KVM: arm/arm64: vgic: Implement VGICv3 CPU interface access
[linux-block.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
CommitLineData
ed9b8cef
AP
1/*
2 * VGICv3 MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#include <linux/irqchip/arm-gic-v3.h>
15#include <linux/kvm.h>
16#include <linux/kvm_host.h>
17#include <kvm/iodev.h>
18#include <kvm/arm_vgic.h>
19
20#include <asm/kvm_emulate.h>
94574c94
VK
21#include <asm/kvm_arm.h>
22#include <asm/kvm_mmu.h>
ed9b8cef
AP
23
24#include "vgic.h"
25#include "vgic-mmio.h"
26
741972d8 27/* extract @num bytes at @offset bytes offset in data */
d7d0a11e 28unsigned long extract_bytes(u64 data, unsigned int offset,
424c3383 29 unsigned int num)
741972d8
AP
30{
31 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
32}
33
0aa1de57 34/* allows updates of any half of a 64-bit register (or the whole thing) */
424c3383
AP
35u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
36 unsigned long val)
0aa1de57
AP
37{
38 int lower = (offset & 4) * 8;
39 int upper = lower + 8 * len - 1;
40
41 reg &= ~GENMASK_ULL(upper, lower);
42 val &= GENMASK_ULL(len * 8 - 1, 0);
43
44 return reg | ((u64)val << lower);
45}
46
59c5ab40
AP
47bool vgic_has_its(struct kvm *kvm)
48{
49 struct vgic_dist *dist = &kvm->arch.vgic;
50
51 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
52 return false;
53
1085fdc6 54 return dist->has_its;
59c5ab40
AP
55}
56
fd59ed3b
AP
57static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
58 gpa_t addr, unsigned int len)
59{
60 u32 value = 0;
61
62 switch (addr & 0x0c) {
63 case GICD_CTLR:
64 if (vcpu->kvm->arch.vgic.enabled)
65 value |= GICD_CTLR_ENABLE_SS_G1;
66 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
67 break;
68 case GICD_TYPER:
69 value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
70 value = (value >> 5) - 1;
0e4e82f1
AP
71 if (vgic_has_its(vcpu->kvm)) {
72 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
73 value |= GICD_TYPER_LPIS;
74 } else {
75 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
76 }
fd59ed3b
AP
77 break;
78 case GICD_IIDR:
79 value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
80 break;
81 default:
82 return 0;
83 }
84
85 return value;
86}
87
88static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
89 gpa_t addr, unsigned int len,
90 unsigned long val)
91{
92 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
93 bool was_enabled = dist->enabled;
94
95 switch (addr & 0x0c) {
96 case GICD_CTLR:
97 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
98
99 if (!was_enabled && dist->enabled)
100 vgic_kick_vcpus(vcpu->kvm);
101 break;
102 case GICD_TYPER:
103 case GICD_IIDR:
104 return;
105 }
106}
107
78a714ab
AP
108static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
109 gpa_t addr, unsigned int len)
110{
111 int intid = VGIC_ADDR_TO_INTID(addr, 64);
112 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
5dd4b924 113 unsigned long ret = 0;
78a714ab
AP
114
115 if (!irq)
116 return 0;
117
118 /* The upper word is RAZ for us. */
5dd4b924
AP
119 if (!(addr & 4))
120 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
78a714ab 121
5dd4b924
AP
122 vgic_put_irq(vcpu->kvm, irq);
123 return ret;
78a714ab
AP
124}
125
126static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
127 gpa_t addr, unsigned int len,
128 unsigned long val)
129{
130 int intid = VGIC_ADDR_TO_INTID(addr, 64);
5dd4b924 131 struct vgic_irq *irq;
78a714ab
AP
132
133 /* The upper word is WI for us since we don't implement Aff3. */
134 if (addr & 4)
135 return;
136
5dd4b924
AP
137 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
138
139 if (!irq)
140 return;
141
78a714ab
AP
142 spin_lock(&irq->irq_lock);
143
144 /* We only care about and preserve Aff0, Aff1 and Aff2. */
145 irq->mpidr = val & GENMASK(23, 0);
146 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
147
148 spin_unlock(&irq->irq_lock);
5dd4b924 149 vgic_put_irq(vcpu->kvm, irq);
78a714ab
AP
150}
151
59c5ab40
AP
152static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
153 gpa_t addr, unsigned int len)
154{
155 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
156
157 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
158}
159
160
161static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
162 gpa_t addr, unsigned int len,
163 unsigned long val)
164{
165 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
166 bool was_enabled = vgic_cpu->lpis_enabled;
167
168 if (!vgic_has_its(vcpu->kvm))
169 return;
170
171 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
172
0e4e82f1
AP
173 if (!was_enabled && vgic_cpu->lpis_enabled)
174 vgic_enable_lpis(vcpu);
59c5ab40
AP
175}
176
741972d8
AP
177static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
178 gpa_t addr, unsigned int len)
179{
180 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
181 int target_vcpu_id = vcpu->vcpu_id;
182 u64 value;
183
e533a37f 184 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
741972d8
AP
185 value |= ((target_vcpu_id & 0xffff) << 8);
186 if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
187 value |= GICR_TYPER_LAST;
0e4e82f1
AP
188 if (vgic_has_its(vcpu->kvm))
189 value |= GICR_TYPER_PLPIS;
741972d8
AP
190
191 return extract_bytes(value, addr & 7, len);
192}
193
194static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
195 gpa_t addr, unsigned int len)
196{
197 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
198}
199
54f59d2b
AP
200static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
