Merge tag 'spi-fix-v6.9-merge-window' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / tools / perf / util / cs-etm.c
CommitLineData
8a9fd832 1// SPDX-License-Identifier: GPL-2.0
440a23b3 2/*
440a23b3
MP
3 * Copyright(C) 2015-2018 Linaro Limited.
4 *
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
8
a4b6452a
JC
9#include <linux/kernel.h>
10#include <linux/bitfield.h>
440a23b3 11#include <linux/bitops.h>
47f0d94c 12#include <linux/coresight-pmu.h>
440a23b3 13#include <linux/err.h>
440a23b3
MP
14#include <linux/log2.h>
15#include <linux/types.h>
7f7c536f 16#include <linux/zalloc.h>
440a23b3
MP
17
18#include <stdlib.h>
19
20#include "auxtrace.h"
21#include "color.h"
22#include "cs-etm.h"
68ffe390 23#include "cs-etm-decoder/cs-etm-decoder.h"
440a23b3 24#include "debug.h"
4a3cec84 25#include "dso.h"
440a23b3
MP
26#include "evlist.h"
27#include "intlist.h"
28#include "machine.h"
29#include "map.h"
30#include "perf.h"
f2a39fe8 31#include "session.h"
d3300a3c
ACM
32#include "map_symbol.h"
33#include "branch.h"
859dcf64 34#include "symbol.h"
4a3cec84 35#include "tool.h"
440a23b3 36#include "thread.h"
440a23b3 37#include "thread-stack.h"
a7fe9a44 38#include "tsc.h"
c152d4d4 39#include <tools/libc_compat.h>
055c67ed 40#include "util/synthetic-events.h"
ea0c5239 41#include "util/util.h"
440a23b3 42
440a23b3
MP
43struct cs_etm_auxtrace {
44 struct auxtrace auxtrace;
45 struct auxtrace_queues queues;
46 struct auxtrace_heap heap;
47 struct itrace_synth_opts synth_opts;
48 struct perf_session *session;
a7fe9a44 49 struct perf_tsc_conversion tc;
440a23b3 50
d1efa4a0
JC
51 /*
52 * Timeless has no timestamps in the trace so overlapping mmap lookups
53 * are less accurate but produces smaller trace data. We use context IDs
54 * in the trace instead of matching timestamps with fork records so
55 * they're not really needed in the general case. Overlapping mmaps
56 * happen in cases like between a fork and an exec.
57 */
1764ce06 58 bool timeless_decoding;
d1efa4a0
JC
59
60 /*
61 * Per-thread ignores the trace channel ID and instead assumes that
62 * everything in a buffer comes from the same process regardless of
63 * which CPU it ran on. It also implies no context IDs so the TID is
64 * taken from the auxtrace buffer.
65 */
66 bool per_thread_decoding;
1764ce06
JC
67 bool snapshot_mode;
68 bool data_queued;
69 bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */
440a23b3
MP
70
71 int num_cpu;
1ac9e0b5 72 u64 latest_kernel_timestamp;
440a23b3
MP
73 u32 auxtrace_type;
74 u64 branches_sample_type;
75 u64 branches_id;
e573e978
RW
76 u64 instructions_sample_type;
77 u64 instructions_sample_period;
78 u64 instructions_id;
440a23b3 79 u64 **metadata;
440a23b3 80 unsigned int pmu_type;
5414b532 81 enum cs_etm_pid_fmt pid_fmt;
440a23b3
MP
82};
83
c7bfa2fd
MP
84struct cs_etm_traceid_queue {
85 u8 trace_chan_id;
86 u64 period_instructions;
87 size_t last_branch_pos;
88 union perf_event *event_buf;
3c21d7d8 89 struct thread *thread;
d67d8c87 90 struct thread *prev_packet_thread;
8d3031d3
JC
91 ocsd_ex_level prev_packet_el;
92 ocsd_ex_level el;
c7bfa2fd
MP
93 struct branch_stack *last_branch;
94 struct branch_stack *last_branch_rb;
95 struct cs_etm_packet *prev_packet;
96 struct cs_etm_packet *packet;
97 struct cs_etm_packet_queue packet_queue;
98};
99
440a23b3
MP
100struct cs_etm_queue {
101 struct cs_etm_auxtrace *etm;
440a23b3
MP
102 struct cs_etm_decoder *decoder;
103 struct auxtrace_buffer *buffer;
440a23b3 104 unsigned int queue_nr;
aadd6ba4 105 u8 pending_timestamp_chan_id;
440a23b3 106 u64 offset;
23cfcd6d
MP
107 const unsigned char *buf;
108 size_t buf_len, buf_used;
c152d4d4
MP
109 /* Conversion between traceID and index in traceid_queues array */
110 struct intlist *traceid_queues_list;
111 struct cs_etm_traceid_queue **traceid_queues;
440a23b3
MP
112};
113
168200b6
LY
114/* RB tree for quick conversion between traceID and metadata pointers */
115static struct intlist *traceid_list;
116
d1efa4a0 117static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm);
9f878b29 118static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
fc7ac413 119 pid_t tid);
21fe8dc1
MP
120static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
121static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
9f878b29 122
15a5cd19
MP
123/* PTMs ETMIDR [11:8] set to b0011 */
124#define ETMIDR_PTM_VERSION 0x00000300
125
21fe8dc1
MP
126/*
127 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
128 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply
129 * encode the etm queue number as the upper 16 bit and the channel as
130 * the lower 16 bit.
131 */
9d604aad 132#define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
21fe8dc1
MP
133 (queue_nr << 16 | trace_chan_id)
134#define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
135#define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
136
15a5cd19
MP
137static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
138{
139 etmidr &= ETMIDR_PTM_VERSION;
140
141 if (etmidr == ETMIDR_PTM_VERSION)
142 return CS_ETM_PROTO_PTM;
143
144 return CS_ETM_PROTO_ETMV3;
145}
146
96dce7f4
LY
147static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
148{
149 struct int_node *inode;
150 u64 *metadata;
151
152 inode = intlist__find(traceid_list, trace_chan_id);
153 if (!inode)
154 return -EINVAL;
155
156 metadata = inode->priv;
157 *magic = metadata[CS_ETM_MAGIC];
158 return 0;
159}
160
95c6fe97
LY
161int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
162{
163 struct int_node *inode;
164 u64 *metadata;
165
166 inode = intlist__find(traceid_list, trace_chan_id);
167 if (!inode)
168 return -EINVAL;
169
170 metadata = inode->priv;
171 *cpu = (int)metadata[CS_ETM_CPU];
172 return 0;
173}
174
47f0d94c 175/*
5414b532 176 * The returned PID format is presented as an enum:
47f0d94c 177 *
5414b532
JC
178 * CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced.
179 * CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced.
180 * CS_ETM_PIDFMT_NONE: No context IDs
47f0d94c
LY
181 *
182 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
183 * are enabled at the same time when the session runs on an EL2 kernel.
184 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
185 * recorded in the trace data, the tool will selectively use
186 * CONTEXTIDR_EL2 as PID.
5414b532
JC
187 *
188 * The result is cached in etm->pid_fmt so this function only needs to be called
189 * when processing the aux info.
47f0d94c 190 */
5414b532 191static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata)
47f0d94c 192{
5414b532 193 u64 val;
47f0d94c
LY
194
195 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
196 val = metadata[CS_ETM_ETMCR];
197 /* CONTEXTIDR is traced */
198 if (val & BIT(ETM_OPT_CTXTID))
5414b532 199 return CS_ETM_PIDFMT_CTXTID;
47f0d94c
LY
200 } else {
201 val = metadata[CS_ETMV4_TRCCONFIGR];
202 /* CONTEXTIDR_EL2 is traced */
203 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
5414b532 204 return CS_ETM_PIDFMT_CTXTID2;
47f0d94c
LY
205 /* CONTEXTIDR_EL1 is traced */
206 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
5414b532 207 return CS_ETM_PIDFMT_CTXTID;
47f0d94c
LY
208 }
209
5414b532
JC
210 return CS_ETM_PIDFMT_NONE;
211}
212
213enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq)
214{
215 return etmq->etm->pid_fmt;
47f0d94c
LY
216}
217
09277295
ML
218static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
219{
220 struct int_node *inode;
221
222 /* Get an RB node for this CPU */
223 inode = intlist__findnew(traceid_list, trace_chan_id);
224
225 /* Something went wrong, no need to continue */
226 if (!inode)
227 return -ENOMEM;
228
229 /*
230 * The node for that CPU should not be taken.
231 * Back out if that's the case.
232 */
233 if (inode->priv)
234 return -EINVAL;
235
236 /* All good, associate the traceID with the metadata pointer */
237 inode->priv = cpu_metadata;
238
239 return 0;
240}
241
b6521ea2
ML
242static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata)
243{
244 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
245
246 switch (cs_etm_magic) {
247 case __perf_cs_etmv3_magic:
248 *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] &
249 CORESIGHT_TRACE_ID_VAL_MASK);
250 break;
251 case __perf_cs_etmv4_magic:
252 case __perf_cs_ete_magic:
253 *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] &
254 CORESIGHT_TRACE_ID_VAL_MASK);
255 break;
256 default:
257 return -EINVAL;
258 }
259 return 0;
260}
261
262/*
263 * update metadata trace ID from the value found in the AUX_HW_INFO packet.
264 * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present.
265 */
266static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
267{
268 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
269
270 switch (cs_etm_magic) {
271 case __perf_cs_etmv3_magic:
272 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id;
273 break;
274 case __perf_cs_etmv4_magic:
275 case __perf_cs_ete_magic:
276 cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id;
277 break;
278
279 default:
280 return -EINVAL;
281 }
282 return 0;
283}
284
6bf86cad 285/*
a16afcc5 286 * Get a metadata index for a specific cpu from an array.
6bf86cad
GK
287 *
288 */
a16afcc5 289static int get_cpu_data_idx(struct cs_etm_auxtrace *etm, int cpu)
6bf86cad
GK
290{
291 int i;
6bf86cad
GK
292
293 for (i = 0; i < etm->num_cpu; i++) {
294 if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) {
a16afcc5 295 return i;
6bf86cad
GK
296 }
297 }
298
a16afcc5
BW
299 return -1;
300}
301
302/*
303 * Get a metadata for a specific cpu from an array.
304 *
305 */
306static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu)
307{
308 int idx = get_cpu_data_idx(etm, cpu);
309
310 return (idx != -1) ? etm->metadata[idx] : NULL;
6bf86cad
GK
311}
312
b6521ea2
ML
313/*
314 * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event.
315 *
316 * The payload associates the Trace ID and the CPU.
317 * The routine is tolerant of seeing multiple packets with the same association,
318 * but a CPU / Trace ID association changing during a session is an error.
319 */
320static int cs_etm__process_aux_output_hw_id(struct perf_session *session,
321 union perf_event *event)
322{
323 struct cs_etm_auxtrace *etm;
324 struct perf_sample sample;
325 struct int_node *inode;
326 struct evsel *evsel;
327 u64 *cpu_data;
328 u64 hw_id;
329 int cpu, version, err;
330 u8 trace_chan_id, curr_chan_id;
331
332 /* extract and parse the HW ID */
333 hw_id = event->aux_output_hw_id.hw_id;
334 version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id);
335 trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id);
336
337 /* check that we can handle this version */
338 if (version > CS_AUX_HW_ID_CURR_VERSION)
339 return -EINVAL;
340
341 /* get access to the etm metadata */
342 etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace);
343 if (!etm || !etm->metadata)
344 return -EINVAL;
345
346 /* parse the sample to get the CPU */
347 evsel = evlist__event2evsel(session->evlist, event);
348 if (!evsel)
349 return -EINVAL;
350 err = evsel__parse_sample(evsel, event, &sample);
351 if (err)
352 return err;
353 cpu = sample.cpu;
354 if (cpu == -1) {
355 /* no CPU in the sample - possibly recorded with an old version of perf */
356 pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record.");
357 return -EINVAL;
358 }
359
360 /* See if the ID is mapped to a CPU, and it matches the current CPU */
361 inode = intlist__find(traceid_list, trace_chan_id);
362 if (inode) {
363 cpu_data = inode->priv;
364 if ((int)cpu_data[CS_ETM_CPU] != cpu) {
365 pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n");
366 return -EINVAL;
367 }
368
369 /* check that the mapped ID matches */
370 err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data);
371 if (err)
372 return err;
373 if (curr_chan_id != trace_chan_id) {
374 pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n");
375 return -EINVAL;
376 }
377
378 /* mapped and matched - return OK */
379 return 0;
380 }
381
6bf86cad
GK
382 cpu_data = get_cpu_data(etm, cpu);
383 if (cpu_data == NULL)
384 return err;
385
b6521ea2 386 /* not one we've seen before - lets map it */
b6521ea2
ML
387 err = cs_etm__map_trace_id(trace_chan_id, cpu_data);
388 if (err)
389 return err;
390
391 /*
392 * if we are picking up the association from the packet, need to plug
393 * the correct trace ID into the metadata for setting up decoders later.
394 */
395 err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data);
396 return err;
397}
398
675f302f
MP
399void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
400 u8 trace_chan_id)
401{
402 /*
4d39c89f 403 * When a timestamp packet is encountered the backend code
675f302f
MP
404 * is stopped so that the front end has time to process packets
405 * that were accumulated in the traceID queue. Since there can
406 * be more than one channel per cs_etm_queue, we need to specify
407 * what traceID queue needs servicing.
