perf cs-etm: Make PID format accessible from struct cs_etm_auxtrace
[linux-2.6-block.git] / tools / perf / util / cs-etm.c
CommitLineData
8a9fd832 1// SPDX-License-Identifier: GPL-2.0
440a23b3 2/*
440a23b3
MP
3 * Copyright(C) 2015-2018 Linaro Limited.
4 *
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
8
9#include <linux/bitops.h>
47f0d94c 10#include <linux/coresight-pmu.h>
440a23b3
MP
11#include <linux/err.h>
12#include <linux/kernel.h>
13#include <linux/log2.h>
14#include <linux/types.h>
7f7c536f 15#include <linux/zalloc.h>
440a23b3 16
06220bf4 17#include <opencsd/ocsd_if_types.h>
440a23b3
MP
18#include <stdlib.h>
19
20#include "auxtrace.h"
21#include "color.h"
22#include "cs-etm.h"
68ffe390 23#include "cs-etm-decoder/cs-etm-decoder.h"
440a23b3 24#include "debug.h"
4a3cec84 25#include "dso.h"
440a23b3
MP
26#include "evlist.h"
27#include "intlist.h"
28#include "machine.h"
29#include "map.h"
30#include "perf.h"
f2a39fe8 31#include "session.h"
d3300a3c
ACM
32#include "map_symbol.h"
33#include "branch.h"
859dcf64 34#include "symbol.h"
4a3cec84 35#include "tool.h"
440a23b3 36#include "thread.h"
440a23b3 37#include "thread-stack.h"
a7fe9a44 38#include "tsc.h"
c152d4d4 39#include <tools/libc_compat.h>
055c67ed 40#include "util/synthetic-events.h"
ea0c5239 41#include "util/util.h"
440a23b3 42
440a23b3
MP
43struct cs_etm_auxtrace {
44 struct auxtrace auxtrace;
45 struct auxtrace_queues queues;
46 struct auxtrace_heap heap;
47 struct itrace_synth_opts synth_opts;
48 struct perf_session *session;
a7fe9a44 49 struct perf_tsc_conversion tc;
440a23b3 50
d1efa4a0
JC
51 /*
52 * Timeless has no timestamps in the trace so overlapping mmap lookups
53 * are less accurate but produces smaller trace data. We use context IDs
54 * in the trace instead of matching timestamps with fork records so
55 * they're not really needed in the general case. Overlapping mmaps
56 * happen in cases like between a fork and an exec.
57 */
1764ce06 58 bool timeless_decoding;
d1efa4a0
JC
59
60 /*
61 * Per-thread ignores the trace channel ID and instead assumes that
62 * everything in a buffer comes from the same process regardless of
63 * which CPU it ran on. It also implies no context IDs so the TID is
64 * taken from the auxtrace buffer.
65 */
66 bool per_thread_decoding;
1764ce06
JC
67 bool snapshot_mode;
68 bool data_queued;
69 bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */
440a23b3
MP
70
71 int num_cpu;
1ac9e0b5 72 u64 latest_kernel_timestamp;
440a23b3
MP
73 u32 auxtrace_type;
74 u64 branches_sample_type;
75 u64 branches_id;
e573e978
RW
76 u64 instructions_sample_type;
77 u64 instructions_sample_period;
78 u64 instructions_id;
440a23b3 79 u64 **metadata;
440a23b3 80 unsigned int pmu_type;
5414b532 81 enum cs_etm_pid_fmt pid_fmt;
440a23b3
MP
82};
83
c7bfa2fd
MP
84struct cs_etm_traceid_queue {
85 u8 trace_chan_id;
86 u64 period_instructions;
87 size_t last_branch_pos;
88 union perf_event *event_buf;
3c21d7d8 89 struct thread *thread;
d67d8c87 90 struct thread *prev_packet_thread;
c7bfa2fd
MP
91 struct branch_stack *last_branch;
92 struct branch_stack *last_branch_rb;
93 struct cs_etm_packet *prev_packet;
94 struct cs_etm_packet *packet;
95 struct cs_etm_packet_queue packet_queue;
96};
97
440a23b3
MP
98struct cs_etm_queue {
99 struct cs_etm_auxtrace *etm;
440a23b3
MP
100 struct cs_etm_decoder *decoder;
101 struct auxtrace_buffer *buffer;
440a23b3 102 unsigned int queue_nr;
aadd6ba4 103 u8 pending_timestamp_chan_id;
440a23b3 104 u64 offset;
23cfcd6d
MP
105 const unsigned char *buf;
106 size_t buf_len, buf_used;
c152d4d4
MP
107 /* Conversion between traceID and index in traceid_queues array */
108 struct intlist *traceid_queues_list;
109 struct cs_etm_traceid_queue **traceid_queues;
440a23b3
MP
110};
111
168200b6
LY
112/* RB tree for quick conversion between traceID and metadata pointers */
113static struct intlist *traceid_list;
114
d1efa4a0 115static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm);
9f878b29 116static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
fc7ac413 117 pid_t tid);
21fe8dc1
MP
118static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
119static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
9f878b29 120
15a5cd19
MP
121/* PTMs ETMIDR [11:8] set to b0011 */
122#define ETMIDR_PTM_VERSION 0x00000300
123
21fe8dc1
MP
124/*
125 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
126 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply
127 * encode the etm queue number as the upper 16 bit and the channel as
128 * the lower 16 bit.
129 */
9d604aad 130#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
21fe8dc1
MP
131 (queue_nr << 16 | trace_chan_id)
132#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
133#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
134
15a5cd19
MP
135static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
136{
137 etmidr &= ETMIDR_PTM_VERSION;
138
139 if (etmidr == ETMIDR_PTM_VERSION)
140 return CS_ETM_PROTO_PTM;
141
142 return CS_ETM_PROTO_ETMV3;
143}
144
96dce7f4
LY
145static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
146{
147 struct int_node *inode;
148 u64 *metadata;
149
150 inode = intlist__find(traceid_list, trace_chan_id);
151 if (!inode)
152 return -EINVAL;
153
154 metadata = inode->priv;
155 *magic = metadata[CS_ETM_MAGIC];
156 return 0;
157}
158
95c6fe97
LY
159int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
160{
161 struct int_node *inode;
162 u64 *metadata;
163
164 inode = intlist__find(traceid_list, trace_chan_id);
165 if (!inode)
166 return -EINVAL;
167
168 metadata = inode->priv;
169 *cpu = (int)metadata[CS_ETM_CPU];
170 return 0;
171}
172
47f0d94c 173/*
5414b532 174 * The returned PID format is presented as an enum:
47f0d94c 175 *
5414b532
JC
176 * CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced.
177 * CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced.
178 * CS_ETM_PIDFMT_NONE: No context IDs
47f0d94c
LY
179 *
180 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
181 * are enabled at the same time when the session runs on an EL2 kernel.
182 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
183 * recorded in the trace data, the tool will selectively use
184 * CONTEXTIDR_EL2 as PID.
5414b532
JC
185 *
186 * The result is cached in etm->pid_fmt so this function only needs to be called
187 * when processing the aux info.
47f0d94c 188 */
5414b532 189static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata)
47f0d94c 190{
5414b532 191 u64 val;
47f0d94c
LY
192
193 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
194 val = metadata[CS_ETM_ETMCR];
195 /* CONTEXTIDR is traced */
196 if (val & BIT(ETM_OPT_CTXTID))
5414b532 197 return CS_ETM_PIDFMT_CTXTID;
47f0d94c
LY
198 } else {
199 val = metadata[CS_ETMV4_TRCCONFIGR];
200 /* CONTEXTIDR_EL2 is traced */
201 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
5414b532 202 return CS_ETM_PIDFMT_CTXTID2;
47f0d94c
LY
203 /* CONTEXTIDR_EL1 is traced */
204 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
5414b532 205 return CS_ETM_PIDFMT_CTXTID;
47f0d94c
LY
206 }
207
5414b532
JC
208 return CS_ETM_PIDFMT_NONE;
209}
210
211enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq)
212{
213 return etmq->etm->pid_fmt;
47f0d94c
LY
214}
215
09277295
ML
216static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
217{
218 struct int_node *inode;
219
220 /* Get an RB node for this CPU */
221 inode = intlist__findnew(traceid_list, trace_chan_id);
222
223 /* Something went wrong, no need to continue */
224 if (!inode)
225 return -ENOMEM;
226
227 /*
228 * The node for that CPU should not be taken.
229 * Back out if that's the case.
230 */
231 if (inode->priv)
232 return -EINVAL;
233
234 /* All good, associate the traceID with the metadata pointer */
235 inode->priv = cpu_metadata;
236
237 return 0;
238}
239
b6521ea2
ML
240static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata)
241{
242 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
243
244 switch (cs_etm_magic) {
245 case __perf_cs_etmv3_magic:
246 *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] &
247 CORESIGHT_TRACE_ID_VAL_MASK);
248 break;
249 case __perf_cs_etmv4_magic:
250 case __perf_cs_ete_magic:
251 *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] &
252 CORESIGHT_TRACE_ID_VAL_MASK);
253 break;
254 default:
255 return -EINVAL;
256 }
257 return 0;
258}
259
260/*
261 * update metadata trace ID from the value found in the AUX_HW_INFO packet.
262 * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present.
263 */
264static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
265{
266 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
267
268 switch (cs_etm_magic) {
269 case __perf_cs_etmv3_magic:
270 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id;
271 break;
272 case __perf_cs_etmv4_magic:
273 case __perf_cs_ete_magic:
274 cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id;
275 break;
276
277 default:
278 return -EINVAL;
279 }
280 return 0;
281}
282
283/*
284 * FIELD_GET (linux/bitfield.h) not available outside kernel code,
285 * and the header contains too many dependencies to just copy over,
286 * so roll our own based on the original
287 */
288#define __bf_shf(x) (__builtin_ffsll(x) - 1)
289#define FIELD_GET(_mask, _reg) \
290 ({ \
291 (typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \
292 })
293
6bf86cad
GK
294/*
295 * Get a metadata for a specific cpu from an array.
296 *
297 */
298static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu)
299{
300 int i;
301 u64 *metadata = NULL;
302
303 for (i = 0; i < etm->num_cpu; i++) {
304 if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) {
305 metadata = etm->metadata[i];
306 break;
307 }
308 }
309
310 return metadata;
311}
312
b6521ea2
ML
313/*
314 * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event.
315 *
316 * The payload associates the Trace ID and the CPU.
317 * The routine is tolerant of seeing multiple packets with the same association,
318 * but a CPU / Trace ID association changing during a session is an error.
319 */
320static int cs_etm__process_aux_output_hw_id(struct perf_session *session,
321 union perf_event *event)
322{
323 struct cs_etm_auxtrace *etm;
324 struct perf_sample sample;
325 struct int_node *inode;
326 struct evsel *evsel;
327 u64 *cpu_data;
328 u64 hw_id;
329 int cpu, version, err;
330 u8 trace_chan_id, curr_chan_id;
331
332 /* extract and parse the HW ID */
333 hw_id = event->aux_output_hw_id.hw_id;
334 version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id);
335 trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id);
336
337 /* check that we can handle this version */
338 if (version > CS_AUX_HW_ID_CURR_VERSION)
339 return -EINVAL;
340
341 /* get access to the etm metadata */
342 etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace);
343 if (!etm || !etm->metadata)
344 return -EINVAL;
345
346 /* parse the sample to get the CPU */
347 evsel = evlist__event2evsel(session->evlist, event);
348 if (!evsel)
349 return -EINVAL;
350 err = evsel__parse_sample(evsel, event, &sample);
351 if (err)
352 return err;
353 cpu = sample.cpu;
354 if (cpu == -1) {
355 /* no CPU in the sample - possibly recorded with an old version of perf */
356 pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record.");
357 return -EINVAL;
358 }
359
360 /* See if the ID is mapped to a CPU, and it matches the current CPU */
361 inode = intlist__find(traceid_list, trace_chan_id);
362 if (inode) {
363 cpu_data = inode->priv;
364 if ((int)cpu_data[CS_ETM_CPU] != cpu) {
365 pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n");
366 return -EINVAL;
367 }
368
369 /* check that the mapped ID matches */
370 err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data);
371 if (err)
372 return err;
373 if (curr_chan_id != trace_chan_id) {
374 pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n");
375 return -EINVAL;
376 }
377
378 /* mapped and matched - return OK */
379 return 0;
380 }
381
6bf86cad
GK
382 cpu_data = get_cpu_data(etm, cpu);
383 if (cpu_data == NULL)
384 return err;
385
b6521ea2 386 /* not one we've seen before - lets map it */
b6521ea2
ML
387 err = cs_etm__map_trace_id(trace_chan_id, cpu_data);
388 if (err)
389 return err;
390
391 /*
392 * if we are picking up the association from the packet, need to plug
393 * the correct trace ID into the metadata for setting up decoders later.
394 */
395 err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data);
396 return err;
397}
398
675f302f
MP
399void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
400 u8 trace_chan_id)
401{
402 /*
4d39c89f 403 * When a timestamp packet is encountered the backend code
675f302f
MP
404 * is stopped so that the front end has time to process packets
405 * that were accumulated in the traceID queue. Since there can
406 * be more than one channel per cs_etm_queue, we need to specify
407 * what traceID queue needs servicing.