201 gpa_t addr, unsigned int len)
202{
203 switch (addr & 0xffff) {
204 case GICD_PIDR2:
205 /* report a GICv3 compliant implementation */
206 return 0x3b;
207 }
208
209 return 0;
210}
211
2df903a8
VK
212static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
213 gpa_t addr, unsigned int len)
214{
215 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
216 u32 value = 0;
217 int i;
218
219 /*
220 * pending state of interrupt is latched in pending_latch variable.
221 * Userspace will save and restore pending state and line_level
222 * separately.
223 * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
224 * for handling of ISPENDR and ICPENDR.
225 */
226 for (i = 0; i < len * 8; i++) {
227 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
228
229 if (irq->pending_latch)
230 value |= (1U << i);
231
232 vgic_put_irq(vcpu->kvm, irq);
233 }
234
235 return value;
236}
237
238static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
239 gpa_t addr, unsigned int len,
240 unsigned long val)
241{
242 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
243 int i;
244
245 for (i = 0; i < len * 8; i++) {
246 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
247
248 spin_lock(&irq->irq_lock);
249 if (test_bit(i, &val)) {
250 /*
251 * pending_latch is set irrespective of irq type
252 * (level or edge) to avoid dependency that VM should
253 * restore irq config before pending info.
254 */
255 irq->pending_latch = true;
256 vgic_queue_irq_unlock(vcpu->kvm, irq);
257 } else {
258 irq->pending_latch = false;
259 spin_unlock(&irq->irq_lock);
260 }
261
262 vgic_put_irq(vcpu->kvm, irq);
263 }
264}
265
0aa1de57
AP
266/* We want to avoid outer shareable. */
267u64 vgic_sanitise_shareability(u64 field)
268{
269 switch (field) {
270 case GIC_BASER_OuterShareable:
271 return GIC_BASER_InnerShareable;
272 default:
273 return field;
274 }
275}
276
277/* Avoid any inner non-cacheable mapping. */
278u64 vgic_sanitise_inner_cacheability(u64 field)
279{
280 switch (field) {
281 case GIC_BASER_CACHE_nCnB:
282 case GIC_BASER_CACHE_nC:
283 return GIC_BASER_CACHE_RaWb;
284 default:
285 return field;
286 }
287}
288
289/* Non-cacheable or same-as-inner are OK. */
290u64 vgic_sanitise_outer_cacheability(u64 field)
291{
292 switch (field) {
293 case GIC_BASER_CACHE_SameAsInner:
294 case GIC_BASER_CACHE_nC:
295 return field;
296 default:
297 return GIC_BASER_CACHE_nC;
298 }
299}
300
301u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
302 u64 (*sanitise_fn)(u64))
303{
304 u64 field = (reg & field_mask) >> field_shift;
305
306 field = sanitise_fn(field) << field_shift;
307 return (reg & ~field_mask) | field;
308}
309
310#define PROPBASER_RES0_MASK \
311 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
312#define PENDBASER_RES0_MASK \
313 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
314 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
315
316static u64 vgic_sanitise_pendbaser(u64 reg)
317{
318 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
319 GICR_PENDBASER_SHAREABILITY_SHIFT,
320 vgic_sanitise_shareability);
321 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
322 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
323 vgic_sanitise_inner_cacheability);
324 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
325 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
326 vgic_sanitise_outer_cacheability);
327
328 reg &= ~PENDBASER_RES0_MASK;
329 reg &= ~GENMASK_ULL(51, 48);
330
331 return reg;
332}
333
334static u64 vgic_sanitise_propbaser(u64 reg)
335{
336 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
337 GICR_PROPBASER_SHAREABILITY_SHIFT,
338 vgic_sanitise_shareability);
339 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
340 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
341 vgic_sanitise_inner_cacheability);
342 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
343 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
344 vgic_sanitise_outer_cacheability);
345
346 reg &= ~PROPBASER_RES0_MASK;
347 reg &= ~GENMASK_ULL(51, 48);
348 return reg;
349}
350
351static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
352 gpa_t addr, unsigned int len)
353{
354 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
355
356 return extract_bytes(dist->propbaser, addr & 7, len);
357}
358
359static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
360 gpa_t addr, unsigned int len,
361 unsigned long val)
362{
363 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
364 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 365 u64 old_propbaser, propbaser;
0aa1de57
AP
366
367 /* Storing a value with LPIs already enabled is undefined */
368 if (vgic_cpu->lpis_enabled)
369 return;
370
d9ae449b
CD
371 do {
372 old_propbaser = dist->propbaser;
373 propbaser = old_propbaser;
374 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
375 propbaser = vgic_sanitise_propbaser(propbaser);
376 } while (cmpxchg64(&dist->propbaser, old_propbaser,
377 propbaser) != old_propbaser);
0aa1de57
AP
378}
379
380static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
381 gpa_t addr, unsigned int len)
382{
383 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
384
385 return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
386}
387
388static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
389 gpa_t addr, unsigned int len,
390 unsigned long val)
391{
392 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 393 u64 old_pendbaser, pendbaser;
0aa1de57
AP
394
