Merge branch 'tracing/core' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[linux-2.6-block.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
24#include "util/string.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
5cbd0805 32#include "util/event.h"
301a0b02 33#include "util/session.h"
10274989
AV
34#include "util/svghelper.h"
35
36static char const *input_name = "perf.data";
37static char const *output_name = "output.svg";
38
10274989
AV
39static unsigned int numcpus;
40static u64 min_freq; /* Lowest CPU frequency seen */
41static u64 max_freq; /* Highest CPU frequency seen */
42static u64 turbo_frequency;
43
44static u64 first_time, last_time;
45
39a90a8e
AV
46static int power_only;
47
10274989 48
10274989
AV
49struct per_pid;
50struct per_pidcomm;
51
52struct cpu_sample;
53struct power_event;
54struct wake_event;
55
56struct sample_wrapper;
57
58/*
59 * Datastructure layout:
60 * We keep an list of "pid"s, matching the kernels notion of a task struct.
61 * Each "pid" entry, has a list of "comm"s.
62 * this is because we want to track different programs different, while
63 * exec will reuse the original pid (by design).
64 * Each comm has a list of samples that will be used to draw
65 * final graph.
66 */
67
68struct per_pid {
69 struct per_pid *next;
70
71 int pid;
72 int ppid;
73
74 u64 start_time;
75 u64 end_time;
76 u64 total_time;
77 int display;
78
79 struct per_pidcomm *all;
80 struct per_pidcomm *current;
81
82 int painted;
83};
84
85
86struct per_pidcomm {
87 struct per_pidcomm *next;
88
89 u64 start_time;
90 u64 end_time;
91 u64 total_time;
92
93 int Y;
94 int display;
95
96 long state;
97 u64 state_since;
98
99 char *comm;
100
101 struct cpu_sample *samples;
102};
103
104struct sample_wrapper {
105 struct sample_wrapper *next;
106
107 u64 timestamp;
108 unsigned char data[0];
109};
110
111#define TYPE_NONE 0
112#define TYPE_RUNNING 1
113#define TYPE_WAITING 2
114#define TYPE_BLOCKED 3
115
116struct cpu_sample {
117 struct cpu_sample *next;
118
119 u64 start_time;
120 u64 end_time;
121 int type;
122 int cpu;
123};
124
125static struct per_pid *all_data;
126
127#define CSTATE 1
128#define PSTATE 2
129
130struct power_event {
131 struct power_event *next;
132 int type;
133 int state;
134 u64 start_time;
135 u64 end_time;
136 int cpu;
137};
138
139struct wake_event {
140 struct wake_event *next;
141 int waker;
142 int wakee;
143 u64 time;
144};
145
146static struct power_event *power_events;
147static struct wake_event *wake_events;
148
149struct sample_wrapper *all_samples;
150
bbe2987b
AV
151
152struct process_filter;
153struct process_filter {
5cbd0805
LZ
154 char *name;
155 int pid;
156 struct process_filter *next;
bbe2987b
AV
157};
158
159static struct process_filter *process_filter;
160
161
10274989
AV
162static struct per_pid *find_create_pid(int pid)
163{
164 struct per_pid *cursor = all_data;
165
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
170 }
171 cursor = malloc(sizeof(struct per_pid));
172 assert(cursor != NULL);
173 memset(cursor, 0, sizeof(struct per_pid));
174 cursor->pid = pid;
175 cursor->next = all_data;
176 all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = malloc(sizeof(struct per_pidcomm));
199 assert(c != NULL);
200 memset(c, 0, sizeof(struct per_pidcomm));
201 c->comm = strdup(comm);
202 p->current = c;
203 c->next = p->all;
204 p->all = c;
205}
206
207static void pid_fork(int pid, int ppid, u64 timestamp)
208{
209 struct per_pid *p, *pp;
210 p = find_create_pid(pid);
211 pp = find_create_pid(ppid);
212 p->ppid = ppid;
213 if (pp->current && pp->current->comm && !p->current)
214 pid_set_comm(pid, pp->current->comm);
215
216 p->start_time = timestamp;
217 if (p->current) {
218 p->current->start_time = timestamp;
219 p->current->state_since = timestamp;
220 }
221}
222
223static void pid_exit(int pid, u64 timestamp)
224{
225 struct per_pid *p;
226 p = find_create_pid(pid);
227 p->end_time = timestamp;
228 if (p->current)
