KVM: arm/arm64: vgic: Remove spurious semicolons
[linux-2.6-block.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
CommitLineData
1802d0be 1// SPDX-License-Identifier: GPL-2.0-only
ed9b8cef
AP
2/*
3 * VGICv3 MMIO handling functions
ed9b8cef
AP
4 */
5
6#include <linux/irqchip/arm-gic-v3.h>
7#include <linux/kvm.h>
8#include <linux/kvm_host.h>
9#include <kvm/iodev.h>
10#include <kvm/arm_vgic.h>
11
12#include <asm/kvm_emulate.h>
94574c94
VK
13#include <asm/kvm_arm.h>
14#include <asm/kvm_mmu.h>
ed9b8cef
AP
15
16#include "vgic.h"
17#include "vgic-mmio.h"
18
741972d8 19/* extract @num bytes at @offset bytes offset in data */
d7d0a11e 20unsigned long extract_bytes(u64 data, unsigned int offset,
424c3383 21 unsigned int num)
741972d8
AP
22{
23 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
24}
25
0aa1de57 26/* allows updates of any half of a 64-bit register (or the whole thing) */
424c3383
AP
27u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
28 unsigned long val)
0aa1de57
AP
29{
30 int lower = (offset & 4) * 8;
31 int upper = lower + 8 * len - 1;
32
33 reg &= ~GENMASK_ULL(upper, lower);
34 val &= GENMASK_ULL(len * 8 - 1, 0);
35
36 return reg | ((u64)val << lower);
37}
38
59c5ab40
AP
39bool vgic_has_its(struct kvm *kvm)
40{
41 struct vgic_dist *dist = &kvm->arch.vgic;
42
43 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
44 return false;
45
1085fdc6 46 return dist->has_its;
59c5ab40
AP
47}
48
e7c48059
MZ
49bool vgic_supports_direct_msis(struct kvm *kvm)
50{
51 return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
52}
53
d53c2c29
CD
54/*
55 * The Revision field in the IIDR have the following meanings:
56 *
57 * Revision 2: Interrupt groups are guest-configurable and signaled using
58 * their configured groups.
59 */
60
fd59ed3b
AP
61static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
62 gpa_t addr, unsigned int len)
63{
aa075b0f 64 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
fd59ed3b
AP
65 u32 value = 0;
66
67 switch (addr & 0x0c) {
68 case GICD_CTLR:
aa075b0f 69 if (vgic->enabled)
fd59ed3b
AP
70 value |= GICD_CTLR_ENABLE_SS_G1;
71 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
72 break;
73 case GICD_TYPER:
aa075b0f 74 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
fd59ed3b 75 value = (value >> 5) - 1;
0e4e82f1
AP
76 if (vgic_has_its(vcpu->kvm)) {
77 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
78 value |= GICD_TYPER_LPIS;
79 } else {
80 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
81 }
fd59ed3b
AP
82 break;
83 case GICD_IIDR:
a2dca217 84 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
aa075b0f 85 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
a2dca217 86 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
fd59ed3b
AP
87 break;
88 default:
89 return 0;
90 }
91
92 return value;
93}
94
95static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
96 gpa_t addr, unsigned int len,
97 unsigned long val)
98{
99 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
100 bool was_enabled = dist->enabled;
101
102 switch (addr & 0x0c) {
103 case GICD_CTLR:
104 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
105
106 if (!was_enabled && dist->enabled)
107 vgic_kick_vcpus(vcpu->kvm);
108 break;
109 case GICD_TYPER:
110 case GICD_IIDR:
111 return;
112 }
113}
114
b489edc3
CD
115static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
116 gpa_t addr, unsigned int len,
117 unsigned long val)
118{
119 switch (addr & 0x0c) {
120 case GICD_IIDR:
121 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
122 return -EINVAL;
123 }
124
125 vgic_mmio_write_v3_misc(vcpu, addr, len, val);
126 return 0;
127}
128
78a714ab
AP
129static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
130 gpa_t addr, unsigned int len)
131{
132 int intid = VGIC_ADDR_TO_INTID(addr, 64);
133 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
5dd4b924 134 unsigned long ret = 0;
78a714ab
AP
135
136 if (!irq)
137 return 0;
138
139 /* The upper word is RAZ for us. */
5dd4b924
AP
140 if (!(addr & 4))
141 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
78a714ab 142
5dd4b924
AP
143 vgic_put_irq(vcpu->kvm, irq);
144 return ret;
78a714ab
AP
145}
146
147static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
148 gpa_t addr, unsigned int len,