408 */
aadd6ba4 409 etmq->pending_timestamp_chan_id = trace_chan_id;
675f302f
MP
410}
411
21fe8dc1
MP
412static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
413 u8 *trace_chan_id)
414{
415 struct cs_etm_packet_queue *packet_queue;
416
aadd6ba4 417 if (!etmq->pending_timestamp_chan_id)
21fe8dc1
MP
418 return 0;
419
420 if (trace_chan_id)
aadd6ba4 421 *trace_chan_id = etmq->pending_timestamp_chan_id;
21fe8dc1
MP
422
423 packet_queue = cs_etm__etmq_get_packet_queue(etmq,
aadd6ba4 424 etmq->pending_timestamp_chan_id);
21fe8dc1
MP
425 if (!packet_queue)
426 return 0;
427
428 /* Acknowledge pending status */
aadd6ba4 429 etmq->pending_timestamp_chan_id = 0;
21fe8dc1
MP
430
431 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
aadd6ba4 432 return packet_queue->cs_timestamp;
21fe8dc1
MP
433}
434
5f7cb035
MP
435static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
436{
437 int i;
438
439 queue->head = 0;
440 queue->tail = 0;
441 queue->packet_count = 0;
442 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
443 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
444 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
445 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
446 queue->packet_buffer[i].instr_count = 0;
447 queue->packet_buffer[i].last_instr_taken_branch = false;
448 queue->packet_buffer[i].last_instr_size = 0;
449 queue->packet_buffer[i].last_instr_type = 0;
450 queue->packet_buffer[i].last_instr_subtype = 0;
451 queue->packet_buffer[i].last_instr_cond = 0;
452 queue->packet_buffer[i].flags = 0;
453 queue->packet_buffer[i].exception_number = UINT32_MAX;
454 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
455 queue->packet_buffer[i].cpu = INT_MIN;
456 }
457}
458
21fe8dc1
MP
459static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
460{
461 int idx;
462 struct int_node *inode;
463 struct cs_etm_traceid_queue *tidq;
464 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
465
466 intlist__for_each_entry(inode, traceid_queues_list) {
467 idx = (int)(intptr_t)inode->priv;
468 tidq = etmq->traceid_queues[idx];
469 cs_etm__clear_packet_queue(&tidq->packet_queue);
470 }
471}
472
c7bfa2fd
MP
473static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
474 struct cs_etm_traceid_queue *tidq,
475 u8 trace_chan_id)
476{
477 int rc = -ENOMEM;
0abb868b 478 struct auxtrace_queue *queue;
c7bfa2fd
MP
479 struct cs_etm_auxtrace *etm = etmq->etm;
480
481 cs_etm__clear_packet_queue(&tidq->packet_queue);
482
0abb868b 483 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
c7bfa2fd 484 tidq->trace_chan_id = trace_chan_id;
951ccccd
JC
485 tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1,
486 queue->tid);
d67d8c87 487 tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host);
c7bfa2fd
MP
488
489 tidq->packet = zalloc(sizeof(struct cs_etm_packet));
490 if (!tidq->packet)
491 goto out;
492
493 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
494 if (!tidq->prev_packet)
495 goto out_free;
496
497 if (etm->synth_opts.last_branch) {
498 size_t sz = sizeof(struct branch_stack);
499
500 sz += etm->synth_opts.last_branch_sz *
501 sizeof(struct branch_entry);
502 tidq->last_branch = zalloc(sz);
503 if (!tidq->last_branch)
504 goto out_free;
505 tidq->last_branch_rb = zalloc(sz);
506 if (!tidq->last_branch_rb)
507 goto out_free;
508 }
509
510 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
511 if (!tidq->event_buf)
512 goto out_free;
513
514 return 0;
515
516out_free:
517 zfree(&tidq->last_branch_rb);
518 zfree(&tidq->last_branch);
519 zfree(&tidq->prev_packet);
520 zfree(&tidq->packet);
521out:
522 return rc;
523}
524
525static struct cs_etm_traceid_queue
526*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
527{
c152d4d4
MP
528 int idx;
529 struct int_node *inode;
530 struct intlist *traceid_queues_list;
531 struct cs_etm_traceid_queue *tidq, **traceid_queues;
c7bfa2fd
MP
532 struct cs_etm_auxtrace *etm = etmq->etm;
533
d1efa4a0 534 if (etm->per_thread_decoding)
c152d4d4 535 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
c7bfa2fd 536
c152d4d4 537 traceid_queues_list = etmq->traceid_queues_list;
c7bfa2fd 538
c152d4d4
MP
539 /*
540 * Check if the traceid_queue exist for this traceID by looking
541 * in the queue list.
542 */
543 inode = intlist__find(traceid_queues_list, trace_chan_id);
544 if (inode) {
545 idx = (int)(intptr_t)inode->priv;
546 return etmq->traceid_queues[idx];
547 }
c7bfa2fd 548
c152d4d4 549 /* We couldn't find a traceid_queue for this traceID, allocate one */
c7bfa2fd
MP
550 tidq = malloc(sizeof(*tidq));
551 if (!tidq)
552 return NULL;
553
554 memset(tidq, 0, sizeof(*tidq));
555
c152d4d4
MP
556 /* Get a valid index for the new traceid_queue */
557 idx = intlist__nr_entries(traceid_queues_list);
558 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
559 inode = intlist__findnew(traceid_queues_list, trace_chan_id);
560 if (!inode)
561 goto out_free;
562
563 /* Associate this traceID with this index */
564 inode->priv = (void *)(intptr_t)idx;
565
c7bfa2fd
MP
566 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
567 goto out_free;
568
c152d4d4
MP
569 /* Grow the traceid_queues array by one unit */
570 traceid_queues = etmq->traceid_queues;
571 traceid_queues = reallocarray(traceid_queues,
572 idx + 1,
573 sizeof(*traceid_queues));
574
575 /*
576 * On failure reallocarray() returns NULL and the original block of
577 * memory is left untouched.
578 */
579 if (!traceid_queues)
580 goto out_free;
581
582 traceid_queues[idx] = tidq;
583 etmq->traceid_queues = traceid_queues;
c7bfa2fd 584
c152d4d4 585 return etmq->traceid_queues[idx];
c7bfa2fd
MP
586
587out_free:
c152d4d4
MP
588 /*
589 * Function intlist__remove() removes the inode from the list
590 * and delete the memory associated to it.
591 */
592 intlist__remove(traceid_queues_list, inode);
c7bfa2fd
MP
593 free(tidq);
594
595 return NULL;
596}
597
5f7cb035 598struct cs_etm_packet_queue
c7bfa2fd 599*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
5f7cb035 600{
c7bfa2fd
MP
601 struct cs_etm_traceid_queue *tidq;
602
603 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
604 if (tidq)
605 return &tidq->packet_queue;
606
607 return NULL;
5f7cb035
MP
608}
609
d0175156
LY
610static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
611 struct cs_etm_traceid_queue *tidq)
612{
613 struct cs_etm_packet *tmp;
614
0b31ea66
JC
615 if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
616 etm->synth_opts.instructions) {
d0175156
LY
617 /*
618 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
619 * the next incoming packet.
d67d8c87
JC
620 *
621 * Threads and exception levels are also tracked for both the
622 * previous and current packets. This is because the previous
623 * packet is used for the 'from' IP for branch samples, so the
624 * thread at that time must also be assigned to that sample.
625 * Across discontinuity packets the thread can change, so by
626 * tracking the thread for the previous packet the branch sample
627 * will have the correct info.
d0175156
LY
628 */
629 tmp = tidq->packet;
630 tidq->packet = tidq->prev_packet;
631 tidq->prev_packet = tmp;
d67d8c87
JC
632 thread__put(tidq->prev_packet_thread);
633 tidq->prev_packet_thread = thread__get(tidq->thread);
d0175156
LY
634 }
635}
636
68ffe390
MP
637static void cs_etm__packet_dump(const char *pkt_string)
638{
639 const char *color = PERF_COLOR_BLUE;
640 int len = strlen(pkt_string);
641
642 if (len && (pkt_string[len-1] == '\n'))
643 color_fprintf(stdout, color, " %s", pkt_string);
644 else
645 color_fprintf(stdout, color, " %s\n", pkt_string);
646
647 fflush(stdout);
648}
649
2507a3d9
MP
650static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
651 struct cs_etm_auxtrace *etm, int idx,
652 u32 etmidr)
653{
654 u64 **metadata = etm->metadata;
655
656 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
657 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
658 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
659}
660
661static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
662 struct cs_etm_auxtrace *etm, int idx)
663{
664 u64 **metadata = etm->metadata;
665
666 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
667 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
668 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
669 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
670 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
671 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
672 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
673}
674
779f414a
JC
675static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
676 struct cs_etm_auxtrace *etm, int idx)
677{
678 u64 **metadata = etm->metadata;
679
680 t_params[idx].protocol = CS_ETM_PROTO_ETE;
326163c5
GG
681 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0];
682 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1];
683 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2];
684 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8];
685 t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR];
686 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR];
779f414a
JC
687 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
688}
689
2507a3d9 690static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
9182f04a
JC
691 struct cs_etm_auxtrace *etm,
692 int decoders)
2507a3d9
MP
693{
694 int i;
695 u32 etmidr;
696 u64 architecture;
697
9182f04a 698 for (i = 0; i < decoders; i++) {
2507a3d9
MP
699 architecture = etm->metadata[i][CS_ETM_MAGIC];
700
701 switch (architecture) {
702 case __perf_cs_etmv3_magic:
703 etmidr = etm->metadata[i][CS_ETM_ETMIDR];
704 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
705 break;
706 case __perf_cs_etmv4_magic:
707 cs_etm__set_trace_param_etmv4(t_params, etm, i);
708 break;
779f414a
JC
709 case __perf_cs_ete_magic:
710 cs_etm__set_trace_param_ete(t_params, etm, i);
711 break;
2507a3d9
MP
712 default:
713 return -EINVAL;
714 }
715 }
716
717 return 0;
718}
719
65963e5b
MP
720static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
721 struct cs_etm_queue *etmq,
9182f04a
JC
722 enum cs_etm_decoder_operation mode,
723 bool formatted)
65963e5b
MP
724{
725 int ret = -EINVAL;
726
727 if (!(mode < CS_ETM_OPERATION_MAX))
728 goto out;
729
730 d_params->packet_printer = cs_etm__packet_dump;
731 d_params->operation = mode;
732 d_params->data = etmq;
9182f04a 733 d_params->formatted = formatted;
65963e5b
MP
734 d_params->fsyncs = false;
735 d_params->hsyncs = false;
736 d_params->frame_aligned = true;
737
738 ret = 0;
739out:
740 return ret;
741}
742
04aaad26 743static void cs_etm__dump_event(struct cs_etm_queue *etmq,
68ffe390
MP
744 struct auxtrace_buffer *buffer)
745{
2507a3d9 746 int ret;
68ffe390 747 const char *color = PERF_COLOR_BLUE;
68ffe390
MP
748 size_t buffer_used = 0;
749
750 fprintf(stdout, "\n");
751 color_fprintf(stdout, color,
d54e50b7 752 ". ... CoreSight %s Trace data: size %#zx bytes\n",
56c62f52 753 cs_etm_decoder__get_name(etmq->decoder), buffer->size);
68ffe390 754
68ffe390
MP
755 do {
756 size_t consumed;
757
758 ret = cs_etm_decoder__process_data_block(
04aaad26 759 etmq->decoder, buffer->offset,
68ffe390
MP
760 &((u8 *)buffer->data)[buffer_used],
761 buffer->size - buffer_used, &consumed);
762 if (ret)
763 break;
764
765 buffer_used += consumed;
766 } while (buffer_used < buffer->size);
767
04aaad26 768 cs_etm_decoder__reset(etmq->decoder);
68ffe390
MP
769}
770
440a23b3
MP
771static int cs_etm__flush_events(struct perf_session *session,
772 struct perf_tool *tool)
773{
9f878b29
MP
774 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
775 struct cs_etm_auxtrace,
776 auxtrace);
777 if (dump_trace)
778 return 0;
779
780 if (!tool->ordered_events)
781 return -EINVAL;
782
d1efa4a0
JC
783 if (etm->timeless_decoding) {
784 /*
785 * Pass tid = -1 to process all queues. But likely they will have
786 * already been processed on PERF_RECORD_EXIT anyway.
787 */
21fe8dc1 788 return cs_etm__process_timeless_queues(etm, -1);
d1efa4a0 789 }
21fe8dc1 790
d1efa4a0 791 return cs_etm__process_timestamped_queues(etm);
440a23b3
MP
792}
793
c152d4d4
MP
794static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
795{
796 int idx;
797 uintptr_t priv;
798 struct int_node *inode, *tmp;
799 struct cs_etm_traceid_queue *tidq;
800 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
801
802 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
803 priv = (uintptr_t)inode->priv;
804 idx = priv;
805
806 /* Free this traceid_queue from the array */
807 tidq = etmq->traceid_queues[idx];
808 thread__zput(tidq->thread);
d67d8c87 809 thread__zput(tidq->prev_packet_thread);
c152d4d4
MP
810 zfree(&tidq->event_buf);
811 zfree(&tidq->last_branch);
812 zfree(&tidq->last_branch_rb);
813 zfree(&tidq->prev_packet);
814 zfree(&tidq->packet);
815 zfree(&tidq);
816
817 /*
818 * Function intlist__remove() removes the inode from the list
819 * and delete the memory associated to it.