395 /* Storing a value with LPIs already enabled is undefined */
396 if (vgic_cpu->lpis_enabled)
397 return;
398
d9ae449b
CD
399 do {
400 old_pendbaser = vgic_cpu->pendbaser;
401 pendbaser = old_pendbaser;
402 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
403 pendbaser = vgic_sanitise_pendbaser(pendbaser);
404 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
405 pendbaser) != old_pendbaser);
0aa1de57
AP
406}
407
ed9b8cef
AP
408/*
409 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
410 * redistributors, while SPIs are covered by registers in the distributor
411 * block. Trying to set private IRQs in this block gets ignored.
412 * We take some special care here to fix the calculation of the register
413 * offset.
414 */
2df903a8 415#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
ed9b8cef
AP
416 { \
417 .reg_offset = off, \
418 .bits_per_irq = bpi, \
419 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
420 .access_flags = acc, \
421 .read = vgic_mmio_read_raz, \
422 .write = vgic_mmio_write_wi, \
423 }, { \
424 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
425 .bits_per_irq = bpi, \
426 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
427 .access_flags = acc, \
428 .read = rd, \
429 .write = wr, \
2df903a8
VK
430 .uaccess_read = ur, \
431 .uaccess_write = uw, \
ed9b8cef
AP
432 }
433
434static const struct vgic_register_region vgic_v3_dist_registers[] = {
435 REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
fd59ed3b 436 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
ed9b8cef 437 VGIC_ACCESS_32bit),
94574c94
VK
438 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
439 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
440 VGIC_ACCESS_32bit),
ed9b8cef 441 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
2df903a8 442 vgic_mmio_read_rao, vgic_mmio_write_wi, NULL, NULL, 1,
ed9b8cef
AP
443 VGIC_ACCESS_32bit),
444 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
2df903a8 445 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
ed9b8cef
AP
446 VGIC_ACCESS_32bit),
447 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
2df903a8 448 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
ed9b8cef
AP
449 VGIC_ACCESS_32bit),
450 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
2df903a8
VK
451 vgic_mmio_read_pending, vgic_mmio_write_spending,
452 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
ed9b8cef
AP
453 VGIC_ACCESS_32bit),
454 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
2df903a8
VK
455 vgic_mmio_read_pending, vgic_mmio_write_cpending,
456 vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
ed9b8cef
AP
457 VGIC_ACCESS_32bit),
458 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
2df903a8 459 vgic_mmio_read_active, vgic_mmio_write_sactive, NULL, NULL, 1,
ed9b8cef
AP
460 VGIC_ACCESS_32bit),
461 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
2df903a8 462 vgic_mmio_read_active, vgic_mmio_write_cactive, NULL, NULL, 1,
ed9b8cef
AP
463 VGIC_ACCESS_32bit),
464 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
2df903a8
VK
465 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
466 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
ed9b8cef 467 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
2df903a8 468 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
ed9b8cef
AP
469 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
470 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
2df903a8 471 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
ed9b8cef
AP
472 VGIC_ACCESS_32bit),
473 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
2df903a8 474 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
ed9b8cef
AP
475 VGIC_ACCESS_32bit),
476 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
2df903a8 477 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
ed9b8cef
AP
478 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
479 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
54f59d2b 480 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
481 VGIC_ACCESS_32bit),
482};
483
484static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
485 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
59c5ab40 486 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
ed9b8cef 487 VGIC_ACCESS_32bit),
94574c94
VK
488 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
489 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
490 VGIC_ACCESS_32bit),
ed9b8cef 491 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
741972d8 492 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
ed9b8cef
AP
493 VGIC_ACCESS_32bit),
494 REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
741972d8 495 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
ed9b8cef 496 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
94574c94
VK
497 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
498 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
499 VGIC_ACCESS_32bit),
ed9b8cef 500 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
0aa1de57 501 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
ed9b8cef
AP
502 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
503 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
0aa1de57 504 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
ed9b8cef
AP
505 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
506 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
54f59d2b 507 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
508 VGIC_ACCESS_32bit),
509};
510