149 unsigned long val)
150{
151 int intid = VGIC_ADDR_TO_INTID(addr, 64);
5dd4b924 152 struct vgic_irq *irq;
006df0f3 153 unsigned long flags;
78a714ab
AP
154
155 /* The upper word is WI for us since we don't implement Aff3. */
156 if (addr & 4)
157 return;
158
5dd4b924
AP
159 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
160
161 if (!irq)
162 return;
163
8fa3adb8 164 raw_spin_lock_irqsave(&irq->irq_lock, flags);
78a714ab
AP
165
166 /* We only care about and preserve Aff0, Aff1 and Aff2. */
167 irq->mpidr = val & GENMASK(23, 0);
168 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
169
8fa3adb8 170 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
5dd4b924 171 vgic_put_irq(vcpu->kvm, irq);
78a714ab
AP
172}
173
59c5ab40
AP
174static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
175 gpa_t addr, unsigned int len)
176{
177 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
178
179 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
180}
181
182
183static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
184 gpa_t addr, unsigned int len,
185 unsigned long val)
186{
187 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
188 bool was_enabled = vgic_cpu->lpis_enabled;
189
190 if (!vgic_has_its(vcpu->kvm))
191 return;
192
193 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
194
b4931afc 195 if (was_enabled && !vgic_cpu->lpis_enabled) {
96085b94 196 vgic_flush_pending_lpis(vcpu);
b4931afc
MZ
197 vgic_its_invalidate_cache(vcpu->kvm);
198 }
96085b94 199
0e4e82f1
AP
200 if (!was_enabled && vgic_cpu->lpis_enabled)
201 vgic_enable_lpis(vcpu);
59c5ab40
AP
202}
203
741972d8
AP
204static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
205 gpa_t addr, unsigned int len)
206{
207 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
ba7b3f12
EA
208 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
209 struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
741972d8 210 int target_vcpu_id = vcpu->vcpu_id;
ba7b3f12
EA
211 gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
212 (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
741972d8
AP
213 u64 value;
214
e533a37f 215 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
741972d8 216 value |= ((target_vcpu_id & 0xffff) << 8);
ba7b3f12
EA
217
218 if (addr == last_rdist_typer)
741972d8 219 value |= GICR_TYPER_LAST;
0e4e82f1
AP
220 if (vgic_has_its(vcpu->kvm))
221 value |= GICR_TYPER_PLPIS;
741972d8
AP
222
223 return extract_bytes(value, addr & 7, len);
224}
225
226static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
227 gpa_t addr, unsigned int len)
228{
229 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
230}
231
54f59d2b
AP
232static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
233 gpa_t addr, unsigned int len)
234{
235 switch (addr & 0xffff) {
236 case GICD_PIDR2:
237 /* report a GICv3 compliant implementation */
238 return 0x3b;
239 }
240
241 return 0;
242}
243
2df903a8
VK
244static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
245 gpa_t addr, unsigned int len)
246{
247 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
248 u32 value = 0;
249 int i;
250
251 /*
252 * pending state of interrupt is latched in pending_latch variable.
253 * Userspace will save and restore pending state and line_level
254 * separately.
2f5947df 255 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt
2df903a8
VK
256 * for handling of ISPENDR and ICPENDR.
257 */
258 for (i = 0; i < len * 8; i++) {
259 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
260
261 if (irq->pending_latch)
262 value |= (1U << i);
263
264 vgic_put_irq(vcpu->kvm, irq);
265 }
266
267 return value;
268}
269
c6e0917b
CD
270static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
271 gpa_t addr, unsigned int len,
272 unsigned long val)
2df903a8
VK
273{
274 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
275 int i;
006df0f3 276 unsigned long flags;
2df903a8
VK
277
278 for (i = 0; i < len * 8; i++) {
279 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
280
8fa3adb8 281 raw_spin_lock_irqsave(&irq->irq_lock, flags);
2df903a8
VK
282 if (test_bit(i, &val)) {
283 /*
284 * pending_latch is set irrespective of irq type
285 * (level or edge) to avoid dependency that VM should
286 * restore irq config before pending info.