408 */
aadd6ba4 409 etmq->pending_timestamp_chan_id = trace_chan_id;
675f302f
MP
410}
411
21fe8dc1
MP
412static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
413 u8 *trace_chan_id)
414{
415 struct cs_etm_packet_queue *packet_queue;
416
aadd6ba4 417 if (!etmq->pending_timestamp_chan_id)
21fe8dc1
MP
418 return 0;
419
420 if (trace_chan_id)
aadd6ba4 421 *trace_chan_id = etmq->pending_timestamp_chan_id;
21fe8dc1
MP
422
423 packet_queue = cs_etm__etmq_get_packet_queue(etmq,
aadd6ba4 424 etmq->pending_timestamp_chan_id);
21fe8dc1
MP
425 if (!packet_queue)
426 return 0;
427
428 /* Acknowledge pending status */
aadd6ba4 429 etmq->pending_timestamp_chan_id = 0;
21fe8dc1
MP
430
431 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
aadd6ba4 432 return packet_queue->cs_timestamp;
21fe8dc1
MP
433}
434
5f7cb035
MP
435static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
436{
437 int i;
438
439 queue->head = 0;
440 queue->tail = 0;
441 queue->packet_count = 0;
442 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
443 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
444 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
445 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
446 queue->packet_buffer[i].instr_count = 0;
447 queue->packet_buffer[i].last_instr_taken_branch = false;
448 queue->packet_buffer[i].last_instr_size = 0;
449 queue->packet_buffer[i].last_instr_type = 0;
450 queue->packet_buffer[i].last_instr_subtype = 0;
451 queue->packet_buffer[i].last_instr_cond = 0;
452 queue->packet_buffer[i].flags = 0;
453 queue->packet_buffer[i].exception_number = UINT32_MAX;
454 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
455 queue->packet_buffer[i].cpu = INT_MIN;
456 }
457}
458
21fe8dc1
MP
459static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
460{
461 int idx;
462 struct int_node *inode;
463 struct cs_etm_traceid_queue *tidq;
464 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
465
466 intlist__for_each_entry(inode, traceid_queues_list) {
467 idx = (int)(intptr_t)inode->priv;
468 tidq = etmq->traceid_queues[idx];
469 cs_etm__clear_packet_queue(&tidq->packet_queue);
470 }
471}
472
c7bfa2fd
MP
473static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
474 struct cs_etm_traceid_queue *tidq,
475 u8 trace_chan_id)
476{
477 int rc = -ENOMEM;
0abb868b 478 struct auxtrace_queue *queue;
c7bfa2fd
MP
479 struct cs_etm_auxtrace *etm = etmq->etm;
480
481 cs_etm__clear_packet_queue(&tidq->packet_queue);
482
0abb868b 483 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
c7bfa2fd 484 tidq->trace_chan_id = trace_chan_id;
8d3031d3 485 tidq->el = tidq->prev_packet_el = ocsd_EL_unknown;
951ccccd
JC
486 tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1,
487 queue->tid);
d67d8c87 488 tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host);
c7bfa2fd
MP
489
490 tidq->packet = zalloc(sizeof(struct cs_etm_packet));
491 if (!tidq->packet)
492 goto out;
493
494 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
495 if (!tidq->prev_packet)
496 goto out_free;
497
498 if (etm->synth_opts.last_branch) {
499 size_t sz = sizeof(struct branch_stack);
500
501 sz += etm->synth_opts.last_branch_sz *
502 sizeof(struct branch_entry);
503 tidq->last_branch = zalloc(sz);
504 if (!tidq->last_branch)
505 goto out_free;
506 tidq->last_branch_rb = zalloc(sz);
507 if (!tidq->last_branch_rb)
508 goto out_free;
509 }
510
511 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
512 if (!tidq->event_buf)
513 goto out_free;
514
515 return 0;
516
517out_free:
518 zfree(&tidq->last_branch_rb);
519 zfree(&tidq->last_branch);
520 zfree(&tidq->prev_packet);
521 zfree(&tidq->packet);
522out:
523 return rc;
524}
525
526static struct cs_etm_traceid_queue
527*cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
528{
c152d4d4
MP
529 int idx;
530 struct int_node *inode;
531 struct intlist *traceid_queues_list;
532 struct cs_etm_traceid_queue *tidq, **traceid_queues;
c7bfa2fd
MP
533 struct cs_etm_auxtrace *etm = etmq->etm;
534
d1efa4a0 535 if (etm->per_thread_decoding)
c152d4d4 536 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
c7bfa2fd 537
c152d4d4 538 traceid_queues_list = etmq->traceid_queues_list;
c7bfa2fd 539
c152d4d4
MP
540 /*
541 * Check if the traceid_queue exist for this traceID by looking
542 * in the queue list.
543 */
544 inode = intlist__find(traceid_queues_list, trace_chan_id);
545 if (inode) {
546 idx = (int)(intptr_t)inode->priv;
547 return etmq->traceid_queues[idx];
548 }
c7bfa2fd 549
c152d4d4 550 /* We couldn't find a traceid_queue for this traceID, allocate one */
c7bfa2fd
MP
551 tidq = malloc(sizeof(*tidq));
552 if (!tidq)
553 return NULL;
554
555 memset(tidq, 0, sizeof(*tidq));
556
c152d4d4
MP
557 /* Get a valid index for the new traceid_queue */
558 idx = intlist__nr_entries(traceid_queues_list);
559 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
560 inode = intlist__findnew(traceid_queues_list, trace_chan_id);
561 if (!inode)
562 goto out_free;
563
564 /* Associate this traceID with this index */
565 inode->priv = (void *)(intptr_t)idx;
566
c7bfa2fd
MP
567 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
568 goto out_free;
569
c152d4d4
MP
570 /* Grow the traceid_queues array by one unit */
571 traceid_queues = etmq->traceid_queues;
572 traceid_queues = reallocarray(traceid_queues,
573 idx + 1,
574 sizeof(*traceid_queues));
575
576 /*
577 * On failure reallocarray() returns NULL and the original block of
578 * memory is left untouched.
579 */
580 if (!traceid_queues)
581 goto out_free;
582
583 traceid_queues[idx] = tidq;
584 etmq->traceid_queues = traceid_queues;
c7bfa2fd 585
c152d4d4 586 return etmq->traceid_queues[idx];
c7bfa2fd
MP
587
588out_free:
c152d4d4
MP
589 /*
590 * Function intlist__remove() removes the inode from the list
591 * and delete the memory associated to it.
592 */
593 intlist__remove(traceid_queues_list, inode);
c7bfa2fd
MP
594 free(tidq);
595
596 return NULL;
597}
598
5f7cb035 599struct cs_etm_packet_queue
c7bfa2fd 600*cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
5f7cb035 601{
c7bfa2fd
MP
602 struct cs_etm_traceid_queue *tidq;
603
604 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
605 if (tidq)
606 return &tidq->packet_queue;
607
608 return NULL;
5f7cb035
MP
609}
610
d0175156
LY
611static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
612 struct cs_etm_traceid_queue *tidq)
613{
614 struct cs_etm_packet *tmp;
615
0b31ea66
JC
616 if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
617 etm->synth_opts.instructions) {
d0175156
LY
618 /*
619 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
620 * the next incoming packet.
d67d8c87
JC
621 *
622 * Threads and exception levels are also tracked for both the
623 * previous and current packets. This is because the previous
624 * packet is used for the 'from' IP for branch samples, so the
625 * thread at that time must also be assigned to that sample.
626 * Across discontinuity packets the thread can change, so by
627 * tracking the thread for the previous packet the branch sample
628 * will have the correct info.
d0175156
LY
629 */
630 tmp = tidq->packet;
631 tidq->packet = tidq->prev_packet;
632 tidq->prev_packet = tmp;
8d3031d3 633 tidq->prev_packet_el = tidq->el;
d67d8c87
JC
634 thread__put(tidq->prev_packet_thread);
635 tidq->prev_packet_thread = thread__get(tidq->thread);
d0175156
LY
636 }
637}
638
68ffe390
MP
639static void cs_etm__packet_dump(const char *pkt_string)
640{
641 const char *color = PERF_COLOR_BLUE;
642 int len = strlen(pkt_string);
643
644 if (len && (pkt_string[len-1] == '\n'))
645 color_fprintf(stdout, color, " %s", pkt_string);
646 else
647 color_fprintf(stdout, color, " %s\n", pkt_string);
648
649 fflush(stdout);
650}
651
2507a3d9 652static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
a16afcc5
BW
653 struct cs_etm_auxtrace *etm, int t_idx,
654 int m_idx, u32 etmidr)
2507a3d9
MP
655{
656 u64 **metadata = etm->metadata;
657
a16afcc5
BW
658 t_params[t_idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
659 t_params[t_idx].etmv3.reg_ctrl = metadata[m_idx][CS_ETM_ETMCR];
660 t_params[t_idx].etmv3.reg_trc_id = metadata[m_idx][CS_ETM_ETMTRACEIDR];
2507a3d9
MP
661}
662
663static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
a16afcc5
BW
664 struct cs_etm_auxtrace *etm, int t_idx,
665 int m_idx)
2507a3d9
MP
666{
667 u64 **metadata = etm->metadata;
668
a16afcc5
BW
669 t_params[t_idx].protocol = CS_ETM_PROTO_ETMV4i;
670 t_params[t_idx].etmv4.reg_idr0 = metadata[m_idx][CS_ETMV4_TRCIDR0];
671 t_params[t_idx].etmv4.reg_idr1 = metadata[m_idx][CS_ETMV4_TRCIDR1];
672 t_params[t_idx].etmv4.reg_idr2 = metadata[m_idx][CS_ETMV4_TRCIDR2];
673 t_params[t_idx].etmv4.reg_idr8 = metadata[m_idx][CS_ETMV4_TRCIDR8];
674 t_params[t_idx].etmv4.reg_configr = metadata[m_idx][CS_ETMV4_TRCCONFIGR];
675 t_params[t_idx].etmv4.reg_traceidr = metadata[m_idx][CS_ETMV4_TRCTRACEIDR];
2507a3d9
MP
676}
677
779f414a 678static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
a16afcc5
BW
679 struct cs_etm_auxtrace *etm, int t_idx,
680 int m_idx)
779f414a
JC
681{
682 u64 **metadata = etm->metadata;
683
a16afcc5
BW
684 t_params[t_idx].protocol = CS_ETM_PROTO_ETE;
685 t_params[t_idx].ete.reg_idr0 = metadata[m_idx][CS_ETE_TRCIDR0];
686 t_params[t_idx].ete.reg_idr1 = metadata[m_idx][CS_ETE_TRCIDR1];
687 t_params[t_idx].ete.reg_idr2 = metadata[m_idx][CS_ETE_TRCIDR2];
688 t_params[t_idx].ete.reg_idr8 = metadata[m_idx][CS_ETE_TRCIDR8];
689 t_params[t_idx].ete.reg_configr = metadata[m_idx][CS_ETE_TRCCONFIGR];
690 t_params[t_idx].ete.reg_traceidr = metadata[m_idx][CS_ETE_TRCTRACEIDR];
691 t_params[t_idx].ete.reg_devarch = metadata[m_idx][CS_ETE_TRCDEVARCH];
779f414a
JC
692}
693
2507a3d9 694static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
9182f04a 695 struct cs_etm_auxtrace *etm,
a16afcc5
BW
696 bool formatted,
697 int sample_cpu,
9182f04a 698 int decoders)
2507a3d9 699{
a16afcc5 700 int t_idx, m_idx;
2507a3d9
MP
701 u32 etmidr;
702 u64 architecture;
703
a16afcc5
BW
704 for (t_idx = 0; t_idx < decoders; t_idx++) {
705 if (formatted)
706 m_idx = t_idx;
707 else {
708 m_idx = get_cpu_data_idx(etm, sample_cpu);
709 if (m_idx == -1) {
710 pr_warning("CS_ETM: unknown CPU, falling back to first metadata\n");
711 m_idx = 0;
712 }
713 }
714
715 architecture = etm->metadata[m_idx][CS_ETM_MAGIC];
2507a3d9
MP
716
717 switch (architecture) {
718 case __perf_cs_etmv3_magic:
a16afcc5
BW
719 etmidr = etm->metadata[m_idx][CS_ETM_ETMIDR];
720 cs_etm__set_trace_param_etmv3(t_params, etm, t_idx, m_idx, etmidr);
2507a3d9
MP
721 break;
722 case __perf_cs_etmv4_magic:
a16afcc5 723 cs_etm__set_trace_param_etmv4(t_params, etm, t_idx, m_idx);
2507a3d9 724 break;
779f414a 725 case __perf_cs_ete_magic:
a16afcc5 726 cs_etm__set_trace_param_ete(t_params, etm, t_idx, m_idx);
779f414a 727 break;
2507a3d9
MP
728 default:
729 return -EINVAL;
730 }
731 }
732
733 return 0;
734}
735
65963e5b
MP
736static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
737 struct cs_etm_queue *etmq,
9182f04a
JC
738 enum cs_etm_decoder_operation mode,
739 bool formatted)
65963e5b
MP
740{
741 int ret = -EINVAL;
742
743 if (!(mode < CS_ETM_OPERATION_MAX))
744 goto out;
745
746 d_params->packet_printer = cs_etm__packet_dump;
747 d_params->operation = mode;
748 d_params->data = etmq;
9182f04a 749 d_params->formatted = formatted;
65963e5b
MP
750 d_params->fsyncs = false;
751 d_params->hsyncs = false;
752 d_params->frame_aligned = true;
753
754 ret = 0;
755out:
756 return ret;
757}
758
04aaad26 759static void cs_etm__dump_event(struct cs_etm_queue *etmq,
68ffe390
MP
760 struct auxtrace_buffer *buffer)
761{
2507a3d9 762 int ret;
68ffe390 763 const char *color = PERF_COLOR_BLUE;
68ffe390
MP
764 size_t buffer_used = 0;
765
766 fprintf(stdout, "\n");
767 color_fprintf(stdout, color,
d54e50b7 768 ". ... CoreSight %s Trace data: size %#zx bytes\n",
56c62f52 769 cs_etm_decoder__get_name(etmq->decoder), buffer->size);
68ffe390 770
68ffe390
MP
771 do {
772 size_t consumed;
773
774 ret = cs_etm_decoder__process_data_block(
04aaad26 775 etmq->decoder, buffer->offset,
68ffe390
MP
776 &((u8 *)buffer->data)[buffer_used],
777 buffer->size - buffer_used, &consumed);
778 if (ret)
779 break;
780
781 buffer_used += consumed;
782 } while (buffer_used < buffer->size);
783
04aaad26 784 cs_etm_decoder__reset(etmq->decoder);
68ffe390
MP
785}
786
440a23b3
MP
787static int cs_etm__flush_events(struct perf_session *session,
788 struct perf_tool *tool)
789{
9f878b29
MP
790 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
791 struct cs_etm_auxtrace,
792 auxtrace);
793 if (dump_trace)
794 return 0;
795
796 if (!tool->ordered_events)
797 return -EINVAL;
798
d1efa4a0
JC
799 if (etm->timeless_decoding) {
800 /*
801 * Pass tid = -1 to process all queues. But likely they will have
802 * already been processed on PERF_RECORD_EXIT anyway.
803 */
21fe8dc1 804 return cs_etm__process_timeless_queues(etm, -1);
d1efa4a0 805 }
21fe8dc1 806
d1efa4a0 807 return cs_etm__process_timestamped_queues(etm);
440a23b3
MP
808}
809
c152d4d4
MP
810static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
811{
812 int idx;
813 uintptr_t priv;
814 struct int_node *inode, *tmp;
815 struct cs_etm_traceid_queue *tidq;
816 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
817
818 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
819 priv = (uintptr_t)inode->priv;
820 idx = priv;
821
822 /* Free this traceid_queue from the array */
823 tidq = etmq->traceid_queues[idx];
824 thread__zput(tidq->thread);
d67d8c87 825 thread__zput(tidq->prev_packet_thread);
c152d4d4
MP
826 zfree(&tidq->event_buf);
827 zfree(&tidq->last_branch);
828 zfree(&tidq->last_branch_rb);
829 zfree(&tidq->prev_packet);
830 zfree(&tidq->packet);
831 zfree(&tidq);
832
833 /*
834 * Function intlist__remove() removes the inode from the list
835 * and delete the memory associated to it.