229 p->current->end_time = timestamp;
230}
231
232static void
233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(pid);
240 c = p->current;
241 if (!c) {
242 c = malloc(sizeof(struct per_pidcomm));
243 assert(c != NULL);
244 memset(c, 0, sizeof(struct per_pidcomm));
245 p->current = c;
246 c->next = p->all;
247 p->all = c;
248 }
249
250 sample = malloc(sizeof(struct cpu_sample));
251 assert(sample != NULL);
252 memset(sample, 0, sizeof(struct cpu_sample));
253 sample->start_time = start;
254 sample->end_time = end;
255 sample->type = type;
256 sample->next = c->samples;
257 sample->cpu = cpu;
258 c->samples = sample;
259
260 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261 c->total_time += (end-start);
262 p->total_time += (end-start);
263 }
264
265 if (c->start_time == 0 || c->start_time > start)
266 c->start_time = start;
267 if (p->start_time == 0 || p->start_time > start)
268 p->start_time = start;
269
270 if (cpu > numcpus)
271 numcpus = cpu;
272}
273
274#define MAX_CPUS 4096
275
276static u64 cpus_cstate_start_times[MAX_CPUS];
277static int cpus_cstate_state[MAX_CPUS];
278static u64 cpus_pstate_start_times[MAX_CPUS];
279static u64 cpus_pstate_state[MAX_CPUS];
280
d8f66248 281static int process_comm_event(event_t *event, struct perf_session *session __used)
10274989 282{
8f06d7e6 283 pid_set_comm(event->comm.tid, event->comm.comm);
10274989
AV
284 return 0;
285}
d8f66248
ACM
286
287static int process_fork_event(event_t *event, struct perf_session *session __used)
10274989
AV
288{
289 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
290 return 0;
291}
292
d8f66248 293static int process_exit_event(event_t *event, struct perf_session *session __used)
10274989
AV
294{
295 pid_exit(event->fork.pid, event->fork.time);
296 return 0;
297}
298
299struct trace_entry {
10274989
AV
300 unsigned short type;
301 unsigned char flags;
302 unsigned char preempt_count;
303 int pid;
028c5152 304 int lock_depth;
10274989
AV
305};
306
307struct power_entry {
308 struct trace_entry te;
309 s64 type;
310 s64 value;
311};
312
313#define TASK_COMM_LEN 16
314struct wakeup_entry {
315 struct trace_entry te;
316 char comm[TASK_COMM_LEN];
317 int pid;
318 int prio;
319 int success;
320};
321
322/*
323 * trace_flag_type is an enumeration that holds different
324 * states when a trace occurs. These are:
325 * IRQS_OFF - interrupts were disabled
326 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
327 * NEED_RESCED - reschedule is requested
328 * HARDIRQ - inside an interrupt handler
329 * SOFTIRQ - inside a softirq handler
330 */
331enum trace_flag_type {
332 TRACE_FLAG_IRQS_OFF = 0x01,
333 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
334 TRACE_FLAG_NEED_RESCHED = 0x04,
335 TRACE_FLAG_HARDIRQ = 0x08,
336 TRACE_FLAG_SOFTIRQ = 0x10,
337};
338
339
340
341struct sched_switch {
342 struct trace_entry te;
343 char prev_comm[TASK_COMM_LEN];
344 int prev_pid;
345 int prev_prio;
346 long prev_state; /* Arjan weeps. */
347 char next_comm[TASK_COMM_LEN];
348 int next_pid;
349 int next_prio;
350};
351
352static void c_state_start(int cpu, u64 timestamp, int state)
353{
354 cpus_cstate_start_times[cpu] = timestamp;
355 cpus_cstate_state[cpu] = state;
356}
357
358static void c_state_end(int cpu, u64 timestamp)
359{
360 struct power_event *pwr;
361 pwr = malloc(sizeof(struct power_event));
362 if (!pwr)
363 return;
364 memset(pwr, 0, sizeof(struct power_event));
365
366 pwr->state = cpus_cstate_state[cpu];
367 pwr->start_time = cpus_cstate_start_times[cpu];
368 pwr->end_time = timestamp;
369 pwr->cpu = cpu;
370 pwr->type = CSTATE;
371 pwr->next = power_events;
372
373 power_events = pwr;
374}
375
376static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
377{
378 struct power_event *pwr;
379 pwr = malloc(sizeof(struct power_event));
380
381 if (new_freq > 8000000) /* detect invalid data */
382 return;
383
384 if (!pwr)
385 return;
386 memset(pwr, 0, sizeof(struct power_event));
387
388 pwr->state = cpus_pstate_state[cpu];