287 */
288 irq->pending_latch = true;
006df0f3 289 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
2df903a8
VK
290 } else {
291 irq->pending_latch = false;
8fa3adb8 292 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
2df903a8
VK
293 }
294
295 vgic_put_irq(vcpu->kvm, irq);
296 }
c6e0917b
CD
297
298 return 0;
2df903a8
VK
299}
300
0aa1de57
AP
301/* We want to avoid outer shareable. */
302u64 vgic_sanitise_shareability(u64 field)
303{
304 switch (field) {
305 case GIC_BASER_OuterShareable:
306 return GIC_BASER_InnerShareable;
307 default:
308 return field;
309 }
310}
311
312/* Avoid any inner non-cacheable mapping. */
313u64 vgic_sanitise_inner_cacheability(u64 field)
314{
315 switch (field) {
316 case GIC_BASER_CACHE_nCnB:
317 case GIC_BASER_CACHE_nC:
318 return GIC_BASER_CACHE_RaWb;
319 default:
320 return field;
321 }
322}
323
324/* Non-cacheable or same-as-inner are OK. */
325u64 vgic_sanitise_outer_cacheability(u64 field)
326{
327 switch (field) {
328 case GIC_BASER_CACHE_SameAsInner:
329 case GIC_BASER_CACHE_nC:
330 return field;
331 default:
332 return GIC_BASER_CACHE_nC;
333 }
334}
335
336u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
337 u64 (*sanitise_fn)(u64))
338{
339 u64 field = (reg & field_mask) >> field_shift;
340
341 field = sanitise_fn(field) << field_shift;
342 return (reg & ~field_mask) | field;
343}
344
345#define PROPBASER_RES0_MASK \
346 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
347#define PENDBASER_RES0_MASK \
348 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
349 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
350
351static u64 vgic_sanitise_pendbaser(u64 reg)
352{
353 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
354 GICR_PENDBASER_SHAREABILITY_SHIFT,
355 vgic_sanitise_shareability);
356 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
357 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
358 vgic_sanitise_inner_cacheability);
359 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
360 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
361 vgic_sanitise_outer_cacheability);
362
363 reg &= ~PENDBASER_RES0_MASK;
0aa1de57
AP
364
365 return reg;
366}
367
368static u64 vgic_sanitise_propbaser(u64 reg)
369{
370 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
371 GICR_PROPBASER_SHAREABILITY_SHIFT,
372 vgic_sanitise_shareability);
373 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
374 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
375 vgic_sanitise_inner_cacheability);
376 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
377 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
378 vgic_sanitise_outer_cacheability);
379
380 reg &= ~PROPBASER_RES0_MASK;
0aa1de57
AP
381 return reg;
382}
383
384static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
385 gpa_t addr, unsigned int len)
386{
387 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
388
389 return extract_bytes(dist->propbaser, addr & 7, len);
390}
391
392static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
393 gpa_t addr, unsigned int len,
394 unsigned long val)
395{
396 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
397 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 398 u64 old_propbaser, propbaser;
0aa1de57
AP
399
400 /* Storing a value with LPIs already enabled is undefined */
401 if (vgic_cpu->lpis_enabled)
402 return;
403
d9ae449b 404 do {
3af4e414 405 old_propbaser = READ_ONCE(dist->propbaser);
d9ae449b
CD
406 propbaser = old_propbaser;
407 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
408 propbaser = vgic_sanitise_propbaser(propbaser);
409 } while (cmpxchg64(&dist->propbaser, old_propbaser,
410 propbaser) != old_propbaser);
0aa1de57
AP
411}
412
413static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
414 gpa_t addr, unsigned int len)
415{
416 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
417
418 return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
419}
420
421static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
422 gpa_t addr, unsigned int len,
423 unsigned long val)
424{
425 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
d9ae449b 426 u64 old_pendbaser, pendbaser;
0aa1de57
AP
427
428 /* Storing a value with LPIs already enabled is undefined */
429 if (vgic_cpu->lpis_enabled)
430 return;
431
d9ae449b 432 do {
3af4e414 433 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
d9ae449b
CD
434 pendbaser = old_pendbaser;
435 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
436 pendbaser = vgic_sanitise_pendbaser(pendbaser);
437 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
438 pendbaser) != old_pendbaser);
0aa1de57
AP
439}
440
ed9b8cef
AP
441/*
442 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
443 * redistributors, while SPIs are covered by registers in the distributor
444 * block. Trying to set private IRQs in this block gets ignored.
445 * We take some special care here to fix the calculation of the register
446 * offset.