836 */
837 intlist__remove(traceid_queues_list, inode);
838 }
839
840 /* Then the RB tree itself */
841 intlist__delete(traceid_queues_list);
842 etmq->traceid_queues_list = NULL;
843
844 /* finally free the traceid_queues array */
d8f9da24 845 zfree(&etmq->traceid_queues);
c152d4d4
MP
846}
847
440a23b3
MP
848static void cs_etm__free_queue(void *priv)
849{
850 struct cs_etm_queue *etmq = priv;
851
099c1130
MP
852 if (!etmq)
853 return;
854
099c1130 855 cs_etm_decoder__free(etmq->decoder);
c152d4d4 856 cs_etm__free_traceid_queues(etmq);
440a23b3
MP
857 free(etmq);
858}
859
860static void cs_etm__free_events(struct perf_session *session)
861{
862 unsigned int i;
863 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
864 struct cs_etm_auxtrace,
865 auxtrace);
866 struct auxtrace_queues *queues = &aux->queues;
867
868 for (i = 0; i < queues->nr_queues; i++) {
869 cs_etm__free_queue(queues->queue_array[i].priv);
870 queues->queue_array[i].priv = NULL;
871 }
872
873 auxtrace_queues__free(queues);
874}
875
876static void cs_etm__free(struct perf_session *session)
877{
cd8bfd8c
TJ
878 int i;
879 struct int_node *inode, *tmp;
440a23b3
MP
880 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
881 struct cs_etm_auxtrace,
882 auxtrace);
883 cs_etm__free_events(session);
884 session->auxtrace = NULL;
885
95c6fe97 886 /* First remove all traceID/metadata nodes for the RB tree */
cd8bfd8c
TJ
887 intlist__for_each_entry_safe(inode, tmp, traceid_list)
888 intlist__remove(traceid_list, inode);
889 /* Then the RB tree itself */
890 intlist__delete(traceid_list);
891
892 for (i = 0; i < aux->num_cpu; i++)
893 zfree(&aux->metadata[i]);
894
895 zfree(&aux->metadata);
440a23b3
MP
896 zfree(&aux);
897}
898
a58ab57c
AH
899static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
900 struct evsel *evsel)
901{
902 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
903 struct cs_etm_auxtrace,
904 auxtrace);
905
906 return evsel->core.attr.type == aux->pmu_type;
907}
908
8d3031d3
JC
909static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq,
910 ocsd_ex_level el)
d6c9c05f 911{
8d3031d3 912 enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq);
d6c9c05f 913
8d3031d3
JC
914 /*
915 * For any virtualisation based on nVHE (e.g. pKVM), or host kernels
916 * running at EL1 assume everything is the host.
917 */
918 if (pid_fmt == CS_ETM_PIDFMT_CTXTID)
919 return &etmq->etm->session->machines.host;
920
921 /*
922 * Not perfect, but otherwise assume anything in EL1 is the default
923 * guest, and everything else is the host. Distinguishing between guest
924 * and host userspaces isn't currently supported either. Neither is
925 * multiple guest support. All this does is reduce the likeliness of
926 * decode errors where we look into the host kernel maps when it should
927 * have been the guest maps.
928 */
929 switch (el) {
930 case ocsd_EL1:
931 return machines__find_guest(&etmq->etm->session->machines,
932 DEFAULT_GUEST_KERNEL_ID);
933 case ocsd_EL3:
934 case ocsd_EL2:
935 case ocsd_EL0:
936 case ocsd_EL_unknown:
937 default:
938 return &etmq->etm->session->machines.host;
939 }
940}
941
942static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address,
943 ocsd_ex_level el)
944{
945 struct machine *machine = cs_etm__get_machine(etmq, el);
d6c9c05f 946
6f38e115 947 if (address >= machine__kernel_start(machine)) {
d6c9c05f
LY
948 if (machine__is_host(machine))
949 return PERF_RECORD_MISC_KERNEL;
950 else
951 return PERF_RECORD_MISC_GUEST_KERNEL;
952 } else {
953 if (machine__is_host(machine))
954 return PERF_RECORD_MISC_USER;
8d3031d3
JC
955 else {
956 /*
957 * Can't really happen at the moment because
958 * cs_etm__get_machine() will always return
959 * machines.host for any non EL1 trace.
960 */
d6c9c05f 961 return PERF_RECORD_MISC_GUEST_USER;
8d3031d3 962 }
d6c9c05f
LY
963 }
964}
965
af21577c 966static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
d927ef50
JC
967 u64 address, size_t size, u8 *buffer,
968 const ocsd_mem_space_acc_t mem_space)
20d9c478
MP
969{
970 u8 cpumode;
971 u64 offset;
972 int len;
c152d4d4 973 struct addr_location al;
63df0e4b 974 struct dso *dso;
c152d4d4 975 struct cs_etm_traceid_queue *tidq;
0dd5041c 976 int ret = 0;
af21577c 977
20d9c478 978 if (!etmq)
d3267ad4 979 return 0;
20d9c478 980
0dd5041c 981 addr_location__init(&al);
c152d4d4
MP
982 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
983 if (!tidq)
0dd5041c 984 goto out;
20d9c478 985
d927ef50
JC
986 /*
987 * We've already tracked EL along side the PID in cs_etm__set_thread()
988 * so double check that it matches what OpenCSD thinks as well. It
989 * doesn't distinguish between EL0 and EL1 for this mem access callback
990 * so we had to do the extra tracking. Skip validation if it's any of
991 * the 'any' values.
992 */
993 if (!(mem_space == OCSD_MEM_SPACE_ANY ||
994 mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) {
995 if (mem_space & OCSD_MEM_SPACE_EL1N) {
996 /* Includes both non secure EL1 and EL0 */
997 assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0);
998 } else if (mem_space & OCSD_MEM_SPACE_EL2)
999 assert(tidq->el == ocsd_EL2);
1000 else if (mem_space & OCSD_MEM_SPACE_EL3)
1001 assert(tidq->el == ocsd_EL3);
1002 }
1003
8d3031d3
JC
1004 cpumode = cs_etm__cpu_mode(etmq, address, tidq->el);
1005
951ccccd 1006 if (!thread__find_map(tidq->thread, cpumode, address, &al))
0dd5041c 1007 goto out;
63df0e4b 1008
b550bc90
JC
1009 dso = map__dso(al.map);
1010 if (!dso)
0dd5041c 1011 goto out;
20d9c478 1012
63df0e4b
IR
1013 if (dso->data.status == DSO_DATA_STATUS_ERROR &&
1014 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE))
0dd5041c 1015 goto out;
20d9c478 1016
78a1f7cd 1017 offset = map__map_ip(al.map, address);
20d9c478
MP
1018
1019 map__load(al.map);
1020
951ccccd
JC
1021 len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)),
1022 offset, buffer, size);
20d9c478 1023
9c38b671
JC
1024 if (len <= 0) {
1025 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
1026 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
63df0e4b 1027 if (!dso->auxtrace_warned) {
9c38b671
JC
1028 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
1029 address,
63df0e4b
IR
1030 dso->long_name ? dso->long_name : "Unknown");
1031 dso->auxtrace_warned = true;
9c38b671 1032 }
0dd5041c 1033 goto out;
9c38b671 1034 }
0dd5041c
IR
1035 ret = len;
1036out:
1037 addr_location__exit(&al);
1038 return ret;
20d9c478
MP
1039}
1040
9182f04a 1041static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
a16afcc5 1042 bool formatted, int sample_cpu)
20d9c478 1043{
20d9c478 1044 struct cs_etm_decoder_params d_params;
ae4d9f52 1045 struct cs_etm_trace_params *t_params = NULL;
20d9c478 1046 struct cs_etm_queue *etmq;
9182f04a
JC
1047 /*
1048 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
1049 * needed.
1050 */
1051 int decoders = formatted ? etm->num_cpu : 1;
20d9c478
MP
1052
1053 etmq = zalloc(sizeof(*etmq));
1054 if (!etmq)
1055 return NULL;
1056
c152d4d4
MP
1057 etmq->traceid_queues_list = intlist__new(NULL);
1058 if (!etmq->traceid_queues_list)
1059 goto out_free;
1060
20d9c478 1061 /* Use metadata to fill in trace parameters for trace decoder */
9182f04a 1062 t_params = zalloc(sizeof(*t_params) * decoders);
20d9c478
MP
1063
1064 if (!t_params)
1065 goto out_free;
1066
a16afcc5 1067 if (cs_etm__init_trace_params(t_params, etm, formatted, sample_cpu, decoders))
2507a3d9 1068 goto out_free;
20d9c478 1069
e4aa592d 1070 /* Set decoder parameters to decode trace packets */
65963e5b 1071 if (cs_etm__init_decoder_params(&d_params, etmq,
04aaad26 1072 dump_trace ? CS_ETM_OPERATION_PRINT :
9182f04a
JC
1073 CS_ETM_OPERATION_DECODE,
1074 formatted))
65963e5b 1075 goto out_free;
20d9c478 1076
9182f04a
JC
1077 etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
1078 t_params);
20d9c478 1079
20d9c478
MP
1080 if (!etmq->decoder)
1081 goto out_free;
1082
1083 /*
1084 * Register a function to handle all memory accesses required by
1085 * the trace decoder library.
1086 */
1087 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
1088 0x0L, ((u64) -1L),
1089 cs_etm__mem_access))
1090 goto out_free_decoder;
1091
ae4d9f52 1092 zfree(&t_params);
20d9c478
MP
1093 return etmq;
1094
1095out_free_decoder:
1096 cs_etm_decoder__free(etmq->decoder);
1097out_free:
c152d4d4 1098 intlist__delete(etmq->traceid_queues_list);
20d9c478
MP
1099 free(etmq);
1100
1101 return NULL;
1102}
1103
1104static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
1105 struct auxtrace_queue *queue,
9182f04a 1106 unsigned int queue_nr,
a16afcc5
BW
1107 bool formatted,
1108 int sample_cpu)
20d9c478
MP
1109{
1110 struct cs_etm_queue *etmq = queue->priv;
1111
1112 if (list_empty(&queue->head) || etmq)
9ac8afd5 1113 return 0;
20d9c478 1114
a16afcc5 1115 etmq = cs_etm__alloc_queue(etm, formatted, sample_cpu);
20d9c478 1116
9ac8afd5
JC
1117 if (!etmq)
1118 return -ENOMEM;
20d9c478
MP
1119
1120 queue->priv = etmq;
4f5b3713
MP
1121 etmq->etm = etm;
1122 etmq->queue_nr = queue_nr;
4f5b3713 1123 etmq->offset = 0;
20d9c478 1124
9ac8afd5
JC
1125 return 0;
1126}
1127
1128static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
1129 struct cs_etm_queue *etmq,
1130 unsigned int queue_nr)
1131{
1132 int ret = 0;
1133 unsigned int cs_queue_nr;
1134 u8 trace_chan_id;
1135 u64 cs_timestamp;
21fe8dc1
MP
1136
1137 /*
1138 * We are under a CPU-wide trace scenario. As such we need to know
1139 * when the code that generated the traces started to execute so that
1140 * it can be correlated with execution on other CPUs. So we get a
1141 * handle on the beginning of traces and decode until we find a
1142 * timestamp. The timestamp is then added to the auxtrace min heap
1143 * in order to know what nibble (of all the etmqs) to decode first.
1144 */
1145 while (1) {
1146 /*
1147 * Fetch an aux_buffer from this etmq. Bail if no more
1148 * blocks or an error has been encountered.
1149 */
1150 ret = cs_etm__get_data_block(etmq);
1151 if (ret <= 0)
1152 goto out;
1153
1154 /*
1155 * Run decoder on the trace block. The decoder will stop when
aadd6ba4 1156 * encountering a CS timestamp, a full packet queue or the end of
21fe8dc1
MP
1157 * trace for that block.
1158 */
1159 ret = cs_etm__decode_data_block(etmq);
1160 if (ret)
1161 goto out;
1162
1163 /*
1164 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
1165 * the timestamp calculation for us.
1166 */
aadd6ba4 1167 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
21fe8dc1
MP
1168
1169 /* We found a timestamp, no need to continue. */
aadd6ba4 1170 if (cs_timestamp)
21fe8dc1
MP
1171 break;
1172
1173 /*
1174 * We didn't find a timestamp so empty all the traceid packet
1175 * queues before looking for another timestamp packet, either
1176 * in the current data block or a new one. Packets that were
1177 * just decoded are useless since no timestamp has been
1178 * associated with them. As such simply discard them.
1179 */
1180 cs_etm__clear_all_packet_queues(etmq);
1181 }
1182
1183 /*
1184 * We have a timestamp. Add it to the min heap to reflect when
1185 * instructions conveyed by the range packets of this traceID queue
1186 * started to execute. Once the same has been done for all the traceID
1187 * queues of each etmq, redenring and decoding can start in
1188 * chronological order.
1189 *
1190 * Note that packets decoded above are still in the traceID's packet
d1efa4a0 1191 * queue and will be processed in cs_etm__process_timestamped_queues().
21fe8dc1 1192 */
9d604aad 1193 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
aadd6ba4 1194 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
4f5b3713
MP
1195out:
1196 return ret;
20d9c478
MP
1197}
1198
c7bfa2fd
MP
1199static inline
1200void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
1201 struct cs_etm_traceid_queue *tidq)
e573e978 1202{
c7bfa2fd
MP
1203 struct branch_stack *bs_src = tidq->last_branch_rb;
1204 struct branch_stack *bs_dst = tidq->last_branch;
e573e978
RW
1205 size_t nr = 0;
1206
1207 /*
1208 * Set the number of records before early exit: ->nr is used to
1209 * determine how many branches to copy from ->entries.
1210 */
1211 bs_dst->nr = bs_src->nr;
1212
1213 /*
1214 * Early exit when there is nothing to copy.
1215 */
1216 if (!bs_src->nr)
1217 return;
1218
1219 /*
1220 * As bs_src->entries is a circular buffer, we need to copy from it in
1221 * two steps. First, copy the branches from the most recently inserted
1222 * branch ->last_branch_pos until the end of bs_src->entries buffer.
1223 */
c7bfa2fd 1224 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
e573e978 1225 memcpy(&bs_dst->entries[0],
c7bfa2fd 1226 &bs_src->entries[tidq->last_branch_pos],
e573e978
RW
1227 sizeof(struct branch_entry) * nr);
1228
1229 /*
1230 * If we wrapped around at least once, the branches from the beginning
1231 * of the bs_src->entries buffer and until the ->last_branch_pos element
1232 * are older valid branches: copy them over. The total number of
1233 * branches copied over will be equal to the number of branches asked by
1234 * the user in last_branch_sz.
1235 */
1236 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
1237 memcpy(&bs_dst->entries[nr],
1238 &bs_src->entries[0],
c7bfa2fd 1239 sizeof(struct branch_entry) * tidq->last_branch_pos);
e573e978
RW
1240 }
1241}
1242
c7bfa2fd
MP
1243static inline
1244void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
e573e978 1245{
c7bfa2fd
MP
1246 tidq->last_branch_pos = 0;
1247 tidq->last_branch_rb->nr = 0;
e573e978
RW
1248}
1249
a7ee4d62 1250static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
af21577c
MP
1251 u8 trace_chan_id, u64 addr)
1252{
a7ee4d62 1253 u8 instrBytes[2];
6035b680 1254
d927ef50
JC
1255 cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes),
1256 instrBytes, 0);
e573e978 1257 /*
a7ee4d62
RW
1258 * T32 instruction size is indicated by bits[15:11] of the first
1259 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
1260 * denote a 32-bit instruction.
e573e978 1261 */
a7ee4d62 1262 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
e573e978
RW
1263}
1264
6035b680
LY
1265static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
1266{
49ccf87b
LY
1267 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1268 if (packet->sample_type == CS_ETM_DISCONTINUITY)
6035b680
LY
1269 return 0;
1270
1271 return packet->start_addr;
1272}
1273
a7ee4d62
RW
1274static inline
1275u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
e573e978 1276{
49ccf87b
LY
1277 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1278 if (packet->sample_type == CS_ETM_DISCONTINUITY)
a7ee4d62
RW
1279 return 0;
1280
1281 return packet->end_addr - packet->last_instr_size;
e573e978
RW
1282}
1283
a7ee4d62 1284static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
af21577c 1285 u64 trace_chan_id,
a7ee4d62 1286 const struct cs_etm_packet *packet,
e573e978
RW
1287 u64 offset)
1288{
a7ee4d62
RW
1289 if (packet->isa == CS_ETM_ISA_T32) {
1290 u64 addr = packet->start_addr;
1291
bc010dd6 1292 while (offset) {
af21577c
MP
1293 addr += cs_etm__t32_instr_size(etmq,
1294 trace_chan_id, addr);
a7ee4d62
RW
1295 offset--;
1296 }
1297 return addr;
1298 }
1299
1300 /* Assume a 4 byte instruction size (A32/A64) */
1301 return packet->start_addr + offset * 4;
e573e978
RW
1302}
1303
c7bfa2fd
MP
1304static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1305 struct cs_etm_traceid_queue *tidq)
e573e978 1306{
c7bfa2fd 1307 struct branch_stack *bs = tidq->last_branch_rb;
e573e978
RW
1308 struct branch_entry *be;
1309
1310 /*
1311 * The branches are recorded in a circular buffer in reverse
1312 * chronological order: we start recording from the last element of the
1313 * buffer down. After writing the first element of the stack, move the
1314 * insert position back to the end of the buffer.