820 */
821 intlist__remove(traceid_queues_list, inode);
822 }
823
824 /* Then the RB tree itself */
825 intlist__delete(traceid_queues_list);
826 etmq->traceid_queues_list = NULL;
827
828 /* finally free the traceid_queues array */
d8f9da24 829 zfree(&etmq->traceid_queues);
c152d4d4
MP
830}
831
440a23b3
MP
832static void cs_etm__free_queue(void *priv)
833{
834 struct cs_etm_queue *etmq = priv;
835
099c1130
MP
836 if (!etmq)
837 return;
838
099c1130 839 cs_etm_decoder__free(etmq->decoder);
c152d4d4 840 cs_etm__free_traceid_queues(etmq);
440a23b3
MP
841 free(etmq);
842}
843
844static void cs_etm__free_events(struct perf_session *session)
845{
846 unsigned int i;
847 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
848 struct cs_etm_auxtrace,
849 auxtrace);
850 struct auxtrace_queues *queues = &aux->queues;
851
852 for (i = 0; i < queues->nr_queues; i++) {
853 cs_etm__free_queue(queues->queue_array[i].priv);
854 queues->queue_array[i].priv = NULL;
855 }
856
857 auxtrace_queues__free(queues);
858}
859
860static void cs_etm__free(struct perf_session *session)
861{
cd8bfd8c
TJ
862 int i;
863 struct int_node *inode, *tmp;
440a23b3
MP
864 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
865 struct cs_etm_auxtrace,
866 auxtrace);
867 cs_etm__free_events(session);
868 session->auxtrace = NULL;
869
95c6fe97 870 /* First remove all traceID/metadata nodes for the RB tree */
cd8bfd8c
TJ
871 intlist__for_each_entry_safe(inode, tmp, traceid_list)
872 intlist__remove(traceid_list, inode);
873 /* Then the RB tree itself */
874 intlist__delete(traceid_list);
875
876 for (i = 0; i < aux->num_cpu; i++)
877 zfree(&aux->metadata[i]);
878
879 zfree(&aux->metadata);
440a23b3
MP
880 zfree(&aux);
881}
882
a58ab57c
AH
883static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
884 struct evsel *evsel)
885{
886 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
887 struct cs_etm_auxtrace,
888 auxtrace);
889
890 return evsel->core.attr.type == aux->pmu_type;
891}
892
d6c9c05f
LY
893static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
894{
895 struct machine *machine;
896
951ccccd 897 machine = &etmq->etm->session->machines.host;
d6c9c05f 898
6f38e115 899 if (address >= machine__kernel_start(machine)) {
d6c9c05f
LY
900 if (machine__is_host(machine))
901 return PERF_RECORD_MISC_KERNEL;
902 else
903 return PERF_RECORD_MISC_GUEST_KERNEL;
904 } else {
905 if (machine__is_host(machine))
906 return PERF_RECORD_MISC_USER;
907 else if (perf_guest)
908 return PERF_RECORD_MISC_GUEST_USER;
909 else
910 return PERF_RECORD_MISC_HYPERVISOR;
911 }
912}
913
af21577c
MP
914static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
915 u64 address, size_t size, u8 *buffer)
20d9c478
MP
916{
917 u8 cpumode;
918 u64 offset;
919 int len;
c152d4d4 920 struct addr_location al;
63df0e4b 921 struct dso *dso;
c152d4d4 922 struct cs_etm_traceid_queue *tidq;
0dd5041c 923 int ret = 0;
af21577c 924
20d9c478 925 if (!etmq)
d3267ad4 926 return 0;
20d9c478 927
0dd5041c 928 addr_location__init(&al);
d6c9c05f 929 cpumode = cs_etm__cpu_mode(etmq, address);
c152d4d4
MP
930 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
931 if (!tidq)
0dd5041c 932 goto out;
20d9c478 933
951ccccd 934 if (!thread__find_map(tidq->thread, cpumode, address, &al))
0dd5041c 935 goto out;
63df0e4b 936
b550bc90
JC
937 dso = map__dso(al.map);
938 if (!dso)
0dd5041c 939 goto out;
20d9c478 940
63df0e4b
IR
941 if (dso->data.status == DSO_DATA_STATUS_ERROR &&
942 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE))
0dd5041c 943 goto out;
20d9c478 944
78a1f7cd 945 offset = map__map_ip(al.map, address);
20d9c478
MP
946
947 map__load(al.map);
948
951ccccd
JC
949 len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)),
950 offset, buffer, size);
20d9c478 951
9c38b671
JC
952 if (len <= 0) {
953 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
954 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
63df0e4b 955 if (!dso->auxtrace_warned) {
9c38b671
JC
956 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
957 address,
63df0e4b
IR
958 dso->long_name ? dso->long_name : "Unknown");
959 dso->auxtrace_warned = true;
9c38b671 960 }
0dd5041c 961 goto out;
9c38b671 962 }
0dd5041c
IR
963 ret = len;
964out:
965 addr_location__exit(&al);
966 return ret;
20d9c478
MP
967}
968
9182f04a
JC
969static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
970 bool formatted)
20d9c478 971{
20d9c478 972 struct cs_etm_decoder_params d_params;
ae4d9f52 973 struct cs_etm_trace_params *t_params = NULL;
20d9c478 974 struct cs_etm_queue *etmq;
9182f04a
JC
975 /*
976 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
977 * needed.
978 */
979 int decoders = formatted ? etm->num_cpu : 1;
20d9c478
MP
980
981 etmq = zalloc(sizeof(*etmq));
982 if (!etmq)
983 return NULL;
984
c152d4d4
MP
985 etmq->traceid_queues_list = intlist__new(NULL);
986 if (!etmq->traceid_queues_list)
987 goto out_free;
988
20d9c478 989 /* Use metadata to fill in trace parameters for trace decoder */
9182f04a 990 t_params = zalloc(sizeof(*t_params) * decoders);
20d9c478
MP
991
992 if (!t_params)
993 goto out_free;
994
9182f04a 995 if (cs_etm__init_trace_params(t_params, etm, decoders))
2507a3d9 996 goto out_free;
20d9c478 997
e4aa592d 998 /* Set decoder parameters to decode trace packets */
65963e5b 999 if (cs_etm__init_decoder_params(&d_params, etmq,
04aaad26 1000 dump_trace ? CS_ETM_OPERATION_PRINT :
9182f04a
JC
1001 CS_ETM_OPERATION_DECODE,
1002 formatted))
65963e5b 1003 goto out_free;
20d9c478 1004
9182f04a
JC
1005 etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
1006 t_params);
20d9c478 1007
20d9c478
MP
1008 if (!etmq->decoder)
1009 goto out_free;
1010
1011 /*
1012 * Register a function to handle all memory accesses required by
1013 * the trace decoder library.
1014 */
1015 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
1016 0x0L, ((u64) -1L),
1017 cs_etm__mem_access))
1018 goto out_free_decoder;
1019
ae4d9f52 1020 zfree(&t_params);
20d9c478
MP
1021 return etmq;
1022
1023out_free_decoder:
1024 cs_etm_decoder__free(etmq->decoder);
1025out_free:
c152d4d4 1026 intlist__delete(etmq->traceid_queues_list);
20d9c478
MP
1027 free(etmq);
1028
1029 return NULL;
1030}
1031
1032static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
1033 struct auxtrace_queue *queue,
9182f04a
JC
1034 unsigned int queue_nr,
1035 bool formatted)
20d9c478
MP
1036{
1037 struct cs_etm_queue *etmq = queue->priv;
1038
1039 if (list_empty(&queue->head) || etmq)
9ac8afd5 1040 return 0;
20d9c478 1041
9182f04a 1042 etmq = cs_etm__alloc_queue(etm, formatted);
20d9c478 1043
9ac8afd5
JC
1044 if (!etmq)
1045 return -ENOMEM;
20d9c478
MP
1046
1047 queue->priv = etmq;
4f5b3713
MP
1048 etmq->etm = etm;
1049 etmq->queue_nr = queue_nr;
4f5b3713 1050 etmq->offset = 0;
20d9c478 1051
9ac8afd5
JC
1052 return 0;
1053}
1054
1055static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
1056 struct cs_etm_queue *etmq,
1057 unsigned int queue_nr)
1058{
1059 int ret = 0;
1060 unsigned int cs_queue_nr;
1061 u8 trace_chan_id;
1062 u64 cs_timestamp;
21fe8dc1
MP
1063
1064 /*
1065 * We are under a CPU-wide trace scenario. As such we need to know
1066 * when the code that generated the traces started to execute so that
1067 * it can be correlated with execution on other CPUs. So we get a
1068 * handle on the beginning of traces and decode until we find a
1069 * timestamp. The timestamp is then added to the auxtrace min heap
1070 * in order to know what nibble (of all the etmqs) to decode first.
1071 */
1072 while (1) {
1073 /*
1074 * Fetch an aux_buffer from this etmq. Bail if no more
1075 * blocks or an error has been encountered.
1076 */
1077 ret = cs_etm__get_data_block(etmq);
1078 if (ret <= 0)
1079 goto out;
1080
1081 /*
1082 * Run decoder on the trace block. The decoder will stop when
aadd6ba4 1083 * encountering a CS timestamp, a full packet queue or the end of
21fe8dc1
MP
1084 * trace for that block.
1085 */
1086 ret = cs_etm__decode_data_block(etmq);
1087 if (ret)
1088 goto out;
1089
1090 /*
1091 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
1092 * the timestamp calculation for us.
1093 */
aadd6ba4 1094 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
21fe8dc1
MP
1095
1096 /* We found a timestamp, no need to continue. */
aadd6ba4 1097 if (cs_timestamp)
21fe8dc1
MP
1098 break;
1099
1100 /*
1101 * We didn't find a timestamp so empty all the traceid packet
1102 * queues before looking for another timestamp packet, either
1103 * in the current data block or a new one. Packets that were
1104 * just decoded are useless since no timestamp has been
1105 * associated with them. As such simply discard them.
1106 */
1107 cs_etm__clear_all_packet_queues(etmq);
1108 }
1109
1110 /*
1111 * We have a timestamp. Add it to the min heap to reflect when
1112 * instructions conveyed by the range packets of this traceID queue
1113 * started to execute. Once the same has been done for all the traceID
1114 * queues of each etmq, redenring and decoding can start in
1115 * chronological order.
1116 *
1117 * Note that packets decoded above are still in the traceID's packet
d1efa4a0 1118 * queue and will be processed in cs_etm__process_timestamped_queues().
21fe8dc1 1119 */
9d604aad 1120 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
aadd6ba4 1121 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
4f5b3713
MP
1122out:
1123 return ret;
20d9c478
MP
1124}
1125
c7bfa2fd
MP
1126static inline
1127void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
1128 struct cs_etm_traceid_queue *tidq)
e573e978 1129{
c7bfa2fd
MP
1130 struct branch_stack *bs_src = tidq->last_branch_rb;
1131 struct branch_stack *bs_dst = tidq->last_branch;
e573e978
RW
1132 size_t nr = 0;
1133
1134 /*
1135 * Set the number of records before early exit: ->nr is used to
1136 * determine how many branches to copy from ->entries.
1137 */
1138 bs_dst->nr = bs_src->nr;
1139
1140 /*
1141 * Early exit when there is nothing to copy.
1142 */
1143 if (!bs_src->nr)
1144 return;
1145
1146 /*
1147 * As bs_src->entries is a circular buffer, we need to copy from it in
1148 * two steps. First, copy the branches from the most recently inserted
1149 * branch ->last_branch_pos until the end of bs_src->entries buffer.
1150 */
c7bfa2fd 1151 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
e573e978 1152 memcpy(&bs_dst->entries[0],
c7bfa2fd 1153 &bs_src->entries[tidq->last_branch_pos],
e573e978
RW
1154 sizeof(struct branch_entry) * nr);
1155
1156 /*
1157 * If we wrapped around at least once, the branches from the beginning
1158 * of the bs_src->entries buffer and until the ->last_branch_pos element
1159 * are older valid branches: copy them over. The total number of
1160 * branches copied over will be equal to the number of branches asked by
1161 * the user in last_branch_sz.
1162 */
1163 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
1164 memcpy(&bs_dst->entries[nr],
1165 &bs_src->entries[0],
c7bfa2fd 1166 sizeof(struct branch_entry) * tidq->last_branch_pos);
e573e978
RW
1167 }
1168}
1169
c7bfa2fd
MP
1170static inline
1171void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
e573e978 1172{
c7bfa2fd
MP
1173 tidq->last_branch_pos = 0;
1174 tidq->last_branch_rb->nr = 0;
e573e978
RW
1175}
1176
a7ee4d62 1177static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
af21577c
MP
1178 u8 trace_chan_id, u64 addr)
1179{
a7ee4d62 1180 u8 instrBytes[2];
6035b680 1181
af21577c
MP
1182 cs_etm__mem_access(etmq, trace_chan_id, addr,
1183 ARRAY_SIZE(instrBytes), instrBytes);
e573e978 1184 /*
a7ee4d62
RW
1185 * T32 instruction size is indicated by bits[15:11] of the first
1186 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
1187 * denote a 32-bit instruction.
e573e978 1188 */
a7ee4d62 1189 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
e573e978
RW
1190}
1191
6035b680
LY
1192static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
1193{
49ccf87b
LY
1194 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1195 if (packet->sample_type == CS_ETM_DISCONTINUITY)
6035b680
LY
1196 return 0;
1197
1198 return packet->start_addr;
1199}
1200
a7ee4d62
RW
1201static inline
1202u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
e573e978 1203{
49ccf87b
LY
1204 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1205 if (packet->sample_type == CS_ETM_DISCONTINUITY)
a7ee4d62
RW
1206 return 0;
1207
1208 return packet->end_addr - packet->last_instr_size;
e573e978
RW
1209}
1210
a7ee4d62 1211static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
af21577c 1212 u64 trace_chan_id,
a7ee4d62 1213 const struct cs_etm_packet *packet,
e573e978
RW
1214 u64 offset)
1215{
a7ee4d62
RW
1216 if (packet->isa == CS_ETM_ISA_T32) {
1217 u64 addr = packet->start_addr;
1218
bc010dd6 1219 while (offset) {
af21577c
MP
1220 addr += cs_etm__t32_instr_size(etmq,
1221 trace_chan_id, addr);
a7ee4d62
RW
1222 offset--;
1223 }
1224 return addr;
1225 }
1226
1227 /* Assume a 4 byte instruction size (A32/A64) */
1228 return packet->start_addr + offset * 4;
e573e978
RW
1229}
1230
c7bfa2fd
MP
1231static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1232 struct cs_etm_traceid_queue *tidq)
e573e978 1233{
c7bfa2fd 1234 struct branch_stack *bs = tidq->last_branch_rb;
e573e978
RW
1235 struct branch_entry *be;
1236
1237 /*
1238 * The branches are recorded in a circular buffer in reverse
1239 * chronological order: we start recording from the last element of the
1240 * buffer down. After writing the first element of the stack, move the
1241 * insert position back to the end of the buffer.
1242 */
c7bfa2fd
MP
1243 if (!tidq->last_branch_pos)
1244 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
e573e978 1245
c7bfa2fd 1246 tidq->last_branch_pos -= 1;
e573e978 1247
c7bfa2fd
MP
1248 be = &bs->entries[tidq->last_branch_pos];
1249 be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1250 be->to = cs_etm__first_executed_instr(tidq->packet);
e573e978
RW
1251 /* No support for mispredict */
1252 be->flags.mispred = 0;
1253 be->flags.predicted = 1;
1254
1255 /*
1256 * Increment bs->nr until reaching the number of last branches asked by
1257 * the user on the command line.