447 */
2df903a8 448#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
ed9b8cef
AP
449 { \
450 .reg_offset = off, \
451 .bits_per_irq = bpi, \
452 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
453 .access_flags = acc, \
454 .read = vgic_mmio_read_raz, \
455 .write = vgic_mmio_write_wi, \
456 }, { \
457 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
458 .bits_per_irq = bpi, \
459 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
460 .access_flags = acc, \
461 .read = rd, \
462 .write = wr, \
2df903a8
VK
463 .uaccess_read = ur, \
464 .uaccess_write = uw, \
ed9b8cef
AP
465 }
466
467static const struct vgic_register_region vgic_v3_dist_registers[] = {
b489edc3
CD
468 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
469 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
470 NULL, vgic_mmio_uaccess_write_v3_misc,
471 16, VGIC_ACCESS_32bit),
94574c94
VK
472 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
473 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
474 VGIC_ACCESS_32bit),
ed9b8cef 475 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
d53c2c29 476 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
ed9b8cef
AP
477 VGIC_ACCESS_32bit),
478 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
2df903a8 479 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
ed9b8cef
AP
480 VGIC_ACCESS_32bit),
481 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
2df903a8 482 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
ed9b8cef
AP
483 VGIC_ACCESS_32bit),
484 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
2df903a8
VK
485 vgic_mmio_read_pending, vgic_mmio_write_spending,
486 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
ed9b8cef
AP
487 VGIC_ACCESS_32bit),
488 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
2df903a8 489 vgic_mmio_read_pending, vgic_mmio_write_cpending,
c6e0917b 490 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
ed9b8cef
AP
491 VGIC_ACCESS_32bit),
492 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
3197191e
CD
493 vgic_mmio_read_active, vgic_mmio_write_sactive,
494 NULL, vgic_mmio_uaccess_write_sactive, 1,
ed9b8cef
AP
495 VGIC_ACCESS_32bit),
496 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
3197191e
CD
497 vgic_mmio_read_active, vgic_mmio_write_cactive,
498 NULL, vgic_mmio_uaccess_write_cactive,
499 1, VGIC_ACCESS_32bit),
ed9b8cef 500 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
2df903a8
VK
501 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
502 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
ed9b8cef 503 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
2df903a8 504 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
ed9b8cef
AP
505 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
506 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
2df903a8 507 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
ed9b8cef
AP
508 VGIC_ACCESS_32bit),
509 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
2df903a8 510 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
ed9b8cef
AP
511 VGIC_ACCESS_32bit),
512 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
2df903a8 513 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
ed9b8cef
AP
514 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
515 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
54f59d2b 516 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
517 VGIC_ACCESS_32bit),
518};
519
520static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
521 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
59c5ab40 522 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
ed9b8cef 523 VGIC_ACCESS_32bit),
94574c94
VK
524 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
525 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
526 VGIC_ACCESS_32bit),
ed9b8cef 527 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
741972d8 528 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
ed9b8cef
AP
529 VGIC_ACCESS_32bit),
530 REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
741972d8 531 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
ed9b8cef 532 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
94574c94
VK
533 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
534 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
535 VGIC_ACCESS_32bit),
ed9b8cef 536 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
0aa1de57 537 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
ed9b8cef
AP
538 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
539 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
0aa1de57 540 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
ed9b8cef
AP
541 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
542 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
54f59d2b 543 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
544 VGIC_ACCESS_32bit),
545};
546
547static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
548 REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
d53c2c29 549 vgic_mmio_read_group, vgic_mmio_write_group, 4,
ed9b8cef
AP
550 VGIC_ACCESS_32bit),
551 REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
552 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
553 VGIC_ACCESS_32bit),
554 REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
555 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
556 VGIC_ACCESS_32bit),
2df903a8
VK
557 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
558 vgic_mmio_read_pending, vgic_mmio_write_spending,
559 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
ed9b8cef 560 VGIC_ACCESS_32bit),
2df903a8
VK
561 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
562 vgic_mmio_read_pending, vgic_mmio_write_cpending,
c6e0917b 563 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
ed9b8cef 564 VGIC_ACCESS_32bit),
0710f9a6
CD
565 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
566 vgic_mmio_read_active, vgic_mmio_write_sactive,
567 NULL, vgic_mmio_uaccess_write_sactive,
568 4, VGIC_ACCESS_32bit),
569 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
570 vgic_mmio_read_active, vgic_mmio_write_cactive,
571 NULL, vgic_mmio_uaccess_write_cactive,
572 4, VGIC_ACCESS_32bit),
ed9b8cef
AP
573 REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
574 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
575 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
576 REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
577 vgic_mmio_read_config, vgic_mmio_write_config, 8,
578 VGIC_ACCESS_32bit),
579 REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
580 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
581 VGIC_ACCESS_32bit),
582 REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
583 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
584 VGIC_ACCESS_32bit),
585};
586
587unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
588{
589 dev->regions = vgic_v3_dist_registers;
590 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
591
592 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
593
594 return SZ_64K;
595}
596
7fadcd3a
CD
597/**
598 * vgic_register_redist_iodev - register a single redist iodev
599 * @vcpu: The VCPU to which the redistributor belongs
600 *
601 * Register a KVM iodev for this VCPU's redistributor using the address
602 * provided.