511static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
512 REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
513 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
514 VGIC_ACCESS_32bit),
515 REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
516 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
517 VGIC_ACCESS_32bit),
518 REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
519 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
520 VGIC_ACCESS_32bit),
2df903a8
VK
521 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
522 vgic_mmio_read_pending, vgic_mmio_write_spending,
523 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
ed9b8cef 524 VGIC_ACCESS_32bit),
2df903a8
VK
525 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
526 vgic_mmio_read_pending, vgic_mmio_write_cpending,
527 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
ed9b8cef
AP
528 VGIC_ACCESS_32bit),
529 REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
530 vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
531 VGIC_ACCESS_32bit),
532 REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
533 vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
534 VGIC_ACCESS_32bit),
535 REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
536 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
537 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
538 REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
539 vgic_mmio_read_config, vgic_mmio_write_config, 8,
540 VGIC_ACCESS_32bit),
541 REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
542 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
543 VGIC_ACCESS_32bit),
544 REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
545 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
546 VGIC_ACCESS_32bit),
547};
548
549unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
550{
551 dev->regions = vgic_v3_dist_registers;
552 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
553
554 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
555
556 return SZ_64K;
557}
558
559int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
560{
ed9b8cef 561 struct kvm_vcpu *vcpu;
ed9b8cef
AP
562 int c, ret = 0;
563
ed9b8cef
AP
564 kvm_for_each_vcpu(c, vcpu, kvm) {
565 gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
566 gpa_t sgi_base = rd_base + SZ_64K;
8f6cdc1c
AP
567 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
568 struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
ed9b8cef
AP
569
570 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
571 rd_dev->base_addr = rd_base;
59c5ab40 572 rd_dev->iodev_type = IODEV_REDIST;
ed9b8cef
AP
573 rd_dev->regions = vgic_v3_rdbase_registers;
574 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
575 rd_dev->redist_vcpu = vcpu;
576
577 mutex_lock(&kvm->slots_lock);
578 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
579 SZ_64K, &rd_dev->dev);
580 mutex_unlock(&kvm->slots_lock);
581
582 if (ret)
583 break;
584
585 kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
586 sgi_dev->base_addr = sgi_base;
59c5ab40 587 sgi_dev->iodev_type = IODEV_REDIST;
ed9b8cef
AP
588 sgi_dev->regions = vgic_v3_sgibase_registers;
589 sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
590 sgi_dev->redist_vcpu = vcpu;
591
592 mutex_lock(&kvm->slots_lock);
593 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
594 SZ_64K, &sgi_dev->dev);
595 mutex_unlock(&kvm->slots_lock);
596 if (ret) {
597 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
598 &rd_dev->dev);
599 break;
600 }
601 }
602
603 if (ret) {
604 /* The current c failed, so we start with the previous one. */
605 for (c--; c >= 0; c--) {
8f6cdc1c
AP
606 struct vgic_cpu *vgic_cpu;
607
608 vcpu = kvm_get_vcpu(kvm, c);
609 vgic_cpu = &vcpu->arch.vgic_cpu;
ed9b8cef 610 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
8f6cdc1c 611 &vgic_cpu->rd_iodev.dev);
ed9b8cef 612 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
8f6cdc1c 613 &vgic_cpu->sgi_iodev.dev);
ed9b8cef 614 }
ed9b8cef
AP
615 }
616
617 return ret;
618}
621ecd8d 619
94574c94
VK
620int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
621{
622 const struct vgic_register_region *region;
623 struct vgic_io_device iodev;
624 struct vgic_reg_attr reg_attr;
625 struct kvm_vcpu *vcpu;
626 gpa_t addr;
627 int ret;
628
629 ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
630 if (ret)
631 return ret;
632
633 vcpu = reg_attr.vcpu;
634 addr = reg_attr.addr;
635
636 switch (attr->group) {
637 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
638 iodev.regions = vgic_v3_dist_registers;
639 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
640 iodev.base_addr = 0;
641 break;
642 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
643 iodev.regions = vgic_v3_rdbase_registers;
644 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
645 iodev.base_addr = 0;
646 break;
647 }
d017d7b0
VK
648 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
649 u64 reg, id;
650
651 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
652 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
653 }
94574c94
VK
654 default:
655 return -ENXIO;
656 }
657
658 /* We only support aligned 32-bit accesses. */
659 if (addr & 3)
660 return -ENXIO;
661
662 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
663 if (!region)
664 return -ENXIO;
665
666 return 0;
667}
621ecd8d
AP
668/*
669 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
670 * generation register ICC_SGI1R_EL1) with a given VCPU.