1315 */
c7bfa2fd
MP
1316 if (!tidq->last_branch_pos)
1317 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
e573e978 1318
c7bfa2fd 1319 tidq->last_branch_pos -= 1;
e573e978 1320
c7bfa2fd
MP
1321 be = &bs->entries[tidq->last_branch_pos];
1322 be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1323 be->to = cs_etm__first_executed_instr(tidq->packet);
e573e978
RW
1324 /* No support for mispredict */
1325 be->flags.mispred = 0;
1326 be->flags.predicted = 1;
1327
1328 /*
1329 * Increment bs->nr until reaching the number of last branches asked by
1330 * the user on the command line.
1331 */
1332 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1333 bs->nr += 1;
1334}
1335
1336static int cs_etm__inject_event(union perf_event *event,
1337 struct perf_sample *sample, u64 type)
1338{
1339 event->header.size = perf_event__sample_event_size(sample, type, 0);
1340 return perf_event__synthesize_sample(event, type, 0, sample);
1341}
1342
1343
9f878b29 1344static int
23cfcd6d 1345cs_etm__get_trace(struct cs_etm_queue *etmq)
9f878b29
MP
1346{
1347 struct auxtrace_buffer *aux_buffer = etmq->buffer;
1348 struct auxtrace_buffer *old_buffer = aux_buffer;
1349 struct auxtrace_queue *queue;
1350
1351 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1352
1353 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1354
1355 /* If no more data, drop the previous auxtrace_buffer and return */
1356 if (!aux_buffer) {
1357 if (old_buffer)
1358 auxtrace_buffer__drop_data(old_buffer);
23cfcd6d 1359 etmq->buf_len = 0;
9f878b29
MP
1360 return 0;
1361 }
1362
1363 etmq->buffer = aux_buffer;
1364
1365 /* If the aux_buffer doesn't have data associated, try to load it */
1366 if (!aux_buffer->data) {
1367 /* get the file desc associated with the perf data file */
1368 int fd = perf_data__fd(etmq->etm->session->data);
1369
1370 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1371 if (!aux_buffer->data)
1372 return -ENOMEM;
1373 }
1374
1375 /* If valid, drop the previous buffer */
1376 if (old_buffer)
1377 auxtrace_buffer__drop_data(old_buffer);
1378
23cfcd6d
MP
1379 etmq->buf_used = 0;
1380 etmq->buf_len = aux_buffer->size;
1381 etmq->buf = aux_buffer->data;
9f878b29 1382
23cfcd6d 1383 return etmq->buf_len;
9f878b29
MP
1384}
1385
8d3031d3
JC
1386static void cs_etm__set_thread(struct cs_etm_queue *etmq,
1387 struct cs_etm_traceid_queue *tidq, pid_t tid,
1388 ocsd_ex_level el)
9f878b29 1389{
8d3031d3 1390 struct machine *machine = cs_etm__get_machine(etmq, el);
951ccccd
JC
1391
1392 if (tid != -1) {
1393 thread__zput(tidq->thread);
1394 tidq->thread = machine__find_thread(machine, -1, tid);
1395 }
9f878b29 1396
951ccccd
JC
1397 /* Couldn't find a known thread */
1398 if (!tidq->thread)
1399 tidq->thread = machine__idle_thread(machine);
8d3031d3
JC
1400
1401 tidq->el = el;
9f878b29
MP
1402}
1403
8d3031d3
JC
1404int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid,
1405 u8 trace_chan_id, ocsd_ex_level el)
0a6be300 1406{
0a6be300
MP
1407 struct cs_etm_traceid_queue *tidq;
1408
1409 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1410 if (!tidq)
951ccccd 1411 return -EINVAL;
0a6be300 1412
8d3031d3 1413 cs_etm__set_thread(etmq, tidq, tid, el);
0a6be300
MP
1414 return 0;
1415}
1416
675f302f
MP
1417bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1418{
1419 return !!etmq->etm->timeless_decoding;
1420}
1421
a4973d8f
LY
1422static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1423 u64 trace_chan_id,
1424 const struct cs_etm_packet *packet,
1425 struct perf_sample *sample)
1426{
1427 /*
1428 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1429 * packet, so directly bail out with 'insn_len' = 0.
1430 */
1431 if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1432 sample->insn_len = 0;
1433 return;
1434 }
1435
1436 /*
1437 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1438 * cs_etm__t32_instr_size().
1439 */
1440 if (packet->isa == CS_ETM_ISA_T32)
1441 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1442 sample->ip);
1443 /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1444 else
1445 sample->insn_len = 4;
1446
d927ef50
JC
1447 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len,
1448 (void *)sample->insn, 0);
a4973d8f
LY
1449}
1450
a7fe9a44
GG
1451u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp)
1452{
1453 struct cs_etm_auxtrace *etm = etmq->etm;
1454
1455 if (etm->has_virtual_ts)
1456 return tsc_to_perf_time(cs_timestamp, &etm->tc);
1457 else
1458 return cs_timestamp;
1459}
1460
1461static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq,
1462 struct cs_etm_traceid_queue *tidq)
1463{
1464 struct cs_etm_auxtrace *etm = etmq->etm;
1465 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue;
1466
d1efa4a0 1467 if (!etm->timeless_decoding && etm->has_virtual_ts)
a7fe9a44
GG
1468 return packet_queue->cs_timestamp;
1469 else
1470 return etm->latest_kernel_timestamp;
1471}
1472
e573e978 1473static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
c7bfa2fd 1474 struct cs_etm_traceid_queue *tidq,
e573e978
RW
1475 u64 addr, u64 period)
1476{
1477 int ret = 0;
1478 struct cs_etm_auxtrace *etm = etmq->etm;
c7bfa2fd 1479 union perf_event *event = tidq->event_buf;
e573e978
RW
1480 struct perf_sample sample = {.ip = 0,};
1481
1482 event->sample.header.type = PERF_RECORD_SAMPLE;
8d3031d3 1483 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el);
e573e978
RW
1484 event->sample.header.size = sizeof(struct perf_event_header);
1485
a7fe9a44
GG
1486 /* Set time field based on etm auxtrace config. */
1487 sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1488
e573e978 1489 sample.ip = addr;
951ccccd
JC
1490 sample.pid = thread__pid(tidq->thread);
1491 sample.tid = thread__tid(tidq->thread);
e573e978
RW
1492 sample.id = etmq->etm->instructions_id;
1493 sample.stream_id = etmq->etm->instructions_id;
1494 sample.period = period;
c7bfa2fd
MP
1495 sample.cpu = tidq->packet->cpu;
1496 sample.flags = tidq->prev_packet->flags;
d6c9c05f 1497 sample.cpumode = event->sample.header.misc;
e573e978 1498
a4973d8f
LY
1499 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1500
695378b5 1501 if (etm->synth_opts.last_branch)
c7bfa2fd 1502 sample.branch_stack = tidq->last_branch;
e573e978
RW
1503
1504 if (etm->synth_opts.inject) {
1505 ret = cs_etm__inject_event(event, &sample,
1506 etm->instructions_sample_type);
1507 if (ret)
1508 return ret;
1509 }
1510
1511 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1512
1513 if (ret)
1514 pr_err(
1515 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1516 ret);
1517
e573e978
RW
1518 return ret;
1519}
1520
b12235b1
MP
1521/*
1522 * The cs etm packet encodes an instruction range between a branch target
1523 * and the next taken branch. Generate sample accordingly.
1524 */
c7bfa2fd
MP
1525static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1526 struct cs_etm_traceid_queue *tidq)
b12235b1
MP
1527{
1528 int ret = 0;
1529 struct cs_etm_auxtrace *etm = etmq->etm;
1530 struct perf_sample sample = {.ip = 0,};
c7bfa2fd 1531 union perf_event *event = tidq->event_buf;
e573e978
RW
1532 struct dummy_branch_stack {
1533 u64 nr;
42bbabed 1534 u64 hw_idx;
e573e978
RW
1535 struct branch_entry entries;
1536 } dummy_bs;
d6c9c05f
LY
1537 u64 ip;
1538
c7bfa2fd 1539 ip = cs_etm__last_executed_instr(tidq->prev_packet);
b12235b1
MP
1540
1541 event->sample.header.type = PERF_RECORD_SAMPLE;
8d3031d3
JC
1542 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip,
1543 tidq->prev_packet_el);
b12235b1
MP
1544 event->sample.header.size = sizeof(struct perf_event_header);
1545
a7fe9a44
GG
1546 /* Set time field based on etm auxtrace config. */
1547 sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1548
d6c9c05f 1549 sample.ip = ip;
d67d8c87
JC
1550 sample.pid = thread__pid(tidq->prev_packet_thread);
1551 sample.tid = thread__tid(tidq->prev_packet_thread);
c7bfa2fd 1552 sample.addr = cs_etm__first_executed_instr(tidq->packet);
b12235b1
MP
1553 sample.id = etmq->etm->branches_id;
1554 sample.stream_id = etmq->etm->branches_id;
1555 sample.period = 1;
c7bfa2fd
MP
1556 sample.cpu = tidq->packet->cpu;
1557 sample.flags = tidq->prev_packet->flags;
d6c9c05f 1558 sample.cpumode = event->sample.header.misc;
b12235b1 1559
a4973d8f
LY
1560 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1561 &sample);
1562
e573e978
RW
1563 /*
1564 * perf report cannot handle events without a branch stack
1565 */
1566 if (etm->synth_opts.last_branch) {
1567 dummy_bs = (struct dummy_branch_stack){
1568 .nr = 1,
42bbabed 1569 .hw_idx = -1ULL,
e573e978
RW
1570 .entries = {
1571 .from = sample.ip,
1572 .to = sample.addr,
1573 },
1574 };
1575 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1576 }
1577
1578 if (etm->synth_opts.inject) {
1579 ret = cs_etm__inject_event(event, &sample,
1580 etm->branches_sample_type);
1581 if (ret)
1582 return ret;
1583 }
1584
b12235b1
MP
1585 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1586
1587 if (ret)
1588 pr_err(
1589 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1590 ret);
1591
1592 return ret;
1593}
1594
1595struct cs_etm_synth {
1596 struct perf_tool dummy_tool;
1597 struct perf_session *session;
1598};
1599
1600static int cs_etm__event_synth(struct perf_tool *tool,
1601 union perf_event *event,
1602 struct perf_sample *sample __maybe_unused,
1603 struct machine *machine __maybe_unused)
1604{
1605 struct cs_etm_synth *cs_etm_synth =
1606 container_of(tool, struct cs_etm_synth, dummy_tool);
1607
1608 return perf_session__deliver_synth_event(cs_etm_synth->session,
1609 event, NULL);
1610}
1611
1612static int cs_etm__synth_event(struct perf_session *session,
1613 struct perf_event_attr *attr, u64 id)
1614{
1615 struct cs_etm_synth cs_etm_synth;
1616
1617 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1618 cs_etm_synth.session = session;
1619
1620 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1621 &id, cs_etm__event_synth);
1622}
1623
1624static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1625 struct perf_session *session)
1626{
63503dba 1627 struct evlist *evlist = session->evlist;
32dcd021 1628 struct evsel *evsel;
b12235b1
MP
1629 struct perf_event_attr attr;
1630 bool found = false;
1631 u64 id;
1632 int err;
1633
1634 evlist__for_each_entry(evlist, evsel) {
1fc632ce 1635 if (evsel->core.attr.type == etm->pmu_type) {
b12235b1
MP
1636 found = true;
1637 break;
1638 }
1639 }
1640
1641 if (!found) {
1642 pr_debug("No selected events with CoreSight Trace data\n");
1643 return 0;
1644 }
1645
1646 memset(&attr, 0, sizeof(struct perf_event_attr));
1647 attr.size = sizeof(struct perf_event_attr);
1648 attr.type = PERF_TYPE_HARDWARE;
1fc632ce 1649 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
b12235b1
MP
1650 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1651 PERF_SAMPLE_PERIOD;
1652 if (etm->timeless_decoding)
1653 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1654 else
1655 attr.sample_type |= PERF_SAMPLE_TIME;
1656
1fc632ce
JO
1657 attr.exclude_user = evsel->core.attr.exclude_user;
1658 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1659 attr.exclude_hv = evsel->core.attr.exclude_hv;
1660 attr.exclude_host = evsel->core.attr.exclude_host;
1661 attr.exclude_guest = evsel->core.attr.exclude_guest;
1662 attr.sample_id_all = evsel->core.attr.sample_id_all;
1663 attr.read_format = evsel->core.attr.read_format;
b12235b1
MP
1664
1665 /* create new id val to be a fixed offset from evsel id */
deaf3219 1666 id = evsel->core.id[0] + 1000000000;
b12235b1
MP
1667
1668 if (!id)
1669 id = 1;
1670
1671 if (etm->synth_opts.branches) {
1672 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1673 attr.sample_period = 1;
1674 attr.sample_type |= PERF_SAMPLE_ADDR;
1675 err = cs_etm__synth_event(session, &attr, id);
1676 if (err)
1677 return err;
b12235b1
MP
1678 etm->branches_sample_type = attr.sample_type;
1679 etm->branches_id = id;
e573e978
RW
1680 id += 1;
1681 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1682 }
1683
f5f8e7e5 1684 if (etm->synth_opts.last_branch) {
e573e978 1685 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
f5f8e7e5
AG
1686 /*
1687 * We don't use the hardware index, but the sample generation
1688 * code uses the new format branch_stack with this field,
1689 * so the event attributes must indicate that it's present.
1690 */
1691 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1692 }
e573e978
RW
1693
1694 if (etm->synth_opts.instructions) {
1695 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1696 attr.sample_period = etm->synth_opts.period;
1697 etm->instructions_sample_period = attr.sample_period;
1698 err = cs_etm__synth_event(session, &attr, id);
1699 if (err)
1700 return err;
e573e978
RW
1701 etm->instructions_sample_type = attr.sample_type;
1702 etm->instructions_id = id;
1703 id += 1;
b12235b1
MP
1704 }
1705
1706 return 0;
1707}
1708
c7bfa2fd
MP
1709static int cs_etm__sample(struct cs_etm_queue *etmq,
1710 struct cs_etm_traceid_queue *tidq)
b12235b1 1711{
e573e978 1712 struct cs_etm_auxtrace *etm = etmq->etm;
b12235b1 1713 int ret;
af21577c 1714 u8 trace_chan_id = tidq->trace_chan_id;
c9f5baa1 1715 u64 instrs_prev;
b12235b1 1716
c9f5baa1
LY
1717 /* Get instructions remainder from previous packet */
1718 instrs_prev = tidq->period_instructions;
1719
1720 tidq->period_instructions += tidq->packet->instr_count;
e573e978
RW
1721
1722 /*
1723 * Record a branch when the last instruction in
1724 * PREV_PACKET is a branch.
