arm64: KVM: Clean up a condition
[linux-2.6-block.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
CommitLineData
ed9b8cef
AP
1/*
2 * VGICv3 MMIO handling functions
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#include <linux/irqchip/arm-gic-v3.h>
15#include <linux/kvm.h>
16#include <linux/kvm_host.h>
17#include <kvm/iodev.h>
18#include <kvm/arm_vgic.h>
19
20#include <asm/kvm_emulate.h>
21
22#include "vgic.h"
23#include "vgic-mmio.h"
24
741972d8
AP
25/* extract @num bytes at @offset bytes offset in data */
26static unsigned long extract_bytes(unsigned long data, unsigned int offset,
27 unsigned int num)
28{
29 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
30}
31
fd59ed3b
AP
32static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
33 gpa_t addr, unsigned int len)
34{
35 u32 value = 0;
36
37 switch (addr & 0x0c) {
38 case GICD_CTLR:
39 if (vcpu->kvm->arch.vgic.enabled)
40 value |= GICD_CTLR_ENABLE_SS_G1;
41 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
42 break;
43 case GICD_TYPER:
44 value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
45 value = (value >> 5) - 1;
46 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
47 break;
48 case GICD_IIDR:
49 value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
50 break;
51 default:
52 return 0;
53 }
54
55 return value;
56}
57
58static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
59 gpa_t addr, unsigned int len,
60 unsigned long val)
61{
62 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
63 bool was_enabled = dist->enabled;
64
65 switch (addr & 0x0c) {
66 case GICD_CTLR:
67 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
68
69 if (!was_enabled && dist->enabled)
70 vgic_kick_vcpus(vcpu->kvm);
71 break;
72 case GICD_TYPER:
73 case GICD_IIDR:
74 return;
75 }
76}
77
78a714ab
AP
78static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
79 gpa_t addr, unsigned int len)
80{
81 int intid = VGIC_ADDR_TO_INTID(addr, 64);
82 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
83
84 if (!irq)
85 return 0;
86
87 /* The upper word is RAZ for us. */
88 if (addr & 4)
89 return 0;
90
91 return extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
92}
93
94static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
95 gpa_t addr, unsigned int len,
96 unsigned long val)
97{
98 int intid = VGIC_ADDR_TO_INTID(addr, 64);
99 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
100
101 if (!irq)
102 return;
103
104 /* The upper word is WI for us since we don't implement Aff3. */
105 if (addr & 4)
106 return;
107
108 spin_lock(&irq->irq_lock);
109
110 /* We only care about and preserve Aff0, Aff1 and Aff2. */
111 irq->mpidr = val & GENMASK(23, 0);
112 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
113
114 spin_unlock(&irq->irq_lock);
115}
116
741972d8
AP
117static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
118 gpa_t addr, unsigned int len)
119{
120 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
121 int target_vcpu_id = vcpu->vcpu_id;
122 u64 value;
123
124 value = (mpidr & GENMASK(23, 0)) << 32;
125 value |= ((target_vcpu_id & 0xffff) << 8);
126 if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
127 value |= GICR_TYPER_LAST;
128
129 return extract_bytes(value, addr & 7, len);
130}
131
132static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
133 gpa_t addr, unsigned int len)
134{
135 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
136}
137
54f59d2b
AP
138static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
139 gpa_t addr, unsigned int len)
140{
141 switch (addr & 0xffff) {
142 case GICD_PIDR2:
143 /* report a GICv3 compliant implementation */
144 return 0x3b;
145 }
146
147 return 0;
148}
149
ed9b8cef
AP
150/*
151 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
152 * redistributors, while SPIs are covered by registers in the distributor
153 * block. Trying to set private IRQs in this block gets ignored.
154 * We take some special care here to fix the calculation of the register
155 * offset.
156 */
157#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc) \
158 { \
159 .reg_offset = off, \
160 .bits_per_irq = bpi, \
161 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
162 .access_flags = acc, \
163 .read = vgic_mmio_read_raz, \
164 .write = vgic_mmio_write_wi, \
165 }, { \
166 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
167 .bits_per_irq = bpi, \
168 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
169 .access_flags = acc, \
170 .read = rd, \
171 .write = wr, \
172 }
173
174static const struct vgic_register_region vgic_v3_dist_registers[] = {
175 REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
fd59ed3b 176 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
ed9b8cef
AP
177 VGIC_ACCESS_32bit),
178 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
179 vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
180 VGIC_ACCESS_32bit),
181 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
182 vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
183 VGIC_ACCESS_32bit),
184 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
185 vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
186 VGIC_ACCESS_32bit),
187 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
188 vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
189 VGIC_ACCESS_32bit),
190 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
191 vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
192 VGIC_ACCESS_32bit),
193 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
194 vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
195 VGIC_ACCESS_32bit),
196 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
197 vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
198 VGIC_ACCESS_32bit),
199 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
200 vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
201 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
202 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
203 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
204 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
205 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
206 vgic_mmio_read_config, vgic_mmio_write_config, 2,
207 VGIC_ACCESS_32bit),
208 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
209 vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
210 VGIC_ACCESS_32bit),
211 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
78a714ab 212 vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64,
ed9b8cef
AP
213 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
214 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
54f59d2b 215 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
216 VGIC_ACCESS_32bit),
217};
218
219static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
220 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
221 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
222 VGIC_ACCESS_32bit),
223 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
741972d8 224 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
ed9b8cef
AP
225 VGIC_ACCESS_32bit),
226 REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
741972d8 227 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
ed9b8cef
AP
228 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
229 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
230 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
231 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
232 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
