Merge branch 'kvm-arm64/gic-v4.1' into kvmarm-master/next
[linux-2.6-block.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
CommitLineData
1802d0be 1// SPDX-License-Identifier: GPL-2.0-only
ed9b8cef
AP
2/*
3 * VGICv3 MMIO handling functions
ed9b8cef
AP
4 */
5
2291ff2f 6#include <linux/bitfield.h>
ed9b8cef
AP
7#include <linux/irqchip/arm-gic-v3.h>
8#include <linux/kvm.h>
9#include <linux/kvm_host.h>
ef1820be 10#include <linux/interrupt.h>
ed9b8cef
AP
11#include <kvm/iodev.h>
12#include <kvm/arm_vgic.h>
13
14#include <asm/kvm_emulate.h>
94574c94
VK
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
ed9b8cef
AP
17
18#include "vgic.h"
19#include "vgic-mmio.h"
20
741972d8 21/* extract @num bytes at @offset bytes offset in data */
d7d0a11e 22unsigned long extract_bytes(u64 data, unsigned int offset,
424c3383 23 unsigned int num)
741972d8
AP
24{
25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26}
27
0aa1de57 28/* allows updates of any half of a 64-bit register (or the whole thing) */
424c3383
AP
29u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 unsigned long val)
0aa1de57
AP
31{
32 int lower = (offset & 4) * 8;
33 int upper = lower + 8 * len - 1;
34
35 reg &= ~GENMASK_ULL(upper, lower);
36 val &= GENMASK_ULL(len * 8 - 1, 0);
37
38 return reg | ((u64)val << lower);
39}
40
59c5ab40
AP
41bool vgic_has_its(struct kvm *kvm)
42{
43 struct vgic_dist *dist = &kvm->arch.vgic;
44
45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 return false;
47
1085fdc6 48 return dist->has_its;
59c5ab40
AP
49}
50
e7c48059
MZ
51bool vgic_supports_direct_msis(struct kvm *kvm)
52{
53 return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
54}
55
d53c2c29
CD
56/*
57 * The Revision field in the IIDR have the following meanings:
58 *
59 * Revision 2: Interrupt groups are guest-configurable and signaled using
60 * their configured groups.
61 */
62
fd59ed3b
AP
63static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
64 gpa_t addr, unsigned int len)
65{
aa075b0f 66 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
fd59ed3b
AP
67 u32 value = 0;
68
69 switch (addr & 0x0c) {
70 case GICD_CTLR:
aa075b0f 71 if (vgic->enabled)
fd59ed3b
AP
72 value |= GICD_CTLR_ENABLE_SS_G1;
73 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
2291ff2f
MZ
74 if (vgic->nassgireq)
75 value |= GICD_CTLR_nASSGIreq;
fd59ed3b
AP
76 break;
77 case GICD_TYPER:
aa075b0f 78 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
fd59ed3b 79 value = (value >> 5) - 1;
0e4e82f1
AP
80 if (vgic_has_its(vcpu->kvm)) {
81 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
82 value |= GICD_TYPER_LPIS;
83 } else {
84 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
85 }
fd59ed3b 86 break;
2291ff2f
MZ
87 case GICD_TYPER2:
88 if (kvm_vgic_global_state.has_gicv4_1)
89 value = GICD_TYPER2_nASSGIcap;
90 break;
fd59ed3b 91 case GICD_IIDR:
a2dca217 92 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
aa075b0f 93 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
a2dca217 94 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
fd59ed3b
AP
95 break;
96 default:
97 return 0;
98 }
99
100 return value;
101}
102
103static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
104 gpa_t addr, unsigned int len,
105 unsigned long val)
106{
107 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
fd59ed3b
AP
108
109 switch (addr & 0x0c) {
2291ff2f
MZ
110 case GICD_CTLR: {
111 bool was_enabled, is_hwsgi;
112
113 mutex_lock(&vcpu->kvm->lock);
114
115 was_enabled = dist->enabled;
116 is_hwsgi = dist->nassgireq;
117
fd59ed3b
AP
118 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
119
2291ff2f
MZ
120 /* Not a GICv4.1? No HW SGIs */
121 if (!kvm_vgic_global_state.has_gicv4_1)
122 val &= ~GICD_CTLR_nASSGIreq;
123
124 /* Dist stays enabled? nASSGIreq is RO */
125 if (was_enabled && dist->enabled) {
126 val &= ~GICD_CTLR_nASSGIreq;
127 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
