __user *)arg;
313a3dc7 3417 int r;
fa3795a7
DH
3418 struct kvm_fpu *fpu = NULL;
3419 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3420
6d4e4c4f
AK
3421 if (vcpu->kvm->mm != current->mm)
3422 return -EIO;
2122ff5e 3423
2ea75be3
DM
3424 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3425 return -EINVAL;
3426
2122ff5e 3427 /*
5cb0944c
PB
3428 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3429 * execution; mutex_lock() would break them.
2122ff5e 3430 */
5cb0944c
PB
3431 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3432 if (r != -ENOIOCTLCMD)
9fc77441 3433 return r;
2122ff5e 3434
ec7660cc
CD
3435 if (mutex_lock_killable(&vcpu->mutex))
3436 return -EINTR;
6aa8b732 3437 switch (ioctl) {
0e4524a5
CB
3438 case KVM_RUN: {
3439 struct pid *oldpid;
f0fe5108
AK
3440 r = -EINVAL;
3441 if (arg)
3442 goto out;
0e4524a5 3443 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3444 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3445 /* The thread running this VCPU changed. */
bd2a6394 3446 struct pid *newpid;
f95ef0cd 3447
bd2a6394
CD
3448 r = kvm_arch_vcpu_run_pid_change(vcpu);
3449 if (r)
3450 break;
3451
3452 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3453 rcu_assign_pointer(vcpu->pid, newpid);
3454 if (oldpid)
3455 synchronize_rcu();
3456 put_pid(oldpid);
3457 }
1b94f6f8 3458 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 3459 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3460 break;
0e4524a5 3461 }
6aa8b732 3462 case KVM_GET_REGS: {
3e4bb3ac 3463 struct kvm_regs *kvm_regs;
6aa8b732 3464
3e4bb3ac 3465 r = -ENOMEM;
b12ce36a 3466 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3467 if (!kvm_regs)
6aa8b732 3468 goto out;
3e4bb3ac
XZ
3469 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3470 if (r)
3471 goto out_free1;
6aa8b732 3472 r = -EFAULT;
3e4bb3ac
XZ
3473 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3474 goto out_free1;
6aa8b732 3475 r = 0;
3e4bb3ac
XZ
3476out_free1:
3477 kfree(kvm_regs);
6aa8b732
AK
3478 break;
3479 }
3480 case KVM_SET_REGS: {
3e4bb3ac 3481 struct kvm_regs *kvm_regs;
6aa8b732 3482
ff5c2c03
SL
3483 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3484 if (IS_ERR(kvm_regs)) {
3485 r = PTR_ERR(kvm_regs);
6aa8b732 3486 goto out;
ff5c2c03 3487 }
3e4bb3ac 3488 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3489 kfree(kvm_regs);
6aa8b732
AK
3490 break;
3491 }
3492 case KVM_GET_SREGS: {
b12ce36a
BG
3493 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3494 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3495 r = -ENOMEM;
3496 if (!kvm_sregs)
3497 goto out;
3498 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3499 if (r)
3500 goto out;
3501 r = -EFAULT;
fa3795a7 3502 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3503 goto out;
3504 r = 0;
3505 break;
3506 }
3507 case KVM_SET_SREGS: {
ff5c2c03
SL
3508 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3509 if (IS_ERR(kvm_sregs)) {
3510 r = PTR_ERR(kvm_sregs);
18595411 3511 kvm_sregs = NULL;
6aa8b732 3512 goto out;
ff5c2c03 3513 }
fa3795a7 3514 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3515 break;
3516 }
62d9f0db
MT
3517 case KVM_GET_MP_STATE: {
3518 struct kvm_mp_state mp_state;
3519
3520 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3521 if (r)
3522 goto out;
3523 r = -EFAULT;
893bdbf1 3524 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3525 goto out;
3526 r = 0;
3527 break;
3528 }
3529 case KVM_SET_MP_STATE: {
3530 struct kvm_mp_state mp_state;
3531
3532 r = -EFAULT;
893bdbf1 3533 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3534 goto out;
3535 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3536 break;
3537 }
6aa8b732
AK
3538 case KVM_TRANSLATE: {
3539 struct kvm_translation tr;
3540
3541 r = -EFAULT;
893bdbf1 3542 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3543 goto out;
8b006791 3544 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3545 if (r)
3546 goto out;
3547 r = -EFAULT;
893bdbf1 3548 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3549 goto out;
3550 r = 0;
3551 break;
3552 }
d0bfb940
JK
3553 case KVM_SET_GUEST_DEBUG: {
3554 struct kvm_guest_debug dbg;
6aa8b732
AK
3555
3556 r = -EFAULT;
893bdbf1 3557 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3558 goto out;
d0bfb940 3559 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3560 break;
3561 }
1961d276
AK
3562 case KVM_SET_SIGNAL_MASK: {
3563 struct kvm_signal_mask __user *sigmask_arg = argp;
3564 struct kvm_signal_mask kvm_sigmask;
3565 sigset_t sigset, *p;
3566
3567 p = NULL;
3568 if (argp) {
3569 r = -EFAULT;
3570 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3571 sizeof(kvm_sigmask)))
1961d276
AK
3572 goto out;
3573 r = -EINVAL;
893bdbf1 3574 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3575 goto out;
3576 r = -EFAULT;
3577 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3578 sizeof(sigset)))
1961d276
AK
3579 goto out;
3580 p = &sigset;
3581 }
376d41ff 3582 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3583 break;
3584 }
b8836737 3585 case KVM_GET_FPU: {
b12ce36a 3586 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3587 r = -ENOMEM;
3588 if (!fpu)
3589 goto out;
3590 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3591 if (r)
3592 goto out;
3593 r = -EFAULT;
fa3795a7 3594 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3595 goto out;
3596 r = 0;
3597 break;
3598 }
3599 case KVM_SET_FPU: {
ff5c2c03
SL
3600 fpu = memdup_user(argp, sizeof(*fpu));
3601 if (IS_ERR(fpu)) {
3602 r = PTR_ERR(fpu);
18595411 3603 fpu = NULL;
b8836737 3604 goto out;
ff5c2c03 3605 }
fa3795a7 3606 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3607 break;
3608 }
bccf2150 3609 default:
313a3dc7 3610 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3611 }
3612out:
ec7660cc 3613 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3614 kfree(fpu);
3615 kfree(kvm_sregs);
bccf2150
AK
3616 return r;
3617}
3618
de8e5d74 3619#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3620static long kvm_vcpu_compat_ioctl(struct file *filp,
3621 unsigned int ioctl, unsigned long arg)
3622{
3623 struct kvm_vcpu *vcpu = filp->private_data;
3624 void __user *argp = compat_ptr(arg);
3625 int r;
3626
3627 if (vcpu->kvm->mm != current->mm)
3628 return -EIO;
3629
3630 switch (ioctl) {
3631 case KVM_SET_SIGNAL_MASK: {
3632 struct kvm_signal_mask __user *sigmask_arg = argp;
3633 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3634 sigset_t sigset;
3635
3636 if (argp) {
3637 r = -EFAULT;
3638 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3639 sizeof(kvm_sigmask)))
1dda606c
AG
3640 goto out;
3641 r = -EINVAL;
3968cf62 3642 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3643 goto out;
3644 r = -EFAULT;
1393b4aa
PB
3645 if (get_compat_sigset(&sigset,
3646 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 3647 goto out;
760a9a30
AC
3648 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3649 } else
3650 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3651 break;
3652 }
3653 default:
3654 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3655 }
3656
3657out:
3658 return r;
3659}
3660#endif
