Merge 'v4.12-rc1' into MTD
[linux-2.6-block.git] / tools / perf / bench / numa.c
CommitLineData
1c13f3c9
IM
1/*
2 * numa.c
3 *
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
6
fd20e811 7#include <inttypes.h>
8a158589
ACM
8/* For the CLR_() macros */
9#include <pthread.h>
10
1c13f3c9
IM
11#include "../perf.h"
12#include "../builtin.h"
13#include "../util/util.h"
4b6ab94e 14#include <subcmd/parse-options.h>
2d8e405a 15#include "../util/cloexec.h"
1c13f3c9
IM
16
17#include "bench.h"
18
19#include <errno.h>
20#include <sched.h>
21#include <stdio.h>
22#include <assert.h>
23#include <malloc.h>
24#include <signal.h>
25#include <stdlib.h>
26#include <string.h>
27#include <unistd.h>
1c13f3c9
IM
28#include <sys/mman.h>
29#include <sys/time.h>
b64aa553 30#include <sys/resource.h>
1c13f3c9
IM
31#include <sys/wait.h>
32#include <sys/prctl.h>
33#include <sys/types.h>
877a7a11 34#include <linux/kernel.h>
a8ad8329 35#include <linux/time64.h>
1c13f3c9
IM
36
37#include <numa.h>
38#include <numaif.h>
39
40/*
41 * Regular printout to the terminal, supressed if -q is specified:
42 */
43#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
44
45/*
46 * Debug printf:
47 */
6aa4d826 48#undef dprintf
1c13f3c9
IM
49#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
50
51struct thread_data {
52 int curr_cpu;
53 cpu_set_t bind_cpumask;
54 int bind_node;
55 u8 *process_data;
56 int process_nr;
57 int thread_nr;
58 int task_nr;
59 unsigned int loops_done;
60 u64 val;
61 u64 runtime_ns;
b64aa553
PH
62 u64 system_time_ns;
63 u64 user_time_ns;
64 double speed_gbs;
1c13f3c9
IM
65 pthread_mutex_t *process_lock;
66};
67
68/* Parameters set by options: */
69
70struct params {
71 /* Startup synchronization: */
72 bool serialize_startup;
73
74 /* Task hierarchy: */
75 int nr_proc;
76 int nr_threads;
77
78 /* Working set sizes: */
79 const char *mb_global_str;
80 const char *mb_proc_str;
81 const char *mb_proc_locked_str;
82 const char *mb_thread_str;
83
84 double mb_global;
85 double mb_proc;
86 double mb_proc_locked;
87 double mb_thread;
88
89 /* Access patterns to the working set: */
90 bool data_reads;
91 bool data_writes;
92 bool data_backwards;
93 bool data_zero_memset;
94 bool data_rand_walk;
95 u32 nr_loops;
96 u32 nr_secs;
97 u32 sleep_usecs;
98
99 /* Working set initialization: */
100 bool init_zero;
101 bool init_random;
102 bool init_cpu0;
103
104 /* Misc options: */
105 int show_details;
106 int run_all;
107 int thp;
108
109 long bytes_global;
110 long bytes_process;
111 long bytes_process_locked;
112 long bytes_thread;
113
114 int nr_tasks;
115 bool show_quiet;
116
117 bool show_convergence;
118 bool measure_convergence;
119
120 int perturb_secs;
121 int nr_cpus;
122 int nr_nodes;
123
124 /* Affinity options -C and -N: */
125 char *cpu_list_str;
126 char *node_list_str;
127};
128
129
130/* Global, read-writable area, accessible to all processes and threads: */
131
132struct global_info {
133 u8 *data;
134
135 pthread_mutex_t startup_mutex;
136 int nr_tasks_started;
137
138 pthread_mutex_t startup_done_mutex;
139
140 pthread_mutex_t start_work_mutex;
141 int nr_tasks_working;
142
143 pthread_mutex_t stop_work_mutex;
144 u64 bytes_done;
145
146 struct thread_data *threads;
147
148 /* Convergence latency measurement: */
149 bool all_converged;
150 bool stop_work;
151
152 int print_once;
153
154 struct params p;
155};
156
157static struct global_info *g = NULL;
158
159static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
160static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
161
162struct params p0;
163
164static const struct option options[] = {
165 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
166 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
167
168 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
169 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
170 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
171 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
172
b0d22e52
IM
173 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