128 }
129
130 /* Switching HW SGIs? */
131 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
132 if (is_hwsgi != dist->nassgireq)
133 vgic_v4_configure_vsgis(vcpu->kvm);
134
d9c3872c
MZ
135 if (kvm_vgic_global_state.has_gicv4_1 &&
136 was_enabled != dist->enabled)
137 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
138 else if (!was_enabled && dist->enabled)
fd59ed3b 139 vgic_kick_vcpus(vcpu->kvm);
2291ff2f
MZ
140
141 mutex_unlock(&vcpu->kvm->lock);
fd59ed3b 142 break;
2291ff2f 143 }
fd59ed3b 144 case GICD_TYPER:
2291ff2f 145 case GICD_TYPER2:
fd59ed3b 146 case GICD_IIDR:
2291ff2f 147 /* This is at best for documentation purposes... */
fd59ed3b
AP
148 return;
149 }
150}
151
b489edc3
CD
152static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
153 gpa_t addr, unsigned int len,
154 unsigned long val)
155{
2291ff2f
MZ
156 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
157
b489edc3 158 switch (addr & 0x0c) {
2291ff2f 159 case GICD_TYPER2:
b489edc3
CD
160 case GICD_IIDR:
161 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
162 return -EINVAL;
2291ff2f
MZ
163 return 0;
164 case GICD_CTLR:
165 /* Not a GICv4.1? No HW SGIs */
166 if (!kvm_vgic_global_state.has_gicv4_1)
167 val &= ~GICD_CTLR_nASSGIreq;
168
169 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
170 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
171 return 0;
b489edc3
CD
172 }
173
174 vgic_mmio_write_v3_misc(vcpu, addr, len, val);
175 return 0;
176}
177
78a714ab
AP
178static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
179 gpa_t addr, unsigned int len)
180{
181 int intid = VGIC_ADDR_TO_INTID(addr, 64);
182 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
5dd4b924 183 unsigned long ret = 0;
78a714ab
AP
184
185 if (!irq)
186 return 0;
187
188 /* The upper word is RAZ for us. */
5dd4b924
AP
189 if (!(addr & 4))
190 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
78a714ab 191
5dd4b924
AP
192 vgic_put_irq(vcpu->kvm, irq);
193 return ret;
78a714ab
AP
194}
195
196static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
197 gpa_t addr, unsigned int len,
198 unsigned long val)
199{
200 int intid = VGIC_ADDR_TO_INTID(addr, 64);
5dd4b924 201 struct vgic_irq *irq;
006df0f3 202 unsigned long flags;
78a714ab
AP
203
204 /* The upper word is WI for us since we don't implement Aff3. */
205 if (addr & 4)
206 return;
207
5dd4b924
AP
208 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
209
210 if (!irq)
211 return;
212
8fa3adb8 213 raw_spin_lock_irqsave(&irq->irq_lock, flags);
78a714ab
AP
214
215 /* We only care about and preserve Aff0, Aff1 and Aff2. */
216 irq->mpidr = val & GENMASK(23, 0);
217 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
218
8fa3adb8 219 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
5dd4b924 220 vgic_put_irq(vcpu->kvm, irq);
78a714ab
AP
221}
222
59c5ab40
AP
223static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
224 gpa_t addr, unsigned int len)
225{
226 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
227
228 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
229}
230
231
232static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
233 gpa_t addr, unsigned int len,
234 unsigned long val)
235{
236 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
237 bool was_enabled = vgic_cpu->lpis_enabled;
238
239 if (!vgic_has_its(vcpu->kvm))
240 return;
241
242 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
243
b4931afc 244 if (was_enabled && !vgic_cpu->lpis_enabled) {
96085b94 245 vgic_flush_pending_lpis(vcpu);
b4931afc
MZ
246 vgic_its_invalidate_cache(vcpu->kvm);
247 }
96085b94 248
0e4e82f1
AP
249 if (!was_enabled && vgic_cpu->lpis_enabled)
250 vgic_enable_lpis(vcpu);
59c5ab40
AP
251}
252
741972d8
AP
253static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
254 gpa_t addr, unsigned int len)
255{
256 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
ba7b3f12