3661
a1cd3f08
CLG
3662static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3663{
3664 struct kvm_device *dev = filp->private_data;
3665
3666 if (dev->ops->mmap)
3667 return dev->ops->mmap(dev, vma);
3668
3669 return -ENODEV;
3670}
3671
852b6d57
SW
3672static int kvm_device_ioctl_attr(struct kvm_device *dev,
3673 int (*accessor)(struct kvm_device *dev,
3674 struct kvm_device_attr *attr),
3675 unsigned long arg)
3676{
3677 struct kvm_device_attr attr;
3678
3679 if (!accessor)
3680 return -EPERM;
3681
3682 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3683 return -EFAULT;
3684
3685 return accessor(dev, &attr);
3686}
3687
3688static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3689 unsigned long arg)
3690{
3691 struct kvm_device *dev = filp->private_data;
3692
ddba9180
SC
3693 if (dev->kvm->mm != current->mm)
3694 return -EIO;
3695
852b6d57
SW
3696 switch (ioctl) {
3697 case KVM_SET_DEVICE_ATTR:
3698 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3699 case KVM_GET_DEVICE_ATTR:
3700 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3701 case KVM_HAS_DEVICE_ATTR:
3702 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3703 default:
3704 if (dev->ops->ioctl)
3705 return dev->ops->ioctl(dev, ioctl, arg);
3706
3707 return -ENOTTY;
3708 }
3709}
3710
852b6d57
SW
3711static int kvm_device_release(struct inode *inode, struct file *filp)
3712{
3713 struct kvm_device *dev = filp->private_data;
3714 struct kvm *kvm = dev->kvm;
3715
2bde9b3e
CLG
3716 if (dev->ops->release) {
3717 mutex_lock(&kvm->lock);
3718 list_del(&dev->vm_node);
3719 dev->ops->release(dev);
3720 mutex_unlock(&kvm->lock);
3721 }
3722
852b6d57
SW
3723 kvm_put_kvm(kvm);
3724 return 0;
3725}
3726
3727static const struct file_operations kvm_device_fops = {
3728 .unlocked_ioctl = kvm_device_ioctl,
3729 .release = kvm_device_release,
7ddfd3e0 3730 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 3731 .mmap = kvm_device_mmap,
852b6d57
SW
3732};
3733
3734struct kvm_device *kvm_device_from_filp(struct file *filp)
3735{
3736 if (filp->f_op != &kvm_device_fops)
3737 return NULL;
3738
3739 return filp->private_data;
3740}
3741
8538cb22 3742static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 3743#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
3744 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3745 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 3746#endif
d60eacb0
WD
3747};
3748
8538cb22 3749int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
3750{
3751 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3752 return -ENOSPC;
3753
3754 if (kvm_device_ops_table[type] != NULL)
3755 return -EEXIST;
3756
3757 kvm_device_ops_table[type] = ops;
3758 return 0;
3759}
3760
571ee1b6
WL
3761void kvm_unregister_device_ops(u32 type)
3762{
3763 if (kvm_device_ops_table[type] != NULL)
3764 kvm_device_ops_table[type] = NULL;
3765}
3766
852b6d57
SW
3767static int kvm_ioctl_create_device(struct kvm *kvm,
3768 struct kvm_create_device *cd)
3769{
8538cb22 3770 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
3771 struct kvm_device *dev;
3772 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 3773 int type;
852b6d57
SW
3774 int ret;
3775
d60eacb0
WD
3776 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3777 return -ENODEV;
3778
1d487e9b
PB
3779 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3780 ops = kvm_device_ops_table[type];
d60eacb0 3781 if (ops == NULL)
852b6d57 3782 return -ENODEV;
852b6d57
SW
3783
3784 if (test)
3785 return 0;
3786
b12ce36a 3787 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
3788 if (!dev)
3789 return -ENOMEM;
3790
3791 dev->ops = ops;
3792 dev->kvm = kvm;
852b6d57 3793
a28ebea2 3794 mutex_lock(&kvm->lock);
1d487e9b 3795 ret = ops->create(dev, type);
852b6d57 3796 if (ret < 0) {
a28ebea2 3797 mutex_unlock(&kvm->lock);
852b6d57
SW
3798 kfree(dev);
3799 return ret;
3800 }
a28ebea2
CD
3801 list_add(&dev->vm_node, &kvm->devices);
3802 mutex_unlock(&kvm->lock);
852b6d57 3803
023e9fdd
CD
3804 if (ops->init)
3805 ops->init(dev);
3806
cfa39381 3807 kvm_get_kvm(kvm);
24009b05 3808 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3809 if (ret < 0) {
149487bd 3810 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
3811 mutex_lock(&kvm->lock);
3812 list_del(&dev->vm_node);
3813 mutex_unlock(&kvm->lock);
a0f1d21c 3814 ops->destroy(dev);
852b6d57
SW
3815 return ret;
3816 }
3817
852b6d57
SW
3818 cd->fd = ret;
3819 return 0;
3820}
3821
92b591a4
AG
3822static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3823{
3824 switch (arg) {
3825 case KVM_CAP_USER_MEMORY:
3826 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3827 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3828 case KVM_CAP_INTERNAL_ERROR_DATA:
3829#ifdef CONFIG_HAVE_KVM_MSI
3830 case KVM_CAP_SIGNAL_MSI:
3831#endif
297e2105 3832#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3833 case KVM_CAP_IRQFD:
92b591a4
AG
3834 case KVM_CAP_IRQFD_RESAMPLE:
3835#endif
e9ea5069 3836 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3837 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3838 case KVM_CAP_ENABLE_CAP_VM:
acd05785 3839 case KVM_CAP_HALT_POLL:
92b591a4 3840 return 1;
4b4357e0 3841#ifdef CONFIG_KVM_MMIO
30422558
PB
3842 case KVM_CAP_COALESCED_MMIO:
3843 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3844 case KVM_CAP_COALESCED_PIO:
3845 return 1;
30422558 3846#endif
3c9bd400
JZ
3847#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3848 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3849 return KVM_DIRTY_LOG_MANUAL_CAPS;
3850#endif
92b591a4
AG
3851#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3852 case KVM_CAP_IRQ_ROUTING:
3853 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3854#endif
3855#if KVM_ADDRESS_SPACE_NUM > 1
3856 case KVM_CAP_MULTI_ADDRESS_SPACE:
3857 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3858#endif
c110ae57
PB
3859 case KVM_CAP_NR_MEMSLOTS:
3860 return KVM_USER_MEM_SLOTS;
fb04a1ed
PX
3861 case KVM_CAP_DIRTY_LOG_RING:
3862#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3863 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3864#else
3865 return 0;
3866#endif
92b591a4
AG
3867 default:
3868 break;
3869 }
3870 return kvm_vm_ioctl_check_extension(kvm, arg);
3871}
3872
fb04a1ed
PX
3873static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3874{
3875 int r;
3876
3877 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3878 return -EINVAL;
3879
3880 /* the size should be power of 2 */
3881 if (!size || (size & (size - 1)))
3882 return -EINVAL;
3883
3884 /* Should be bigger to keep the reserved entries, or a page */
3885 if (size < kvm_dirty_ring_get_rsvd_entries() *
3886 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3887 return -EINVAL;
3888
3889 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3890 sizeof(struct kvm_dirty_gfn))
3891 return -E2BIG;
3892
3893 /* We only allow it to set once */
3894 if (kvm->dirty_ring_size)
3895 return -EINVAL;
3896
3897 mutex_lock(&kvm->lock);
3898
3899 if (kvm->created_vcpus) {
3900 /* We don't allow to change this value after vcpu created */
3901 r = -EINVAL;
3902 } else {