389 pwr->start_time = cpus_pstate_start_times[cpu];
390 pwr->end_time = timestamp;
391 pwr->cpu = cpu;
392 pwr->type = PSTATE;
393 pwr->next = power_events;
394
395 if (!pwr->start_time)
396 pwr->start_time = first_time;
397
398 power_events = pwr;
399
400 cpus_pstate_state[cpu] = new_freq;
401 cpus_pstate_start_times[cpu] = timestamp;
402
403 if ((u64)new_freq > max_freq)
404 max_freq = new_freq;
405
406 if (new_freq < min_freq || min_freq == 0)
407 min_freq = new_freq;
408
409 if (new_freq == max_freq - 1000)
410 turbo_frequency = max_freq;
411}
412
413static void
414sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
415{
416 struct wake_event *we;
417 struct per_pid *p;
418 struct wakeup_entry *wake = (void *)te;
419
420 we = malloc(sizeof(struct wake_event));
421 if (!we)
422 return;
423
424 memset(we, 0, sizeof(struct wake_event));
425 we->time = timestamp;
426 we->waker = pid;
427
428 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
429 we->waker = -1;
430
431 we->wakee = wake->pid;
432 we->next = wake_events;
433 wake_events = we;
434 p = find_create_pid(we->wakee);
435
436 if (p && p->current && p->current->state == TYPE_NONE) {
437 p->current->state_since = timestamp;
438 p->current->state = TYPE_WAITING;
439 }
440 if (p && p->current && p->current->state == TYPE_BLOCKED) {
441 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
442 p->current->state_since = timestamp;
443 p->current->state = TYPE_WAITING;
444 }
445}
446
447static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
448{
449 struct per_pid *p = NULL, *prev_p;
450 struct sched_switch *sw = (void *)te;
451
452
453 prev_p = find_create_pid(sw->prev_pid);
454
455 p = find_create_pid(sw->next_pid);
456
457 if (prev_p->current && prev_p->current->state != TYPE_NONE)
458 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
459 if (p && p->current) {
460 if (p->current->state != TYPE_NONE)
461 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
462
463 p->current->state_since = timestamp;
464 p->current->state = TYPE_RUNNING;
465 }
466
467 if (prev_p->current) {
468 prev_p->current->state = TYPE_NONE;
469 prev_p->current->state_since = timestamp;
470 if (sw->prev_state & 2)
471 prev_p->current->state = TYPE_BLOCKED;
472 if (sw->prev_state == 0)
473 prev_p->current->state = TYPE_WAITING;
474 }
475}
476
477
c019879b 478static int process_sample_event(event_t *event, struct perf_session *session)
10274989 479{
180f95e2 480 struct sample_data data;
10274989
AV
481 struct trace_entry *te;
482
180f95e2 483 memset(&data, 0, sizeof(data));
10274989 484
c019879b 485 event__parse_sample(event, session->sample_type, &data);
10274989 486
c019879b 487 if (session->sample_type & PERF_SAMPLE_TIME) {
180f95e2
OH
488 if (!first_time || first_time > data.time)
489 first_time = data.time;
490 if (last_time < data.time)
491 last_time = data.time;
10274989 492 }
180f95e2
OH
493
494 te = (void *)data.raw_data;
c019879b 495 if (session->sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
10274989
AV
496 char *event_str;
497 struct power_entry *pe;
498
499 pe = (void *)te;
500
501 event_str = perf_header__find_event(te->type);
502
503 if (!event_str)
504 return 0;
505
506 if (strcmp(event_str, "power:power_start") == 0)
180f95e2 507 c_state_start(data.cpu, data.time, pe->value);
10274989
AV
508
509 if (strcmp(event_str, "power:power_end") == 0)
180f95e2 510 c_state_end(data.cpu, data.time);
10274989
AV
511
512 if (strcmp(event_str, "power:power_frequency") == 0)
180f95e2 513 p_state_change(data.cpu, data.time, pe->value);
10274989
AV
514
515 if (strcmp(event_str, "sched:sched_wakeup") == 0)
180f95e2 516 sched_wakeup(data.cpu, data.time, data.pid, te);
10274989
AV
517
518 if (strcmp(event_str, "sched:sched_switch") == 0)
180f95e2 519 sched_switch(data.cpu, data.time, te);
10274989
AV
520 }
521 return 0;
522}
523
524/*
525 * After the last sample we need to wrap up the current C/P state
526 * and close out each CPU for these.