1725 */
1726 if (etm->synth_opts.last_branch &&
c7bfa2fd
MP
1727 tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1728 tidq->prev_packet->last_instr_taken_branch)
1729 cs_etm__update_last_branch_rb(etmq, tidq);
e573e978 1730
0b31ea66 1731 if (etm->synth_opts.instructions &&
c7bfa2fd 1732 tidq->period_instructions >= etm->instructions_sample_period) {
e573e978
RW
1733 /*
1734 * Emit instruction sample periodically
1735 * TODO: allow period to be defined in cycles and clock time
1736 */
1737
e573e978 1738 /*
c9f5baa1
LY
1739 * Below diagram demonstrates the instruction samples
1740 * generation flows:
1741 *
1742 * Instrs Instrs Instrs Instrs
1743 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3)
1744 * | | | |
1745 * V V V V
1746 * --------------------------------------------------
1747 * ^ ^
1748 * | |
1749 * Period Period
1750 * instructions(Pi) instructions(Pi')
1751 *
1752 * | |
1753 * \---------------- -----------------/
1754 * V
1755 * tidq->packet->instr_count
1756 *
1757 * Instrs Sample(n...) are the synthesised samples occurring
1758 * every etm->instructions_sample_period instructions - as
1759 * defined on the perf command line. Sample(n) is being the
1760 * last sample before the current etm packet, n+1 to n+3
1761 * samples are generated from the current etm packet.
1762 *
1763 * tidq->packet->instr_count represents the number of
1764 * instructions in the current etm packet.
1765 *
2c91cd88 1766 * Period instructions (Pi) contains the number of
c9f5baa1
LY
1767 * instructions executed after the sample point(n) from the
1768 * previous etm packet. This will always be less than
1769 * etm->instructions_sample_period.
1770 *
1771 * When generate new samples, it combines with two parts
1772 * instructions, one is the tail of the old packet and another
1773 * is the head of the new coming packet, to generate
1774 * sample(n+1); sample(n+2) and sample(n+3) consume the
1775 * instructions with sample period. After sample(n+3), the rest
1776 * instructions will be used by later packet and it is assigned
1777 * to tidq->period_instructions for next round calculation.
e573e978 1778 */
e573e978 1779
c9f5baa1
LY
1780 /*
1781 * Get the initial offset into the current packet instructions;
1782 * entry conditions ensure that instrs_prev is less than
1783 * etm->instructions_sample_period.
1784 */
1785 u64 offset = etm->instructions_sample_period - instrs_prev;
1786 u64 addr;
1787
695378b5
LY
1788 /* Prepare last branches for instruction sample */
1789 if (etm->synth_opts.last_branch)
1790 cs_etm__copy_last_branch_rb(etmq, tidq);
1791
c9f5baa1
LY
1792 while (tidq->period_instructions >=
1793 etm->instructions_sample_period) {
1794 /*
1795 * Calculate the address of the sampled instruction (-1
1796 * as sample is reported as though instruction has just
1797 * been executed, but PC has not advanced to next
1798 * instruction)
1799 */
1800 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1801 tidq->packet, offset - 1);
1802 ret = cs_etm__synth_instruction_sample(
1803 etmq, tidq, addr,
1804 etm->instructions_sample_period);
1805 if (ret)
1806 return ret;
e573e978 1807
c9f5baa1
LY
1808 offset += etm->instructions_sample_period;
1809 tidq->period_instructions -=
1810 etm->instructions_sample_period;
1811 }
e573e978
RW
1812 }
1813
0b31ea66 1814 if (etm->synth_opts.branches) {
14a85b1e
LY
1815 bool generate_sample = false;
1816
1817 /* Generate sample for tracing on packet */
c7bfa2fd 1818 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
14a85b1e
LY
1819 generate_sample = true;
1820
1821 /* Generate sample for branch taken packet */
c7bfa2fd
MP
1822 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1823 tidq->prev_packet->last_instr_taken_branch)
14a85b1e
LY
1824 generate_sample = true;
1825
1826 if (generate_sample) {
c7bfa2fd 1827 ret = cs_etm__synth_branch_sample(etmq, tidq);
14a85b1e
LY
1828 if (ret)
1829 return ret;
1830 }
e573e978 1831 }
b12235b1 1832
d0175156 1833 cs_etm__packet_swap(etm, tidq);
b12235b1
MP
1834
1835 return 0;
1836}
1837
c7bfa2fd 1838static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
7100b12c
LY
1839{
1840 /*
1841 * When the exception packet is inserted, whether the last instruction
1842 * in previous range packet is taken branch or not, we need to force
1843 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures
1844 * to generate branch sample for the instruction range before the
1845 * exception is trapped to kernel or before the exception returning.
1846 *
1847 * The exception packet includes the dummy address values, so don't
1848 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
1849 * for generating instruction and branch samples.
1850 */
c7bfa2fd
MP
1851 if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1852 tidq->prev_packet->last_instr_taken_branch = true;
7100b12c
LY
1853
1854 return 0;
1855}
1856
c7bfa2fd
MP
1857static int cs_etm__flush(struct cs_etm_queue *etmq,
1858 struct cs_etm_traceid_queue *tidq)
256e751c
RW
1859{
1860 int err = 0;
d603b4e9 1861 struct cs_etm_auxtrace *etm = etmq->etm;
256e751c 1862
3eb3e07b 1863 /* Handle start tracing packet */
c7bfa2fd 1864 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
3eb3e07b
LY
1865 goto swap_packet;
1866
256e751c 1867 if (etmq->etm->synth_opts.last_branch &&
9de07369 1868 etmq->etm->synth_opts.instructions &&
c7bfa2fd 1869 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
695378b5
LY
1870 u64 addr;
1871
1872 /* Prepare last branches for instruction sample */
1873 cs_etm__copy_last_branch_rb(etmq, tidq);
1874
256e751c
RW
1875 /*
1876 * Generate a last branch event for the branches left in the
1877 * circular buffer at the end of the trace.
1878 *
1879 * Use the address of the end of the last reported execution
1880 * range
1881 */
695378b5 1882 addr = cs_etm__last_executed_instr(tidq->prev_packet);
256e751c
RW
1883
1884 err = cs_etm__synth_instruction_sample(
c7bfa2fd
MP
1885 etmq, tidq, addr,
1886 tidq->period_instructions);
6cd4ac6a
LY
1887 if (err)
1888 return err;
1889
c7bfa2fd 1890 tidq->period_instructions = 0;
256e751c 1891
3eb3e07b
LY
1892 }
1893
0b31ea66 1894 if (etm->synth_opts.branches &&
c7bfa2fd
MP
1895 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1896 err = cs_etm__synth_branch_sample(etmq, tidq);
d603b4e9
LY
1897 if (err)
1898 return err;
1899 }
1900
3eb3e07b 1901swap_packet:
d0175156 1902 cs_etm__packet_swap(etm, tidq);
256e751c 1903
f1410028
LY
1904 /* Reset last branches after flush the trace */
1905 if (etm->synth_opts.last_branch)
1906 cs_etm__reset_last_branch_rb(tidq);
1907
256e751c
RW
1908 return err;
1909}
1910
c7bfa2fd
MP
1911static int cs_etm__end_block(struct cs_etm_queue *etmq,
1912 struct cs_etm_traceid_queue *tidq)
24fff5eb
LY
1913{
1914 int err;
1915
1916 /*
1917 * It has no new packet coming and 'etmq->packet' contains the stale
1918 * packet which was set at the previous time with packets swapping;
1919 * so skip to generate branch sample to avoid stale packet.
1920 *
1921 * For this case only flush branch stack and generate a last branch
1922 * event for the branches left in the circular buffer at the end of
1923 * the trace.
1924 */
1925 if (etmq->etm->synth_opts.last_branch &&
9de07369 1926 etmq->etm->synth_opts.instructions &&
c7bfa2fd 1927 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
695378b5
LY
1928 u64 addr;
1929
1930 /* Prepare last branches for instruction sample */
1931 cs_etm__copy_last_branch_rb(etmq, tidq);
1932
24fff5eb
LY
1933 /*
1934 * Use the address of the end of the last reported execution
1935 * range.
1936 */
695378b5 1937 addr = cs_etm__last_executed_instr(tidq->prev_packet);
24fff5eb
LY
1938
1939 err = cs_etm__synth_instruction_sample(
c7bfa2fd
MP
1940 etmq, tidq, addr,
1941 tidq->period_instructions);
24fff5eb
LY
1942 if (err)
1943 return err;
1944
c7bfa2fd 1945 tidq->period_instructions = 0;
24fff5eb
LY
1946 }
1947
1948 return 0;
1949}
8224531c
MP
1950/*
1951 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1952 * if need be.
1953 * Returns: < 0 if error
1954 * = 0 if no more auxtrace_buffer to read
1955 * > 0 if the current buffer isn't empty yet
1956 */
1957static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1958{
1959 int ret;
1960
1961 if (!etmq->buf_len) {
1962 ret = cs_etm__get_trace(etmq);
1963 if (ret <= 0)
1964 return ret;
1965 /*
1966 * We cannot assume consecutive blocks in the data file
1967 * are contiguous, reset the decoder to force re-sync.
1968 */
1969 ret = cs_etm_decoder__reset(etmq->decoder);
1970 if (ret)
1971 return ret;
1972 }
1973
1974 return etmq->buf_len;
1975}
24fff5eb 1976
af21577c 1977static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
96dce7f4
LY
1978 struct cs_etm_packet *packet,
1979 u64 end_addr)
1980{
c152d4d4
MP
1981 /* Initialise to keep compiler happy */
1982 u16 instr16 = 0;
1983 u32 instr32 = 0;
96dce7f4
LY
1984 u64 addr;
1985
1986 switch (packet->isa) {
1987 case CS_ETM_ISA_T32:
1988 /*
1989 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1990 *
1991 * b'15 b'8
1992 * +-----------------+--------+
1993 * | 1 1 0 1 1 1 1 1 | imm8 |
1994 * +-----------------+--------+
1995 *
4d39c89f 1996 * According to the specification, it only defines SVC for T32
96dce7f4
LY
1997 * with 16 bits instruction and has no definition for 32bits;
1998 * so below only read 2 bytes as instruction size for T32.
1999 */
2000 addr = end_addr - 2;
d927ef50
JC
2001 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16),
2002 (u8 *)&instr16, 0);
96dce7f4
LY
2003 if ((instr16 & 0xFF00) == 0xDF00)
2004 return true;
2005
2006 break;
2007 case CS_ETM_ISA_A32:
2008 /*
2009 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
2010 *
2011 * b'31 b'28 b'27 b'24
2012 * +---------+---------+-------------------------+
2013 * | !1111 | 1 1 1 1 | imm24 |
2014 * +---------+---------+-------------------------+
2015 */
2016 addr = end_addr - 4;
d927ef50
JC
2017 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
2018 (u8 *)&instr32, 0);
96dce7f4
LY
2019 if ((instr32 & 0x0F000000) == 0x0F000000 &&
2020 (instr32 & 0xF0000000) != 0xF0000000)
2021 return true;
2022
2023 break;
2024 case CS_ETM_ISA_A64:
2025 /*
2026 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
2027 *
2028 * b'31 b'21 b'4 b'0
2029 * +-----------------------+---------+-----------+
2030 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
2031 * +-----------------------+---------+-----------+
2032 */
2033 addr = end_addr - 4;
d927ef50
JC
2034 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
2035 (u8 *)&instr32, 0);
96dce7f4
LY
2036 if ((instr32 & 0xFFE0001F) == 0xd4000001)
2037 return true;
2038
2039 break;
2040 case CS_ETM_ISA_UNKNOWN:
2041 default:
2042 break;
2043 }
2044
2045 return false;
2046}
2047
c7bfa2fd
MP
2048static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
2049 struct cs_etm_traceid_queue *tidq, u64 magic)
96dce7f4 2050{
af21577c 2051 u8 trace_chan_id = tidq->trace_chan_id;
c7bfa2fd
MP
2052 struct cs_etm_packet *packet = tidq->packet;
2053 struct cs_etm_packet *prev_packet = tidq->prev_packet;
96dce7f4
LY
2054
2055 if (magic == __perf_cs_etmv3_magic)
2056 if (packet->exception_number == CS_ETMV3_EXC_SVC)
2057 return true;
2058
2059 /*
2060 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
2061 * HVC cases; need to check if it's SVC instruction based on
2062 * packet address.
2063 */
2064 if (magic == __perf_cs_etmv4_magic) {
2065 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
af21577c 2066 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
96dce7f4
LY
2067 prev_packet->end_addr))
2068 return true;
2069 }
2070
2071 return false;
2072}
2073
c7bfa2fd
MP
2074static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
2075 u64 magic)
96dce7f4 2076{
c7bfa2fd 2077 struct cs_etm_packet *packet = tidq->packet;
96dce7f4
LY
2078
2079 if (magic == __perf_cs_etmv3_magic)
2080 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
2081 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
2082 packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
2083 packet->exception_number == CS_ETMV3_EXC_IRQ ||
2084 packet->exception_number == CS_ETMV3_EXC_FIQ)
2085 return true;
2086
2087 if (magic == __perf_cs_etmv4_magic)
2088 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
2089 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
2090 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
2091 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
2092 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
2093 packet->exception_number == CS_ETMV4_EXC_IRQ ||
2094 packet->exception_number == CS_ETMV4_EXC_FIQ)
2095 return true;
2096
2097 return false;
2098}
2099
c7bfa2fd
MP
2100static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
2101 struct cs_etm_traceid_queue *tidq,
2102 u64 magic)
96dce7f4 2103{
af21577c 2104 u8 trace_chan_id = tidq->trace_chan_id;
c7bfa2fd
MP
2105 struct cs_etm_packet *packet = tidq->packet;
2106 struct cs_etm_packet *prev_packet = tidq->prev_packet;
96dce7f4
LY
2107
2108 if (magic == __perf_cs_etmv3_magic)
2109 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
2110 packet->exception_number == CS_ETMV3_EXC_HYP ||
2111 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
2112 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
2113 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
2114 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
2115 packet->exception_number == CS_ETMV3_EXC_GENERIC)
2116 return true;
2117
2118 if (magic == __perf_cs_etmv4_magic) {
2119 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
2120 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
2121 packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
2122 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
2123 return true;
2124
2125 /*
2126 * For CS_ETMV4_EXC_CALL, except SVC other instructions
2127 * (SMC, HVC) are taken as sync exceptions.
2128 */
2129 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
af21577c 2130 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
96dce7f4
LY
2131 prev_packet->end_addr))
2132 return true;
2133
2134 /*
2135 * ETMv4 has 5 bits for exception number; if the numbers
2136 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
2137 * they are implementation defined exceptions.
2138 *
2139 * For this case, simply take it as sync exception.