174 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
1c13f3c9
IM
175 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
176
177 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
178 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
179 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
180 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
181 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
182
183
184 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
185 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
186 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
187 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
188
189 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
190 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
191 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
001916b9
JO
192 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
193 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
1c13f3c9 194 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
24f1ced1 195 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
1c13f3c9
IM
196 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
197
198 /* Special option string parsing callbacks: */
199 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
200 "bind the first N tasks to these specific cpus (the rest is unbound)",
201 parse_cpus_opt),
202 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
203 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
204 parse_nodes_opt),
205 OPT_END()
206};
207
208static const char * const bench_numa_usage[] = {
209 "perf bench numa <options>",
210 NULL
211};
212
213static const char * const numa_usage[] = {
214 "perf bench numa mem [<options>]",
215 NULL
216};
217
218static cpu_set_t bind_to_cpu(int target_cpu)
219{
220 cpu_set_t orig_mask, mask;
221 int ret;
222
223 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
224 BUG_ON(ret);
225
226 CPU_ZERO(&mask);
227
228 if (target_cpu == -1) {
229 int cpu;
230
231 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
232 CPU_SET(cpu, &mask);
233 } else {
234 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
235 CPU_SET(target_cpu, &mask);
236 }
237
238 ret = sched_setaffinity(0, sizeof(mask), &mask);
239 BUG_ON(ret);
240
241 return orig_mask;
242}
243
244static cpu_set_t bind_to_node(int target_node)
245{
246 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
247 cpu_set_t orig_mask, mask;
248 int cpu;
249 int ret;
250
251 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
252 BUG_ON(!cpus_per_node);
253
254 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
255 BUG_ON(ret);
256
257 CPU_ZERO(&mask);
258
259 if (target_node == -1) {
260 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
261 CPU_SET(cpu, &mask);
262 } else {
263 int cpu_start = (target_node + 0) * cpus_per_node;
264 int cpu_stop = (target_node + 1) * cpus_per_node;
265
266 BUG_ON(cpu_stop > g->p.nr_cpus);
267
268 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
269 CPU_SET(cpu, &mask);
270 }
271
272 ret = sched_setaffinity(0, sizeof(mask), &mask);
273 BUG_ON(ret);
274
275 return orig_mask;
276}
277
278static void bind_to_cpumask(cpu_set_t mask)
279{
280 int ret;
281
282 ret = sched_setaffinity(0, sizeof(mask), &mask);
283 BUG_ON(ret);
284}
285
286static void mempol_restore(void)
287{
288 int ret;
289
290 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
291
292 BUG_ON(ret);
293}
294
295static void bind_to_memnode(int node)
296{
297 unsigned long nodemask;
298 int ret;
299
300 if (node == -1)
301 return;
302
3c52b658 303 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
1c13f3c9
IM
304 nodemask = 1L << node;
305
306 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
307 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
308
309 BUG_ON(ret);
310}
311
312#define HPSIZE (2*1024*1024)
313
314#define set_taskname(fmt...) \
315do { \
316 char name[20]; \
317 \
318 snprintf(name, 20, fmt); \
319 prctl(PR_SET_NAME, name); \
320} while (0)
321