1258 */
1259 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1260 bs->nr += 1;
1261}
1262
1263static int cs_etm__inject_event(union perf_event *event,
1264 struct perf_sample *sample, u64 type)
1265{
1266 event->header.size = perf_event__sample_event_size(sample, type, 0);
1267 return perf_event__synthesize_sample(event, type, 0, sample);
1268}
1269
1270
9f878b29 1271static int
23cfcd6d 1272cs_etm__get_trace(struct cs_etm_queue *etmq)
9f878b29
MP
1273{
1274 struct auxtrace_buffer *aux_buffer = etmq->buffer;
1275 struct auxtrace_buffer *old_buffer = aux_buffer;
1276 struct auxtrace_queue *queue;
1277
1278 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1279
1280 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1281
1282 /* If no more data, drop the previous auxtrace_buffer and return */
1283 if (!aux_buffer) {
1284 if (old_buffer)
1285 auxtrace_buffer__drop_data(old_buffer);
23cfcd6d 1286 etmq->buf_len = 0;
9f878b29
MP
1287 return 0;
1288 }
1289
1290 etmq->buffer = aux_buffer;
1291
1292 /* If the aux_buffer doesn't have data associated, try to load it */
1293 if (!aux_buffer->data) {
1294 /* get the file desc associated with the perf data file */
1295 int fd = perf_data__fd(etmq->etm->session->data);
1296
1297 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1298 if (!aux_buffer->data)
1299 return -ENOMEM;
1300 }
1301
1302 /* If valid, drop the previous buffer */
1303 if (old_buffer)
1304 auxtrace_buffer__drop_data(old_buffer);
1305
23cfcd6d
MP
1306 etmq->buf_used = 0;
1307 etmq->buf_len = aux_buffer->size;
1308 etmq->buf = aux_buffer->data;
9f878b29 1309
23cfcd6d 1310 return etmq->buf_len;
9f878b29
MP
1311}
1312
951ccccd
JC
1313static void cs_etm__set_thread(struct cs_etm_auxtrace *etm,
1314 struct cs_etm_traceid_queue *tidq, pid_t tid)
9f878b29 1315{
951ccccd
JC
1316 struct machine *machine = &etm->session->machines.host;
1317
1318 if (tid != -1) {
1319 thread__zput(tidq->thread);
1320 tidq->thread = machine__find_thread(machine, -1, tid);
1321 }
9f878b29 1322
951ccccd
JC
1323 /* Couldn't find a known thread */
1324 if (!tidq->thread)
1325 tidq->thread = machine__idle_thread(machine);
9f878b29
MP
1326}
1327
0a6be300
MP
1328int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1329 pid_t tid, u8 trace_chan_id)
1330{
0a6be300
MP
1331 struct cs_etm_traceid_queue *tidq;
1332
1333 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1334 if (!tidq)
951ccccd 1335 return -EINVAL;
0a6be300 1336
951ccccd 1337 cs_etm__set_thread(etmq->etm, tidq, tid);
0a6be300
MP
1338 return 0;
1339}
1340
675f302f
MP
1341bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1342{
1343 return !!etmq->etm->timeless_decoding;
1344}
1345
a4973d8f
LY
1346static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1347 u64 trace_chan_id,
1348 const struct cs_etm_packet *packet,
1349 struct perf_sample *sample)
1350{
1351 /*
1352 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1353 * packet, so directly bail out with 'insn_len' = 0.
1354 */
1355 if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1356 sample->insn_len = 0;
1357 return;
1358 }
1359
1360 /*
1361 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1362 * cs_etm__t32_instr_size().
1363 */
1364 if (packet->isa == CS_ETM_ISA_T32)
1365 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1366 sample->ip);
1367 /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1368 else
1369 sample->insn_len = 4;
1370
1371 cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1372 sample->insn_len, (void *)sample->insn);
1373}
1374
a7fe9a44
GG
1375u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp)
1376{
1377 struct cs_etm_auxtrace *etm = etmq->etm;
1378
1379 if (etm->has_virtual_ts)
1380 return tsc_to_perf_time(cs_timestamp, &etm->tc);
1381 else
1382 return cs_timestamp;
1383}
1384
1385static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq,
1386 struct cs_etm_traceid_queue *tidq)
1387{
1388 struct cs_etm_auxtrace *etm = etmq->etm;
1389 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue;
1390
d1efa4a0 1391 if (!etm->timeless_decoding && etm->has_virtual_ts)
a7fe9a44
GG
1392 return packet_queue->cs_timestamp;
1393 else
1394 return etm->latest_kernel_timestamp;
1395}
1396
e573e978 1397static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
c7bfa2fd 1398 struct cs_etm_traceid_queue *tidq,
e573e978
RW
1399 u64 addr, u64 period)
1400{
1401 int ret = 0;
1402 struct cs_etm_auxtrace *etm = etmq->etm;
c7bfa2fd 1403 union perf_event *event = tidq->event_buf;
e573e978
RW
1404 struct perf_sample sample = {.ip = 0,};
1405
1406 event->sample.header.type = PERF_RECORD_SAMPLE;
d6c9c05f 1407 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
e573e978
RW
1408 event->sample.header.size = sizeof(struct perf_event_header);
1409
a7fe9a44
GG
1410 /* Set time field based on etm auxtrace config. */
1411 sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1412
e573e978 1413 sample.ip = addr;
951ccccd
JC
1414 sample.pid = thread__pid(tidq->thread);
1415 sample.tid = thread__tid(tidq->thread);
e573e978
RW
1416 sample.id = etmq->etm->instructions_id;
1417 sample.stream_id = etmq->etm->instructions_id;
1418 sample.period = period;
c7bfa2fd
MP
1419 sample.cpu = tidq->packet->cpu;
1420 sample.flags = tidq->prev_packet->flags;
d6c9c05f 1421 sample.cpumode = event->sample.header.misc;
e573e978 1422
a4973d8f
LY
1423 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1424
695378b5 1425 if (etm->synth_opts.last_branch)
c7bfa2fd 1426 sample.branch_stack = tidq->last_branch;
e573e978
RW
1427
1428 if (etm->synth_opts.inject) {
1429 ret = cs_etm__inject_event(event, &sample,
1430 etm->instructions_sample_type);
1431 if (ret)
1432 return ret;
1433 }
1434
1435 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1436
1437 if (ret)
1438 pr_err(
1439 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1440 ret);
1441
e573e978
RW
1442 return ret;
1443}
1444
b12235b1
MP
1445/*
1446 * The cs etm packet encodes an instruction range between a branch target
1447 * and the next taken branch. Generate sample accordingly.
1448 */
c7bfa2fd
MP
1449static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1450 struct cs_etm_traceid_queue *tidq)
b12235b1
MP
1451{
1452 int ret = 0;
1453 struct cs_etm_auxtrace *etm = etmq->etm;
1454 struct perf_sample sample = {.ip = 0,};
c7bfa2fd 1455 union perf_event *event = tidq->event_buf;
e573e978
RW
1456 struct dummy_branch_stack {
1457 u64 nr;
42bbabed 1458 u64 hw_idx;
e573e978
RW
1459 struct branch_entry entries;
1460 } dummy_bs;
d6c9c05f
LY
1461 u64 ip;
1462
c7bfa2fd 1463 ip = cs_etm__last_executed_instr(tidq->prev_packet);
b12235b1
MP
1464
1465 event->sample.header.type = PERF_RECORD_SAMPLE;
d6c9c05f 1466 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
b12235b1
MP
1467 event->sample.header.size = sizeof(struct perf_event_header);
1468
a7fe9a44
GG
1469 /* Set time field based on etm auxtrace config. */
1470 sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1471
d6c9c05f 1472 sample.ip = ip;
d67d8c87
JC
1473 sample.pid = thread__pid(tidq->prev_packet_thread);
1474 sample.tid = thread__tid(tidq->prev_packet_thread);
c7bfa2fd 1475 sample.addr = cs_etm__first_executed_instr(tidq->packet);
b12235b1
MP
1476 sample.id = etmq->etm->branches_id;
1477 sample.stream_id = etmq->etm->branches_id;
1478 sample.period = 1;
c7bfa2fd
MP
1479 sample.cpu = tidq->packet->cpu;
1480 sample.flags = tidq->prev_packet->flags;
d6c9c05f 1481 sample.cpumode = event->sample.header.misc;
b12235b1 1482
a4973d8f
LY
1483 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1484 &sample);
1485
e573e978
RW
1486 /*
1487 * perf report cannot handle events without a branch stack
1488 */
1489 if (etm->synth_opts.last_branch) {
1490 dummy_bs = (struct dummy_branch_stack){
1491 .nr = 1,
42bbabed 1492 .hw_idx = -1ULL,
e573e978
RW
1493 .entries = {
1494 .from = sample.ip,
1495 .to = sample.addr,
1496 },
1497 };
1498 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1499 }
1500
1501 if (etm->synth_opts.inject) {
1502 ret = cs_etm__inject_event(event, &sample,
1503 etm->branches_sample_type);
1504 if (ret)
1505 return ret;
1506 }
1507
b12235b1
MP
1508 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1509
1510 if (ret)
1511 pr_err(
1512 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1513 ret);
1514
1515 return ret;
1516}
1517
1518struct cs_etm_synth {
1519 struct perf_tool dummy_tool;
1520 struct perf_session *session;
1521};
1522
1523static int cs_etm__event_synth(struct perf_tool *tool,
1524 union perf_event *event,
1525 struct perf_sample *sample __maybe_unused,
1526 struct machine *machine __maybe_unused)
1527{
1528 struct cs_etm_synth *cs_etm_synth =
1529 container_of(tool, struct cs_etm_synth, dummy_tool);
1530
1531 return perf_session__deliver_synth_event(cs_etm_synth->session,
1532 event, NULL);
1533}
1534
1535static int cs_etm__synth_event(struct perf_session *session,
1536 struct perf_event_attr *attr, u64 id)
1537{
1538 struct cs_etm_synth cs_etm_synth;
1539
1540 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1541 cs_etm_synth.session = session;
1542
1543 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1544 &id, cs_etm__event_synth);
1545}
1546
1547static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1548 struct perf_session *session)
1549{
63503dba 1550 struct evlist *evlist = session->evlist;
32dcd021 1551 struct evsel *evsel;
b12235b1
MP
1552 struct perf_event_attr attr;
1553 bool found = false;
1554 u64 id;
1555 int err;
1556
1557 evlist__for_each_entry(evlist, evsel) {
1fc632ce 1558 if (evsel->core.attr.type == etm->pmu_type) {
b12235b1
MP
1559 found = true;
1560 break;
1561 }
1562 }
1563
1564 if (!found) {
1565 pr_debug("No selected events with CoreSight Trace data\n");
1566 return 0;
1567 }
1568
1569 memset(&attr, 0, sizeof(struct perf_event_attr));
1570 attr.size = sizeof(struct perf_event_attr);
1571 attr.type = PERF_TYPE_HARDWARE;
1fc632ce 1572 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
b12235b1
MP
1573 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1574 PERF_SAMPLE_PERIOD;
1575 if (etm->timeless_decoding)
1576 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1577 else
1578 attr.sample_type |= PERF_SAMPLE_TIME;
1579
1fc632ce
JO
1580 attr.exclude_user = evsel->core.attr.exclude_user;
1581 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1582 attr.exclude_hv = evsel->core.attr.exclude_hv;
1583 attr.exclude_host = evsel->core.attr.exclude_host;
1584 attr.exclude_guest = evsel->core.attr.exclude_guest;
1585 attr.sample_id_all = evsel->core.attr.sample_id_all;
1586 attr.read_format = evsel->core.attr.read_format;
b12235b1
MP
1587
1588 /* create new id val to be a fixed offset from evsel id */
deaf3219 1589 id = evsel->core.id[0] + 1000000000;
b12235b1
MP
1590
1591 if (!id)
1592 id = 1;
1593
1594 if (etm->synth_opts.branches) {
1595 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1596 attr.sample_period = 1;
1597 attr.sample_type |= PERF_SAMPLE_ADDR;
1598 err = cs_etm__synth_event(session, &attr, id);
1599 if (err)
1600 return err;
b12235b1
MP
1601 etm->branches_sample_type = attr.sample_type;
1602 etm->branches_id = id;
e573e978
RW
1603 id += 1;
1604 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1605 }
1606
f5f8e7e5 1607 if (etm->synth_opts.last_branch) {
e573e978 1608 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
f5f8e7e5
AG
1609 /*
1610 * We don't use the hardware index, but the sample generation
1611 * code uses the new format branch_stack with this field,
1612 * so the event attributes must indicate that it's present.
1613 */
1614 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1615 }
e573e978
RW
1616
1617 if (etm->synth_opts.instructions) {
1618 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1619 attr.sample_period = etm->synth_opts.period;
1620 etm->instructions_sample_period = attr.sample_period;
1621 err = cs_etm__synth_event(session, &attr, id);
1622 if (err)
1623 return err;
e573e978
RW
1624 etm->instructions_sample_type = attr.sample_type;
1625 etm->instructions_id = id;
1626 id += 1;
b12235b1
MP
1627 }
1628
1629 return 0;
1630}
1631
c7bfa2fd
MP
1632static int cs_etm__sample(struct cs_etm_queue *etmq,
1633 struct cs_etm_traceid_queue *tidq)
b12235b1 1634{
e573e978 1635 struct cs_etm_auxtrace *etm = etmq->etm;
b12235b1 1636 int ret;
af21577c 1637 u8 trace_chan_id = tidq->trace_chan_id;
c9f5baa1 1638 u64 instrs_prev;
b12235b1 1639
c9f5baa1
LY
1640 /* Get instructions remainder from previous packet */
1641 instrs_prev = tidq->period_instructions;
1642
1643 tidq->period_instructions += tidq->packet->instr_count;
e573e978
RW
1644
1645 /*
1646 * Record a branch when the last instruction in
1647 * PREV_PACKET is a branch.
1648 */
1649 if (etm->synth_opts.last_branch &&
c7bfa2fd
MP
1650 tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1651 tidq->prev_packet->last_instr_taken_branch)
1652 cs_etm__update_last_branch_rb(etmq, tidq);
e573e978 1653
0b31ea66 1654 if (etm->synth_opts.instructions &&
c7bfa2fd 1655 tidq->period_instructions >= etm->instructions_sample_period) {
e573e978
RW
1656 /*
1657 * Emit instruction sample periodically
1658 * TODO: allow period to be defined in cycles and clock time
1659 */
1660
e573e978 1661 /*
c9f5baa1
LY
1662 * Below diagram demonstrates the instruction samples
1663 * generation flows:
1664 *
1665 * Instrs Instrs Instrs Instrs
1666 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3)
1667 * | | | |
1668 * V V V V
1669 * --------------------------------------------------
1670 * ^ ^
1671 * | |
1672 * Period Period
1673 * instructions(Pi) instructions(Pi')
1674 *
1675 * | |
1676 * \---------------- -----------------/
1677 * V
1678 * tidq->packet->instr_count
1679 *
1680 * Instrs Sample(n...) are the synthesised samples occurring
1681 * every etm->instructions_sample_period instructions - as
1682 * defined on the perf command line. Sample(n) is being the
1683 * last sample before the current etm packet, n+1 to n+3
1684 * samples are generated from the current etm packet.
1685 *
1686 * tidq->packet->instr_count represents the number of
1687 * instructions in the current etm packet.
1688 *
2c91cd88 1689 * Period instructions (Pi) contains the number of
c9f5baa1
LY
1690 * instructions executed after the sample point(n) from the
1691 * previous etm packet. This will always be less than
1692 * etm->instructions_sample_period.
1693 *
1694 * When generate new samples, it combines with two parts
1695 * instructions, one is the tail of the old packet and another
1696 * is the head of the new coming packet, to generate
1697 * sample(n+1); sample(n+2) and sample(n+3) consume the
1698 * instructions with sample period. After sample(n+3), the rest
1699 * instructions will be used by later packet and it is assigned
1700 * to tidq->period_instructions for next round calculation.
e573e978 1701 */
e573e978 1702
c9f5baa1
LY
1703 /*
1704 * Get the initial offset into the current packet instructions;
1705 * entry conditions ensure that instrs_prev is less than
1706 * etm->instructions_sample_period.