2140 */
2141 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
2142 packet->exception_number <= CS_ETMV4_EXC_END)
2143 return true;
2144 }
2145
2146 return false;
2147}
2148
c7bfa2fd
MP
2149static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
2150 struct cs_etm_traceid_queue *tidq)
06220bf4 2151{
c7bfa2fd
MP
2152 struct cs_etm_packet *packet = tidq->packet;
2153 struct cs_etm_packet *prev_packet = tidq->prev_packet;
af21577c 2154 u8 trace_chan_id = tidq->trace_chan_id;
96dce7f4
LY
2155 u64 magic;
2156 int ret;
06220bf4
LY
2157
2158 switch (packet->sample_type) {
2159 case CS_ETM_RANGE:
2160 /*
2161 * Immediate branch instruction without neither link nor
2162 * return flag, it's normal branch instruction within
2163 * the function.
2164 */
2165 if (packet->last_instr_type == OCSD_INSTR_BR &&
2166 packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
2167 packet->flags = PERF_IP_FLAG_BRANCH;
2168
2169 if (packet->last_instr_cond)
2170 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
2171 }
2172
2173 /*
2174 * Immediate branch instruction with link (e.g. BL), this is
2175 * branch instruction for function call.
2176 */
2177 if (packet->last_instr_type == OCSD_INSTR_BR &&
2178 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2179 packet->flags = PERF_IP_FLAG_BRANCH |
2180 PERF_IP_FLAG_CALL;
2181
2182 /*
2183 * Indirect branch instruction with link (e.g. BLR), this is
2184 * branch instruction for function call.
2185 */
2186 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2187 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2188 packet->flags = PERF_IP_FLAG_BRANCH |
2189 PERF_IP_FLAG_CALL;
2190
2191 /*
2192 * Indirect branch instruction with subtype of
2193 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
2194 * function return for A32/T32.
2195 */
2196 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2197 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
2198 packet->flags = PERF_IP_FLAG_BRANCH |
2199 PERF_IP_FLAG_RETURN;
2200
2201 /*
2202 * Indirect branch instruction without link (e.g. BR), usually
2203 * this is used for function return, especially for functions
2204 * within dynamic link lib.
2205 */
2206 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2207 packet->last_instr_subtype == OCSD_S_INSTR_NONE)
2208 packet->flags = PERF_IP_FLAG_BRANCH |
2209 PERF_IP_FLAG_RETURN;
2210
2211 /* Return instruction for function return. */
2212 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2213 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
2214 packet->flags = PERF_IP_FLAG_BRANCH |
2215 PERF_IP_FLAG_RETURN;
465eaaa8
LY
2216
2217 /*
2218 * Decoder might insert a discontinuity in the middle of
2219 * instruction packets, fixup prev_packet with flag
2220 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
2221 */
2222 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
2223 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2224 PERF_IP_FLAG_TRACE_BEGIN;
173e65f6
LY
2225
2226 /*
2227 * If the previous packet is an exception return packet
4d39c89f 2228 * and the return address just follows SVC instruction,
173e65f6
LY
2229 * it needs to calibrate the previous packet sample flags
2230 * as PERF_IP_FLAG_SYSCALLRET.
2231 */
2232 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
2233 PERF_IP_FLAG_RETURN |
2234 PERF_IP_FLAG_INTERRUPT) &&
af21577c
MP
2235 cs_etm__is_svc_instr(etmq, trace_chan_id,
2236 packet, packet->start_addr))
173e65f6
LY
2237 prev_packet->flags = PERF_IP_FLAG_BRANCH |
2238 PERF_IP_FLAG_RETURN |
2239 PERF_IP_FLAG_SYSCALLRET;
06220bf4
LY
2240 break;
2241 case CS_ETM_DISCONTINUITY:
465eaaa8
LY
2242 /*
2243 * The trace is discontinuous, if the previous packet is
2244 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
2245 * for previous packet.
2246 */
2247 if (prev_packet->sample_type == CS_ETM_RANGE)
2248 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2249 PERF_IP_FLAG_TRACE_END;
2250 break;
06220bf4 2251 case CS_ETM_EXCEPTION:
96dce7f4
LY
2252 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
2253 if (ret)
2254 return ret;
2255
2256 /* The exception is for system call. */
c7bfa2fd 2257 if (cs_etm__is_syscall(etmq, tidq, magic))
96dce7f4
LY
2258 packet->flags = PERF_IP_FLAG_BRANCH |
2259 PERF_IP_FLAG_CALL |
2260 PERF_IP_FLAG_SYSCALLRET;
2261 /*
2262 * The exceptions are triggered by external signals from bus,
2263 * interrupt controller, debug module, PE reset or halt.
2264 */
c7bfa2fd 2265 else if (cs_etm__is_async_exception(tidq, magic))
96dce7f4
LY
2266 packet->flags = PERF_IP_FLAG_BRANCH |
2267 PERF_IP_FLAG_CALL |
2268 PERF_IP_FLAG_ASYNC |
2269 PERF_IP_FLAG_INTERRUPT;
2270 /*
2271 * Otherwise, exception is caused by trap, instruction &
2272 * data fault, or alignment errors.
2273 */
c7bfa2fd 2274 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
96dce7f4
LY
2275 packet->flags = PERF_IP_FLAG_BRANCH |
2276 PERF_IP_FLAG_CALL |
2277 PERF_IP_FLAG_INTERRUPT;
2278
2279 /*
2280 * When the exception packet is inserted, since exception
2281 * packet is not used standalone for generating samples
2282 * and it's affiliation to the previous instruction range
2283 * packet; so set previous range packet flags to tell perf
2284 * it is an exception taken branch.
2285 */
2286 if (prev_packet->sample_type == CS_ETM_RANGE)
2287 prev_packet->flags = packet->flags;
2288 break;
06220bf4 2289 case CS_ETM_EXCEPTION_RET:
173e65f6
LY
2290 /*
2291 * When the exception return packet is inserted, since
2292 * exception return packet is not used standalone for
2293 * generating samples and it's affiliation to the previous
2294 * instruction range packet; so set previous range packet
2295 * flags to tell perf it is an exception return branch.
2296 *
2297 * The exception return can be for either system call or
2298 * other exception types; unfortunately the packet doesn't
2299 * contain exception type related info so we cannot decide
2300 * the exception type purely based on exception return packet.
2301 * If we record the exception number from exception packet and
4d39c89f 2302 * reuse it for exception return packet, this is not reliable
173e65f6
LY
2303 * due the trace can be discontinuity or the interrupt can
2304 * be nested, thus the recorded exception number cannot be
2305 * used for exception return packet for these two cases.
2306 *
2307 * For exception return packet, we only need to distinguish the
2308 * packet is for system call or for other types. Thus the
2309 * decision can be deferred when receive the next packet which
2310 * contains the return address, based on the return address we
2311 * can read out the previous instruction and check if it's a
2312 * system call instruction and then calibrate the sample flag
2313 * as needed.
2314 */
2315 if (prev_packet->sample_type == CS_ETM_RANGE)
2316 prev_packet->flags = PERF_IP_FLAG_BRANCH |
2317 PERF_IP_FLAG_RETURN |
2318 PERF_IP_FLAG_INTERRUPT;
2319 break;
06220bf4
LY
2320 case CS_ETM_EMPTY:
2321 default:
2322 break;
2323 }
2324
2325 return 0;
2326}
2327
f74f349c
MP
2328static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2329{
2330 int ret = 0;
2331 size_t processed = 0;
2332
2333 /*
2334 * Packets are decoded and added to the decoder's packet queue
2335 * until the decoder packet processing callback has requested that
2336 * processing stops or there is nothing left in the buffer. Normal
2337 * operations that stop processing are a timestamp packet or a full
2338 * decoder buffer queue.
2339 */
2340 ret = cs_etm_decoder__process_data_block(etmq->decoder,
2341 etmq->offset,
2342 &etmq->buf[etmq->buf_used],
2343 etmq->buf_len,
2344 &processed);
2345 if (ret)
2346 goto out;
2347
2348 etmq->offset += processed;
2349 etmq->buf_used += processed;
2350 etmq->buf_len -= processed;
2351
2352out:
2353 return ret;
2354}
2355
c7bfa2fd
MP
2356static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2357 struct cs_etm_traceid_queue *tidq)
3fa0e83e
MP
2358{
2359 int ret;
5f7cb035
MP
2360 struct cs_etm_packet_queue *packet_queue;
2361
c7bfa2fd 2362 packet_queue = &tidq->packet_queue;
3fa0e83e 2363
882f4874
MP
2364 /* Process each packet in this chunk */
2365 while (1) {
2366 ret = cs_etm_decoder__get_packet(packet_queue,
c7bfa2fd 2367 tidq->packet);
882f4874
MP
2368 if (ret <= 0)
2369 /*
2370 * Stop processing this chunk on
2371 * end of data or error
2372 */
2373 break;
3fa0e83e 2374
882f4874
MP
2375 /*
2376 * Since packet addresses are swapped in packet
2377 * handling within below switch() statements,
2378 * thus setting sample flags must be called
2379 * prior to switch() statement to use address
2380 * information before packets swapping.
2381 */
c7bfa2fd 2382 ret = cs_etm__set_sample_flags(etmq, tidq);
882f4874
MP
2383 if (ret < 0)
2384 break;
2385
c7bfa2fd 2386 switch (tidq->packet->sample_type) {
882f4874
MP
2387 case CS_ETM_RANGE:
2388 /*
2389 * If the packet contains an instruction
2390 * range, generate instruction sequence
2391 * events.
2392 */
c7bfa2fd 2393 cs_etm__sample(etmq, tidq);
882f4874
MP
2394 break;
2395 case CS_ETM_EXCEPTION:
2396 case CS_ETM_EXCEPTION_RET:
3fa0e83e 2397 /*
882f4874
MP
2398 * If the exception packet is coming,
2399 * make sure the previous instruction
2400 * range packet to be handled properly.
3fa0e83e 2401 */
c7bfa2fd 2402 cs_etm__exception(tidq);
882f4874
MP
2403 break;
2404 case CS_ETM_DISCONTINUITY:
2405 /*
2406 * Discontinuity in trace, flush
2407 * previous branch stack
2408 */
c7bfa2fd 2409 cs_etm__flush(etmq, tidq);
882f4874
MP
2410 break;
2411 case CS_ETM_EMPTY:
2412 /*
2413 * Should not receive empty packet,
2414 * report error.
2415 */
2416 pr_err("CS ETM Trace: empty packet\n");
2417 return -EINVAL;
2418 default:
2419 break;
3fa0e83e 2420 }
882f4874 2421 }
3fa0e83e
MP
2422
2423 return ret;
2424}
2425
21fe8dc1
MP
2426static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2427{
2428 int idx;
2429 struct int_node *inode;
2430 struct cs_etm_traceid_queue *tidq;
2431 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2432
2433 intlist__for_each_entry(inode, traceid_queues_list) {
2434 idx = (int)(intptr_t)inode->priv;
2435 tidq = etmq->traceid_queues[idx];
2436
2437 /* Ignore return value */
2438 cs_etm__process_traceid_queue(etmq, tidq);
2439
2440 /*
2441 * Generate an instruction sample with the remaining
2442 * branchstack entries.
2443 */
2444 cs_etm__flush(etmq, tidq);
2445 }
2446}
2447
d1efa4a0 2448static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq)
9f878b29 2449{
9f878b29 2450 int err = 0;
c7bfa2fd
MP
2451 struct cs_etm_traceid_queue *tidq;
2452
2453 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2454 if (!tidq)
2455 return -EINVAL;
9f878b29 2456
9f878b29 2457 /* Go through each buffer in the queue and decode them one by one */
e573e978 2458 while (1) {
8224531c
MP
2459 err = cs_etm__get_data_block(etmq);
2460 if (err <= 0)
2461 return err;
9f878b29 2462
e573e978
RW
2463 /* Run trace decoder until buffer consumed or end of trace */
2464 do {
f74f349c 2465 err = cs_etm__decode_data_block(etmq);
e573e978
RW
2466 if (err)
2467 return err;
2468
3fa0e83e
MP
2469 /*
2470 * Process each packet in this chunk, nothing to do if
2471 * an error occurs other than hoping the next one will
2472 * be better.
2473 */
c7bfa2fd 2474 err = cs_etm__process_traceid_queue(etmq, tidq);
e573e978 2475
23cfcd6d 2476 } while (etmq->buf_len);
b12235b1 2477
256e751c
RW
2478 if (err == 0)
2479 /* Flush any remaining branch stack entries */
c7bfa2fd 2480 err = cs_etm__end_block(etmq, tidq);
e573e978 2481 }
9f878b29
MP
2482
2483 return err;
2484}
2485
d1efa4a0
JC
2486static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq)
2487{
2488 int idx, err = 0;
2489 struct cs_etm_traceid_queue *tidq;
2490 struct int_node *inode;
2491
2492 /* Go through each buffer in the queue and decode them one by one */
2493 while (1) {
2494 err = cs_etm__get_data_block(etmq);
2495 if (err <= 0)
2496 return err;
2497
2498 /* Run trace decoder until buffer consumed or end of trace */
2499 do {
2500 err = cs_etm__decode_data_block(etmq);
2501 if (err)
2502 return err;
2503
2504 /*
2505 * cs_etm__run_per_thread_timeless_decoder() runs on a
2506 * single traceID queue because each TID has a separate
2507 * buffer. But here in per-cpu mode we need to iterate
2508 * over each channel instead.
2509 */
2510 intlist__for_each_entry(inode,
2511 etmq->traceid_queues_list) {
2512 idx = (int)(intptr_t)inode->priv;
2513 tidq = etmq->traceid_queues[idx];
2514 cs_etm__process_traceid_queue(etmq, tidq);
2515 }
2516 } while (etmq->buf_len);
2517
2518 intlist__for_each_entry(inode, etmq->traceid_queues_list) {
2519 idx = (int)(intptr_t)inode->priv;
2520 tidq = etmq->traceid_queues[idx];
2521 /* Flush any remaining branch stack entries */
2522 err = cs_etm__end_block(etmq, tidq);
2523 if (err)
2524 return err;
2525 }
2526 }
2527
2528 return err;
2529}
2530
9f878b29 2531static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
fc7ac413 2532 pid_t tid)
9f878b29
MP
2533{
2534 unsigned int i;
2535 struct auxtrace_queues *queues = &etm->queues;
2536
2537 for (i = 0; i < queues->nr_queues; i++) {
2538 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2539 struct cs_etm_queue *etmq = queue->priv;
0abb868b
MP
2540 struct cs_etm_traceid_queue *tidq;
2541
2542 if (!etmq)
2543 continue;
2544
d1efa4a0
JC
2545 if (etm->per_thread_decoding) {
2546 tidq = cs_etm__etmq_get_traceid_queue(
2547 etmq, CS_ETM_PER_THREAD_TRACEID);
0abb868b 2548
d1efa4a0
JC
2549 if (!tidq)
2550 continue;
9f878b29 2551
951ccccd 2552 if (tid == -1 || thread__tid(tidq->thread) == tid)
d1efa4a0 2553 cs_etm__run_per_thread_timeless_decoder(etmq);
d1efa4a0
JC
2554 } else
2555 cs_etm__run_per_cpu_timeless_decoder(etmq);
9f878b29
MP
2556 }
2557
2558 return 0;
2559}
2560
d1efa4a0 2561static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm)
21fe8dc1
MP
2562{
2563 int ret = 0;
9ac8afd5 2564 unsigned int cs_queue_nr, queue_nr, i;
21fe8dc1 2565 u8 trace_chan_id;
aadd6ba4 2566 u64 cs_timestamp;
21fe8dc1
MP
2567 struct auxtrace_queue *queue;
2568 struct cs_etm_queue *etmq;
2569 struct cs_etm_traceid_queue *tidq;
2570
9ac8afd5
JC
2571 /*
2572 * Pre-populate the heap with one entry from each queue so that we can
2573 * start processing in time order across all queues.