3903 kvm->dirty_ring_size = size;
3904 r = 0;
3905 }
3906
3907 mutex_unlock(&kvm->lock);
3908 return r;
3909}
3910
3911static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3912{
3913 int i;
3914 struct kvm_vcpu *vcpu;
3915 int cleared = 0;
3916
3917 if (!kvm->dirty_ring_size)
3918 return -EINVAL;
3919
3920 mutex_lock(&kvm->slots_lock);
3921
3922 kvm_for_each_vcpu(i, vcpu, kvm)
3923 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3924
3925 mutex_unlock(&kvm->slots_lock);
3926
3927 if (cleared)
3928 kvm_flush_remote_tlbs(kvm);
3929
3930 return cleared;
3931}
3932
e5d83c74
PB
3933int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3934 struct kvm_enable_cap *cap)
3935{
3936 return -EINVAL;
3937}
3938
3939static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3940 struct kvm_enable_cap *cap)
3941{
3942 switch (cap->cap) {
2a31b9db 3943#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
3944 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3945 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3946
3947 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3948 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3949
3950 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
3951 return -EINVAL;
3952 kvm->manual_dirty_log_protect = cap->args[0];
3953 return 0;
3c9bd400 3954 }
2a31b9db 3955#endif
acd05785
DM
3956 case KVM_CAP_HALT_POLL: {
3957 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3958 return -EINVAL;
3959
3960 kvm->max_halt_poll_ns = cap->args[0];
3961 return 0;
3962 }
fb04a1ed
PX
3963 case KVM_CAP_DIRTY_LOG_RING:
3964 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
e5d83c74
PB
3965 default:
3966 return kvm_vm_ioctl_enable_cap(kvm, cap);
3967 }
3968}
3969
bccf2150
AK
3970static long kvm_vm_ioctl(struct file *filp,
3971 unsigned int ioctl, unsigned long arg)
3972{
3973 struct kvm *kvm = filp->private_data;
3974 void __user *argp = (void __user *)arg;
1fe779f8 3975 int r;
bccf2150 3976
6d4e4c4f
AK
3977 if (kvm->mm != current->mm)
3978 return -EIO;
bccf2150
AK
3979 switch (ioctl) {
3980 case KVM_CREATE_VCPU:
3981 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3982 break;
e5d83c74
PB
3983 case KVM_ENABLE_CAP: {
3984 struct kvm_enable_cap cap;
3985
3986 r = -EFAULT;
3987 if (copy_from_user(&cap, argp, sizeof(cap)))
3988 goto out;
3989 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3990 break;
3991 }
6fc138d2
IE
3992 case KVM_SET_USER_MEMORY_REGION: {
3993 struct kvm_userspace_memory_region kvm_userspace_mem;
3994
3995 r = -EFAULT;
3996 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3997 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3998 goto out;
3999
47ae31e2 4000 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4001 break;
4002 }
4003 case KVM_GET_DIRTY_LOG: {
4004 struct kvm_dirty_log log;
4005
4006 r = -EFAULT;
893bdbf1 4007 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4008 goto out;
2c6f5df9 4009 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4010 break;
4011 }
2a31b9db
PB
4012#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4013 case KVM_CLEAR_DIRTY_LOG: {
4014 struct kvm_clear_dirty_log log;
4015
4016 r = -EFAULT;
4017 if (copy_from_user(&log, argp, sizeof(log)))
4018 goto out;
4019 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4020 break;
4021 }
4022#endif
4b4357e0 4023#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4024 case KVM_REGISTER_COALESCED_MMIO: {
4025 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4026
5f94c174 4027 r = -EFAULT;
893bdbf1 4028 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4029 goto out;
5f94c174 4030 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4031 break;
4032 }
4033 case KVM_UNREGISTER_COALESCED_MMIO: {
4034 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4035
5f94c174 4036 r = -EFAULT;
893bdbf1 4037 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4038 goto out;
5f94c174 4039 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4040 break;
4041 }
4042#endif
721eecbf
GH
4043 case KVM_IRQFD: {
4044 struct kvm_irqfd data;
4045
4046 r = -EFAULT;
893bdbf1 4047 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4048 goto out;
d4db2935 4049 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4050 break;
4051 }
d34e6b17
GH
4052 case KVM_IOEVENTFD: {
4053 struct kvm_ioeventfd data;
4054
4055 r = -EFAULT;
893bdbf1 4056 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4057 goto out;
4058 r = kvm_ioeventfd(kvm, &data);
4059 break;
4060 }
07975ad3
JK
4061#ifdef CONFIG_HAVE_KVM_MSI
4062 case KVM_SIGNAL_MSI: {
4063 struct kvm_msi msi;
4064
4065 r = -EFAULT;
893bdbf1 4066 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4067 goto out;
4068 r = kvm_send_userspace_msi(kvm, &msi);
4069 break;
4070 }
23d43cf9
CD
4071#endif
4072#ifdef __KVM_HAVE_IRQ_LINE
4073 case KVM_IRQ_LINE_STATUS:
4074 case KVM_IRQ_LINE: {
4075 struct kvm_irq_level irq_event;
4076
4077 r = -EFAULT;
893bdbf1 4078 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4079 goto out;
4080
aa2fbe6d
YZ
4081 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4082 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4083 if (r)
4084 goto out;
4085
4086 r = -EFAULT;
4087 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4088 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4089 goto out;
4090 }
4091
4092 r = 0;
4093 break;
4094 }
73880c80 4095#endif
aa8d5944
AG
4096#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4097 case KVM_SET_GSI_ROUTING: {
4098 struct kvm_irq_routing routing;
4099 struct kvm_irq_routing __user *urouting;
f8c1b85b 4100 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4101
4102 r = -EFAULT;
4103 if (copy_from_user(&routing, argp, sizeof(routing)))
4104 goto out;
4105 r = -EINVAL;
5c0aea0e
DH
4106 if (!kvm_arch_can_set_irq_routing(kvm))
4107 goto out;
caf1ff26 4108 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4109 goto out;
4110 if (routing.flags)
4111 goto out;
f8c1b85b 4112 if (routing.nr) {
f8c1b85b 4113 urouting = argp;
7ec28e26
DE
4114 entries = vmemdup_user(urouting->entries,
4115 array_size(sizeof(*entries),
4116 routing.nr));
4117 if (IS_ERR(entries)) {
4118 r = PTR_ERR(entries);
4119 goto out;
4120 }
f8c1b85b 4121 }
aa8d5944
AG
4122 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4123 routing.flags);
7ec28e26 4124 kvfree(entries);
aa8d5944
AG
4125 break;
4126 }
4127#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4128 case KVM_CREATE_DEVICE: {
4129 struct kvm_create_device cd;
4130
4131 r = -EFAULT;
4132 if (copy_from_user(&cd, argp, sizeof(cd)))
4133 goto out;
4134
4135 r = kvm_ioctl_create_device(kvm, &cd);
4136 if (r)
4137 goto out;
4138
4139 r = -EFAULT;
4140 if (copy_to_user(argp, &cd, sizeof(cd)))
4141 goto out;
4142
4143 r = 0;
4144 break;
4145 }
92b591a4
AG
4146 case KVM_CHECK_EXTENSION:
4147 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4148 break;
fb04a1ed
PX
4149 case KVM_RESET_DIRTY_RINGS:
4150 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4151 break;
f17abe9a 4152 default:
1fe779f8 4153 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4154 }
4155out:
4156 return r;
4157}
4158