EA
257 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
258 struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
741972d8 259 int target_vcpu_id = vcpu->vcpu_id;
ba7b3f12
EA
260 gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
261 (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
741972d8
AP
262 u64 value;
263
e533a37f 264 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
741972d8 265 value |= ((target_vcpu_id & 0xffff) << 8);
ba7b3f12
EA
266
267 if (addr == last_rdist_typer)
741972d8 268 value |= GICR_TYPER_LAST;
0e4e82f1
AP
269 if (vgic_has_its(vcpu->kvm))
270 value |= GICR_TYPER_PLPIS;
741972d8
AP
271
272 return extract_bytes(value, addr & 7, len);
273}
274
275static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
276 gpa_t addr, unsigned int len)
277{
278 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
279}
280
54f59d2b
AP
281static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
282 gpa_t addr, unsigned int len)
283{
284 switch (addr & 0xffff) {
285 case GICD_PIDR2:
286 /* report a GICv3 compliant implementation */
287 return 0x3b;
288 }
289
290 return 0;
291}
292
2df903a8
VK
293static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
294 gpa_t addr, unsigned int len)
295{
296 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
297 u32 value = 0;
298 int i;
299
300 /*
301 * pending state of interrupt is latched in pending_latch variable.
302 * Userspace will save and restore pending state and line_level
303 * separately.
2f5947df 304 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt
2df903a8
VK
305 * for handling of ISPENDR and ICPENDR.
306 */
307 for (i = 0; i < len * 8; i++) {
308 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
ef1820be 309 bool state = irq->pending_latch;
2df903a8 310
ef1820be
MZ
311 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
312 int err;
313
314 err = irq_get_irqchip_state(irq->host_irq,
315 IRQCHIP_STATE_PENDING,
316 &state);
317 WARN_ON(err);
318 }
319
320 if (state)
2df903a8
VK
321 value |= (1U << i);
322
323 vgic_put_irq(vcpu->kvm, irq);
324 }
325
326 return value;
327}
328
c6e0917b
CD
329static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
330 gpa_t addr, unsigned int len,
331 unsigned long val)
2df903a8
VK
332{
333 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
334 int i;
006df0f3 335 unsigned long flags;
2df903a8
VK
336
337 for (i = 0; i < len * 8; i++) {
338 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
339
8fa3adb8 340 raw_spin_lock_irqsave(&irq->irq_lock, flags);
2df903a8
VK
341 if (test_bit(i, &val)) {
342 /*
343 * pending_latch is set irrespective of irq type
344 * (level or edge) to avoid dependency that VM should
345 * restore irq config before pending info.
346 */
347 irq->pending_latch = true;
006df0f3 348 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
2df903a8
VK
349 } else {
350 irq->pending_latch = false;
8fa3adb8 351 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
2df903a8
VK
352 }
353
354 vgic_put_irq(vcpu->kvm, irq);
355 }
c6e0917b
CD
356
357 return 0;
2df903a8
VK
358}
359
0aa1de57
AP
360/* We want to avoid outer shareable. */
361u64 vgic_sanitise_shareability(u64 field)
362{
363 switch (field) {
364 case GIC_BASER_OuterShareable:
365 return GIC_BASER_InnerShareable;
366 default:
367 return field;
368 }
369}
370
371/* Avoid any inner non-cacheable mapping. */
372u64 vgic_sanitise_inner_cacheability(u64 field)
373{
374 switch (field) {
375 case GIC_BASER_CACHE_nCnB:
376 case GIC_BASER_CACHE_nC:
377 return GIC_BASER_CACHE_RaWb;
378 default:
379 return field;
380 }
381}
382
383/* Non-cacheable or same-as-inner are OK. */
384u64 vgic_sanitise_outer_cacheability(u64 field)
385{
386 switch (field) {
387 case GIC_BASER_CACHE_SameAsInner:
388 case GIC_BASER_CACHE_nC:
389 return field;
390 default:
391 return GIC_BASER_CACHE_nC;
392 }
393}
394
395u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