1707 */
1708 u64 offset = etm->instructions_sample_period - instrs_prev;
1709 u64 addr;
1710
695378b5
LY
1711 /* Prepare last branches for instruction sample */
1712 if (etm->synth_opts.last_branch)
1713 cs_etm__copy_last_branch_rb(etmq, tidq);
1714
c9f5baa1
LY
1715 while (tidq->period_instructions >=
1716 etm->instructions_sample_period) {
1717 /*
1718 * Calculate the address of the sampled instruction (-1
1719 * as sample is reported as though instruction has just
1720 * been executed, but PC has not advanced to next
1721 * instruction)
1722 */
1723 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1724 tidq->packet, offset - 1);
1725 ret = cs_etm__synth_instruction_sample(
1726 etmq, tidq, addr,
1727 etm->instructions_sample_period);
1728 if (ret)
1729 return ret;
e573e978 1730
c9f5baa1
LY
1731 offset += etm->instructions_sample_period;
1732 tidq->period_instructions -=
1733 etm->instructions_sample_period;
1734 }
e573e978
RW
1735 }
1736
0b31ea66 1737 if (etm->synth_opts.branches) {
14a85b1e
LY
1738 bool generate_sample = false;
1739
1740 /* Generate sample for tracing on packet */
c7bfa2fd 1741 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
14a85b1e
LY
1742 generate_sample = true;
1743
1744 /* Generate sample for branch taken packet */
c7bfa2fd
MP
1745 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1746 tidq->prev_packet->last_instr_taken_branch)
14a85b1e
LY
1747 generate_sample = true;
1748
1749 if (generate_sample) {
c7bfa2fd 1750 ret = cs_etm__synth_branch_sample(etmq, tidq);
14a85b1e
LY
1751 if (ret)
1752 return ret;
1753 }
e573e978 1754 }
b12235b1 1755
d0175156 1756 cs_etm__packet_swap(etm, tidq);
b12235b1
MP
1757
1758 return 0;
1759}
1760
c7bfa2fd 1761static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
7100b12c
LY
1762{
1763 /*
1764 * When the exception packet is inserted, whether the last instruction
1765 * in previous range packet is taken branch or not, we need to force
1766 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures
1767 * to generate branch sample for the instruction range before the
1768 * exception is trapped to kernel or before the exception returning.
1769 *
1770 * The exception packet includes the dummy address values, so don't
1771 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
1772 * for generating instruction and branch samples.
1773 */
c7bfa2fd
MP
1774 if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1775 tidq->prev_packet->last_instr_taken_branch = true;
7100b12c
LY
1776
1777 return 0;
1778}
1779
c7bfa2fd
MP
1780static int cs_etm__flush(struct cs_etm_queue *etmq,
1781 struct cs_etm_traceid_queue *tidq)
256e751c
RW
1782{
1783 int err = 0;
d603b4e9 1784 struct cs_etm_auxtrace *etm = etmq->etm;
256e751c 1785
3eb3e07b 1786 /* Handle start tracing packet */
c7bfa2fd 1787 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
3eb3e07b
LY
1788 goto swap_packet;
1789
256e751c 1790 if (etmq->etm->synth_opts.last_branch &&
9de07369 1791 etmq->etm->synth_opts.instructions &&
c7bfa2fd 1792 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
695378b5
LY
1793 u64 addr;
1794
1795 /* Prepare last branches for instruction sample */
1796 cs_etm__copy_last_branch_rb(etmq, tidq);
1797
256e751c
RW
1798 /*
1799 * Generate a last branch event for the branches left in the
1800 * circular buffer at the end of the trace.
1801 *
1802 * Use the address of the end of the last reported execution
1803 * range
1804 */
695378b5 1805 addr = cs_etm__last_executed_instr(tidq->prev_packet);
256e751c
RW
1806
1807 err = cs_etm__synth_instruction_sample(
c7bfa2fd
MP
1808 etmq, tidq, addr,
1809 tidq->period_instructions);
6cd4ac6a
LY
1810 if (err)
1811 return err;
1812
c7bfa2fd 1813 tidq->period_instructions = 0;
256e751c 1814
3eb3e07b
LY
1815 }
1816
0b31ea66 1817 if (etm->synth_opts.branches &&
c7bfa2fd
MP
1818 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1819 err = cs_etm__synth_branch_sample(etmq, tidq);
d603b4e9
LY
1820 if (err)
1821 return err;
1822 }
1823
3eb3e07b 1824swap_packet:
d0175156 1825 cs_etm__packet_swap(etm, tidq);
256e751c 1826
f1410028
LY
1827 /* Reset last branches after flush the trace */
1828 if (etm->synth_opts.last_branch)
1829 cs_etm__reset_last_branch_rb(tidq);
1830
256e751c
RW
1831 return err;
1832}
1833
c7bfa2fd
MP
1834static int cs_etm__end_block(struct cs_etm_queue *etmq,
1835 struct cs_etm_traceid_queue *tidq)
24fff5eb
LY
1836{
1837 int err;
1838
1839 /*
1840 * It has no new packet coming and 'etmq->packet' contains the stale
1841 * packet which was set at the previous time with packets swapping;
1842 * so skip to generate branch sample to avoid stale packet.
1843 *
1844 * For this case only flush branch stack and generate a last branch
1845 * event for the branches left in the circular buffer at the end of
1846 * the trace.
1847 */
1848 if (etmq->etm->synth_opts.last_branch &&
9de07369 1849 etmq->etm->synth_opts.instructions &&
c7bfa2fd 1850 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
695378b5
LY
1851 u64 addr;
1852
1853 /* Prepare last branches for instruction sample */
1854 cs_etm__copy_last_branch_rb(etmq, tidq);
1855
24fff5eb
LY
1856 /*
1857 * Use the address of the end of the last reported execution
1858 * range.
1859 */
695378b5 1860 addr = cs_etm__last_executed_instr(tidq->prev_packet);
24fff5eb
LY
1861
1862 err = cs_etm__synth_instruction_sample(
c7bfa2fd
MP
1863 etmq, tidq, addr,
1864 tidq->period_instructions);
24fff5eb
LY
1865 if (err)
1866 return err;
1867
c7bfa2fd 1868 tidq->period_instructions = 0;
24fff5eb
LY
1869 }
1870
1871 return 0;
1872}
8224531c
MP
1873/*
1874 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1875 * if need be.
1876 * Returns: < 0 if error
1877 * = 0 if no more auxtrace_buffer to read
1878 * > 0 if the current buffer isn't empty yet
1879 */
1880static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1881{
1882 int ret;
1883
1884 if (!etmq->buf_len) {
1885 ret = cs_etm__get_trace(etmq);
1886 if (ret <= 0)
1887 return ret;
1888 /*
1889 * We cannot assume consecutive blocks in the data file
1890 * are contiguous, reset the decoder to force re-sync.
1891 */
1892 ret = cs_etm_decoder__reset(etmq->decoder);
1893 if (ret)
1894 return ret;
1895 }
1896
1897 return etmq->buf_len;
1898}
24fff5eb 1899
af21577c 1900static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
96dce7f4
LY
1901 struct cs_etm_packet *packet,
1902 u64 end_addr)
1903{
c152d4d4
MP
1904 /* Initialise to keep compiler happy */
1905 u16 instr16 = 0;
1906 u32 instr32 = 0;
96dce7f4
LY
1907 u64 addr;
1908
1909 switch (packet->isa) {
1910 case CS_ETM_ISA_T32:
1911 /*
1912 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1913 *
1914 * b'15 b'8
1915 * +-----------------+--------+
1916 * | 1 1 0 1 1 1 1 1 | imm8 |
1917 * +-----------------+--------+
1918 *
4d39c89f 1919 * According to the specification, it only defines SVC for T32
96dce7f4
LY
1920 * with 16 bits instruction and has no definition for 32bits;
1921 * so below only read 2 bytes as instruction size for T32.
1922 */
1923 addr = end_addr - 2;
af21577c
MP
1924 cs_etm__mem_access(etmq, trace_chan_id, addr,
1925 sizeof(instr16), (u8 *)&instr16);
96dce7f4
LY
1926 if ((instr16 & 0xFF00) == 0xDF00)
1927 return true;
1928
1929 break;
1930 case CS_ETM_ISA_A32:
1931 /*
1932 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1933 *
1934 * b'31 b'28 b'27 b'24
1935 * +---------+---------+-------------------------+
1936 * | !1111 | 1 1 1 1 | imm24 |
1937 * +---------+---------+-------------------------+
1938 */
1939 addr = end_addr - 4;
af21577c
MP
1940 cs_etm__mem_access(etmq, trace_chan_id, addr,
1941 sizeof(instr32), (u8 *)&instr32);
96dce7f4
LY
1942 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1943 (instr32 & 0xF0000000) != 0xF0000000)
1944 return true;
1945
1946 break;
1947 case CS_ETM_ISA_A64:
1948 /*
1949 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1950 *
1951 * b'31 b'21 b'4 b'0
1952 * +-----------------------+---------+-----------+
1953 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
1954 * +-----------------------+---------+-----------+
1955 */
1956 addr = end_addr - 4;
af21577c
MP
1957 cs_etm__mem_access(etmq, trace_chan_id, addr,
1958 sizeof(instr32), (u8 *)&instr32);
96dce7f4
LY
1959 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1960 return true;
1961
1962 break;
1963 case CS_ETM_ISA_UNKNOWN:
1964 default:
1965 break;
1966 }
1967
1968 return false;
1969}
1970
c7bfa2fd
MP
1971static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1972 struct cs_etm_traceid_queue *tidq, u64 magic)
96dce7f4 1973{
af21577c 1974 u8 trace_chan_id = tidq->trace_chan_id;
c7bfa2fd
MP
1975 struct cs_etm_packet *packet = tidq->packet;
1976 struct cs_etm_packet *prev_packet = tidq->prev_packet;
96dce7f4
LY
1977
1978 if (magic == __perf_cs_etmv3_magic)
1979 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1980 return true;
1981
1982 /*
1983 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1984 * HVC cases; need to check if it's SVC instruction based on
1985 * packet address.
1986 */
1987 if (magic == __perf_cs_etmv4_magic) {
1988 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
af21577c 1989 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
96dce7f4
LY
1990 prev_packet->end_addr))
1991 return true;
1992 }
1993
1994 return false;
1995}
1996
c7bfa2fd
MP
1997static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1998 u64 magic)
96dce7f4 1999{
c7bfa2fd 2000 struct cs_etm_packet *packet = tidq->packet;
96dce7f4
LY
2001
2002 if (magic == __perf_cs_etmv3_magic)
2003 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
2004 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
2005 packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
2006 packet->exception_number == CS_ETMV3_EXC_IRQ ||
2007 packet->exception_number == CS_ETMV3_EXC_FIQ)
2008 return true;
2009
2010 if (magic == __perf_cs_etmv4_magic)
2011 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
2012 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
2013 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
2014 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
2015 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
2016 packet->exception_number == CS_ETMV4_EXC_IRQ ||
2017 packet->exception_number == CS_ETMV4_EXC_FIQ)
2018 return true;
2019
2020 return false;
2021}
2022
c7bfa2fd
MP
2023static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
2024 struct cs_etm_traceid_queue *tidq,
2025 u64 magic)
96dce7f4 2026{
af21577c 2027 u8 trace_chan_id = tidq->trace_chan_id;
c7bfa2fd
MP
2028 struct cs_etm_packet *packet = tidq->packet;
2029 struct cs_etm_packet *prev_packet = tidq->prev_packet;
96dce7f4
LY
2030
2031 if (magic == __perf_cs_etmv3_magic)
2032 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
2033 packet->exception_number == CS_ETMV3_EXC_HYP ||
2034 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
2035 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
2036 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
2037 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
2038 packet->exception_number == CS_ETMV3_EXC_GENERIC)
2039 return true;
2040
2041 if (magic == __perf_cs_etmv4_magic) {
2042 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
2043 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
2044 packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
2045 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
2046 return true;
2047
2048 /*
2049 * For CS_ETMV4_EXC_CALL, except SVC other instructions
2050 * (SMC, HVC) are taken as sync exceptions.
2051 */
2052 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
af21577c 2053 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
96dce7f4
LY
2054 prev_packet->end_addr))
2055 return true;
2056
2057 /*
2058 * ETMv4 has 5 bits for exception number; if the numbers
2059 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
2060 * they are implementation defined exceptions.
2061 *
2062 * For this case, simply take it as sync exception.
2063 */
2064 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
2065 packet->exception_number <= CS_ETMV4_EXC_END)
2066 return true;
2067 }
2068
2069 return false;
2070}
2071
c7bfa2fd
MP
2072static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
2073 struct cs_etm_traceid_queue *tidq)
06220bf4 2074{
c7bfa2fd
MP
2075 struct cs_etm_packet *packet = tidq->packet;
2076 struct cs_etm_packet *prev_packet = tidq->prev_packet;
af21577c 2077 u8 trace_chan_id = tidq->trace_chan_id;
96dce7f4
LY
2078 u64 magic;
2079 int ret;
06220bf4
LY
2080
2081 switch (packet->sample_type) {
2082 case CS_ETM_RANGE:
2083 /*
2084 * Immediate branch instruction without neither link nor
2085 * return flag, it's normal branch instruction within
2086 * the function.
2087 */
2088 if (packet->last_instr_type == OCSD_INSTR_BR &&
2089 packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
2090 packet->flags = PERF_IP_FLAG_BRANCH;
2091
2092 if (packet->last_instr_cond)
2093 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
2094 }
2095
2096 /*
2097 * Immediate branch instruction with link (e.g. BL), this is
2098 * branch instruction for function call.
2099 */
2100 if (packet->last_instr_type == OCSD_INSTR_BR &&
2101 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2102 packet->flags = PERF_IP_FLAG_BRANCH |
2103 PERF_IP_FLAG_CALL;
2104
2105 /*
2106 * Indirect branch instruction with link (e.g. BLR), this is
2107 * branch instruction for function call.
2108 */
2109 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2110 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2111 packet->flags = PERF_IP_FLAG_BRANCH |
2112 PERF_IP_FLAG_CALL;
2113
2114 /*
2115 * Indirect branch instruction with subtype of
2116 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
2117 * function return for A32/T32.
2118 */
2119 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2120 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
2121 packet->flags = PERF_IP_FLAG_BRANCH |
2122 PERF_IP_FLAG_RETURN;
2123
2124 /*
2125 * Indirect branch instruction without link (e.g. BR), usually
2126 * this is used for function return, especially for functions
2127 * within dynamic link lib.