de8e5d74 4159#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4160struct compat_kvm_dirty_log {
4161 __u32 slot;
4162 __u32 padding1;
4163 union {
4164 compat_uptr_t dirty_bitmap; /* one bit per page */
4165 __u64 padding2;
4166 };
4167};
4168
4169static long kvm_vm_compat_ioctl(struct file *filp,
4170 unsigned int ioctl, unsigned long arg)
4171{
4172 struct kvm *kvm = filp->private_data;
4173 int r;
4174
4175 if (kvm->mm != current->mm)
4176 return -EIO;
4177 switch (ioctl) {
4178 case KVM_GET_DIRTY_LOG: {
4179 struct compat_kvm_dirty_log compat_log;
4180 struct kvm_dirty_log log;
4181
6ff5894c
AB
4182 if (copy_from_user(&compat_log, (void __user *)arg,
4183 sizeof(compat_log)))
f6a3b168 4184 return -EFAULT;
6ff5894c
AB
4185 log.slot = compat_log.slot;
4186 log.padding1 = compat_log.padding1;
4187 log.padding2 = compat_log.padding2;
4188 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4189
4190 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4191 break;
4192 }
4193 default:
4194 r = kvm_vm_ioctl(filp, ioctl, arg);
4195 }
6ff5894c
AB
4196 return r;
4197}
4198#endif
4199
3d3aab1b 4200static struct file_operations kvm_vm_fops = {
f17abe9a
AK
4201 .release = kvm_vm_release,
4202 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4203 .llseek = noop_llseek,
7ddfd3e0 4204 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4205};
4206
54526d1f
NT
4207bool file_is_kvm(struct file *file)
4208{
4209 return file && file->f_op == &kvm_vm_fops;
4210}
4211EXPORT_SYMBOL_GPL(file_is_kvm);
4212
e08b9637 4213static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 4214{
aac87636 4215 int r;
f17abe9a 4216 struct kvm *kvm;
506cfba9 4217 struct file *file;
f17abe9a 4218
e08b9637 4219 kvm = kvm_create_vm(type);
d6d28168
AK
4220 if (IS_ERR(kvm))
4221 return PTR_ERR(kvm);
4b4357e0 4222#ifdef CONFIG_KVM_MMIO
6ce5a090 4223 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
4224 if (r < 0)
4225 goto put_kvm;
6ce5a090 4226#endif
506cfba9 4227 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
4228 if (r < 0)
4229 goto put_kvm;
4230
506cfba9
AV
4231 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4232 if (IS_ERR(file)) {
4233 put_unused_fd(r);
78588335
ME
4234 r = PTR_ERR(file);
4235 goto put_kvm;
506cfba9 4236 }
536a6f88 4237
525df861
PB
4238 /*
4239 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4240 * already set, with ->release() being kvm_vm_release(). In error
4241 * cases it will be called by the final fput(file) and will take
4242 * care of doing kvm_put_kvm(kvm).
4243 */
536a6f88 4244 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
4245 put_unused_fd(r);
4246 fput(file);
536a6f88
JF
4247 return -ENOMEM;
4248 }
286de8f6 4249 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 4250
506cfba9 4251 fd_install(r, file);
aac87636 4252 return r;
78588335
ME
4253
4254put_kvm:
4255 kvm_put_kvm(kvm);
4256 return r;
f17abe9a
AK
4257}
4258
4259static long kvm_dev_ioctl(struct file *filp,
4260 unsigned int ioctl, unsigned long arg)
4261{
07c45a36 4262 long r = -EINVAL;
f17abe9a
AK
4263
4264 switch (ioctl) {
4265 case KVM_GET_API_VERSION:
f0fe5108
AK
4266 if (arg)
4267 goto out;
f17abe9a
AK
4268 r = KVM_API_VERSION;
4269 break;
4270 case KVM_CREATE_VM:
e08b9637 4271 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 4272 break;
018d00d2 4273 case KVM_CHECK_EXTENSION:
784aa3d7 4274 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 4275 break;
07c45a36 4276 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
4277 if (arg)
4278 goto out;
adb1ff46
AK
4279 r = PAGE_SIZE; /* struct kvm_run */
4280#ifdef CONFIG_X86
4281 r += PAGE_SIZE; /* pio data page */
5f94c174 4282#endif
4b4357e0 4283#ifdef CONFIG_KVM_MMIO
5f94c174 4284 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 4285#endif
07c45a36 4286 break;
d4c9ff2d
FEL
4287 case KVM_TRACE_ENABLE:
4288 case KVM_TRACE_PAUSE:
4289 case KVM_TRACE_DISABLE:
2023a29c 4290 r = -EOPNOTSUPP;
d4c9ff2d 4291 break;
6aa8b732 4292 default:
043405e1 4293 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
4294 }
4295out:
4296 return r;
4297}
4298
6aa8b732 4299static struct file_operations kvm_chardev_ops = {
6aa8b732 4300 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 4301 .llseek = noop_llseek,
7ddfd3e0 4302 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
4303};
4304
4305static struct miscdevice kvm_dev = {
bbe4432e 4306 KVM_MINOR,
6aa8b732
AK
4307 "kvm",
4308 &kvm_chardev_ops,
4309};
4310
75b7127c 4311static void hardware_enable_nolock(void *junk)
1b6c0168
AK
4312{
4313 int cpu = raw_smp_processor_id();
10474ae8 4314 int r;
1b6c0168 4315
7f59f492 4316 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4317 return;
10474ae8 4318
7f59f492 4319 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 4320
13a34e06 4321 r = kvm_arch_hardware_enable();
10474ae8
AG
4322
4323 if (r) {
4324 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4325 atomic_inc(&hardware_enable_failed);
1170adc6 4326 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 4327 }
1b6c0168
AK
4328}
4329
8c18b2d2 4330static int kvm_starting_cpu(unsigned int cpu)
75b7127c 4331{
4a937f96 4332 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4333 if (kvm_usage_count)
4334 hardware_enable_nolock(NULL);
4a937f96 4335 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4336 return 0;
75b7127c
TY
4337}
4338
4339static void hardware_disable_nolock(void *junk)
1b6c0168
AK
4340{
4341 int cpu = raw_smp_processor_id();
4342
7f59f492 4343 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4344 return;
7f59f492 4345 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 4346 kvm_arch_hardware_disable();
1b6c0168
AK
4347}
4348
8c18b2d2 4349static int kvm_dying_cpu(unsigned int cpu)
75b7127c 4350{
4a937f96 4351 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4352 if (kvm_usage_count)
4353 hardware_disable_nolock(NULL);
4a937f96 4354 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4355 return 0;
75b7127c
TY
4356}
4357
10474ae8
AG
4358static void hardware_disable_all_nolock(void)
4359{
4360 BUG_ON(!kvm_usage_count);
4361
4362 kvm_usage_count--;
4363 if (!kvm_usage_count)
75b7127c 4364 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
4365}
4366
4367static void hardware_disable_all(void)
4368{
4a937f96 4369 raw_spin_lock(&kvm_count_lock);
10474ae8 4370 hardware_disable_all_nolock();
4a937f96 4371 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4372}
4373
4374static int hardware_enable_all(void)
4375{
4376 int r = 0;
4377
4a937f96 4378 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
4379
4380 kvm_usage_count++;
4381 if (kvm_usage_count == 1) {
4382 atomic_set(&hardware_enable_failed, 0);
75b7127c 4383 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
4384
4385 if (atomic_read(&hardware_enable_failed)) {
4386 hardware_disable_all_nolock();
4387 r = -EBUSY;
4388 }
4389 }
4390
4a937f96 4391 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4392
4393 return r;
4394}
4395
9a2b85c6 4396static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 4397 void *v)
9a2b85c6 4398{
8e1c1815
SY
4399 /*
4400 * Some (well, at least mine) BIOSes hang on reboot if
4401 * in vmx root mode.