322static u8 *alloc_data(ssize_t bytes0, int map_flags,
323 int init_zero, int init_cpu0, int thp, int init_random)
324{
325 cpu_set_t orig_mask;
326 ssize_t bytes;
327 u8 *buf;
328 int ret;
329
330 if (!bytes0)
331 return NULL;
332
333 /* Allocate and initialize all memory on CPU#0: */
334 if (init_cpu0) {
335 orig_mask = bind_to_node(0);
336 bind_to_memnode(0);
337 }
338
339 bytes = bytes0 + HPSIZE;
340
341 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
342 BUG_ON(buf == (void *)-1);
343
344 if (map_flags == MAP_PRIVATE) {
345 if (thp > 0) {
346 ret = madvise(buf, bytes, MADV_HUGEPAGE);
347 if (ret && !g->print_once) {
348 g->print_once = 1;
349 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
350 }
351 }
352 if (thp < 0) {
353 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
354 if (ret && !g->print_once) {
355 g->print_once = 1;
356 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
357 }
358 }
359 }
360
361 if (init_zero) {
362 bzero(buf, bytes);
363 } else {
364 /* Initialize random contents, different in each word: */
365 if (init_random) {
366 u64 *wbuf = (void *)buf;
367 long off = rand();
368 long i;
369
370 for (i = 0; i < bytes/8; i++)
371 wbuf[i] = i + off;
372 }
373 }
374
375 /* Align to 2MB boundary: */
376 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
377
378 /* Restore affinity: */
379 if (init_cpu0) {
380 bind_to_cpumask(orig_mask);
381 mempol_restore();
382 }
383
384 return buf;
385}
386
387static void free_data(void *data, ssize_t bytes)
388{
389 int ret;
390
391 if (!data)
392 return;
393
394 ret = munmap(data, bytes);
395 BUG_ON(ret);
396}
397
398/*
399 * Create a shared memory buffer that can be shared between processes, zeroed:
400 */
401static void * zalloc_shared_data(ssize_t bytes)
402{
403 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
404}
405
406/*
407 * Create a shared memory buffer that can be shared between processes:
408 */
409static void * setup_shared_data(ssize_t bytes)
410{
411 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
412}
413
414/*
415 * Allocate process-local memory - this will either be shared between
416 * threads of this process, or only be accessed by this thread:
417 */
418static void * setup_private_data(ssize_t bytes)
419{
420 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
421}
422
423/*
424 * Return a process-shared (global) mutex:
425 */
426static void init_global_mutex(pthread_mutex_t *mutex)
427{
428 pthread_mutexattr_t attr;
429
430 pthread_mutexattr_init(&attr);
431 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
432 pthread_mutex_init(mutex, &attr);
433}
434
435static int parse_cpu_list(const char *arg)
436{
437 p0.cpu_list_str = strdup(arg);
438
439 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
440
441 return 0;
442}
443
b81a48ea 444static int parse_setup_cpu_list(void)
1c13f3c9
IM
445{
446 struct thread_data *td;
447 char *str0, *str;
448 int t;
449
450 if (!g->p.cpu_list_str)
b81a48ea 451 return 0;
1c13f3c9
IM
452
453 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
454
455 str0 = str = strdup(g->p.cpu_list_str);
456 t = 0;
457
458 BUG_ON(!str);
459
460 tprintf("# binding tasks to CPUs:\n");
461 tprintf("# ");
462
463 while (true) {
464 int bind_cpu, bind_cpu_0, bind_cpu_1;
465 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
466 int bind_len;
467 int step;
468 int mul;
469
470 tok = strsep(&str, ",");
471 if (!tok)
472 break;
473
474 tok_end = strstr(tok, "-");
475
476 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
477 if (!tok_end) {
478 /* Single CPU specified: */
479 bind_cpu_0 = bind_cpu_1 = atol(tok);
480 } else {
481 /* CPU range specified (for example: "5-11"): */
482 bind_cpu_0 = atol(tok);
483 bind_cpu_1 = atol(tok_end + 1);
484 }
485
486 step = 1;
487 tok_step = strstr(tok, "#");
488 if (tok_step) {
489 step = atol(tok_step + 1);
490 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
491 }
492
493 /*
494 * Mask length.
495 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
496 * where the _4 means the next 4 CPUs are allowed.