603 *
604 * Return 0 on success, -ERRNO otherwise.
605 */
1aab6f46 606int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
7fadcd3a
CD
607{
608 struct kvm *kvm = vcpu->kvm;
609 struct vgic_dist *vgic = &kvm->arch.vgic;
dbd9733a 610 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
7fadcd3a
CD
611 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
612 struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
dbd9733a 613 struct vgic_redist_region *rdreg;
7fadcd3a
CD
614 gpa_t rd_base, sgi_base;
615 int ret;
616
c011f4ea
EA
617 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
618 return 0;
619
1aab6f46
CD
620 /*
621 * We may be creating VCPUs before having set the base address for the
622 * redistributor region, in which case we will come back to this
623 * function for all VCPUs when the base address is set. Just return
624 * without doing any work for now.
625 */
dc524619 626 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
dbd9733a 627 if (!rdreg)
1aab6f46
CD
628 return 0;
629
630 if (!vgic_v3_check_base(kvm))
631 return -EINVAL;
632
dbd9733a
EA
633 vgic_cpu->rdreg = rdreg;
634
635 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
7fadcd3a
CD
636 sgi_base = rd_base + SZ_64K;
637
638 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
639 rd_dev->base_addr = rd_base;
640 rd_dev->iodev_type = IODEV_REDIST;
641 rd_dev->regions = vgic_v3_rdbase_registers;
642 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
643 rd_dev->redist_vcpu = vcpu;
644
645 mutex_lock(&kvm->slots_lock);
646 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
647 SZ_64K, &rd_dev->dev);
648 mutex_unlock(&kvm->slots_lock);
649
650 if (ret)
651 return ret;
652
653 kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
654 sgi_dev->base_addr = sgi_base;
655 sgi_dev->iodev_type = IODEV_REDIST;
656 sgi_dev->regions = vgic_v3_sgibase_registers;
657 sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
658 sgi_dev->redist_vcpu = vcpu;
659
660 mutex_lock(&kvm->slots_lock);
661 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
662 SZ_64K, &sgi_dev->dev);
552c9f47 663 if (ret) {
7fadcd3a
CD
664 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
665 &rd_dev->dev);
fa472fa9 666 goto out;
552c9f47 667 }
7fadcd3a 668
dbd9733a 669 rdreg->free_index++;
fa472fa9
CD
670out:
671 mutex_unlock(&kvm->slots_lock);
7fadcd3a
CD
672 return ret;
673}
674
675static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
676{
677 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
678 struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
679
680 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
681 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
682}
683
1aab6f46 684static int vgic_register_all_redist_iodevs(struct kvm *kvm)
ed9b8cef 685{
ed9b8cef 686 struct kvm_vcpu *vcpu;
ed9b8cef
AP
687 int c, ret = 0;
688
ed9b8cef 689 kvm_for_each_vcpu(c, vcpu, kvm) {
7fadcd3a 690 ret = vgic_register_redist_iodev(vcpu);
ed9b8cef
AP
691 if (ret)
692 break;
ed9b8cef
AP
693 }
694
695 if (ret) {
696 /* The current c failed, so we start with the previous one. */
fa472fa9 697 mutex_lock(&kvm->slots_lock);
ed9b8cef 698 for (c--; c >= 0; c--) {
8f6cdc1c 699 vcpu = kvm_get_vcpu(kvm, c);
7fadcd3a 700 vgic_unregister_redist_iodev(vcpu);
ed9b8cef 701 }
fa472fa9 702 mutex_unlock(&kvm->slots_lock);
ed9b8cef
AP
703 }
704
705 return ret;
706}
621ecd8d 707
ccc27bf5
EA
708/**
709 * vgic_v3_insert_redist_region - Insert a new redistributor region
710 *
711 * Performs various checks before inserting the rdist region in the list.