4402 *
4403 * And Intel TXT required VMX off for all cpu when system shutdown.
4404 */
1170adc6 4405 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 4406 kvm_rebooting = true;
75b7127c 4407 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
4408 return NOTIFY_OK;
4409}
4410
4411static struct notifier_block kvm_reboot_notifier = {
4412 .notifier_call = kvm_reboot,
4413 .priority = 0,
4414};
4415
e93f8a0f 4416static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
4417{
4418 int i;
4419
4420 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4421 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4422
4423 kvm_iodevice_destructor(pos);
4424 }
e93f8a0f 4425 kfree(bus);
2eeb2e94
GH
4426}
4427
c21fbff1 4428static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4429 const struct kvm_io_range *r2)
743eeb0b 4430{
8f4216c7
JW
4431 gpa_t addr1 = r1->addr;
4432 gpa_t addr2 = r2->addr;
4433
4434 if (addr1 < addr2)
743eeb0b 4435 return -1;
8f4216c7
JW
4436
4437 /* If r2->len == 0, match the exact address. If r2->len != 0,
4438 * accept any overlapping write. Any order is acceptable for
4439 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4440 * we process all of them.
4441 */
4442 if (r2->len) {
4443 addr1 += r1->len;
4444 addr2 += r2->len;
4445 }
4446
4447 if (addr1 > addr2)
743eeb0b 4448 return 1;
8f4216c7 4449
743eeb0b
SL
4450 return 0;
4451}
4452
a343c9b7
PB
4453static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4454{
c21fbff1 4455 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4456}
4457
39369f7a 4458static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4459 gpa_t addr, int len)
4460{
4461 struct kvm_io_range *range, key;
4462 int off;
4463
4464 key = (struct kvm_io_range) {
4465 .addr = addr,
4466 .len = len,
4467 };
4468
4469 range = bsearch(&key, bus->range, bus->dev_count,
4470 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4471 if (range == NULL)
4472 return -ENOENT;
4473
4474 off = range - bus->range;
4475
c21fbff1 4476 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4477 off--;
4478
4479 return off;
4480}
4481
e32edf4f 4482static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4483 struct kvm_io_range *range, const void *val)
4484{
4485 int idx;
4486
4487 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4488 if (idx < 0)
4489 return -EOPNOTSUPP;
4490
4491 while (idx < bus->dev_count &&
c21fbff1 4492 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4493 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4494 range->len, val))
4495 return idx;
4496 idx++;
4497 }
4498
4499 return -EOPNOTSUPP;
4500}
4501
bda9020e 4502/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4503int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4504 int len, const void *val)
2eeb2e94 4505{
90d83dc3 4506 struct kvm_io_bus *bus;
743eeb0b 4507 struct kvm_io_range range;
126a5af5 4508 int r;
743eeb0b
SL
4509
4510 range = (struct kvm_io_range) {
4511 .addr = addr,
4512 .len = len,
4513 };
90d83dc3 4514
e32edf4f 4515 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4516 if (!bus)
4517 return -ENOMEM;
e32edf4f 4518 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4519 return r < 0 ? r : 0;
4520}
a2420107 4521EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4522
4523/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4524int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4525 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4526{
4527 struct kvm_io_bus *bus;
4528 struct kvm_io_range range;
4529
4530 range = (struct kvm_io_range) {
4531 .addr = addr,
4532 .len = len,
4533 };
4534
e32edf4f 4535 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4536 if (!bus)
4537 return -ENOMEM;
126a5af5
CH
4538
4539 /* First try the device referenced by cookie. */
4540 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4541 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4542 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4543 val))
4544 return cookie;
4545
4546 /*
4547 * cookie contained garbage; fall back to search and return the
4548 * correct cookie value.