233 vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
234 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
235 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
54f59d2b 236 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
ed9b8cef
AP
237 VGIC_ACCESS_32bit),
238};
239
240static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
241 REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
242 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
243 VGIC_ACCESS_32bit),
244 REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
245 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
246 VGIC_ACCESS_32bit),
247 REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
248 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
249 VGIC_ACCESS_32bit),
250 REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0,
251 vgic_mmio_read_pending, vgic_mmio_write_spending, 4,
252 VGIC_ACCESS_32bit),
253 REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0,
254 vgic_mmio_read_pending, vgic_mmio_write_cpending, 4,
255 VGIC_ACCESS_32bit),
256 REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
257 vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
258 VGIC_ACCESS_32bit),
259 REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
260 vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
261 VGIC_ACCESS_32bit),
262 REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
263 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
264 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
265 REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
266 vgic_mmio_read_config, vgic_mmio_write_config, 8,
267 VGIC_ACCESS_32bit),
268 REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
269 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
270 VGIC_ACCESS_32bit),
271 REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
272 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
273 VGIC_ACCESS_32bit),
274};
275
276unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
277{
278 dev->regions = vgic_v3_dist_registers;
279 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
280
281 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
282
283 return SZ_64K;
284}
285
286int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
287{
288 int nr_vcpus = atomic_read(&kvm->online_vcpus);
289 struct kvm_vcpu *vcpu;
290 struct vgic_io_device *devices;
291 int c, ret = 0;
292
293 devices = kmalloc(sizeof(struct vgic_io_device) * nr_vcpus * 2,
294 GFP_KERNEL);
295 if (!devices)
296 return -ENOMEM;
297
298 kvm_for_each_vcpu(c, vcpu, kvm) {
299 gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
300 gpa_t sgi_base = rd_base + SZ_64K;
301 struct vgic_io_device *rd_dev = &devices[c * 2];
302 struct vgic_io_device *sgi_dev = &devices[c * 2 + 1];
303
304 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
305 rd_dev->base_addr = rd_base;
306 rd_dev->regions = vgic_v3_rdbase_registers;
307 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
308 rd_dev->redist_vcpu = vcpu;
309
310 mutex_lock(&kvm->slots_lock);
311 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
312 SZ_64K, &rd_dev->dev);
313 mutex_unlock(&kvm->slots_lock);
314
315 if (ret)
316 break;
317
318 kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
319 sgi_dev->base_addr = sgi_base;
320 sgi_dev->regions = vgic_v3_sgibase_registers;
321 sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
322 sgi_dev->redist_vcpu = vcpu;
323
324 mutex_lock(&kvm->slots_lock);
325 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
326 SZ_64K, &sgi_dev->dev);
327 mutex_unlock(&kvm->slots_lock);
328 if (ret) {
329 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
330 &rd_dev->dev);
331 break;
332 }
333 }
334
335 if (ret) {
336 /* The current c failed, so we start with the previous one. */
337 for (c--; c >= 0; c--) {
338 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
339 &devices[c * 2].dev);
340 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
341 &devices[c * 2 + 1].dev);
342 }
343 kfree(devices);
344 } else {
345 kvm->arch.vgic.redist_iodevs = devices;
346 }
347
348 return ret;
349}
621ecd8d
AP
350
351/*
352 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
353 * generation register ICC_SGI1R_EL1) with a given VCPU.
354 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
355 * return -1.
356 */
357static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
358{
359 unsigned long affinity;
360 int level0;
361
362 /*
363 * Split the current VCPU's MPIDR into affinity level 0 and the
364 * rest as this is what we have to compare against.
365 */
366 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
367 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
368 affinity &= ~MPIDR_LEVEL_MASK;
369
370 /* bail out if the upper three levels don't match */
371 if (sgi_aff != affinity)
372 return -1;
373
374 /* Is this VCPU's bit set in the mask ? */
375 if (!(sgi_cpu_mask & BIT(level0)))
376 return -1;
377
378 return level0;
379}
380
381/*
382 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
383 * so provide a wrapper to use the existing defines to isolate a certain
384 * affinity level.
385 */
386#define SGI_AFFINITY_LEVEL(reg, level) \
387 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
388 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
389
390/**
391 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
392 * @vcpu: The VCPU requesting a SGI
393 * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
394 *
395 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
396 * This will trap in sys_regs.c and call this function.
397 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
398 * target processors as well as a bitmask of 16 Aff0 CPUs.
399 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
400 * check for matching ones. If this bit is set, we signal all, but not the
401 * calling VCPU.
402 */
403void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
404{
405 struct kvm *kvm = vcpu->kvm;
406 struct kvm_vcpu *c_vcpu;
407 u16 target_cpus;
408 u64 mpidr;
409 int sgi, c;
410 int vcpu_id = vcpu->vcpu_id;
411 bool broadcast;
412
413 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
414 broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
415 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
416 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
417 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
418 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
419
420 /*
421 * We iterate over all VCPUs to find the MPIDRs matching the request.
422 * If we have handled one CPU, we clear its bit to detect early
423 * if we are already finished. This avoids iterating through all
424 * VCPUs when most of the times we just signal a single VCPU.
425 */
426 kvm_for_each_vcpu(c, c_vcpu, kvm) {
427 struct vgic_irq *irq;
428
429 /* Exit early if we have dealt with all requested CPUs */
430 if (!broadcast && target_cpus == 0)
431 break;
432
433 /* Don't signal the calling VCPU */
434 if (broadcast && c == vcpu_id)
435 continue;
436
437 if (!broadcast) {
438 int level0;
439
440 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
441 if (level0 == -1)
442 continue;
443
444 /* remove this matching VCPU from the mask */
445 target_cpus &= ~BIT(level0);
446 }
447
448 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
449
450 spin_lock(&irq->irq_lock);
451 irq->pending = true;
452
453 vgic_queue_irq_unlock(vcpu->kvm, irq);
454 }
455}