497 */
498 bind_len = 1;
499 tok_len = strstr(tok, "_");
500 if (tok_len) {
501 bind_len = atol(tok_len + 1);
502 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
503 }
504
505 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
506 mul = 1;
507 tok_mul = strstr(tok, "x");
508 if (tok_mul) {
509 mul = atol(tok_mul + 1);
510 BUG_ON(mul <= 0);
511 }
512
513 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
514
b81a48ea
PH
515 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
516 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
517 return -1;
518 }
519
520 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
1c13f3c9
IM
521 BUG_ON(bind_cpu_0 > bind_cpu_1);
522
523 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
524 int i;
525
526 for (i = 0; i < mul; i++) {
527 int cpu;
528
529 if (t >= g->p.nr_tasks) {
530 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
531 goto out;
532 }
533 td = g->threads + t;
534
535 if (t)
536 tprintf(",");
537 if (bind_len > 1) {
538 tprintf("%2d/%d", bind_cpu, bind_len);
539 } else {
540 tprintf("%2d", bind_cpu);
541 }
542
543 CPU_ZERO(&td->bind_cpumask);
544 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
545 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
546 CPU_SET(cpu, &td->bind_cpumask);
547 }
548 t++;
549 }
550 }
551 }
552out:
553
554 tprintf("\n");
555
556 if (t < g->p.nr_tasks)
557 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
558
559 free(str0);
b81a48ea 560 return 0;
1c13f3c9
IM
561}
562
563static int parse_cpus_opt(const struct option *opt __maybe_unused,
564 const char *arg, int unset __maybe_unused)
565{
566 if (!arg)
567 return -1;
568
569 return parse_cpu_list(arg);
570}
571
572static int parse_node_list(const char *arg)
573{
574 p0.node_list_str = strdup(arg);
575
576 dprintf("got NODE list: {%s}\n", p0.node_list_str);
577
578 return 0;
579}
580
b81a48ea 581static int parse_setup_node_list(void)
1c13f3c9
IM
582{
583 struct thread_data *td;
584 char *str0, *str;
585 int t;
586
587 if (!g->p.node_list_str)
b81a48ea 588 return 0;
1c13f3c9
IM
589
590 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
591
592 str0 = str = strdup(g->p.node_list_str);
593 t = 0;
594
595 BUG_ON(!str);
596
597 tprintf("# binding tasks to NODEs:\n");
598 tprintf("# ");
599
600 while (true) {
601 int bind_node, bind_node_0, bind_node_1;
602 char *tok, *tok_end, *tok_step, *tok_mul;
603 int step;
604 int mul;
605
606 tok = strsep(&str, ",");
607 if (!tok)
608 break;
609
610 tok_end = strstr(tok, "-");
611
612 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
613 if (!tok_end) {
614 /* Single NODE specified: */
615 bind_node_0 = bind_node_1 = atol(tok);
616 } else {
617 /* NODE range specified (for example: "5-11"): */
618 bind_node_0 = atol(tok);
619 bind_node_1 = atol(tok_end + 1);
620 }
621
622 step = 1;
623 tok_step = strstr(tok, "#");
624 if (tok_step) {
625 step = atol(tok_step + 1);
626 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
627 }
628
629 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
630 mul = 1;
631 tok_mul = strstr(tok, "x");
632 if (tok_mul) {
633 mul = atol(tok_mul + 1);
634 BUG_ON(mul <= 0);
635 }
636
637 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
638
b81a48ea
PH
639 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
640 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
641 return -1;
642 }
643
644 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
1c13f3c9
IM
645 BUG_ON(bind_node_0 > bind_node_1);
646
647 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
648 int i;
649
650 for (i = 0; i < mul; i++) {
651 if (t >= g->p.nr_tasks) {
652 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
653 goto out;
654 }
655 td = g->threads + t;
656
657 if (!t)
658 tprintf(" %2d", bind_node);
659 else
660 tprintf(",%2d", bind_node);
661
662 td->bind_node = bind_node;
663 t++;
664 }
665 }
666 }
667out:
668
669 tprintf("\n");
670
671 if (t < g->p.nr_tasks)
672 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
673
674 free(str0);
b81a48ea 675 return 0;
1c13f3c9
IM
676}
677
678static int parse_nodes_opt(const struct option *opt __maybe_unused,
679 const char *arg, int unset __maybe_unused)
680{
681 if (!arg)
682 return -1;
683
684 return parse_node_list(arg);
685
686 return 0;
687}
688
689#define BIT(x) (1ul << x)
690
691static inline uint32_t lfsr_32(uint32_t lfsr)
692{
693 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
694 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
695}
696
697/*
698 * Make sure there's real data dependency to RAM (when read
699 * accesses are enabled), so the compiler, the CPU and the
700 * kernel (KSM, zero page, etc.) cannot optimize away RAM
701 * accesses:
702 */
703static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
704{
705 if (g->p.data_reads)
706 val += *data;
707 if (g->p.data_writes)
708 *data = val + 1;
709 return val;
710}
711
712/*
713 * The worker process does two types of work, a forwards going
714 * loop and a backwards going loop.