396 u64 (*sanitise_fn)(u64))
397{
398 u64 field = (reg & field_mask) >> field_shift;
399
400 field = sanitise_fn(field) << field_shift;
401 return (reg & ~field_mask) | field;
402}
403
404#define PROPBASER_RES0_MASK \
405 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
406#define PENDBASER_RES0_MASK \
407 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
408 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
409
410static u64 vgic_sanitise_pendbaser(u64 reg)
411{
412 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
413 GICR_PENDBASER_SHAREABILITY_SHIFT,
414 vgic_sanitise_shareability);
415 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
416 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
417 vgic_sanitise_inner_cacheability);
418 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
419 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
420 vgic_sanitise_outer_cacheability);
421
422 reg &= ~PENDBASER_RES0_MASK;
0aa1de57
AP
423
424 return reg;
425}
426
427static u64 vgic_sanitise_propbaser(u64 reg)
428{
429 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
430 GICR_PROPBASER_SHAREABILITY_SHIFT,
431 vgic_sanitise_shareability);
432 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
433 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
434 vgic_sanitise_inner_cacheability);
435 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
436 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
437 vgic_sanitise_outer_cacheability);
438
439 reg &= ~PROPBASER_RES0_MASK;
0aa1de57
AP
440 return reg;
441}
442
443static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
444 gpa_t addr, unsigned int len)
445{
446 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
447
448 return extract_bytes(dist->propbaser, addr & 7, len);
449}
450
451static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
452 gpa_t addr, unsigned int len,
453 unsigned long val)
454{
455 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
456 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 457 u64 old_propbaser, propbaser;
0aa1de57
AP
458
459 /* Storing a value with LPIs already enabled is undefined */
460 if (vgic_cpu->lpis_enabled)
461 return;
462
d9ae449b 463 do {
3af4e414 464 old_propbaser = READ_ONCE(dist->propbaser);
d9ae449b
CD
465 propbaser = old_propbaser;
466 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
467 propbaser = vgic_sanitise_propbaser(propbaser);
468 } while (cmpxchg64(&dist->propbaser, old_propbaser,
469 propbaser) != old_propbaser);
0aa1de57
AP
470}
471
472static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
473 gpa_t addr, unsigned int len)
474{
475 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5f675c56 476 u64 value = vgic_cpu->pendbaser;
0aa1de57 477
5f675c56
ZY
478 value &= ~GICR_PENDBASER_PTZ;
479
480 return extract_bytes(value, addr & 7, len);
0aa1de57
AP
481}
482
483static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
484 gpa_t addr, unsigned int len,
485 unsigned long val)
486{
487 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 488 u64 old_pendbaser, pendbaser;
0aa1de57
AP
489
490 /* Storing a value with LPIs already enabled is undefined */
491 if (vgic_cpu->lpis_enabled)
492 return;
493
d9ae449b 494 do {
3af4e414 495 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
d9ae449b
CD
496 pendbaser = old_pendbaser;
497 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
498 pendbaser = vgic_sanitise_pendbaser(pendbaser);
499 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
500 pendbaser) != old_pendbaser);
0aa1de57
AP
501}
502
ed9b8cef
AP
503/*
504 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
505 * redistributors, while SPIs are covered by registers in the distributor
506 * block. Trying to set private IRQs in this block gets ignored.
507 * We take some special care here to fix the calculation of the register
508 * offset.