527 */
528static void end_sample_processing(void)
529{
530 u64 cpu;
531 struct power_event *pwr;
532
39a90a8e 533 for (cpu = 0; cpu <= numcpus; cpu++) {
10274989
AV
534 pwr = malloc(sizeof(struct power_event));
535 if (!pwr)
536 return;
537 memset(pwr, 0, sizeof(struct power_event));
538
539 /* C state */
540#if 0
541 pwr->state = cpus_cstate_state[cpu];
542 pwr->start_time = cpus_cstate_start_times[cpu];
543 pwr->end_time = last_time;
544 pwr->cpu = cpu;
545 pwr->type = CSTATE;
546 pwr->next = power_events;
547
548 power_events = pwr;
549#endif
550 /* P state */
551
552 pwr = malloc(sizeof(struct power_event));
553 if (!pwr)
554 return;
555 memset(pwr, 0, sizeof(struct power_event));
556
557 pwr->state = cpus_pstate_state[cpu];
558 pwr->start_time = cpus_pstate_start_times[cpu];
559 pwr->end_time = last_time;
560 pwr->cpu = cpu;
561 pwr->type = PSTATE;
562 pwr->next = power_events;
563
564 if (!pwr->start_time)
565 pwr->start_time = first_time;
566 if (!pwr->state)
567 pwr->state = min_freq;
568 power_events = pwr;
569 }
570}
571
c019879b 572static u64 sample_time(event_t *event, const struct perf_session *session)
10274989
AV
573{
574 int cursor;
575
576 cursor = 0;
c019879b 577 if (session->sample_type & PERF_SAMPLE_IP)
10274989 578 cursor++;
c019879b 579 if (session->sample_type & PERF_SAMPLE_TID)
10274989 580 cursor++;
c019879b 581 if (session->sample_type & PERF_SAMPLE_TIME)
10274989
AV
582 return event->sample.array[cursor];
583 return 0;
584}
585
586
587/*
588 * We first queue all events, sorted backwards by insertion.
589 * The order will get flipped later.
590 */
c019879b 591static int queue_sample_event(event_t *event, struct perf_session *session)
10274989
AV
592{
593 struct sample_wrapper *copy, *prev;
594 int size;
595
596 size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
597
598 copy = malloc(size);
599 if (!copy)
600 return 1;
601
602 memset(copy, 0, size);
603
604 copy->next = NULL;
c019879b 605 copy->timestamp = sample_time(event, session);
10274989
AV
606
607 memcpy(&copy->data, event, event->sample.header.size);
608
609 /* insert in the right place in the list */
610
611 if (!all_samples) {
612 /* first sample ever */
613 all_samples = copy;
614 return 0;
615 }
616
617 if (all_samples->timestamp < copy->timestamp) {
618 /* insert at the head of the list */
619 copy->next = all_samples;
620 all_samples = copy;
621 return 0;
622 }
623
624 prev = all_samples;
625 while (prev->next) {
626 if (prev->next->timestamp < copy->timestamp) {
627 copy->next = prev->next;
628 prev->next = copy;
629 return 0;
630 }
631 prev = prev->next;
632 }
633 /* insert at the end of the list */
634 prev->next = copy;
635
636 return 0;
637}
638
639static void sort_queued_samples(void)
640{
641 struct sample_wrapper *cursor, *next;
642
643 cursor = all_samples;
644 all_samples = NULL;
645
646 while (cursor) {
647 next = cursor->next;
648 cursor->next = all_samples;
649 all_samples = cursor;
650 cursor = next;
651 }
652}
653
654/*
655 * Sort the pid datastructure
656 */
657static void sort_pids(void)
658{
659 struct per_pid *new_list, *p, *cursor, *prev;
660 /* sort by ppid first, then by pid, lowest to highest */
661
662 new_list = NULL;
663
664 while (all_data) {
665 p = all_data;
666 all_data = p->next;
667 p->next = NULL;
668
669 if (new_list == NULL) {
670 new_list = p;
671 p->next = NULL;
672 continue;
673 }
674 prev = NULL;
675 cursor = new_list;
676 while (cursor) {
677 if (cursor->ppid > p->ppid ||
678 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
679 /* must insert before */
680 if (prev) {
681 p->next = prev->next;
682 prev->next = p;
683 cursor = NULL;
684 continue;
685 } else {
686 p->next = new_list;