4549 */
e32edf4f 4550 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4551}
4552
e32edf4f
NN
4553static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4554 struct kvm_io_range *range, void *val)
126a5af5
CH
4555{
4556 int idx;
4557
4558 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4559 if (idx < 0)
4560 return -EOPNOTSUPP;
4561
4562 while (idx < bus->dev_count &&
c21fbff1 4563 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4564 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4565 range->len, val))
4566 return idx;
743eeb0b
SL
4567 idx++;
4568 }
4569
bda9020e
MT
4570 return -EOPNOTSUPP;
4571}
2eeb2e94 4572
bda9020e 4573/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4574int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4575 int len, void *val)
bda9020e 4576{
90d83dc3 4577 struct kvm_io_bus *bus;
743eeb0b 4578 struct kvm_io_range range;
126a5af5 4579 int r;
743eeb0b
SL
4580
4581 range = (struct kvm_io_range) {
4582 .addr = addr,
4583 .len = len,
4584 };
e93f8a0f 4585
e32edf4f 4586 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4587 if (!bus)
4588 return -ENOMEM;
e32edf4f 4589 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
4590 return r < 0 ? r : 0;
4591}
743eeb0b 4592
79fac95e 4593/* Caller must hold slots_lock. */
743eeb0b
SL
4594int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4595 int len, struct kvm_io_device *dev)
6c474694 4596{
d4c67a7a 4597 int i;
e93f8a0f 4598 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 4599 struct kvm_io_range range;
090b7aff 4600
4a12f951 4601 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
4602 if (!bus)
4603 return -ENOMEM;
4604
6ea34c9b
AK
4605 /* exclude ioeventfd which is limited by maximum fd */
4606 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 4607 return -ENOSPC;
2eeb2e94 4608
90952cd3 4609 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 4610 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
4611 if (!new_bus)
4612 return -ENOMEM;
d4c67a7a
GH
4613
4614 range = (struct kvm_io_range) {
4615 .addr = addr,
4616 .len = len,
4617 .dev = dev,
4618 };
4619
4620 for (i = 0; i < bus->dev_count; i++)
4621 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4622 break;
4623
4624 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4625 new_bus->dev_count++;
4626 new_bus->range[i] = range;
4627 memcpy(new_bus->range + i + 1, bus->range + i,
4628 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
4629 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4630 synchronize_srcu_expedited(&kvm->srcu);
4631 kfree(bus);
090b7aff
GH
4632
4633 return 0;
4634}
4635
5d3c4c79
SC
4636int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4637 struct kvm_io_device *dev)
090b7aff 4638{
f6588660 4639 int i, j;
e93f8a0f 4640 struct kvm_io_bus *new_bus, *bus;
090b7aff 4641
7c896d37
SC
4642 lockdep_assert_held(&kvm->slots_lock);
4643
4a12f951 4644 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 4645 if (!bus)
5d3c4c79 4646 return 0;
df630b8c 4647
7c896d37 4648 for (i = 0; i < bus->dev_count; i++) {
a1300716 4649 if (bus->range[i].dev == dev) {
090b7aff
GH
4650 break;
4651 }
7c896d37 4652 }
e93f8a0f 4653
90db1043 4654 if (i == bus->dev_count)
5d3c4c79 4655 return 0;
a1300716 4656
90952cd3 4657 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 4658 GFP_KERNEL_ACCOUNT);
f6588660 4659 if (new_bus) {
871c433b 4660 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
4661 new_bus->dev_count--;
4662 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 4663 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
4664 }
4665
4666 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4667 synchronize_srcu_expedited(&kvm->srcu);
4668
4669 /* Destroy the old bus _after_ installing the (null) bus. */
4670 if (!new_bus) {
90db1043 4671 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
4672 for (j = 0; j < bus->dev_count; j++) {
4673 if (j == i)
4674 continue;
4675 kvm_iodevice_destructor(bus->range[j].dev);
4676 }
90db1043 4677 }
a1300716 4678
e93f8a0f 4679 kfree(bus);
5d3c4c79 4680 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
4681}
4682
8a39d006
AP
4683struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4684 gpa_t addr)
4685{
4686 struct kvm_io_bus *bus;
4687 int dev_idx, srcu_idx;
4688 struct kvm_io_device *iodev = NULL;
4689
4690 srcu_idx = srcu_read_lock(&kvm->srcu);
4691
4692 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
4693 if (!bus)
4694 goto out_unlock;
8a39d006
AP
4695
4696 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4697 if (dev_idx < 0)
4698 goto out_unlock;
4699
4700 iodev = bus->range[dev_idx].dev;
4701
4702out_unlock:
4703 srcu_read_unlock(&kvm->srcu, srcu_idx);
4704
4705 return iodev;
4706}
4707EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4708
536a6f88
JF
4709static int kvm_debugfs_open(struct inode *inode, struct file *file,
4710 int (*get)(void *, u64 *), int (*set)(void *, u64),
4711 const char *fmt)
4712{
4713 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4714 inode->i_private;
4715
4716 /* The debugfs files are a reference to the kvm struct which
4717 * is still valid when kvm_destroy_vm is called.
4718 * To avoid the race between open and the removal of the debugfs
4719 * directory we test against the users count.
4720 */
e3736c3e 4721 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
4722 return -ENOENT;
4723
833b45de 4724 if (simple_attr_open(inode, file, get,
09cbcef6
MP
4725 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4726 ? set : NULL,
4727 fmt)) {
536a6f88
JF
4728 kvm_put_kvm(stat_data->kvm);
4729 return -ENOMEM;
4730 }
4731
4732 return 0;
4733}
4734
4735static int kvm_debugfs_release(struct inode *inode, struct file *file)
4736{
4737 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4738 inode->i_private;
4739
4740 simple_attr_release(inode, file);
4741 kvm_put_kvm(stat_data->kvm);
4742
4743 return 0;
4744}
4745
09cbcef6 4746static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 4747{
09cbcef6 4748 *val = *(ulong *)((void *)kvm + offset);
536a6f88 4749
09cbcef6
MP
4750 return 0;
4751}
4752
4753static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4754{
4755 *(ulong *)((void *)kvm + offset) = 0;
536a6f88
JF
4756
4757 return 0;
4758}
4759
09cbcef6 4760static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 4761{
09cbcef6
MP
4762 int i;
4763 struct kvm_vcpu *vcpu;
ce35ef27 4764
09cbcef6 4765 *val = 0;
ce35ef27 4766
09cbcef6
MP
4767 kvm_for_each_vcpu(i, vcpu, kvm)
4768 *val += *(u64 *)((void *)vcpu + offset);
ce35ef27
SJS
4769
4770 return 0;
4771}
4772
09cbcef6 4773static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 4774{
09cbcef6
MP
4775 int i;
4776 struct kvm_vcpu *vcpu;
536a6f88 4777
09cbcef6
MP
4778 kvm_for_each_vcpu(i, vcpu, kvm)
4779 *(u64 *)((void *)vcpu + offset) = 0;
4780
4781 return 0;
4782}
536a6f88 4783
09cbcef6 4784static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 4785{
09cbcef6 4786 int r = -EFAULT;
536a6f88 4787 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 4788
09cbcef6
MP
4789 switch (stat_data->dbgfs_item->kind) {
4790 case KVM_STAT_VM:
4791 r = kvm_get_stat_per_vm(stat_data->kvm,
4792 stat_data->dbgfs_item->offset, val);
4793 break;
4794 case KVM_STAT_VCPU:
4795 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4796 stat_data->dbgfs_item->offset, val);
4797 break;
4798 }
536a6f88 4799
09cbcef6 4800 return r;
536a6f88
JF
4801}
4802
09cbcef6 4803static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 4804{
09cbcef6 4805 int r = -EFAULT;
ce35ef27 4806 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
4807
4808 if (val)
4809 return -EINVAL;
4810
09cbcef6
MP
4811 switch (stat_data->dbgfs_item->kind) {
4812 case KVM_STAT_VM:
4813 r = kvm_clear_stat_per_vm(stat_data->kvm,
4814 stat_data->dbgfs_item->offset);
4815 break;
4816 case KVM_STAT_VCPU:
4817 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4818 stat_data->dbgfs_item->offset);
4819 break;
4820 }
ce35ef27 4821
09cbcef6 4822 return r;
ce35ef27
SJS
4823}
4824
09cbcef6 4825static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
4826{
4827 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