509 */
2df903a8 510#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
ed9b8cef
AP
511 { \
512 .reg_offset = off, \
513 .bits_per_irq = bpi, \
514 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
515 .access_flags = acc, \
516 .read = vgic_mmio_read_raz, \
517 .write = vgic_mmio_write_wi, \
518 }, { \
519 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
520 .bits_per_irq = bpi, \
521 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
522 .access_flags = acc, \
523 .read = rd, \
524 .write = wr, \
2df903a8
VK
525 .uaccess_read = ur, \
526 .uaccess_write = uw, \
ed9b8cef
AP
527 }
528
529static const struct vgic_register_region vgic_v3_dist_registers[] = {
b489edc3
CD
530 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
531 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
532 NULL, vgic_mmio_uaccess_write_v3_misc,
533 16, VGIC_ACCESS_32bit),
94574c94
VK
534 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
535 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
536 VGIC_ACCESS_32bit),
ed9b8cef 537 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
d53c2c29 538 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
ed9b8cef
AP
539 VGIC_ACCESS_32bit),
540 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
2df903a8 541 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
ed9b8cef
AP
542 VGIC_ACCESS_32bit),
543 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
2df903a8 544 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
ed9b8cef
AP
545 VGIC_ACCESS_32bit),
546 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
2df903a8
VK
547 vgic_mmio_read_pending, vgic_mmio_write_spending,
548 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
ed9b8cef
AP
549 VGIC_ACCESS_32bit),
550 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
2df903a8 551 vgic_mmio_read_pending, vgic_mmio_write_cpending,
c6e0917b 552 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
ed9b8cef
AP
553 VGIC_ACCESS_32bit),
554 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
3197191e
CD
555 vgic_mmio_read_active, vgic_mmio_write_sactive,
556 NULL, vgic_mmio_uaccess_write_sactive, 1,
ed9b8cef
AP
557 VGIC_ACCESS_32bit),
558 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
3197191e
CD
559 vgic_mmio_read_active, vgic_mmio_write_cactive,
560 NULL, vgic_mmio_uaccess_write_cactive,
561 1, VGIC_ACCESS_32bit),
ed9b8cef 562 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
2df903a8
VK
563 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
564 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
ed9b8cef 565 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
2df903a8 566 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
ed9b8cef
AP
567 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
568 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
2df903a8 569 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
ed9b8cef
AP
570 VGIC_ACCESS_32bit),
571 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
2df903a8 572 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
ed9b8cef
AP
573 VGIC_ACCESS_32bit),
574 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
2df903a8 575 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
ed9b8cef
AP
576 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
577 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
54f59d2b 578 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
579 VGIC_ACCESS_32bit),
580};
581
3109741a
EA
582static const struct vgic_register_region vgic_v3_rd_registers[] = {
583 /* RD_base registers */
ed9b8cef 584 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
59c5ab40 585 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
ed9b8cef 586 VGIC_ACCESS_32bit),
94574c94
VK
587 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
588 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
589 VGIC_ACCESS_32bit),
ed9b8cef 590 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
741972d8 591 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
ed9b8cef
AP
592 VGIC_ACCESS_32bit),
593 REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
741972d8 594 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
ed9b8cef 595 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
94574c94
VK
596 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
597 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
598 VGIC_ACCESS_32bit),
ed9b8cef 599 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
0aa1de57 600 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
ed9b8cef
AP
601 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
602 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
0aa1de57 603 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
ed9b8cef
AP
604 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
605 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
54f59d2b 606 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef 607 VGIC_ACCESS_32bit),
3109741a
EA
608 /* SGI_base registers */
609 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
d53c2c29 610 vgic_mmio_read_group, vgic_mmio_write_group, 4,
ed9b8cef 611 VGIC_ACCESS_32bit),
3109741a 612 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ISENABLER0,
ed9b8cef
AP
613 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
614 VGIC_ACCESS_32bit),
3109741a 615 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICENABLER0,
ed9b8cef
AP
616 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
617 VGIC_ACCESS_32bit),
3109741a 618 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
2df903a8
VK
619 vgic_mmio_read_pending, vgic_mmio_write_spending,
620 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
ed9b8cef 621 VGIC_ACCESS_32bit),
3109741a 622 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
2df903a8 623 vgic_mmio_read_pending, vgic_mmio_write_cpending,
c6e0917b 624 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
ed9b8cef 625 VGIC_ACCESS_32bit),
3109741a 626 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
0710f9a6
CD
627 vgic_mmio_read_active, vgic_mmio_write_sactive,
628 NULL, vgic_mmio_uaccess_write_sactive,
629 4, VGIC_ACCESS_32bit),
3109741a 630 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
0710f9a6
CD
631 vgic_mmio_read_active, vgic_mmio_write_cactive,
632 NULL, vgic_mmio_uaccess_write_cactive,
633 4, VGIC_ACCESS_32bit),
3109741a 634 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
ed9b8cef
AP
635 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
636 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
3109741a 637 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
ed9b8cef
AP
638 vgic_mmio_read_config, vgic_mmio_write_config, 8,
639 VGIC_ACCESS_32bit),
3109741a 640 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
ed9b8cef
AP
641 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
642 VGIC_ACCESS_32bit),
3109741a 643 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
ed9b8cef
AP
644 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
645 VGIC_ACCESS_32bit),
646};
647
648unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
649{
650 dev->regions = vgic_v3_dist_registers;
651 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
652
653 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
654
655 return SZ_64K;
656}
657
7fadcd3a
CD
658/**
659 * vgic_register_redist_iodev - register a single redist iodev
660 * @vcpu: The VCPU to which the redistributor belongs
661 *
662 * Register a KVM iodev for this VCPU's redistributor using the address
663 * provided.