2574 */
2575 for (i = 0; i < etm->queues.nr_queues; i++) {
2576 etmq = etm->queues.queue_array[i].priv;
2577 if (!etmq)
2578 continue;
2579
2580 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2581 if (ret)
2582 return ret;
2583 }
2584
21fe8dc1
MP
2585 while (1) {
2586 if (!etm->heap.heap_cnt)
2587 goto out;
2588
2589 /* Take the entry at the top of the min heap */
2590 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2591 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2592 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2593 queue = &etm->queues.queue_array[queue_nr];
2594 etmq = queue->priv;
2595
2596 /*
2597 * Remove the top entry from the heap since we are about
2598 * to process it.
2599 */
2600 auxtrace_heap__pop(&etm->heap);
2601
2602 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2603 if (!tidq) {
2604 /*
2605 * No traceID queue has been allocated for this traceID,
2606 * which means something somewhere went very wrong. No
2607 * other choice than simply exit.
2608 */
2609 ret = -EINVAL;
2610 goto out;
2611 }
2612
2613 /*
2614 * Packets associated with this timestamp are already in
2615 * the etmq's traceID queue, so process them.
2616 */
2617 ret = cs_etm__process_traceid_queue(etmq, tidq);
2618 if (ret < 0)
2619 goto out;
2620
2621 /*
2622 * Packets for this timestamp have been processed, time to
2623 * move on to the next timestamp, fetching a new auxtrace_buffer
2624 * if need be.
2625 */
2626refetch:
2627 ret = cs_etm__get_data_block(etmq);
2628 if (ret < 0)
2629 goto out;
2630
2631 /*
2632 * No more auxtrace_buffers to process in this etmq, simply
2633 * move on to another entry in the auxtrace_heap.
2634 */
2635 if (!ret)
2636 continue;
2637
2638 ret = cs_etm__decode_data_block(etmq);
2639 if (ret)
2640 goto out;
2641
aadd6ba4 2642 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
21fe8dc1 2643
aadd6ba4 2644 if (!cs_timestamp) {
21fe8dc1
MP
2645 /*
2646 * Function cs_etm__decode_data_block() returns when
2647 * there is no more traces to decode in the current
2648 * auxtrace_buffer OR when a timestamp has been
2649 * encountered on any of the traceID queues. Since we
2650 * did not get a timestamp, there is no more traces to
2651 * process in this auxtrace_buffer. As such empty and
2652 * flush all traceID queues.
2653 */
2654 cs_etm__clear_all_traceid_queues(etmq);
2655
2656 /* Fetch another auxtrace_buffer for this etmq */
2657 goto refetch;
2658 }
2659
2660 /*
2661 * Add to the min heap the timestamp for packets that have
2662 * just been decoded. They will be processed and synthesized
2663 * during the next call to cs_etm__process_traceid_queue() for
2664 * this queue/traceID.
2665 */
2666 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
aadd6ba4 2667 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
21fe8dc1
MP
2668 }
2669
2670out:
2671 return ret;
2672}
2673
a465f3c3
MP
2674static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2675 union perf_event *event)
2676{
2677 struct thread *th;
2678
2679 if (etm->timeless_decoding)
2680 return 0;
2681
2682 /*
951ccccd
JC
2683 * Add the tid/pid to the log so that we can get a match when we get a
2684 * contextID from the decoder. Only track for the host: only kernel
2685 * trace is supported for guests which wouldn't need pids so this should
2686 * be fine.
a465f3c3 2687 */
951ccccd 2688 th = machine__findnew_thread(&etm->session->machines.host,
a465f3c3
MP
2689 event->itrace_start.pid,
2690 event->itrace_start.tid);
2691 if (!th)
2692 return -ENOMEM;
2693
2694 thread__put(th);
2695
2696 return 0;
2697}
2698
e0d170fa
MP
2699static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2700 union perf_event *event)
2701{
2702 struct thread *th;
2703 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2704
2705 /*
2706 * Context switch in per-thread mode are irrelevant since perf
2707 * will start/stop tracing as the process is scheduled.
2708 */
2709 if (etm->timeless_decoding)
2710 return 0;
2711
2712 /*
2713 * SWITCH_IN events carry the next process to be switched out while
2714 * SWITCH_OUT events carry the process to be switched in. As such
2715 * we don't care about IN events.
2716 */
2717 if (!out)
2718 return 0;
2719
2720 /*
951ccccd
JC
2721 * Add the tid/pid to the log so that we can get a match when we get a
2722 * contextID from the decoder. Only track for the host: only kernel
2723 * trace is supported for guests which wouldn't need pids so this should
2724 * be fine.
e0d170fa 2725 */
951ccccd 2726 th = machine__findnew_thread(&etm->session->machines.host,
e0d170fa
MP
2727 event->context_switch.next_prev_pid,
2728 event->context_switch.next_prev_tid);
2729 if (!th)
2730 return -ENOMEM;
2731
2732 thread__put(th);
2733
2734 return 0;
2735}
2736
440a23b3
MP
2737static int cs_etm__process_event(struct perf_session *session,
2738 union perf_event *event,
2739 struct perf_sample *sample,
2740 struct perf_tool *tool)
2741{
20d9c478
MP
2742 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2743 struct cs_etm_auxtrace,
2744 auxtrace);
2745
20d9c478
MP
2746 if (dump_trace)
2747 return 0;
2748
2749 if (!tool->ordered_events) {
2750 pr_err("CoreSight ETM Trace requires ordered events\n");
2751 return -EINVAL;
2752 }
2753
d1efa4a0
JC
2754 switch (event->header.type) {
2755 case PERF_RECORD_EXIT:
2756 /*
2757 * Don't need to wait for cs_etm__flush_events() in per-thread mode to
2758 * start the decode because we know there will be no more trace from
2759 * this thread. All this does is emit samples earlier than waiting for
2760 * the flush in other modes, but with timestamps it makes sense to wait
2761 * for flush so that events from different threads are interleaved
2762 * properly.
2763 */
2764 if (etm->per_thread_decoding && etm->timeless_decoding)
2765 return cs_etm__process_timeless_queues(etm,
2766 event->fork.tid);
2767 break;
9f878b29 2768
d1efa4a0 2769 case PERF_RECORD_ITRACE_START:
a465f3c3 2770 return cs_etm__process_itrace_start(etm, event);
d1efa4a0
JC
2771
2772 case PERF_RECORD_SWITCH_CPU_WIDE:
e0d170fa 2773 return cs_etm__process_switch_cpu_wide(etm, event);
a465f3c3 2774
d1efa4a0 2775 case PERF_RECORD_AUX:
1ac9e0b5
JC
2776 /*
2777 * Record the latest kernel timestamp available in the header
2778 * for samples so that synthesised samples occur from this point
2779 * onwards.
2780 */
d1efa4a0
JC
2781 if (sample->time && (sample->time != (u64)-1))
2782 etm->latest_kernel_timestamp = sample->time;
2783 break;
2784
2785 default:
2786 break;
1ac9e0b5 2787 }
21fe8dc1 2788
440a23b3
MP
2789 return 0;
2790}
2791
48e8a7b5
JC
2792static void dump_queued_data(struct cs_etm_auxtrace *etm,
2793 struct perf_record_auxtrace *event)
2794{
2795 struct auxtrace_buffer *buf;
2796 unsigned int i;
2797 /*
2798 * Find all buffers with same reference in the queues and dump them.
2799 * This is because the queues can contain multiple entries of the same
2800 * buffer that were split on aux records.
2801 */
2802 for (i = 0; i < etm->queues.nr_queues; ++i)
2803 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2804 if (buf->reference == event->reference)
04aaad26 2805 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
48e8a7b5
JC
2806}
2807
440a23b3
MP
2808static int cs_etm__process_auxtrace_event(struct perf_session *session,
2809 union perf_event *event,
68ffe390 2810 struct perf_tool *tool __maybe_unused)
440a23b3 2811{
68ffe390
MP
2812 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2813 struct cs_etm_auxtrace,
2814 auxtrace);
2815 if (!etm->data_queued) {
2816 struct auxtrace_buffer *buffer;
2817 off_t data_offset;
2818 int fd = perf_data__fd(session->data);
2819 bool is_pipe = perf_data__is_pipe(session->data);
2820 int err;
ca50db59 2821 int idx = event->auxtrace.idx;
68ffe390
MP
2822
2823 if (is_pipe)
2824 data_offset = 0;
2825 else {
2826 data_offset = lseek(fd, 0, SEEK_CUR);
2827 if (data_offset == -1)
2828 return -errno;
2829 }
2830
2831 err = auxtrace_queues__add_event(&etm->queues, session,
2832 event, data_offset, &buffer);
2833 if (err)
2834 return err;
2835
9182f04a
JC
2836 /*
2837 * Knowing if the trace is formatted or not requires a lookup of
2838 * the aux record so only works in non-piped mode where data is
2839 * queued in cs_etm__queue_aux_records(). Always assume
2840 * formatted in piped mode (true).
2841 */
ca50db59 2842 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
a16afcc5 2843 idx, true, -1);
ca50db59
JC
2844 if (err)
2845 return err;
2846
68ffe390
MP
2847 if (dump_trace)
2848 if (auxtrace_buffer__get_data(buffer, fd)) {
04aaad26 2849 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
68ffe390
MP
2850 auxtrace_buffer__put_data(buffer);
2851 }
48e8a7b5
JC
2852 } else if (dump_trace)
2853 dump_queued_data(etm, &event->auxtrace);
68ffe390 2854
440a23b3
MP
2855 return 0;
2856}
2857
449067f3 2858static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm)
440a23b3 2859{
32dcd021 2860 struct evsel *evsel;
63503dba 2861 struct evlist *evlist = etm->session->evlist;
440a23b3 2862
c36c1ef6 2863 /* Override timeless mode with user input from --itrace=Z */
449067f3
JC
2864 if (etm->synth_opts.timeless_decoding) {
2865 etm->timeless_decoding = true;
2866 return 0;
2867 }
c36c1ef6 2868
440a23b3 2869 /*
449067f3 2870 * Find the cs_etm evsel and look at what its timestamp setting was
440a23b3 2871 */
449067f3
JC
2872 evlist__for_each_entry(evlist, evsel)
2873 if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) {
2874 etm->timeless_decoding =
2875 !(evsel->core.attr.config & BIT(ETM_OPT_TS));
2876 return 0;
2877 }
440a23b3 2878
449067f3
JC
2879 pr_err("CS ETM: Couldn't find ETM evsel\n");
2880 return -EINVAL;
440a23b3
MP
2881}
2882
42b2b570
ML
2883/*
2884 * Read a single cpu parameter block from the auxtrace_info priv block.
2885 *
2886 * For version 1 there is a per cpu nr_params entry. If we are handling
2887 * version 1 file, then there may be less, the same, or more params
2888 * indicated by this value than the compile time number we understand.
2889 *
2890 * For a version 0 info block, there are a fixed number, and we need to
2891 * fill out the nr_param value in the metadata we create.
2892 */
2893static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2894 int out_blk_size, int nr_params_v0)
2895{
2896 u64 *metadata = NULL;
2897 int hdr_version;
2898 int nr_in_params, nr_out_params, nr_cmn_params;
2899 int i, k;
2900
2901 metadata = zalloc(sizeof(*metadata) * out_blk_size);
2902 if (!metadata)
2903 return NULL;
2904
2905 /* read block current index & version */
2906 i = *buff_in_offset;
2907 hdr_version = buff_in[CS_HEADER_VERSION];
2908
2909 if (!hdr_version) {
2910 /* read version 0 info block into a version 1 metadata block */
2911 nr_in_params = nr_params_v0;
2912 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2913 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2914 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2915 /* remaining block params at offset +1 from source */
2916 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2917 metadata[k + 1] = buff_in[i + k];
2918 /* version 0 has 2 common params */
2919 nr_cmn_params = 2;
2920 } else {
2921 /* read version 1 info block - input and output nr_params may differ */
2922 /* version 1 has 3 common params */
2923 nr_cmn_params = 3;
2924 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2925
2926 /* if input has more params than output - skip excess */
2927 nr_out_params = nr_in_params + nr_cmn_params;
2928 if (nr_out_params > out_blk_size)
2929 nr_out_params = out_blk_size;
2930
2931 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2932 metadata[k] = buff_in[i + k];
2933
2934 /* record the actual nr params we copied */
2935 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2936 }
2937
2938 /* adjust in offset by number of in params used */
2939 i += nr_in_params + nr_cmn_params;
2940 *buff_in_offset = i;
2941 return metadata;
2942}
2943
83d1fc92
JC
2944/**
2945 * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2946 * on the bounds of aux_event, if it matches with the buffer that's at
2947 * file_offset.
2948 *
2949 * Normally, whole auxtrace buffers would be added to the queue. But we
2950 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2951 * is reset across each buffer, so splitting the buffers up in advance has
2952 * the same effect.
2953 */
2954static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2955 struct perf_record_aux *aux_event, struct perf_sample *sample)
2956{
2957 int err;
2958 char buf[PERF_SAMPLE_MAX_SIZE];
2959 union perf_event *auxtrace_event_union;
2960 struct perf_record_auxtrace *auxtrace_event;
2961 union perf_event auxtrace_fragment;
2962 __u64 aux_offset, aux_size;
ca50db59 2963 __u32 idx;
9182f04a 2964 bool formatted;
83d1fc92
JC
2965
2966 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2967 struct cs_etm_auxtrace,
2968 auxtrace);
2969
2970 /*
2971 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2972 * from looping through the auxtrace index.
2973 */
2974 err = perf_session__peek_event(session, file_offset, buf,
2975 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2976 if (err)
2977 return err;
2978 auxtrace_event = &auxtrace_event_union->auxtrace;
2979 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2980 return -EINVAL;
2981
2982 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2983 auxtrace_event->header.size != sz) {
2984 return -EINVAL;
2985 }
2986
2987 /*
b6521ea2
ML
2988 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See
2989 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a
2990 * CPU as we set this always for the AUX_OUTPUT_HW_ID event.
2991 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1.
2992 * Return 'not found' if mismatch.
83d1fc92 2993 */
b6521ea2 2994 if (auxtrace_event->cpu == (__u32) -1) {
d1efa4a0 2995 etm->per_thread_decoding = true;
b6521ea2
ML
2996 if (auxtrace_event->tid != sample->tid)
2997 return 1;
d1efa4a0
JC
2998 } else if (auxtrace_event->cpu != sample->cpu) {
2999 if (etm->per_thread_decoding) {
3000 /*
3001 * Found a per-cpu buffer after a per-thread one was
3002 * already found
3003 */
3004 pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n");
3005 return -EINVAL;
3006 }
83d1fc92 3007 return 1;
d1efa4a0 3008 }
83d1fc92
JC
3009
3010 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
3011 /*
3012 * Clamp size in snapshot mode. The buffer size is clamped in
3013 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
3014 * the buffer size.
3015 */
3016 aux_size = min(aux_event->aux_size, auxtrace_event->size);
3017
3018 /*
3019 * In this mode, the head also points to the end of the buffer so aux_offset
3020 * needs to have the size subtracted so it points to the beginning as in normal mode
3021 */
3022 aux_offset = aux_event->aux_offset - aux_size;
3023 } else {
3024 aux_size = aux_event->aux_size;
3025 aux_offset = aux_event->aux_offset;
3026 }
3027
3028 if (aux_offset >= auxtrace_event->offset &&
3029 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
3030 /*
3031 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
3032 * based on the sizes of the aux event, and queue that fragment.