4828 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4829 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
4830}
4831
09cbcef6
MP
4832static const struct file_operations stat_fops_per_vm = {
4833 .owner = THIS_MODULE,
4834 .open = kvm_stat_data_open,
536a6f88 4835 .release = kvm_debugfs_release,
09cbcef6
MP
4836 .read = simple_attr_read,
4837 .write = simple_attr_write,
4838 .llseek = no_llseek,
536a6f88
JF
4839};
4840
8b88b099 4841static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
4842{
4843 unsigned offset = (long)_offset;
ba1389b7 4844 struct kvm *kvm;
536a6f88 4845 u64 tmp_val;
ba1389b7 4846
8b88b099 4847 *val = 0;
0d9ce162 4848 mutex_lock(&kvm_lock);
536a6f88 4849 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4850 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
4851 *val += tmp_val;
4852 }
0d9ce162 4853 mutex_unlock(&kvm_lock);
8b88b099 4854 return 0;
ba1389b7
AK
4855}
4856
ce35ef27
SJS
4857static int vm_stat_clear(void *_offset, u64 val)
4858{
4859 unsigned offset = (long)_offset;
4860 struct kvm *kvm;
ce35ef27
SJS
4861
4862 if (val)
4863 return -EINVAL;
4864
0d9ce162 4865 mutex_lock(&kvm_lock);
ce35ef27 4866 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4867 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 4868 }
0d9ce162 4869 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4870
4871 return 0;
4872}
4873
4874DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 4875
8b88b099 4876static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
4877{
4878 unsigned offset = (long)_offset;
1165f5fe 4879 struct kvm *kvm;
536a6f88 4880 u64 tmp_val;
1165f5fe 4881
8b88b099 4882 *val = 0;
0d9ce162 4883 mutex_lock(&kvm_lock);
536a6f88 4884 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4885 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
4886 *val += tmp_val;
4887 }
0d9ce162 4888 mutex_unlock(&kvm_lock);
8b88b099 4889 return 0;
1165f5fe
AK
4890}
4891
ce35ef27
SJS
4892static int vcpu_stat_clear(void *_offset, u64 val)
4893{
4894 unsigned offset = (long)_offset;
4895 struct kvm *kvm;
ce35ef27
SJS
4896
4897 if (val)
4898 return -EINVAL;
4899
0d9ce162 4900 mutex_lock(&kvm_lock);
ce35ef27 4901 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4902 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 4903 }
0d9ce162 4904 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4905
4906 return 0;
4907}
4908
4909DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4910 "%llu\n");
ba1389b7 4911
828c0950 4912static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4913 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4914 [KVM_STAT_VM] = &vm_stat_fops,
4915};
1165f5fe 4916
286de8f6
CI
4917static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4918{
4919 struct kobj_uevent_env *env;
286de8f6
CI
4920 unsigned long long created, active;
4921
4922 if (!kvm_dev.this_device || !kvm)
4923 return;
4924
0d9ce162 4925 mutex_lock(&kvm_lock);
286de8f6
CI
4926 if (type == KVM_EVENT_CREATE_VM) {
4927 kvm_createvm_count++;
4928 kvm_active_vms++;
4929 } else if (type == KVM_EVENT_DESTROY_VM) {
4930 kvm_active_vms--;
4931 }
4932 created = kvm_createvm_count;
4933 active = kvm_active_vms;
0d9ce162 4934 mutex_unlock(&kvm_lock);
286de8f6 4935
b12ce36a 4936 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
4937 if (!env)
4938 return;
4939
4940 add_uevent_var(env, "CREATED=%llu", created);
4941 add_uevent_var(env, "COUNT=%llu", active);
4942
fdeaf7e3 4943 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4944 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4945 kvm->userspace_pid = task_pid_nr(current);
4946 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4947 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4948 }
4949 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 4950
8ed0579c 4951 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 4952 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
4953
4954 if (p) {
4955 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4956 if (!IS_ERR(tmp))
4957 add_uevent_var(env, "STATS_PATH=%s", tmp);
4958 kfree(p);
286de8f6
CI
4959 }
4960 }
4961 /* no need for checks, since we are adding at most only 5 keys */
4962 env->envp[env->envp_idx++] = NULL;
4963 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4964 kfree(env);
286de8f6
CI
4965}
4966
929f45e3 4967static void kvm_init_debug(void)
6aa8b732
AK
4968{
4969 struct kvm_stats_debugfs_item *p;
4970
76f7c879 4971 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4972
536a6f88
JF
4973 kvm_debugfs_num_entries = 0;
4974 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
09cbcef6
MP
4975 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4976 kvm_debugfs_dir, (void *)(long)p->offset,
929f45e3 4977 stat_fops[p->kind]);
4f69b680 4978 }
6aa8b732
AK
4979}
4980
fb3600cc 4981static int kvm_suspend(void)
59ae6c6b 4982{
10474ae8 4983 if (kvm_usage_count)
75b7127c 4984 hardware_disable_nolock(NULL);
59ae6c6b
AK
4985 return 0;
4986}
4987
fb3600cc 4988static void kvm_resume(void)
59ae6c6b 4989{
ca84d1a2 4990 if (kvm_usage_count) {
2eb06c30
WL
4991#ifdef CONFIG_LOCKDEP
4992 WARN_ON(lockdep_is_held(&kvm_count_lock));
4993#endif
75b7127c 4994 hardware_enable_nolock(NULL);
ca84d1a2 4995 }
59ae6c6b
AK
4996}
4997
fb3600cc 4998static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4999 .suspend = kvm_suspend,
5000 .resume = kvm_resume,
5001};
5002
15ad7146
AK
5003static inline
5004struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5005{
5006 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5007}
5008
5009static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5010{
5011 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5012
046ddeed 5013 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5014 WRITE_ONCE(vcpu->ready, false);
15ad7146 5015
7495e22b 5016 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5017 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5018 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5019}
5020
5021static void kvm_sched_out(struct preempt_notifier *pn,
5022 struct task_struct *next)
5023{
5024 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5025
d73eb57b 5026 if (current->state == TASK_RUNNING) {
046ddeed 5027 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5028 WRITE_ONCE(vcpu->ready, true);
5029 }
e9b11c17 5030 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5031 __this_cpu_write(kvm_running_vcpu, NULL);
5032}
5033
5034/**
5035 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5036 *
5037 * We can disable preemption locally around accessing the per-CPU variable,
5038 * and use the resolved vcpu pointer after enabling preemption again,
5039 * because even if the current thread is migrated to another CPU, reading
5040 * the per-CPU value later will give us the same value as we update the
5041 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5042 */
5043struct kvm_vcpu *kvm_get_running_vcpu(void)
5044{
1f03b2bc
MZ
5045 struct kvm_vcpu *vcpu;
5046
5047 preempt_disable();
5048 vcpu = __this_cpu_read(kvm_running_vcpu);
5049 preempt_enable();
5050
5051 return vcpu;
7495e22b 5052}
379a3c8e 5053EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5054
5055/**
5056 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5057 */
5058struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5059{
5060 return &kvm_running_vcpu;
15ad7146
AK
5061}
5062
b9904085
SC
5063struct kvm_cpu_compat_check {
5064 void *opaque;
5065 int *ret;
5066};
5067
5068static void check_processor_compat(void *data)
f257d6dc 5069{
b9904085
SC
5070 struct kvm_cpu_compat_check *c = data;
5071
5072 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
5073}
5074
0ee75bea 5075int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 5076 struct module *module)
6aa8b732 5077{
b9904085 5078 struct kvm_cpu_compat_check c;
6aa8b732 5079 int r;
002c7f7c 5080 int cpu;
6aa8b732 5081
f8c16bba
ZX
5082 r = kvm_arch_init(opaque);
5083 if (r)
d2308784 5084 goto out_fail;
cb498ea2 5085
7dac16c3
AH
5086 /*
5087 * kvm_arch_init makes sure there's at most one caller
5088 * for architectures that support multiple implementations,
5089 * like intel and amd on x86.