2128 */
2129 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2130 packet->last_instr_subtype == OCSD_S_INSTR_NONE)
2131 packet->flags = PERF_IP_FLAG_BRANCH |
2132 PERF_IP_FLAG_RETURN;
2133
2134 /* Return instruction for function return. */
2135 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2136 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
2137 packet->flags = PERF_IP_FLAG_BRANCH |
2138 PERF_IP_FLAG_RETURN;
465eaaa8
LY
2139
2140 /*
2141 * Decoder might insert a discontinuity in the middle of
2142 * instruction packets, fixup prev_packet with flag
2143 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
2144 */
2145 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
2146 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2147 PERF_IP_FLAG_TRACE_BEGIN;
173e65f6
LY
2148
2149 /*
2150 * If the previous packet is an exception return packet
4d39c89f 2151 * and the return address just follows SVC instruction,
173e65f6
LY
2152 * it needs to calibrate the previous packet sample flags
2153 * as PERF_IP_FLAG_SYSCALLRET.
2154 */
2155 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
2156 PERF_IP_FLAG_RETURN |
2157 PERF_IP_FLAG_INTERRUPT) &&
af21577c
MP
2158 cs_etm__is_svc_instr(etmq, trace_chan_id,
2159 packet, packet->start_addr))
173e65f6
LY
2160 prev_packet->flags = PERF_IP_FLAG_BRANCH |
2161 PERF_IP_FLAG_RETURN |
2162 PERF_IP_FLAG_SYSCALLRET;
06220bf4
LY
2163 break;
2164 case CS_ETM_DISCONTINUITY:
465eaaa8
LY
2165 /*
2166 * The trace is discontinuous, if the previous packet is
2167 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
2168 * for previous packet.
2169 */
2170 if (prev_packet->sample_type == CS_ETM_RANGE)
2171 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2172 PERF_IP_FLAG_TRACE_END;
2173 break;
06220bf4 2174 case CS_ETM_EXCEPTION:
96dce7f4
LY
2175 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
2176 if (ret)
2177 return ret;
2178
2179 /* The exception is for system call. */
c7bfa2fd 2180 if (cs_etm__is_syscall(etmq, tidq, magic))
96dce7f4
LY
2181 packet->flags = PERF_IP_FLAG_BRANCH |
2182 PERF_IP_FLAG_CALL |
2183 PERF_IP_FLAG_SYSCALLRET;
2184 /*
2185 * The exceptions are triggered by external signals from bus,
2186 * interrupt controller, debug module, PE reset or halt.
2187 */
c7bfa2fd 2188 else if (cs_etm__is_async_exception(tidq, magic))
96dce7f4
LY
2189 packet->flags = PERF_IP_FLAG_BRANCH |
2190 PERF_IP_FLAG_CALL |
2191 PERF_IP_FLAG_ASYNC |
2192 PERF_IP_FLAG_INTERRUPT;
2193 /*
2194 * Otherwise, exception is caused by trap, instruction &
2195 * data fault, or alignment errors.
2196 */
c7bfa2fd 2197 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
96dce7f4
LY
2198 packet->flags = PERF_IP_FLAG_BRANCH |
2199 PERF_IP_FLAG_CALL |
2200 PERF_IP_FLAG_INTERRUPT;
2201
2202 /*
2203 * When the exception packet is inserted, since exception
2204 * packet is not used standalone for generating samples
2205 * and it's affiliation to the previous instruction range
2206 * packet; so set previous range packet flags to tell perf
2207 * it is an exception taken branch.
2208 */
2209 if (prev_packet->sample_type == CS_ETM_RANGE)
2210 prev_packet->flags = packet->flags;
2211 break;
06220bf4 2212 case CS_ETM_EXCEPTION_RET:
173e65f6
LY
2213 /*
2214 * When the exception return packet is inserted, since
2215 * exception return packet is not used standalone for
2216 * generating samples and it's affiliation to the previous
2217 * instruction range packet; so set previous range packet
2218 * flags to tell perf it is an exception return branch.
2219 *
2220 * The exception return can be for either system call or
2221 * other exception types; unfortunately the packet doesn't
2222 * contain exception type related info so we cannot decide
2223 * the exception type purely based on exception return packet.
2224 * If we record the exception number from exception packet and
4d39c89f 2225 * reuse it for exception return packet, this is not reliable
173e65f6
LY
2226 * due the trace can be discontinuity or the interrupt can
2227 * be nested, thus the recorded exception number cannot be
2228 * used for exception return packet for these two cases.
2229 *
2230 * For exception return packet, we only need to distinguish the
2231 * packet is for system call or for other types. Thus the
2232 * decision can be deferred when receive the next packet which
2233 * contains the return address, based on the return address we
2234 * can read out the previous instruction and check if it's a
2235 * system call instruction and then calibrate the sample flag
2236 * as needed.
2237 */
2238 if (prev_packet->sample_type == CS_ETM_RANGE)
2239 prev_packet->flags = PERF_IP_FLAG_BRANCH |
2240 PERF_IP_FLAG_RETURN |
2241 PERF_IP_FLAG_INTERRUPT;
2242 break;
06220bf4
LY
2243 case CS_ETM_EMPTY:
2244 default:
2245 break;
2246 }
2247
2248 return 0;
2249}
2250
f74f349c
MP
2251static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2252{
2253 int ret = 0;
2254 size_t processed = 0;
2255
2256 /*
2257 * Packets are decoded and added to the decoder's packet queue
2258 * until the decoder packet processing callback has requested that
2259 * processing stops or there is nothing left in the buffer. Normal
2260 * operations that stop processing are a timestamp packet or a full
2261 * decoder buffer queue.
2262 */
2263 ret = cs_etm_decoder__process_data_block(etmq->decoder,
2264 etmq->offset,
2265 &etmq->buf[etmq->buf_used],
2266 etmq->buf_len,
2267 &processed);
2268 if (ret)
2269 goto out;
2270
2271 etmq->offset += processed;
2272 etmq->buf_used += processed;
2273 etmq->buf_len -= processed;
2274
2275out:
2276 return ret;
2277}
2278
c7bfa2fd
MP
2279static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2280 struct cs_etm_traceid_queue *tidq)
3fa0e83e
MP
2281{
2282 int ret;
5f7cb035
MP
2283 struct cs_etm_packet_queue *packet_queue;
2284
c7bfa2fd 2285 packet_queue = &tidq->packet_queue;
3fa0e83e 2286
882f4874
MP
2287 /* Process each packet in this chunk */
2288 while (1) {
2289 ret = cs_etm_decoder__get_packet(packet_queue,
c7bfa2fd 2290 tidq->packet);
882f4874
MP
2291 if (ret <= 0)
2292 /*
2293 * Stop processing this chunk on
2294 * end of data or error
2295 */
2296 break;
3fa0e83e 2297
882f4874
MP
2298 /*
2299 * Since packet addresses are swapped in packet
2300 * handling within below switch() statements,
2301 * thus setting sample flags must be called
2302 * prior to switch() statement to use address
2303 * information before packets swapping.
2304 */
c7bfa2fd 2305 ret = cs_etm__set_sample_flags(etmq, tidq);
882f4874
MP
2306 if (ret < 0)
2307 break;
2308
c7bfa2fd 2309 switch (tidq->packet->sample_type) {
882f4874
MP
2310 case CS_ETM_RANGE:
2311 /*
2312 * If the packet contains an instruction
2313 * range, generate instruction sequence
2314 * events.
2315 */
c7bfa2fd 2316 cs_etm__sample(etmq, tidq);
882f4874
MP
2317 break;
2318 case CS_ETM_EXCEPTION:
2319 case CS_ETM_EXCEPTION_RET:
3fa0e83e 2320 /*
882f4874
MP
2321 * If the exception packet is coming,
2322 * make sure the previous instruction
2323 * range packet to be handled properly.
3fa0e83e 2324 */
c7bfa2fd 2325 cs_etm__exception(tidq);
882f4874
MP
2326 break;
2327 case CS_ETM_DISCONTINUITY:
2328 /*
2329 * Discontinuity in trace, flush
2330 * previous branch stack
2331 */
c7bfa2fd 2332 cs_etm__flush(etmq, tidq);
882f4874
MP
2333 break;
2334 case CS_ETM_EMPTY:
2335 /*
2336 * Should not receive empty packet,
2337 * report error.
2338 */
2339 pr_err("CS ETM Trace: empty packet\n");
2340 return -EINVAL;
2341 default:
2342 break;
3fa0e83e 2343 }
882f4874 2344 }
3fa0e83e
MP
2345
2346 return ret;
2347}
2348
21fe8dc1
MP
2349static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2350{
2351 int idx;
2352 struct int_node *inode;
2353 struct cs_etm_traceid_queue *tidq;
2354 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2355
2356 intlist__for_each_entry(inode, traceid_queues_list) {
2357 idx = (int)(intptr_t)inode->priv;
2358 tidq = etmq->traceid_queues[idx];
2359
2360 /* Ignore return value */
2361 cs_etm__process_traceid_queue(etmq, tidq);
2362
2363 /*
2364 * Generate an instruction sample with the remaining
2365 * branchstack entries.
2366 */
2367 cs_etm__flush(etmq, tidq);
2368 }
2369}
2370
d1efa4a0 2371static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq)
9f878b29 2372{
9f878b29 2373 int err = 0;
c7bfa2fd
MP
2374 struct cs_etm_traceid_queue *tidq;
2375
2376 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2377 if (!tidq)
2378 return -EINVAL;
9f878b29 2379
9f878b29 2380 /* Go through each buffer in the queue and decode them one by one */
e573e978 2381 while (1) {
8224531c
MP
2382 err = cs_etm__get_data_block(etmq);
2383 if (err <= 0)
2384 return err;
9f878b29 2385
e573e978
RW
2386 /* Run trace decoder until buffer consumed or end of trace */
2387 do {
f74f349c 2388 err = cs_etm__decode_data_block(etmq);
e573e978
RW
2389 if (err)
2390 return err;
2391
3fa0e83e
MP
2392 /*
2393 * Process each packet in this chunk, nothing to do if
2394 * an error occurs other than hoping the next one will
2395 * be better.
2396 */
c7bfa2fd 2397 err = cs_etm__process_traceid_queue(etmq, tidq);
e573e978 2398
23cfcd6d 2399 } while (etmq->buf_len);
b12235b1 2400
256e751c
RW
2401 if (err == 0)
2402 /* Flush any remaining branch stack entries */
c7bfa2fd 2403 err = cs_etm__end_block(etmq, tidq);
e573e978 2404 }
9f878b29
MP
2405
2406 return err;
2407}
2408
d1efa4a0
JC
2409static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq)
2410{
2411 int idx, err = 0;
2412 struct cs_etm_traceid_queue *tidq;
2413 struct int_node *inode;
2414
2415 /* Go through each buffer in the queue and decode them one by one */
2416 while (1) {
2417 err = cs_etm__get_data_block(etmq);
2418 if (err <= 0)
2419 return err;
2420
2421 /* Run trace decoder until buffer consumed or end of trace */
2422 do {
2423 err = cs_etm__decode_data_block(etmq);
2424 if (err)
2425 return err;
2426
2427 /*
2428 * cs_etm__run_per_thread_timeless_decoder() runs on a
2429 * single traceID queue because each TID has a separate
2430 * buffer. But here in per-cpu mode we need to iterate
2431 * over each channel instead.
2432 */
2433 intlist__for_each_entry(inode,
2434 etmq->traceid_queues_list) {
2435 idx = (int)(intptr_t)inode->priv;
2436 tidq = etmq->traceid_queues[idx];
2437 cs_etm__process_traceid_queue(etmq, tidq);
2438 }
2439 } while (etmq->buf_len);
2440
2441 intlist__for_each_entry(inode, etmq->traceid_queues_list) {
2442 idx = (int)(intptr_t)inode->priv;
2443 tidq = etmq->traceid_queues[idx];
2444 /* Flush any remaining branch stack entries */
2445 err = cs_etm__end_block(etmq, tidq);
2446 if (err)
2447 return err;
2448 }
2449 }
2450
2451 return err;
2452}
2453
9f878b29 2454static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
fc7ac413 2455 pid_t tid)
9f878b29
MP
2456{
2457 unsigned int i;
2458 struct auxtrace_queues *queues = &etm->queues;
2459
2460 for (i = 0; i < queues->nr_queues; i++) {
2461 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2462 struct cs_etm_queue *etmq = queue->priv;
0abb868b
MP
2463 struct cs_etm_traceid_queue *tidq;
2464
2465 if (!etmq)
2466 continue;
2467
d1efa4a0
JC
2468 if (etm->per_thread_decoding) {
2469 tidq = cs_etm__etmq_get_traceid_queue(
2470 etmq, CS_ETM_PER_THREAD_TRACEID);
0abb868b 2471
d1efa4a0
JC
2472 if (!tidq)
2473 continue;
9f878b29 2474
951ccccd 2475 if (tid == -1 || thread__tid(tidq->thread) == tid)
d1efa4a0 2476 cs_etm__run_per_thread_timeless_decoder(etmq);
d1efa4a0
JC
2477 } else
2478 cs_etm__run_per_cpu_timeless_decoder(etmq);
9f878b29
MP
2479 }
2480
2481 return 0;
2482}
2483
d1efa4a0 2484static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm)
21fe8dc1
MP
2485{
2486 int ret = 0;
9ac8afd5 2487 unsigned int cs_queue_nr, queue_nr, i;
21fe8dc1 2488 u8 trace_chan_id;
aadd6ba4 2489 u64 cs_timestamp;
21fe8dc1
MP
2490 struct auxtrace_queue *queue;
2491 struct cs_etm_queue *etmq;
2492 struct cs_etm_traceid_queue *tidq;
2493
9ac8afd5
JC
2494 /*
2495 * Pre-populate the heap with one entry from each queue so that we can
2496 * start processing in time order across all queues.
2497 */
2498 for (i = 0; i < etm->queues.nr_queues; i++) {
2499 etmq = etm->queues.queue_array[i].priv;
2500 if (!etmq)
2501 continue;
2502
2503 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2504 if (ret)
2505 return ret;
2506 }
2507
21fe8dc1
MP
2508 while (1) {
2509 if (!etm->heap.heap_cnt)
2510 goto out;
2511
2512 /* Take the entry at the top of the min heap */
2513 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2514 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2515 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2516 queue = &etm->queues.queue_array[queue_nr];
2517 etmq = queue->priv;
2518
2519 /*
2520 * Remove the top entry from the heap since we are about
2521 * to process it.