664 *
665 * Return 0 on success, -ERRNO otherwise.
666 */
1aab6f46 667int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
7fadcd3a
CD
668{
669 struct kvm *kvm = vcpu->kvm;
670 struct vgic_dist *vgic = &kvm->arch.vgic;
dbd9733a 671 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
7fadcd3a 672 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
dbd9733a 673 struct vgic_redist_region *rdreg;
3109741a 674 gpa_t rd_base;
7fadcd3a
CD
675 int ret;
676
c011f4ea
EA
677 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
678 return 0;
679
1aab6f46
CD
680 /*
681 * We may be creating VCPUs before having set the base address for the
682 * redistributor region, in which case we will come back to this
683 * function for all VCPUs when the base address is set. Just return
684 * without doing any work for now.
685 */
dc524619 686 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
dbd9733a 687 if (!rdreg)
1aab6f46
CD
688 return 0;
689
690 if (!vgic_v3_check_base(kvm))
691 return -EINVAL;
692
dbd9733a
EA
693 vgic_cpu->rdreg = rdreg;
694
695 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
7fadcd3a
CD
696
697 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
698 rd_dev->base_addr = rd_base;
699 rd_dev->iodev_type = IODEV_REDIST;
3109741a
EA
700 rd_dev->regions = vgic_v3_rd_registers;
701 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
7fadcd3a
CD
702 rd_dev->redist_vcpu = vcpu;
703
704 mutex_lock(&kvm->slots_lock);
705 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
3109741a 706 2 * SZ_64K, &rd_dev->dev);
7fadcd3a
CD
707 mutex_unlock(&kvm->slots_lock);
708
709 if (ret)
710 return ret;
711
dbd9733a 712 rdreg->free_index++;
3109741a 713 return 0;
7fadcd3a
CD
714}
715
716static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
717{
718 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
7fadcd3a
CD
719
720 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
7fadcd3a
CD
721}
722
1aab6f46 723static int vgic_register_all_redist_iodevs(struct kvm *kvm)
ed9b8cef 724{
ed9b8cef 725 struct kvm_vcpu *vcpu;
ed9b8cef
AP
726 int c, ret = 0;
727
ed9b8cef 728 kvm_for_each_vcpu(c, vcpu, kvm) {
7fadcd3a 729 ret = vgic_register_redist_iodev(vcpu);
ed9b8cef
AP
730 if (ret)
731 break;
ed9b8cef
AP
732 }
733
734 if (ret) {
735 /* The current c failed, so we start with the previous one. */
fa472fa9 736 mutex_lock(&kvm->slots_lock);
ed9b8cef 737 for (c--; c >= 0; c--) {
8f6cdc1c 738 vcpu = kvm_get_vcpu(kvm, c);
7fadcd3a 739 vgic_unregister_redist_iodev(vcpu);
ed9b8cef 740 }
fa472fa9 741 mutex_unlock(&kvm->slots_lock);
ed9b8cef
AP
742 }
743
744 return ret;
745}
621ecd8d 746
ccc27bf5
EA
747/**
748 * vgic_v3_insert_redist_region - Insert a new redistributor region
749 *
750 * Performs various checks before inserting the rdist region in the list.
751 * Those tests depend on whether the size of the rdist region is known
752 * (ie. count != 0). The list is sorted by rdist region index.