3033 */
3034 auxtrace_fragment.auxtrace = *auxtrace_event;
3035 auxtrace_fragment.auxtrace.size = aux_size;
3036 auxtrace_fragment.auxtrace.offset = aux_offset;
3037 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
3038
3039 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
3040 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
ca50db59
JC
3041 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
3042 file_offset, NULL);
3043 if (err)
3044 return err;
3045
3046 idx = auxtrace_event->idx;
9182f04a
JC
3047 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
3048 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
a16afcc5 3049 idx, formatted, sample->cpu);
83d1fc92
JC
3050 }
3051
3052 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
3053 return 1;
3054}
3055
b6521ea2
ML
3056static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event,
3057 u64 offset __maybe_unused, void *data __maybe_unused)
3058{
3059 /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */
3060 if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) {
3061 (*(int *)data)++; /* increment found count */
3062 return cs_etm__process_aux_output_hw_id(session, event);
3063 }
3064 return 0;
3065}
3066
83d1fc92
JC
3067static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
3068 u64 offset __maybe_unused, void *data __maybe_unused)
3069{
3070 struct perf_sample sample;
3071 int ret;
3072 struct auxtrace_index_entry *ent;
3073 struct auxtrace_index *auxtrace_index;
3074 struct evsel *evsel;
3075 size_t i;
3076
3077 /* Don't care about any other events, we're only queuing buffers for AUX events */
3078 if (event->header.type != PERF_RECORD_AUX)
3079 return 0;
3080
3081 if (event->header.size < sizeof(struct perf_record_aux))
3082 return -EINVAL;
3083
3084 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
3085 if (!event->aux.aux_size)
3086 return 0;
3087
3088 /*
3089 * Parse the sample, we need the sample_id_all data that comes after the event so that the
3090 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
3091 */
3092 evsel = evlist__event2evsel(session->evlist, event);
3093 if (!evsel)
3094 return -EINVAL;
3095 ret = evsel__parse_sample(evsel, event, &sample);
3096 if (ret)
3097 return ret;
3098
3099 /*
3100 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
3101 */
3102 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
3103 for (i = 0; i < auxtrace_index->nr; i++) {
3104 ent = &auxtrace_index->entries[i];
3105 ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
3106 ent->sz, &event->aux, &sample);
3107 /*
3108 * Stop search on error or successful values. Continue search on
3109 * 1 ('not found')
3110 */
3111 if (ret != 1)
3112 return ret;
3113 }
3114 }
3115
3116 /*
3117 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
3118 * don't exit with an error because it will still be possible to decode other aux records.
3119 */
3120 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
3121 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
3122 return 0;
3123}
3124
3125static int cs_etm__queue_aux_records(struct perf_session *session)
3126{
3127 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
3128 struct auxtrace_index, list);
3129 if (index && index->nr > 0)
3130 return perf_session__peek_events(session, session->header.data_offset,
3131 session->header.data_size,
3132 cs_etm__queue_aux_records_cb, NULL);
3133
3134 /*
3135 * We would get here if there are no entries in the index (either no auxtrace
3136 * buffers or no index at all). Fail silently as there is the possibility of
3137 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
3138 * false.
3139 *
3140 * In that scenario, buffers will not be split by AUX records.
3141 */
3142 return 0;
3143}
3144
a7fe9a44
GG
3145#define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \
3146 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1))
3147
3148/*
3149 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual
3150 * timestamps).
3151 */
3152static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu)
3153{
3154 int j;
3155
3156 for (j = 0; j < num_cpu; j++) {
3157 switch (metadata[j][CS_ETM_MAGIC]) {
3158 case __perf_cs_etmv4_magic:
3159 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1)
3160 return false;
3161 break;
3162 case __perf_cs_ete_magic:
3163 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1)
3164 return false;
3165 break;
3166 default:
3167 /* Unknown / unsupported magic number. */
3168 return false;
3169 }
3170 }
3171 return true;
3172}
3173
09277295
ML
3174/* map trace ids to correct metadata block, from information in metadata */
3175static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata)
3176{
3177 u64 cs_etm_magic;
3178 u8 trace_chan_id;
3179 int i, err;
3180
3181 for (i = 0; i < num_cpu; i++) {
3182 cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3183 switch (cs_etm_magic) {
3184 case __perf_cs_etmv3_magic:
b6521ea2
ML
3185 metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3186 trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]);
09277295
ML
3187 break;
3188 case __perf_cs_etmv4_magic:
3189 case __perf_cs_ete_magic:
b6521ea2
ML
3190 metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3191 trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]);
09277295
ML
3192 break;
3193 default:
3194 /* unknown magic number */
3195 return -EINVAL;
3196 }
3197 err = cs_etm__map_trace_id(trace_chan_id, metadata[i]);
3198 if (err)
3199 return err;
3200 }
3201 return 0;
3202}
3203
b6521ea2
ML
3204/*
3205 * If we found AUX_HW_ID packets, then set any metadata marked as unused to the
3206 * unused value to reduce the number of unneeded decoders created.
3207 */
3208static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata)
3209{
3210 u64 cs_etm_magic;
3211 int i;
3212
3213 for (i = 0; i < num_cpu; i++) {
3214 cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3215 switch (cs_etm_magic) {
3216 case __perf_cs_etmv3_magic:
3217 if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3218 metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3219 break;
3220 case __perf_cs_etmv4_magic:
3221 case __perf_cs_ete_magic:
3222 if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3223 metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3224 break;
3225 default:
3226 /* unknown magic number */
3227 return -EINVAL;
3228 }
3229 }
3230 return 0;
3231}
3232
55c1de99
JC
3233int cs_etm__process_auxtrace_info_full(union perf_event *event,
3234 struct perf_session *session)
440a23b3 3235{
72932371 3236 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
440a23b3 3237 struct cs_etm_auxtrace *etm = NULL;
a7fe9a44 3238 struct perf_record_time_conv *tc = &session->time_conv;
440a23b3 3239 int event_header_size = sizeof(struct perf_event_header);
440a23b3 3240 int total_size = auxtrace_info->header.size;
cd8bfd8c 3241 int priv_size = 0;
09277295 3242 int num_cpu;
42b2b570 3243 int err = 0;
b6521ea2 3244 int aux_hw_id_found;
42b2b570 3245 int i, j;
fd63091f 3246 u64 *ptr = NULL;
cd8bfd8c 3247 u64 **metadata = NULL;
b00204f5 3248
cd8bfd8c 3249 /*
95c6fe97
LY
3250 * Create an RB tree for traceID-metadata tuple. Since the conversion
3251 * has to be made for each packet that gets decoded, optimizing access
3252 * in anything other than a sequential array is worth doing.
cd8bfd8c
TJ
3253 */
3254 traceid_list = intlist__new(NULL);
fd63091f
JC
3255 if (!traceid_list)
3256 return -ENOMEM;
cd8bfd8c 3257
55c1de99
JC
3258 /* First the global part */
3259 ptr = (u64 *) auxtrace_info->priv;
3260 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff;
cd8bfd8c
TJ
3261 metadata = zalloc(sizeof(*metadata) * num_cpu);
3262 if (!metadata) {
3263 err = -ENOMEM;
3264 goto err_free_traceid_list;
3265 }
3266
fd63091f
JC
3267 /* Start parsing after the common part of the header */
3268 i = CS_HEADER_VERSION_MAX;
3269
cd8bfd8c
TJ
3270 /*
3271 * The metadata is stored in the auxtrace_info section and encodes
3272 * the configuration of the ARM embedded trace macrocell which is
3273 * required by the trace decoder to properly decode the trace due
3274 * to its highly compressed nature.
3275 */
3276 for (j = 0; j < num_cpu; j++) {
3277 if (ptr[i] == __perf_cs_etmv3_magic) {
42b2b570
ML
3278 metadata[j] =
3279 cs_etm__create_meta_blk(ptr, &i,
3280 CS_ETM_PRIV_MAX,
3281 CS_ETM_NR_TRC_PARAMS_V0);
cd8bfd8c 3282 } else if (ptr[i] == __perf_cs_etmv4_magic) {
42b2b570
ML
3283 metadata[j] =
3284 cs_etm__create_meta_blk(ptr, &i,
3285 CS_ETMV4_PRIV_MAX,
3286 CS_ETMV4_NR_TRC_PARAMS_V0);
51ba8811
JC
3287 } else if (ptr[i] == __perf_cs_ete_magic) {
3288 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
a80aea64
JC
3289 } else {
3290 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
3291 ptr[i]);
3292 err = -EINVAL;
3293 goto err_free_metadata;
42b2b570
ML
3294 }
3295
3296 if (!metadata[j]) {
3297 err = -ENOMEM;
3298 goto err_free_metadata;
cd8bfd8c 3299 }
cd8bfd8c
TJ
3300 }
3301
3302 /*
42b2b570 3303 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
cd8bfd8c
TJ
3304 * CS_ETMV4_PRIV_MAX mark how many double words are in the
3305 * global metadata, and each cpu's metadata respectively.
3306 * The following tests if the correct number of double words was
3307 * present in the auxtrace info section.
3308 */
55c1de99 3309 priv_size = total_size - event_header_size - INFO_HEADER_SIZE;
cd8bfd8c
TJ
3310 if (i * 8 != priv_size) {
3311 err = -EINVAL;
3312 goto err_free_metadata;
3313 }
3314
440a23b3
MP
3315 etm = zalloc(sizeof(*etm));
3316
cd8bfd8c 3317 if (!etm) {
440a23b3 3318 err = -ENOMEM;
cd8bfd8c
TJ
3319 goto err_free_metadata;
3320 }
440a23b3 3321
5414b532
JC
3322 /*
3323 * As all the ETMs run at the same exception level, the system should
3324 * have the same PID format crossing CPUs. So cache the PID format
3325 * and reuse it for sequential decoding.
3326 */
3327 etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]);
3328
440a23b3
MP
3329 err = auxtrace_queues__init(&etm->queues);
3330 if (err)
3331 goto err_free_etm;
3332
cac31418
JC
3333 if (session->itrace_synth_opts->set) {
3334 etm->synth_opts = *session->itrace_synth_opts;
3335 } else {
3336 itrace_synth_opts__set_default(&etm->synth_opts,
3337 session->itrace_synth_opts->default_no_sample);
3338 etm->synth_opts.callchain = false;
3339 }
3340
440a23b3 3341 etm->session = session;
440a23b3 3342
cd8bfd8c 3343 etm->num_cpu = num_cpu;
55c1de99 3344 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff);
fd63091f 3345 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0);
cd8bfd8c 3346 etm->metadata = metadata;
440a23b3 3347 etm->auxtrace_type = auxtrace_info->type;
440a23b3 3348
a4271827
LY
3349 if (etm->synth_opts.use_timestamp)
3350 /*
3351 * Prior to Armv8.4, Arm CPUs don't support FEAT_TRF feature,
3352 * therefore the decoder cannot know if the timestamp trace is
3353 * same with the kernel time.
3354 *
3355 * If a user has knowledge for the working platform and can
3356 * specify itrace option 'T' to tell decoder to forcely use the
3357 * traced timestamp as the kernel time.
3358 */
3359 etm->has_virtual_ts = true;
3360 else
3361 /* Use virtual timestamps if all ETMs report ts_source = 1 */
3362 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu);
a7fe9a44
GG
3363
3364 if (!etm->has_virtual_ts)
3365 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n"
a4271827
LY
3366 "The time field of the samples will not be set accurately.\n"
3367 "For Arm CPUs prior to Armv8.4 or without support FEAT_TRF,\n"
3368 "you can specify the itrace option 'T' for timestamp decoding\n"
3369 "if the Coresight timestamp on the platform is same with the kernel time.\n\n");
a7fe9a44 3370
440a23b3
MP
3371 etm->auxtrace.process_event = cs_etm__process_event;
3372 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3373 etm->auxtrace.flush_events = cs_etm__flush_events;
3374 etm->auxtrace.free_events = cs_etm__free_events;
3375 etm->auxtrace.free = cs_etm__free;
a58ab57c 3376 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
440a23b3
MP
3377 session->auxtrace = &etm->auxtrace;
3378
449067f3
JC
3379 err = cs_etm__setup_timeless_decoding(etm);
3380 if (err)
3381 return err;
3382
a7fe9a44
GG
3383 etm->tc.time_shift = tc->time_shift;
3384 etm->tc.time_mult = tc->time_mult;
3385 etm->tc.time_zero = tc->time_zero;
3386 if (event_contains(*tc, time_cycles)) {
3387 etm->tc.time_cycles = tc->time_cycles;
3388 etm->tc.time_mask = tc->time_mask;
3389 etm->tc.cap_user_time_zero = tc->cap_user_time_zero;
3390 etm->tc.cap_user_time_short = tc->cap_user_time_short;
3391 }
b12235b1
MP
3392 err = cs_etm__synth_events(etm, session);
3393 if (err)
951ccccd 3394 goto err_free_queues;
b12235b1 3395
b6521ea2
ML
3396 /*
3397 * Map Trace ID values to CPU metadata.
3398 *
3399 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the
3400 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata
3401 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set.
3402 *
3403 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use
3404 * the same IDs as the old algorithm as far as is possible, unless there are clashes
3405 * in which case a different value will be used. This means an older perf may still
3406 * be able to record and read files generate on a newer system.
3407 *
3408 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of
3409 * those packets. If they are there then the values will be mapped and plugged into
3410 * the metadata. We then set any remaining metadata values with the used flag to a
3411 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required.
3412 *
3413 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel
3414 * then we map Trace ID values to CPU directly from the metadata - clearing any unused
3415 * flags if present.
3416 */
3417
3418 /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */
3419 aux_hw_id_found = 0;
3420 err = perf_session__peek_events(session, session->header.data_offset,
3421 session->header.data_size,
3422 cs_etm__process_aux_hw_id_cb, &aux_hw_id_found);
3423 if (err)
951ccccd 3424 goto err_free_queues;
b6521ea2
ML
3425
3426 /* if HW ID found then clear any unused metadata ID values */
3427 if (aux_hw_id_found)
3428 err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata);
3429 /* otherwise, this is a file with metadata values only, map from metadata */
3430 else
3431 err = cs_etm__map_trace_ids_metadata(num_cpu, metadata);
3432
09277295 3433 if (err)
951ccccd 3434 goto err_free_queues;
09277295 3435
83d1fc92 3436 err = cs_etm__queue_aux_records(session);
440a23b3 3437 if (err)
951ccccd 3438 goto err_free_queues;
440a23b3
MP
3439
3440 etm->data_queued = etm->queues.populated;
440a23b3
MP
3441 return 0;
3442
3443err_free_queues:
3444 auxtrace_queues__free(&etm->queues);
3445 session->auxtrace = NULL;
3446err_free_etm:
3447 zfree(&etm);
cd8bfd8c
TJ
3448err_free_metadata:
3449 /* No need to check @metadata[j], free(NULL) is supported */
3450 for (j = 0; j < num_cpu; j++)
d8f9da24 3451 zfree(&metadata[j]);
cd8bfd8c
TJ
3452 zfree(&metadata);
3453err_free_traceid_list:
3454 intlist__delete(traceid_list);
6285bd15 3455 return err;
440a23b3 3456}