687 new_list = p;
688 cursor = NULL;
689 continue;
690 }
691 }
692
693 prev = cursor;
694 cursor = cursor->next;
695 if (!cursor)
696 prev->next = p;
697 }
698 }
699 all_data = new_list;
700}
701
702
703static void draw_c_p_states(void)
704{
705 struct power_event *pwr;
706 pwr = power_events;
707
708 /*
709 * two pass drawing so that the P state bars are on top of the C state blocks
710 */
711 while (pwr) {
712 if (pwr->type == CSTATE)
713 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
714 pwr = pwr->next;
715 }
716
717 pwr = power_events;
718 while (pwr) {
719 if (pwr->type == PSTATE) {
720 if (!pwr->state)
721 pwr->state = min_freq;
722 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
723 }
724 pwr = pwr->next;
725 }
726}
727
728static void draw_wakeups(void)
729{
730 struct wake_event *we;
731 struct per_pid *p;
732 struct per_pidcomm *c;
733
734 we = wake_events;
735 while (we) {
736 int from = 0, to = 0;
4f1202c8 737 char *task_from = NULL, *task_to = NULL;
10274989
AV
738
739 /* locate the column of the waker and wakee */
740 p = all_data;
741 while (p) {
742 if (p->pid == we->waker || p->pid == we->wakee) {
743 c = p->all;
744 while (c) {
745 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 746 if (p->pid == we->waker && !from) {
10274989 747 from = c->Y;
3bc2a39c 748 task_from = strdup(c->comm);
4f1202c8 749 }
bbe2987b 750 if (p->pid == we->wakee && !to) {
10274989 751 to = c->Y;
3bc2a39c 752 task_to = strdup(c->comm);
4f1202c8 753 }
10274989
AV
754 }
755 c = c->next;
756 }
3bc2a39c
AV
757 c = p->all;
758 while (c) {
759 if (p->pid == we->waker && !from) {
760 from = c->Y;
761 task_from = strdup(c->comm);
762 }
763 if (p->pid == we->wakee && !to) {
764 to = c->Y;
765 task_to = strdup(c->comm);
766 }
767 c = c->next;
768 }
10274989
AV
769 }
770 p = p->next;
771 }
772
3bc2a39c
AV
773 if (!task_from) {
774 task_from = malloc(40);
775 sprintf(task_from, "[%i]", we->waker);
776 }
777 if (!task_to) {
778 task_to = malloc(40);
779 sprintf(task_to, "[%i]", we->wakee);
780 }
781
10274989
AV
782 if (we->waker == -1)
783 svg_interrupt(we->time, to);
784 else if (from && to && abs(from - to) == 1)
785 svg_wakeline(we->time, from, to);
786 else
4f1202c8 787 svg_partial_wakeline(we->time, from, task_from, to, task_to);
10274989 788 we = we->next;
3bc2a39c
AV
789
790 free(task_from);
791 free(task_to);
10274989
AV
792 }
793}
794
795static void draw_cpu_usage(void)
796{
797 struct per_pid *p;
798 struct per_pidcomm *c;
799 struct cpu_sample *sample;
800 p = all_data;
801 while (p) {
802 c = p->all;
803 while (c) {
804 sample = c->samples;
805 while (sample) {
806 if (sample->type == TYPE_RUNNING)
807 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
808
809 sample = sample->next;
810 }
811 c = c->next;
812 }
813 p = p->next;
814 }
815}
816
817static void draw_process_bars(void)
818{
819 struct per_pid *p;
820 struct per_pidcomm *c;
821 struct cpu_sample *sample;
822 int Y = 0;
823
824 Y = 2 * numcpus + 2;
825
826 p = all_data;
827 while (p) {
828 c = p->all;
829 while (c) {
830 if (!c->display) {
831 c->Y = 0;
832 c = c->next;
833 continue;
834 }
835
a92fe7b3 836 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
837 sample = c->samples;
838 while (sample) {
839 if (sample->type == TYPE_RUNNING)
a92fe7b3 840 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
10274989
AV
841 if (sample->type == TYPE_BLOCKED)
842 svg_box(Y, sample->start_time, sample->end_time, "blocked");
843 if (sample->type == TYPE_WAITING)
a92fe7b3 844 svg_waiting(Y, sample->start_time, sample->end_time);
10274989
AV
845 sample = sample->next;
846 }
847
848 if (c->comm) {
849 char comm[256];
850 if (c->total_time > 5000000000) /* 5 seconds */