753 *
754 * @kvm: kvm handle
755 * @index: redist region index
756 * @base: base of the new rdist region
757 * @count: number of redistributors the region is made of (0 in the old style
758 * single region, whose size is induced from the number of vcpus)
759 *
760 * Return 0 on success, < 0 otherwise
761 */
762static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
763 gpa_t base, uint32_t count)
1aab6f46 764{
ccc27bf5 765 struct vgic_dist *d = &kvm->arch.vgic;
dbd9733a 766 struct vgic_redist_region *rdreg;
ccc27bf5
EA
767 struct list_head *rd_regions = &d->rd_regions;
768 size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
1aab6f46
CD
769 int ret;
770
ccc27bf5
EA
771 /* single rdist region already set ?*/
772 if (!count && !list_empty(rd_regions))
773 return -EINVAL;
774
775 /* cross the end of memory ? */
776 if (base + size < base)
777 return -EINVAL;
778
779 if (list_empty(rd_regions)) {
780 if (index != 0)
781 return -EINVAL;
782 } else {
783 rdreg = list_last_entry(rd_regions,
784 struct vgic_redist_region, list);
785 if (index != rdreg->index + 1)
786 return -EINVAL;
787
788 /* Cannot add an explicitly sized regions after legacy region */
789 if (!rdreg->count)
790 return -EINVAL;
791 }
792
793 /*
794 * For legacy single-region redistributor regions (!count),
795 * check that the redistributor region does not overlap with the
796 * distributor's address space.
797 */
798 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
799 vgic_dist_overlap(kvm, base, size))
800 return -EINVAL;
801
802 /* collision with any other rdist region? */
803 if (vgic_v3_rdist_overlap(kvm, base, size))
dbd9733a
EA
804 return -EINVAL;
805
806 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
807 if (!rdreg)
808 return -ENOMEM;
809
810 rdreg->base = VGIC_ADDR_UNDEF;
811
ccc27bf5 812 ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
1aab6f46 813 if (ret)
ccc27bf5 814 goto free;
1aab6f46 815
ccc27bf5
EA
816 rdreg->base = base;
817 rdreg->count = count;
818 rdreg->free_index = 0;
819 rdreg->index = index;
1aab6f46 820
ccc27bf5
EA
821 list_add_tail(&rdreg->list, rd_regions);
822 return 0;
823free:
824 kfree(rdreg);
825 return ret;
826}
827
04c11093 828int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
ccc27bf5
EA
829{
830 int ret;
831
04c11093 832 ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
ccc27bf5
EA
833 if (ret)
834 return ret;
dbd9733a 835
1aab6f46
CD
836 /*
837 * Register iodevs for each existing VCPU. Adding more VCPUs
838 * afterwards will register the iodevs when needed.
839 */
840 ret = vgic_register_all_redist_iodevs(kvm);
841 if (ret)
842 return ret;
843
844 return 0;
845}
846
94574c94
VK
847int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
848{
849 const struct vgic_register_region *region;
850 struct vgic_io_device iodev;
851 struct vgic_reg_attr reg_attr;
852 struct kvm_vcpu *vcpu;
853 gpa_t addr;
854 int ret;
855
856 ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
857 if (ret)
858 return ret;
859
860 vcpu = reg_attr.vcpu;
861 addr = reg_attr.addr;
862
863 switch (attr->group) {
864 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
865 iodev.regions = vgic_v3_dist_registers;
866 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
867 iodev.base_addr = 0;
868 break;
869 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
3109741a
EA
870 iodev.regions = vgic_v3_rd_registers;
871 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
94574c94
VK
872 iodev.base_addr = 0;
873 break;
874 }
d017d7b0
VK
875 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
876 u64 reg, id;
877
878 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
879 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
880 }
94574c94
VK
881 default:
882 return -ENXIO;
883 }
884
885 /* We only support aligned 32-bit accesses. */
886 if (addr & 3)
887 return -ENXIO;
888
889 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
890 if (!region)
891 return -ENXIO;
892
893 return 0;
894}
621ecd8d
AP
895/*
896 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
897 * generation register ICC_SGI1R_EL1) with a given VCPU.
898 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
899 * return -1.
900 */
901static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
902{
903 unsigned long affinity;
904 int level0;
905
906 /*
907 * Split the current VCPU's MPIDR into affinity level 0 and the
908 * rest as this is what we have to compare against.