712 * Those tests depend on whether the size of the rdist region is known
713 * (ie. count != 0). The list is sorted by rdist region index.
714 *
715 * @kvm: kvm handle
716 * @index: redist region index
717 * @base: base of the new rdist region
718 * @count: number of redistributors the region is made of (0 in the old style
719 * single region, whose size is induced from the number of vcpus)
720 *
721 * Return 0 on success, < 0 otherwise
722 */
723static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
724 gpa_t base, uint32_t count)
1aab6f46 725{
ccc27bf5 726 struct vgic_dist *d = &kvm->arch.vgic;
dbd9733a 727 struct vgic_redist_region *rdreg;
ccc27bf5
EA
728 struct list_head *rd_regions = &d->rd_regions;
729 size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
1aab6f46
CD
730 int ret;
731
ccc27bf5
EA
732 /* single rdist region already set ?*/
733 if (!count && !list_empty(rd_regions))
734 return -EINVAL;
735
736 /* cross the end of memory ? */
737 if (base + size < base)
738 return -EINVAL;
739
740 if (list_empty(rd_regions)) {
741 if (index != 0)
742 return -EINVAL;
743 } else {
744 rdreg = list_last_entry(rd_regions,
745 struct vgic_redist_region, list);
746 if (index != rdreg->index + 1)
747 return -EINVAL;
748
749 /* Cannot add an explicitly sized regions after legacy region */
750 if (!rdreg->count)
751 return -EINVAL;
752 }
753
754 /*
755 * For legacy single-region redistributor regions (!count),
756 * check that the redistributor region does not overlap with the
757 * distributor's address space.
758 */
759 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
760 vgic_dist_overlap(kvm, base, size))
761 return -EINVAL;
762
763 /* collision with any other rdist region? */
764 if (vgic_v3_rdist_overlap(kvm, base, size))
dbd9733a
EA
765 return -EINVAL;
766
767 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
768 if (!rdreg)
769 return -ENOMEM;
770
771 rdreg->base = VGIC_ADDR_UNDEF;
772
ccc27bf5 773 ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
1aab6f46 774 if (ret)
ccc27bf5 775 goto free;
1aab6f46 776
ccc27bf5
EA
777 rdreg->base = base;
778 rdreg->count = count;
779 rdreg->free_index = 0;
780 rdreg->index = index;
1aab6f46 781
ccc27bf5
EA
782 list_add_tail(&rdreg->list, rd_regions);
783 return 0;
784free:
785 kfree(rdreg);
786 return ret;
787}
788
04c11093 789int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
ccc27bf5
EA
790{
791 int ret;
792
04c11093 793 ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
ccc27bf5
EA
794 if (ret)
795 return ret;
dbd9733a 796
1aab6f46
CD
797 /*
798 * Register iodevs for each existing VCPU. Adding more VCPUs
799 * afterwards will register the iodevs when needed.
800 */
801 ret = vgic_register_all_redist_iodevs(kvm);
802 if (ret)
803 return ret;
804
805 return 0;
806}
807
94574c94
VK
808int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
809{
810 const struct vgic_register_region *region;
811 struct vgic_io_device iodev;
812 struct vgic_reg_attr reg_attr;
813 struct kvm_vcpu *vcpu;
814 gpa_t addr;
815 int ret;
816
817 ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
818 if (ret)
819 return ret;
820
821 vcpu = reg_attr.vcpu;
822 addr = reg_attr.addr;
823
824 switch (attr->group) {
825 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
826 iodev.regions = vgic_v3_dist_registers;
827 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
828 iodev.base_addr = 0;
829 break;
830 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
831 iodev.regions = vgic_v3_rdbase_registers;
832 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
833 iodev.base_addr = 0;
834 break;
835 }
d017d7b0
VK
836 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
837 u64 reg, id;
838
839 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
840 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
841 }
94574c94
VK
842 default:
843 return -ENXIO;
844 }
845
846 /* We only support aligned 32-bit accesses. */
847 if (addr & 3)
848 return -ENXIO;
849
850 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
851 if (!region)
852 return -ENXIO;
853
854 return 0;
855}
621ecd8d
AP
856/*
857 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
858 * generation register ICC_SGI1R_EL1) with a given VCPU.