851 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
852 else
853 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
854
855 svg_text(Y, c->start_time, comm);
856 }
857 c->Y = Y;
858 Y++;
859 c = c->next;
860 }
861 p = p->next;
862 }
863}
864
bbe2987b
AV
865static void add_process_filter(const char *string)
866{
867 struct process_filter *filt;
868 int pid;
869
870 pid = strtoull(string, NULL, 10);
871 filt = malloc(sizeof(struct process_filter));
872 if (!filt)
873 return;
874
875 filt->name = strdup(string);
876 filt->pid = pid;
877 filt->next = process_filter;
878
879 process_filter = filt;
880}
881
882static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
883{
884 struct process_filter *filt;
885 if (!process_filter)
886 return 1;
887
888 filt = process_filter;
889 while (filt) {
890 if (filt->pid && p->pid == filt->pid)
891 return 1;
892 if (strcmp(filt->name, c->comm) == 0)
893 return 1;
894 filt = filt->next;
895 }
896 return 0;
897}
898
899static int determine_display_tasks_filtered(void)
900{
901 struct per_pid *p;
902 struct per_pidcomm *c;
903 int count = 0;
904
905 p = all_data;
906 while (p) {
907 p->display = 0;
908 if (p->start_time == 1)
909 p->start_time = first_time;
910
911 /* no exit marker, task kept running to the end */
912 if (p->end_time == 0)
913 p->end_time = last_time;
914
915 c = p->all;
916
917 while (c) {
918 c->display = 0;
919
920 if (c->start_time == 1)
921 c->start_time = first_time;
922
923 if (passes_filter(p, c)) {
924 c->display = 1;
925 p->display = 1;
926 count++;
927 }
928
929 if (c->end_time == 0)
930 c->end_time = last_time;
931
932 c = c->next;
933 }
934 p = p->next;
935 }
936 return count;
937}
938
10274989
AV
939static int determine_display_tasks(u64 threshold)
940{
941 struct per_pid *p;
942 struct per_pidcomm *c;
943 int count = 0;
944
bbe2987b
AV
945 if (process_filter)
946 return determine_display_tasks_filtered();
947
10274989
AV
948 p = all_data;
949 while (p) {
950 p->display = 0;
951 if (p->start_time == 1)
952 p->start_time = first_time;
953
954 /* no exit marker, task kept running to the end */
955 if (p->end_time == 0)
956 p->end_time = last_time;
39a90a8e 957 if (p->total_time >= threshold && !power_only)
10274989
AV
958 p->display = 1;
959
960 c = p->all;
961
962 while (c) {
963 c->display = 0;
964
965 if (c->start_time == 1)
966 c->start_time = first_time;
967
39a90a8e 968 if (c->total_time >= threshold && !power_only) {
10274989
AV
969 c->display = 1;
970 count++;
971 }
972
973 if (c->end_time == 0)
974 c->end_time = last_time;
975
976 c = c->next;
977 }
978 p = p->next;
979 }
980 return count;
981}
982
983
984
985#define TIME_THRESH 10000000
986
987static void write_svg_file(const char *filename)
988{
989 u64 i;
990 int count;
991
992 numcpus++;
993
994
995 count = determine_display_tasks(TIME_THRESH);
996
997 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
998 if (count < 15)
999 count = determine_display_tasks(TIME_THRESH / 10);
1000
5094b655 1001 open_svg(filename, numcpus, count, first_time, last_time);
10274989 1002
5094b655 1003 svg_time_grid();
10274989
AV
1004 svg_legenda();
1005
1006 for (i = 0; i < numcpus; i++)
1007 svg_cpu_box(i, max_freq, turbo_frequency);
1008
1009 draw_cpu_usage();
1010 draw_process_bars();
1011 draw_c_p_states();
1012 draw_wakeups();
1013
1014 svg_close();
1015}
1016
c019879b 1017static void process_samples(struct perf_session *session)
10274989
AV
1018{
1019 struct sample_wrapper *cursor;
1020 event_t *event;
1021
1022 sort_queued_samples();
1023
1024 cursor = all_samples;
1025 while (cursor) {
1026 event = (void *)&cursor->data;
1027 cursor = cursor->next;
c019879b 1028 process_sample_event(event, session);