909 */
910 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
911 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
912 affinity &= ~MPIDR_LEVEL_MASK;
913
914 /* bail out if the upper three levels don't match */
915 if (sgi_aff != affinity)
916 return -1;
917
918 /* Is this VCPU's bit set in the mask ? */
919 if (!(sgi_cpu_mask & BIT(level0)))
920 return -1;
921
922 return level0;
923}
924
925/*
926 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
927 * so provide a wrapper to use the existing defines to isolate a certain
928 * affinity level.
929 */
930#define SGI_AFFINITY_LEVEL(reg, level) \
931 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
932 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
933
934/**
935 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
936 * @vcpu: The VCPU requesting a SGI
6249f2a4
MZ
937 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
938 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
621ecd8d
AP
939 *
940 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
941 * This will trap in sys_regs.c and call this function.
942 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
943 * target processors as well as a bitmask of 16 Aff0 CPUs.
944 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
945 * check for matching ones. If this bit is set, we signal all, but not the
946 * calling VCPU.
947 */
6249f2a4 948void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
621ecd8d
AP
949{
950 struct kvm *kvm = vcpu->kvm;
951 struct kvm_vcpu *c_vcpu;
952 u16 target_cpus;
953 u64 mpidr;
954 int sgi, c;
955 int vcpu_id = vcpu->vcpu_id;
956 bool broadcast;
006df0f3 957 unsigned long flags;
621ecd8d
AP
958
959 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
e533a37f 960 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
621ecd8d
AP
961 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
962 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
963 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
964 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
965
966 /*
967 * We iterate over all VCPUs to find the MPIDRs matching the request.
968 * If we have handled one CPU, we clear its bit to detect early
969 * if we are already finished. This avoids iterating through all
970 * VCPUs when most of the times we just signal a single VCPU.
971 */
972 kvm_for_each_vcpu(c, c_vcpu, kvm) {
973 struct vgic_irq *irq;
974
975 /* Exit early if we have dealt with all requested CPUs */
976 if (!broadcast && target_cpus == 0)
977 break;
978
979 /* Don't signal the calling VCPU */
980 if (broadcast && c == vcpu_id)
981 continue;
982
983 if (!broadcast) {
984 int level0;
985
986 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
987 if (level0 == -1)
988 continue;
989
990 /* remove this matching VCPU from the mask */
991 target_cpus &= ~BIT(level0);
992 }
993
994 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
995
8fa3adb8 996 raw_spin_lock_irqsave(&irq->irq_lock, flags);
621ecd8d 997
6249f2a4
MZ
998 /*
999 * An access targetting Group0 SGIs can only generate
1000 * those, while an access targetting Group1 SGIs can
1001 * generate interrupts of either group.
1002 */
1003 if (!irq->group || allow_group1) {
ef1820be
MZ
1004 if (!irq->hw) {
1005 irq->pending_latch = true;
1006 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1007 } else {
1008 /* HW SGI? Ask the GIC to inject it */
1009 int err;
1010 err = irq_set_irqchip_state(irq->host_irq,
1011 IRQCHIP_STATE_PENDING,
1012 true);
1013 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1014 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1015 }
6249f2a4 1016 } else {
8fa3adb8 1017 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
6249f2a4
MZ
1018 }
1019
5dd4b924 1020 vgic_put_irq(vcpu->kvm, irq);
621ecd8d
AP
1021 }
1022}
94574c94
VK
1023
1024int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1025 int offset, u32 *val)
1026{
1027 struct vgic_io_device dev = {
1028 .regions = vgic_v3_dist_registers,
1029 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1030 };
1031
1032 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1033}
1034
1035int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1036 int offset, u32 *val)
1037{
1038 struct vgic_io_device rd_dev = {
3109741a
EA
1039 .regions = vgic_v3_rd_registers,
1040 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
94574c94
VK
1041 };
1042
3109741a 1043 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
94574c94 1044}
e96a006c
VK
1045
1046int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1047 u32 intid, u64 *val)
1048{
1049 if (intid % 32)
1050 return -EINVAL;
1051
1052 if (is_write)
1053 vgic_write_irq_line_level_info(vcpu, intid, *val);
1054 else
1055 *val = vgic_read_irq_line_level_info(vcpu, intid);
1056
1057 return 0;
1058}