859 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
860 * return -1.
861 */
862static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
863{
864 unsigned long affinity;
865 int level0;
866
867 /*
868 * Split the current VCPU's MPIDR into affinity level 0 and the
869 * rest as this is what we have to compare against.
870 */
871 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
872 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
873 affinity &= ~MPIDR_LEVEL_MASK;
874
875 /* bail out if the upper three levels don't match */
876 if (sgi_aff != affinity)
877 return -1;
878
879 /* Is this VCPU's bit set in the mask ? */
880 if (!(sgi_cpu_mask & BIT(level0)))
881 return -1;
882
883 return level0;
884}
885
886/*
887 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
888 * so provide a wrapper to use the existing defines to isolate a certain
889 * affinity level.
890 */
891#define SGI_AFFINITY_LEVEL(reg, level) \
892 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
893 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
894
895/**
896 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
897 * @vcpu: The VCPU requesting a SGI
6249f2a4
MZ
898 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
899 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
621ecd8d
AP
900 *
901 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
902 * This will trap in sys_regs.c and call this function.
903 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
904 * target processors as well as a bitmask of 16 Aff0 CPUs.
905 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
906 * check for matching ones. If this bit is set, we signal all, but not the
907 * calling VCPU.
908 */
6249f2a4 909void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
621ecd8d
AP
910{
911 struct kvm *kvm = vcpu->kvm;
912 struct kvm_vcpu *c_vcpu;
913 u16 target_cpus;
914 u64 mpidr;
915 int sgi, c;
916 int vcpu_id = vcpu->vcpu_id;
917 bool broadcast;
006df0f3 918 unsigned long flags;
621ecd8d
AP
919
920 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
e533a37f 921 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
621ecd8d
AP
922 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
923 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
924 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
925 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
926
927 /*
928 * We iterate over all VCPUs to find the MPIDRs matching the request.
929 * If we have handled one CPU, we clear its bit to detect early
930 * if we are already finished. This avoids iterating through all
931 * VCPUs when most of the times we just signal a single VCPU.
932 */
933 kvm_for_each_vcpu(c, c_vcpu, kvm) {
934 struct vgic_irq *irq;
935
936 /* Exit early if we have dealt with all requested CPUs */
937 if (!broadcast && target_cpus == 0)
938 break;
939
940 /* Don't signal the calling VCPU */
941 if (broadcast && c == vcpu_id)
942 continue;
943
944 if (!broadcast) {
945 int level0;
946
947 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
948 if (level0 == -1)
949 continue;
950
951 /* remove this matching VCPU from the mask */
952 target_cpus &= ~BIT(level0);
953 }
954
955 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
956
8fa3adb8 957 raw_spin_lock_irqsave(&irq->irq_lock, flags);
621ecd8d 958
6249f2a4
MZ
959 /*
960 * An access targetting Group0 SGIs can only generate
961 * those, while an access targetting Group1 SGIs can
962 * generate interrupts of either group.
963 */
964 if (!irq->group || allow_group1) {
965 irq->pending_latch = true;
966 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
967 } else {
8fa3adb8 968 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
6249f2a4
MZ
969 }
970
5dd4b924 971 vgic_put_irq(vcpu->kvm, irq);
621ecd8d
AP
972 }
973}
94574c94
VK
974
975int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
976 int offset, u32 *val)
977{
978 struct vgic_io_device dev = {
979 .regions = vgic_v3_dist_registers,
980 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
981 };
982
983 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
984}
985
986int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
987 int offset, u32 *val)
988{
989 struct vgic_io_device rd_dev = {
990 .regions = vgic_v3_rdbase_registers,
991 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
992 };
993
994 struct vgic_io_device sgi_dev = {
995 .regions = vgic_v3_sgibase_registers,
996 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
997 };
998
999 /* SGI_base is the next 64K frame after RD_base */
1000 if (offset >= SZ_64K)
1001 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
1002 val);
1003 else
1004 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1005}
e96a006c
VK
1006
1007int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1008 u32 intid, u64 *val)
1009{
1010 if (intid % 32)
1011 return -EINVAL;
1012
1013 if (is_write)
1014 vgic_write_irq_line_level_info(vcpu, intid, *val);
1015 else
1016 *val = vgic_read_irq_line_level_info(vcpu, intid);
1017
1018 return 0;
1019}