10274989
AV
1029 }
1030}
1031
c019879b 1032static int sample_type_check(struct perf_session *session)
10274989 1033{
c019879b 1034 if (!(session->sample_type & PERF_SAMPLE_RAW)) {
5cbd0805
LZ
1035 fprintf(stderr, "No trace samples found in the file.\n"
1036 "Have you used 'perf timechart record' to record it?\n");
1037 return -1;
10274989
AV
1038 }
1039
5cbd0805
LZ
1040 return 0;
1041}
10274989 1042
301a0b02 1043static struct perf_event_ops event_ops = {
5cbd0805
LZ
1044 .process_comm_event = process_comm_event,
1045 .process_fork_event = process_fork_event,
1046 .process_exit_event = process_exit_event,
1047 .process_sample_event = queue_sample_event,
1048 .sample_type_check = sample_type_check,
1049};
10274989 1050
5cbd0805
LZ
1051static int __cmd_timechart(void)
1052{
75be6cf4 1053 struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0);
5cbd0805 1054 int ret;
10274989 1055
94c744b6
ACM
1056 if (session == NULL)
1057 return -ENOMEM;
1058
ec913369 1059 ret = perf_session__process_events(session, &event_ops);
5cbd0805 1060 if (ret)
94c744b6 1061 goto out_delete;
10274989 1062
c019879b 1063 process_samples(session);
10274989
AV
1064
1065 end_sample_processing();
1066
1067 sort_pids();
1068
1069 write_svg_file(output_name);
1070
6beba7ad
ACM
1071 pr_info("Written %2.1f seconds of trace to %s.\n",
1072 (last_time - first_time) / 1000000000.0, output_name);
94c744b6
ACM
1073out_delete:
1074 perf_session__delete(session);
1075 return ret;
10274989
AV
1076}
1077
3c09eebd
AV
1078static const char * const timechart_usage[] = {
1079 "perf timechart [<options>] {record}",
10274989
AV
1080 NULL
1081};
1082
3c09eebd
AV
1083static const char *record_args[] = {
1084 "record",
1085 "-a",
1086 "-R",
1087 "-M",
1088 "-f",
1089 "-c", "1",
1090 "-e", "power:power_start",
1091 "-e", "power:power_end",
1092 "-e", "power:power_frequency",
1093 "-e", "sched:sched_wakeup",
1094 "-e", "sched:sched_switch",
1095};
1096
1097static int __cmd_record(int argc, const char **argv)
1098{
1099 unsigned int rec_argc, i, j;
1100 const char **rec_argv;
1101
1102 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1103 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1104
1105 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1106 rec_argv[i] = strdup(record_args[i]);
1107
1108 for (j = 1; j < (unsigned int)argc; j++, i++)
1109 rec_argv[i] = argv[j];
1110
1111 return cmd_record(i, rec_argv, NULL);
1112}
1113
bbe2987b
AV
1114static int
1115parse_process(const struct option *opt __used, const char *arg, int __used unset)
1116{
1117 if (arg)
1118 add_process_filter(arg);
1119 return 0;
1120}
1121
10274989
AV
1122static const struct option options[] = {
1123 OPT_STRING('i', "input", &input_name, "file",
1124 "input file name"),
1125 OPT_STRING('o', "output", &output_name, "file",
1126 "output file name"),
5094b655
AV
1127 OPT_INTEGER('w', "width", &svg_page_width,
1128 "page width"),
bbe2987b 1129 OPT_BOOLEAN('P', "power-only", &power_only,
39a90a8e 1130 "output power data only"),
bbe2987b
AV
1131 OPT_CALLBACK('p', "process", NULL, "process",
1132 "process selector. Pass a pid or process name.",
1133 parse_process),
10274989
AV
1134 OPT_END()
1135};
1136
1137
1138int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1139{
3c09eebd
AV
1140 argc = parse_options(argc, argv, options, timechart_usage,
1141 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1142
655000e7
ACM
1143 symbol__init();
1144
3c09eebd
AV
1145 if (argc && !strncmp(argv[0], "rec", 3))
1146 return __cmd_record(argc, argv);
1147 else if (argc)
1148 usage_with_options(timechart_usage, options);
10274989
AV
1149
1150 setup_pager();
1151
1152 return __cmd_timechart();
1153}