671 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
672 * return -1.
673 */
674static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
675{
676 unsigned long affinity;
677 int level0;
678
679 /*
680 * Split the current VCPU's MPIDR into affinity level 0 and the
681 * rest as this is what we have to compare against.
682 */
683 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
684 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
685 affinity &= ~MPIDR_LEVEL_MASK;
686
687 /* bail out if the upper three levels don't match */
688 if (sgi_aff != affinity)
689 return -1;
690
691 /* Is this VCPU's bit set in the mask ? */
692 if (!(sgi_cpu_mask & BIT(level0)))
693 return -1;
694
695 return level0;
696}
697
698/*
699 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
700 * so provide a wrapper to use the existing defines to isolate a certain
701 * affinity level.
702 */
703#define SGI_AFFINITY_LEVEL(reg, level) \
704 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
705 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
706
707/**
708 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
709 * @vcpu: The VCPU requesting a SGI
710 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
711 *
712 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
713 * This will trap in sys_regs.c and call this function.
714 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
715 * target processors as well as a bitmask of 16 Aff0 CPUs.
716 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
717 * check for matching ones. If this bit is set, we signal all, but not the
718 * calling VCPU.
719 */
720void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
721{
722 struct kvm *kvm = vcpu->kvm;
723 struct kvm_vcpu *c_vcpu;
724 u16 target_cpus;
725 u64 mpidr;
726 int sgi, c;
727 int vcpu_id = vcpu->vcpu_id;
728 bool broadcast;
729
730 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
e533a37f 731 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
621ecd8d
AP
732 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
733 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
734 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
735 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
736
737 /*
738 * We iterate over all VCPUs to find the MPIDRs matching the request.
739 * If we have handled one CPU, we clear its bit to detect early
740 * if we are already finished. This avoids iterating through all
741 * VCPUs when most of the times we just signal a single VCPU.
742 */
743 kvm_for_each_vcpu(c, c_vcpu, kvm) {
744 struct vgic_irq *irq;
745
746 /* Exit early if we have dealt with all requested CPUs */
747 if (!broadcast && target_cpus == 0)
748 break;
749
750 /* Don't signal the calling VCPU */
751 if (broadcast && c == vcpu_id)
752 continue;
753
754 if (!broadcast) {
755 int level0;
756
757 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
758 if (level0 == -1)
759 continue;
760
761 /* remove this matching VCPU from the mask */
762 target_cpus &= ~BIT(level0);
763 }
764
765 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
766
767 spin_lock(&irq->irq_lock);
8694e4da 768 irq->pending_latch = true;
621ecd8d
AP
769
770 vgic_queue_irq_unlock(vcpu->kvm, irq);
5dd4b924 771 vgic_put_irq(vcpu->kvm, irq);
621ecd8d
AP
772 }
773}
94574c94
VK
774
775int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
776 int offset, u32 *val)
777{
778 struct vgic_io_device dev = {
779 .regions = vgic_v3_dist_registers,
780 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
781 };
782
783 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
784}
785
786int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
787 int offset, u32 *val)
788{
789 struct vgic_io_device rd_dev = {
790 .regions = vgic_v3_rdbase_registers,
791 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
792 };
793
794 struct vgic_io_device sgi_dev = {
795 .regions = vgic_v3_sgibase_registers,
796 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
797 };
798
799 /* SGI_base is the next 64K frame after RD_base */
800 if (offset >= SZ_64K)
801 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
802 val);
803 else
804 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
805}