2522 */
2523 auxtrace_heap__pop(&etm->heap);
2524
2525 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2526 if (!tidq) {
2527 /*
2528 * No traceID queue has been allocated for this traceID,
2529 * which means something somewhere went very wrong. No
2530 * other choice than simply exit.
2531 */
2532 ret = -EINVAL;
2533 goto out;
2534 }
2535
2536 /*
2537 * Packets associated with this timestamp are already in
2538 * the etmq's traceID queue, so process them.
2539 */
2540 ret = cs_etm__process_traceid_queue(etmq, tidq);
2541 if (ret < 0)
2542 goto out;
2543
2544 /*
2545 * Packets for this timestamp have been processed, time to
2546 * move on to the next timestamp, fetching a new auxtrace_buffer
2547 * if need be.
2548 */
2549refetch:
2550 ret = cs_etm__get_data_block(etmq);
2551 if (ret < 0)
2552 goto out;
2553
2554 /*
2555 * No more auxtrace_buffers to process in this etmq, simply
2556 * move on to another entry in the auxtrace_heap.
2557 */
2558 if (!ret)
2559 continue;
2560
2561 ret = cs_etm__decode_data_block(etmq);
2562 if (ret)
2563 goto out;
2564
aadd6ba4 2565 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
21fe8dc1 2566
aadd6ba4 2567 if (!cs_timestamp) {
21fe8dc1
MP
2568 /*
2569 * Function cs_etm__decode_data_block() returns when
2570 * there is no more traces to decode in the current
2571 * auxtrace_buffer OR when a timestamp has been
2572 * encountered on any of the traceID queues. Since we
2573 * did not get a timestamp, there is no more traces to
2574 * process in this auxtrace_buffer. As such empty and
2575 * flush all traceID queues.
2576 */
2577 cs_etm__clear_all_traceid_queues(etmq);
2578
2579 /* Fetch another auxtrace_buffer for this etmq */
2580 goto refetch;
2581 }
2582
2583 /*
2584 * Add to the min heap the timestamp for packets that have
2585 * just been decoded. They will be processed and synthesized
2586 * during the next call to cs_etm__process_traceid_queue() for
2587 * this queue/traceID.
2588 */
2589 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
aadd6ba4 2590 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
21fe8dc1
MP
2591 }
2592
2593out:
2594 return ret;
2595}
2596
a465f3c3
MP
2597static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2598 union perf_event *event)
2599{
2600 struct thread *th;
2601
2602 if (etm->timeless_decoding)
2603 return 0;
2604
2605 /*
951ccccd
JC
2606 * Add the tid/pid to the log so that we can get a match when we get a
2607 * contextID from the decoder. Only track for the host: only kernel
2608 * trace is supported for guests which wouldn't need pids so this should
2609 * be fine.
a465f3c3 2610 */
951ccccd 2611 th = machine__findnew_thread(&etm->session->machines.host,
a465f3c3
MP
2612 event->itrace_start.pid,
2613 event->itrace_start.tid);
2614 if (!th)
2615 return -ENOMEM;
2616
2617 thread__put(th);
2618
2619 return 0;
2620}
2621
e0d170fa
MP
2622static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2623 union perf_event *event)
2624{
2625 struct thread *th;
2626 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2627
2628 /*
2629 * Context switch in per-thread mode are irrelevant since perf
2630 * will start/stop tracing as the process is scheduled.
2631 */
2632 if (etm->timeless_decoding)
2633 return 0;
2634
2635 /*
2636 * SWITCH_IN events carry the next process to be switched out while
2637 * SWITCH_OUT events carry the process to be switched in. As such
2638 * we don't care about IN events.
2639 */
2640 if (!out)
2641 return 0;
2642
2643 /*
951ccccd
JC
2644 * Add the tid/pid to the log so that we can get a match when we get a
2645 * contextID from the decoder. Only track for the host: only kernel
2646 * trace is supported for guests which wouldn't need pids so this should
2647 * be fine.
e0d170fa 2648 */
951ccccd 2649 th = machine__findnew_thread(&etm->session->machines.host,
e0d170fa
MP
2650 event->context_switch.next_prev_pid,
2651 event->context_switch.next_prev_tid);
2652 if (!th)
2653 return -ENOMEM;
2654
2655 thread__put(th);
2656
2657 return 0;
2658}
2659
440a23b3
MP
2660static int cs_etm__process_event(struct perf_session *session,
2661 union perf_event *event,
2662 struct perf_sample *sample,
2663 struct perf_tool *tool)
2664{
20d9c478
MP
2665 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2666 struct cs_etm_auxtrace,
2667 auxtrace);
2668
20d9c478
MP
2669 if (dump_trace)
2670 return 0;
2671
2672 if (!tool->ordered_events) {
2673 pr_err("CoreSight ETM Trace requires ordered events\n");
2674 return -EINVAL;
2675 }
2676
d1efa4a0
JC
2677 switch (event->header.type) {
2678 case PERF_RECORD_EXIT:
2679 /*
2680 * Don't need to wait for cs_etm__flush_events() in per-thread mode to
2681 * start the decode because we know there will be no more trace from
2682 * this thread. All this does is emit samples earlier than waiting for
2683 * the flush in other modes, but with timestamps it makes sense to wait
2684 * for flush so that events from different threads are interleaved
2685 * properly.
2686 */
2687 if (etm->per_thread_decoding && etm->timeless_decoding)
2688 return cs_etm__process_timeless_queues(etm,
2689 event->fork.tid);
2690 break;
9f878b29 2691
d1efa4a0 2692 case PERF_RECORD_ITRACE_START:
a465f3c3 2693 return cs_etm__process_itrace_start(etm, event);
d1efa4a0
JC
2694
2695 case PERF_RECORD_SWITCH_CPU_WIDE:
e0d170fa 2696 return cs_etm__process_switch_cpu_wide(etm, event);
a465f3c3 2697
d1efa4a0 2698 case PERF_RECORD_AUX:
1ac9e0b5
JC
2699 /*
2700 * Record the latest kernel timestamp available in the header
2701 * for samples so that synthesised samples occur from this point
2702 * onwards.
2703 */
d1efa4a0
JC
2704 if (sample->time && (sample->time != (u64)-1))
2705 etm->latest_kernel_timestamp = sample->time;
2706 break;
2707
2708 default:
2709 break;
1ac9e0b5 2710 }
21fe8dc1 2711
440a23b3
MP
2712 return 0;
2713}
2714
48e8a7b5
JC
2715static void dump_queued_data(struct cs_etm_auxtrace *etm,
2716 struct perf_record_auxtrace *event)
2717{
2718 struct auxtrace_buffer *buf;
2719 unsigned int i;
2720 /*
2721 * Find all buffers with same reference in the queues and dump them.
2722 * This is because the queues can contain multiple entries of the same
2723 * buffer that were split on aux records.
2724 */
2725 for (i = 0; i < etm->queues.nr_queues; ++i)
2726 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2727 if (buf->reference == event->reference)
04aaad26 2728 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
48e8a7b5
JC
2729}
2730
440a23b3
MP
2731static int cs_etm__process_auxtrace_event(struct perf_session *session,
2732 union perf_event *event,
68ffe390 2733 struct perf_tool *tool __maybe_unused)
440a23b3 2734{
68ffe390
MP
2735 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2736 struct cs_etm_auxtrace,
2737 auxtrace);
2738 if (!etm->data_queued) {
2739 struct auxtrace_buffer *buffer;
2740 off_t data_offset;
2741 int fd = perf_data__fd(session->data);
2742 bool is_pipe = perf_data__is_pipe(session->data);
2743 int err;
ca50db59 2744 int idx = event->auxtrace.idx;
68ffe390
MP
2745
2746 if (is_pipe)
2747 data_offset = 0;
2748 else {
2749 data_offset = lseek(fd, 0, SEEK_CUR);
2750 if (data_offset == -1)
2751 return -errno;
2752 }
2753
2754 err = auxtrace_queues__add_event(&etm->queues, session,
2755 event, data_offset, &buffer);
2756 if (err)
2757 return err;
2758
9182f04a
JC
2759 /*
2760 * Knowing if the trace is formatted or not requires a lookup of
2761 * the aux record so only works in non-piped mode where data is
2762 * queued in cs_etm__queue_aux_records(). Always assume
2763 * formatted in piped mode (true).
2764 */
ca50db59 2765 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
9182f04a 2766 idx, true);
ca50db59
JC
2767 if (err)
2768 return err;
2769
68ffe390
MP
2770 if (dump_trace)
2771 if (auxtrace_buffer__get_data(buffer, fd)) {
04aaad26 2772 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
68ffe390
MP
2773 auxtrace_buffer__put_data(buffer);
2774 }
48e8a7b5
JC
2775 } else if (dump_trace)
2776 dump_queued_data(etm, &event->auxtrace);
68ffe390 2777
440a23b3
MP
2778 return 0;
2779}
2780
449067f3 2781static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm)
440a23b3 2782{
32dcd021 2783 struct evsel *evsel;
63503dba 2784 struct evlist *evlist = etm->session->evlist;
440a23b3 2785
c36c1ef6 2786 /* Override timeless mode with user input from --itrace=Z */
449067f3
JC
2787 if (etm->synth_opts.timeless_decoding) {
2788 etm->timeless_decoding = true;
2789 return 0;
2790 }
c36c1ef6 2791
440a23b3 2792 /*
449067f3 2793 * Find the cs_etm evsel and look at what its timestamp setting was
440a23b3 2794 */
449067f3
JC
2795 evlist__for_each_entry(evlist, evsel)
2796 if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) {
2797 etm->timeless_decoding =
2798 !(evsel->core.attr.config & BIT(ETM_OPT_TS));
2799 return 0;
2800 }
440a23b3 2801
449067f3
JC
2802 pr_err("CS ETM: Couldn't find ETM evsel\n");
2803 return -EINVAL;
440a23b3
MP
2804}
2805
42b2b570
ML
2806/*
2807 * Read a single cpu parameter block from the auxtrace_info priv block.
2808 *
2809 * For version 1 there is a per cpu nr_params entry. If we are handling
2810 * version 1 file, then there may be less, the same, or more params
2811 * indicated by this value than the compile time number we understand.
2812 *
2813 * For a version 0 info block, there are a fixed number, and we need to
2814 * fill out the nr_param value in the metadata we create.
2815 */
2816static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2817 int out_blk_size, int nr_params_v0)
2818{
2819 u64 *metadata = NULL;
2820 int hdr_version;
2821 int nr_in_params, nr_out_params, nr_cmn_params;
2822 int i, k;
2823
2824 metadata = zalloc(sizeof(*metadata) * out_blk_size);
2825 if (!metadata)
2826 return NULL;
2827
2828 /* read block current index & version */
2829 i = *buff_in_offset;
2830 hdr_version = buff_in[CS_HEADER_VERSION];
2831
2832 if (!hdr_version) {
2833 /* read version 0 info block into a version 1 metadata block */
2834 nr_in_params = nr_params_v0;
2835 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2836 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2837 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2838 /* remaining block params at offset +1 from source */
2839 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2840 metadata[k + 1] = buff_in[i + k];
2841 /* version 0 has 2 common params */
2842 nr_cmn_params = 2;
2843 } else {
2844 /* read version 1 info block - input and output nr_params may differ */
2845 /* version 1 has 3 common params */
2846 nr_cmn_params = 3;
2847 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2848
2849 /* if input has more params than output - skip excess */
2850 nr_out_params = nr_in_params + nr_cmn_params;
2851 if (nr_out_params > out_blk_size)
2852 nr_out_params = out_blk_size;
2853
2854 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2855 metadata[k] = buff_in[i + k];
2856
2857 /* record the actual nr params we copied */
2858 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2859 }
2860
2861 /* adjust in offset by number of in params used */
2862 i += nr_in_params + nr_cmn_params;
2863 *buff_in_offset = i;
2864 return metadata;
2865}
2866
83d1fc92
JC
2867/**
2868 * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2869 * on the bounds of aux_event, if it matches with the buffer that's at
2870 * file_offset.
2871 *
2872 * Normally, whole auxtrace buffers would be added to the queue. But we
2873 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2874 * is reset across each buffer, so splitting the buffers up in advance has
2875 * the same effect.
2876 */
2877static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2878 struct perf_record_aux *aux_event, struct perf_sample *sample)
2879{
2880 int err;
2881 char buf[PERF_SAMPLE_MAX_SIZE];
2882 union perf_event *auxtrace_event_union;
2883 struct perf_record_auxtrace *auxtrace_event;
2884 union perf_event auxtrace_fragment;
2885 __u64 aux_offset, aux_size;
ca50db59 2886 __u32 idx;
9182f04a 2887 bool formatted;
83d1fc92
JC
2888
2889 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2890 struct cs_etm_auxtrace,
2891 auxtrace);
2892
2893 /*
2894 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2895 * from looping through the auxtrace index.
2896 */
2897 err = perf_session__peek_event(session, file_offset, buf,
2898 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2899 if (err)
2900 return err;
2901 auxtrace_event = &auxtrace_event_union->auxtrace;
2902 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2903 return -EINVAL;
2904
2905 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2906 auxtrace_event->header.size != sz) {
2907 return -EINVAL;
2908 }
2909
2910 /*
b6521ea2
ML
2911 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See
2912 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a
2913 * CPU as we set this always for the AUX_OUTPUT_HW_ID event.
2914 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1.
2915 * Return 'not found' if mismatch.
83d1fc92 2916 */
b6521ea2 2917 if (auxtrace_event->cpu == (__u32) -1) {
d1efa4a0 2918 etm->per_thread_decoding = true;
b6521ea2
ML
2919 if (auxtrace_event->tid != sample->tid)
2920 return 1;
d1efa4a0
JC
2921 } else if (auxtrace_event->cpu != sample->cpu) {
2922 if (etm->per_thread_decoding) {
2923 /*
2924 * Found a per-cpu buffer after a per-thread one was
2925 * already found
2926 */
2927 pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n");
2928 return -EINVAL;
2929 }
83d1fc92 2930 return 1;
d1efa4a0 2931 }
83d1fc92
JC
2932
2933 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2934 /*
2935 * Clamp size in snapshot mode. The buffer size is clamped in
2936 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2937 * the buffer size.
2938 */
2939 aux_size = min(aux_event->aux_size, auxtrace_event->size);
2940
2941 /*
2942 * In this mode, the head also points to the end of the buffer so aux_offset
2943 * needs to have the size subtracted so it points to the beginning as in normal mode
2944 */
2945 aux_offset = aux_event->aux_offset - aux_size;
2946 } else {
2947 aux_size = aux_event->aux_size;
2948 aux_offset = aux_event->aux_offset;
2949 }
2950
2951 if (aux_offset >= auxtrace_event->offset &&
2952 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2953 /*
2954 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2955 * based on the sizes of the aux event, and queue that fragment.