36343f6e
PB
5090 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5091 * conflicts in case kvm is already setup for another implementation.
7dac16c3 5092 */
36343f6e
PB
5093 r = kvm_irqfd_init();
5094 if (r)
5095 goto out_irqfd;
7dac16c3 5096
8437a617 5097 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
5098 r = -ENOMEM;
5099 goto out_free_0;
5100 }
5101
b9904085 5102 r = kvm_arch_hardware_setup(opaque);
6aa8b732 5103 if (r < 0)
faf0be22 5104 goto out_free_1;
6aa8b732 5105
b9904085
SC
5106 c.ret = &r;
5107 c.opaque = opaque;
002c7f7c 5108 for_each_online_cpu(cpu) {
b9904085 5109 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 5110 if (r < 0)
faf0be22 5111 goto out_free_2;
002c7f7c
YS
5112 }
5113
73c1b41e 5114 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 5115 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 5116 if (r)
d2308784 5117 goto out_free_2;
6aa8b732
AK
5118 register_reboot_notifier(&kvm_reboot_notifier);
5119
c16f862d 5120 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5121 if (!vcpu_align)
5122 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5123 kvm_vcpu_cache =
5124 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5125 SLAB_ACCOUNT,
5126 offsetof(struct kvm_vcpu, arch),
5127 sizeof_field(struct kvm_vcpu, arch),
5128 NULL);
c16f862d
RR
5129 if (!kvm_vcpu_cache) {
5130 r = -ENOMEM;
fb3600cc 5131 goto out_free_3;
c16f862d
RR
5132 }
5133
af585b92
GN
5134 r = kvm_async_pf_init();
5135 if (r)
5136 goto out_free;
5137
6aa8b732 5138 kvm_chardev_ops.owner = module;
3d3aab1b
CB
5139 kvm_vm_fops.owner = module;
5140 kvm_vcpu_fops.owner = module;
6aa8b732
AK
5141
5142 r = misc_register(&kvm_dev);
5143 if (r) {
1170adc6 5144 pr_err("kvm: misc device register failed\n");
af585b92 5145 goto out_unreg;
6aa8b732
AK
5146 }
5147
fb3600cc
RW
5148 register_syscore_ops(&kvm_syscore_ops);
5149
15ad7146
AK
5150 kvm_preempt_ops.sched_in = kvm_sched_in;
5151 kvm_preempt_ops.sched_out = kvm_sched_out;
5152
929f45e3 5153 kvm_init_debug();
0ea4ed8e 5154
3c3c29fd
PB
5155 r = kvm_vfio_ops_init();
5156 WARN_ON(r);
5157
c7addb90 5158 return 0;
6aa8b732 5159
af585b92
GN
5160out_unreg:
5161 kvm_async_pf_deinit();
6aa8b732 5162out_free:
c16f862d 5163 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 5164out_free_3:
6aa8b732 5165 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5166 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 5167out_free_2:
e9b11c17 5168 kvm_arch_hardware_unsetup();
faf0be22 5169out_free_1:
7f59f492 5170 free_cpumask_var(cpus_hardware_enabled);
d2308784 5171out_free_0:
a0f155e9 5172 kvm_irqfd_exit();
36343f6e 5173out_irqfd:
7dac16c3
AH
5174 kvm_arch_exit();
5175out_fail:
6aa8b732
AK
5176 return r;
5177}
cb498ea2 5178EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 5179
cb498ea2 5180void kvm_exit(void)
6aa8b732 5181{
4bd33b56 5182 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 5183 misc_deregister(&kvm_dev);
c16f862d 5184 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 5185 kvm_async_pf_deinit();
fb3600cc 5186 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 5187 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5188 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 5189 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 5190 kvm_arch_hardware_unsetup();
f8c16bba 5191 kvm_arch_exit();
a0f155e9 5192 kvm_irqfd_exit();
7f59f492 5193 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 5194 kvm_vfio_ops_exit();
6aa8b732 5195}
cb498ea2 5196EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
5197
5198struct kvm_vm_worker_thread_context {
5199 struct kvm *kvm;
5200 struct task_struct *parent;
5201 struct completion init_done;
5202 kvm_vm_thread_fn_t thread_fn;
5203 uintptr_t data;
5204 int err;
5205};
5206
5207static int kvm_vm_worker_thread(void *context)
5208{
5209 /*
5210 * The init_context is allocated on the stack of the parent thread, so
5211 * we have to locally copy anything that is needed beyond initialization
5212 */
5213 struct kvm_vm_worker_thread_context *init_context = context;
5214 struct kvm *kvm = init_context->kvm;
5215 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5216 uintptr_t data = init_context->data;
5217 int err;
5218
5219 err = kthread_park(current);
5220 /* kthread_park(current) is never supposed to return an error */
5221 WARN_ON(err != 0);
5222 if (err)
5223 goto init_complete;
5224
5225 err = cgroup_attach_task_all(init_context->parent, current);
5226 if (err) {
5227 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5228 __func__, err);
5229 goto init_complete;
5230 }
5231
5232 set_user_nice(current, task_nice(init_context->parent));
5233
5234init_complete:
5235 init_context->err = err;
5236 complete(&init_context->init_done);
5237 init_context = NULL;
5238
5239 if (err)
5240 return err;
5241
5242 /* Wait to be woken up by the spawner before proceeding. */
5243 kthread_parkme();
5244
5245 if (!kthread_should_stop())
5246 err = thread_fn(kvm, data);
5247
5248 return err;
5249}
5250
5251int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5252 uintptr_t data, const char *name,
5253 struct task_struct **thread_ptr)
5254{
5255 struct kvm_vm_worker_thread_context init_context = {};
5256 struct task_struct *thread;
5257
5258 *thread_ptr = NULL;
5259 init_context.kvm = kvm;
5260 init_context.parent = current;
5261 init_context.thread_fn = thread_fn;
5262 init_context.data = data;
5263 init_completion(&init_context.init_done);
5264
5265 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5266 "%s-%d", name, task_pid_nr(current));
5267 if (IS_ERR(thread))
5268 return PTR_ERR(thread);
5269
5270 /* kthread_run is never supposed to return NULL */
5271 WARN_ON(thread == NULL);
5272
5273 wait_for_completion(&init_context.init_done);
5274
5275 if (!init_context.err)
5276 *thread_ptr = thread;
5277
5278 return init_context.err;
5279}