2956 */
2957 auxtrace_fragment.auxtrace = *auxtrace_event;
2958 auxtrace_fragment.auxtrace.size = aux_size;
2959 auxtrace_fragment.auxtrace.offset = aux_offset;
2960 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2961
2962 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2963 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
ca50db59
JC
2964 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2965 file_offset, NULL);
2966 if (err)
2967 return err;
2968
2969 idx = auxtrace_event->idx;
9182f04a
JC
2970 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2971 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2972 idx, formatted);
83d1fc92
JC
2973 }
2974
2975 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2976 return 1;
2977}
2978
b6521ea2
ML
2979static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event,
2980 u64 offset __maybe_unused, void *data __maybe_unused)
2981{
2982 /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */
2983 if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) {
2984 (*(int *)data)++; /* increment found count */
2985 return cs_etm__process_aux_output_hw_id(session, event);
2986 }
2987 return 0;
2988}
2989
83d1fc92
JC
2990static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2991 u64 offset __maybe_unused, void *data __maybe_unused)
2992{
2993 struct perf_sample sample;
2994 int ret;
2995 struct auxtrace_index_entry *ent;
2996 struct auxtrace_index *auxtrace_index;
2997 struct evsel *evsel;
2998 size_t i;
2999
3000 /* Don't care about any other events, we're only queuing buffers for AUX events */
3001 if (event->header.type != PERF_RECORD_AUX)
3002 return 0;
3003
3004 if (event->header.size < sizeof(struct perf_record_aux))
3005 return -EINVAL;
3006
3007 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
3008 if (!event->aux.aux_size)
3009 return 0;
3010
3011 /*
3012 * Parse the sample, we need the sample_id_all data that comes after the event so that the
3013 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
3014 */
3015 evsel = evlist__event2evsel(session->evlist, event);
3016 if (!evsel)
3017 return -EINVAL;
3018 ret = evsel__parse_sample(evsel, event, &sample);
3019 if (ret)
3020 return ret;
3021
3022 /*
3023 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
3024 */
3025 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
3026 for (i = 0; i < auxtrace_index->nr; i++) {
3027 ent = &auxtrace_index->entries[i];
3028 ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
3029 ent->sz, &event->aux, &sample);
3030 /*
3031 * Stop search on error or successful values. Continue search on
3032 * 1 ('not found')
3033 */
3034 if (ret != 1)
3035 return ret;
3036 }
3037 }
3038
3039 /*
3040 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
3041 * don't exit with an error because it will still be possible to decode other aux records.
3042 */
3043 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
3044 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
3045 return 0;
3046}
3047
3048static int cs_etm__queue_aux_records(struct perf_session *session)
3049{
3050 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
3051 struct auxtrace_index, list);
3052 if (index && index->nr > 0)
3053 return perf_session__peek_events(session, session->header.data_offset,
3054 session->header.data_size,
3055 cs_etm__queue_aux_records_cb, NULL);
3056
3057 /*
3058 * We would get here if there are no entries in the index (either no auxtrace
3059 * buffers or no index at all). Fail silently as there is the possibility of
3060 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
3061 * false.
3062 *
3063 * In that scenario, buffers will not be split by AUX records.
3064 */
3065 return 0;
3066}
3067
a7fe9a44
GG
3068#define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \
3069 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1))
3070
3071/*
3072 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual
3073 * timestamps).
3074 */
3075static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu)
3076{
3077 int j;
3078
3079 for (j = 0; j < num_cpu; j++) {
3080 switch (metadata[j][CS_ETM_MAGIC]) {
3081 case __perf_cs_etmv4_magic:
3082 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1)
3083 return false;
3084 break;
3085 case __perf_cs_ete_magic:
3086 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1)
3087 return false;
3088 break;
3089 default:
3090 /* Unknown / unsupported magic number. */
3091 return false;
3092 }
3093 }
3094 return true;
3095}
3096
09277295
ML
3097/* map trace ids to correct metadata block, from information in metadata */
3098static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata)
3099{
3100 u64 cs_etm_magic;
3101 u8 trace_chan_id;
3102 int i, err;
3103
3104 for (i = 0; i < num_cpu; i++) {
3105 cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3106 switch (cs_etm_magic) {
3107 case __perf_cs_etmv3_magic:
b6521ea2
ML
3108 metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3109 trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]);
09277295
ML
3110 break;
3111 case __perf_cs_etmv4_magic:
3112 case __perf_cs_ete_magic:
b6521ea2
ML
3113 metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3114 trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]);
09277295
ML
3115 break;
3116 default:
3117 /* unknown magic number */
3118 return -EINVAL;
3119 }
3120 err = cs_etm__map_trace_id(trace_chan_id, metadata[i]);
3121 if (err)
3122 return err;
3123 }
3124 return 0;
3125}
3126
b6521ea2
ML
3127/*
3128 * If we found AUX_HW_ID packets, then set any metadata marked as unused to the
3129 * unused value to reduce the number of unneeded decoders created.
3130 */
3131static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata)
3132{
3133 u64 cs_etm_magic;
3134 int i;
3135
3136 for (i = 0; i < num_cpu; i++) {
3137 cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3138 switch (cs_etm_magic) {
3139 case __perf_cs_etmv3_magic:
3140 if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3141 metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3142 break;
3143 case __perf_cs_etmv4_magic:
3144 case __perf_cs_ete_magic:
3145 if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3146 metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3147 break;
3148 default:
3149 /* unknown magic number */
3150 return -EINVAL;
3151 }
3152 }
3153 return 0;
3154}
3155
55c1de99
JC
3156int cs_etm__process_auxtrace_info_full(union perf_event *event,
3157 struct perf_session *session)
440a23b3 3158{
72932371 3159 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
440a23b3 3160 struct cs_etm_auxtrace *etm = NULL;
a7fe9a44 3161 struct perf_record_time_conv *tc = &session->time_conv;
440a23b3 3162 int event_header_size = sizeof(struct perf_event_header);
440a23b3 3163 int total_size = auxtrace_info->header.size;
cd8bfd8c 3164 int priv_size = 0;
09277295 3165 int num_cpu;
42b2b570 3166 int err = 0;
b6521ea2 3167 int aux_hw_id_found;
42b2b570 3168 int i, j;
fd63091f 3169 u64 *ptr = NULL;
cd8bfd8c 3170 u64 **metadata = NULL;
b00204f5 3171
cd8bfd8c 3172 /*
95c6fe97
LY
3173 * Create an RB tree for traceID-metadata tuple. Since the conversion
3174 * has to be made for each packet that gets decoded, optimizing access
3175 * in anything other than a sequential array is worth doing.
cd8bfd8c
TJ
3176 */
3177 traceid_list = intlist__new(NULL);
fd63091f
JC
3178 if (!traceid_list)
3179 return -ENOMEM;
cd8bfd8c 3180
55c1de99
JC
3181 /* First the global part */
3182 ptr = (u64 *) auxtrace_info->priv;
3183 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff;
cd8bfd8c
TJ
3184 metadata = zalloc(sizeof(*metadata) * num_cpu);
3185 if (!metadata) {
3186 err = -ENOMEM;
3187 goto err_free_traceid_list;
3188 }
3189
fd63091f
JC
3190 /* Start parsing after the common part of the header */
3191 i = CS_HEADER_VERSION_MAX;
3192
cd8bfd8c
TJ
3193 /*
3194 * The metadata is stored in the auxtrace_info section and encodes
3195 * the configuration of the ARM embedded trace macrocell which is
3196 * required by the trace decoder to properly decode the trace due
3197 * to its highly compressed nature.
3198 */
3199 for (j = 0; j < num_cpu; j++) {
3200 if (ptr[i] == __perf_cs_etmv3_magic) {
42b2b570
ML
3201 metadata[j] =
3202 cs_etm__create_meta_blk(ptr, &i,
3203 CS_ETM_PRIV_MAX,
3204 CS_ETM_NR_TRC_PARAMS_V0);
cd8bfd8c 3205 } else if (ptr[i] == __perf_cs_etmv4_magic) {
42b2b570
ML
3206 metadata[j] =
3207 cs_etm__create_meta_blk(ptr, &i,
3208 CS_ETMV4_PRIV_MAX,
3209 CS_ETMV4_NR_TRC_PARAMS_V0);
51ba8811
JC
3210 } else if (ptr[i] == __perf_cs_ete_magic) {
3211 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
a80aea64
JC
3212 } else {
3213 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
3214 ptr[i]);
3215 err = -EINVAL;
3216 goto err_free_metadata;
42b2b570
ML
3217 }
3218
3219 if (!metadata[j]) {
3220 err = -ENOMEM;
3221 goto err_free_metadata;
cd8bfd8c 3222 }
cd8bfd8c
TJ
3223 }
3224
3225 /*
42b2b570 3226 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
cd8bfd8c
TJ
3227 * CS_ETMV4_PRIV_MAX mark how many double words are in the
3228 * global metadata, and each cpu's metadata respectively.
3229 * The following tests if the correct number of double words was
3230 * present in the auxtrace info section.
3231 */
55c1de99 3232 priv_size = total_size - event_header_size - INFO_HEADER_SIZE;
cd8bfd8c
TJ
3233 if (i * 8 != priv_size) {
3234 err = -EINVAL;
3235 goto err_free_metadata;
3236 }
3237
440a23b3
MP
3238 etm = zalloc(sizeof(*etm));
3239
cd8bfd8c 3240 if (!etm) {
440a23b3 3241 err = -ENOMEM;
cd8bfd8c
TJ
3242 goto err_free_metadata;
3243 }
440a23b3 3244
5414b532
JC
3245 /*
3246 * As all the ETMs run at the same exception level, the system should
3247 * have the same PID format crossing CPUs. So cache the PID format
3248 * and reuse it for sequential decoding.
3249 */
3250 etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]);
3251
440a23b3
MP
3252 err = auxtrace_queues__init(&etm->queues);
3253 if (err)
3254 goto err_free_etm;
3255
cac31418
JC
3256 if (session->itrace_synth_opts->set) {
3257 etm->synth_opts = *session->itrace_synth_opts;
3258 } else {
3259 itrace_synth_opts__set_default(&etm->synth_opts,
3260 session->itrace_synth_opts->default_no_sample);
3261 etm->synth_opts.callchain = false;
3262 }
3263
440a23b3 3264 etm->session = session;
440a23b3 3265
cd8bfd8c 3266 etm->num_cpu = num_cpu;
55c1de99 3267 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff);
fd63091f 3268 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0);
cd8bfd8c 3269 etm->metadata = metadata;
440a23b3 3270 etm->auxtrace_type = auxtrace_info->type;
440a23b3 3271
a7fe9a44
GG
3272 /* Use virtual timestamps if all ETMs report ts_source = 1 */
3273 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu);
3274
3275 if (!etm->has_virtual_ts)
3276 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n"
3277 "The time field of the samples will not be set accurately.\n\n");
3278
440a23b3
MP
3279 etm->auxtrace.process_event = cs_etm__process_event;
3280 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3281 etm->auxtrace.flush_events = cs_etm__flush_events;
3282 etm->auxtrace.free_events = cs_etm__free_events;
3283 etm->auxtrace.free = cs_etm__free;
a58ab57c 3284 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
440a23b3
MP
3285 session->auxtrace = &etm->auxtrace;
3286
449067f3
JC
3287 err = cs_etm__setup_timeless_decoding(etm);
3288 if (err)
3289 return err;
3290
a7fe9a44
GG
3291 etm->tc.time_shift = tc->time_shift;
3292 etm->tc.time_mult = tc->time_mult;
3293 etm->tc.time_zero = tc->time_zero;
3294 if (event_contains(*tc, time_cycles)) {
3295 etm->tc.time_cycles = tc->time_cycles;
3296 etm->tc.time_mask = tc->time_mask;
3297 etm->tc.cap_user_time_zero = tc->cap_user_time_zero;
3298 etm->tc.cap_user_time_short = tc->cap_user_time_short;
3299 }
b12235b1
MP
3300 err = cs_etm__synth_events(etm, session);
3301 if (err)
951ccccd 3302 goto err_free_queues;
b12235b1 3303
b6521ea2
ML
3304 /*
3305 * Map Trace ID values to CPU metadata.
3306 *
3307 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the
3308 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata
3309 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set.
3310 *
3311 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use
3312 * the same IDs as the old algorithm as far as is possible, unless there are clashes
3313 * in which case a different value will be used. This means an older perf may still
3314 * be able to record and read files generate on a newer system.
3315 *
3316 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of
3317 * those packets. If they are there then the values will be mapped and plugged into
3318 * the metadata. We then set any remaining metadata values with the used flag to a
3319 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required.
3320 *
3321 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel
3322 * then we map Trace ID values to CPU directly from the metadata - clearing any unused
3323 * flags if present.
3324 */
3325
3326 /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */
3327 aux_hw_id_found = 0;
3328 err = perf_session__peek_events(session, session->header.data_offset,
3329 session->header.data_size,
3330 cs_etm__process_aux_hw_id_cb, &aux_hw_id_found);
3331 if (err)
951ccccd 3332 goto err_free_queues;
b6521ea2
ML
3333
3334 /* if HW ID found then clear any unused metadata ID values */
3335 if (aux_hw_id_found)
3336 err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata);
3337 /* otherwise, this is a file with metadata values only, map from metadata */
3338 else
3339 err = cs_etm__map_trace_ids_metadata(num_cpu, metadata);
3340
09277295 3341 if (err)
951ccccd 3342 goto err_free_queues;
09277295 3343
83d1fc92 3344 err = cs_etm__queue_aux_records(session);
440a23b3 3345 if (err)
951ccccd 3346 goto err_free_queues;
440a23b3
MP
3347
3348 etm->data_queued = etm->queues.populated;
440a23b3
MP
3349 return 0;
3350
3351err_free_queues:
3352 auxtrace_queues__free(&etm->queues);
3353 session->auxtrace = NULL;
3354err_free_etm:
3355 zfree(&etm);
cd8bfd8c
TJ
3356err_free_metadata:
3357 /* No need to check @metadata[j], free(NULL) is supported */
3358 for (j = 0; j < num_cpu; j++)
d8f9da24 3359 zfree(&metadata[j]);
cd8bfd8c
TJ
3360 zfree(&metadata);
3361err_free_traceid_list:
3362 intlist__delete(traceid_list);
6285bd15 3363 return err;
440a23b3 3364}