715 *
716 * We do this so that on multiprocessor systems we do not create
717 * a 'train' of processing, with highly synchronized processes,
718 * skewing the whole benchmark.
719 */
720static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
721{
722 long words = bytes/sizeof(u64);
723 u64 *data = (void *)__data;
724 long chunk_0, chunk_1;
725 u64 *d0, *d, *d1;
726 long off;
727 long i;
728
729 BUG_ON(!data && words);
730 BUG_ON(data && !words);
731
732 if (!data)
733 return val;
734
735 /* Very simple memset() work variant: */
736 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
737 bzero(data, bytes);
738 return val;
739 }
740
741 /* Spread out by PID/TID nr and by loop nr: */
742 chunk_0 = words/nr_max;
743 chunk_1 = words/g->p.nr_loops;
744 off = nr*chunk_0 + loop*chunk_1;
745
746 while (off >= words)
747 off -= words;
748
749 if (g->p.data_rand_walk) {
750 u32 lfsr = nr + loop + val;
751 int j;
752
753 for (i = 0; i < words/1024; i++) {
754 long start, end;
755
756 lfsr = lfsr_32(lfsr);
757
758 start = lfsr % words;
759 end = min(start + 1024, words-1);
760
761 if (g->p.data_zero_memset) {
762 bzero(data + start, (end-start) * sizeof(u64));
763 } else {
764 for (j = start; j < end; j++)
765 val = access_data(data + j, val);
766 }
767 }
768 } else if (!g->p.data_backwards || (nr + loop) & 1) {
769
770 d0 = data + off;
771 d = data + off + 1;
772 d1 = data + words;
773
774 /* Process data forwards: */
775 for (;;) {
776 if (unlikely(d >= d1))
777 d = data;
778 if (unlikely(d == d0))
779 break;
780
781 val = access_data(d, val);
782
783 d++;
784 }
785 } else {
786 /* Process data backwards: */
787
788 d0 = data + off;
789 d = data + off - 1;
790 d1 = data + words;
791
792 /* Process data forwards: */
793 for (;;) {
794 if (unlikely(d < data))
795 d = data + words-1;
796 if (unlikely(d == d0))
797 break;
798
799 val = access_data(d, val);
800
801 d--;
802 }
803 }
804
805 return val;
806}
807
808static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
809{
810 unsigned int cpu;
811
812 cpu = sched_getcpu();
813
814 g->threads[task_nr].curr_cpu = cpu;
815 prctl(0, bytes_worked);
816}
817
818#define MAX_NR_NODES 64
819
820/*
821 * Count the number of nodes a process's threads
822 * are spread out on.
823 *
824 * A count of 1 means that the process is compressed
825 * to a single node. A count of g->p.nr_nodes means it's
826 * spread out on the whole system.
827 */
828static int count_process_nodes(int process_nr)
829{
830 char node_present[MAX_NR_NODES] = { 0, };
831 int nodes;
832 int n, t;
833
834 for (t = 0; t < g->p.nr_threads; t++) {
835 struct thread_data *td;
836 int task_nr;
837 int node;
838
839 task_nr = process_nr*g->p.nr_threads + t;
840 td = g->threads + task_nr;
841
842 node = numa_node_of_cpu(td->curr_cpu);
1d90a685
PH
843 if (node < 0) /* curr_cpu was likely still -1 */
844 return 0;
845
1c13f3c9
IM
846 node_present[node] = 1;
847 }
848
849 nodes = 0;
850
851 for (n = 0; n < MAX_NR_NODES; n++)
852 nodes += node_present[n];
853
854 return nodes;
855}
856
857/*
858 * Count the number of distinct process-threads a node contains.
859 *
860 * A count of 1 means that the node contains only a single
861 * process. If all nodes on the system contain at most one
862 * process then we are well-converged.
863 */
864static int count_node_processes(int node)
865{
866 int processes = 0;
867 int t, p;
868
869 for (p = 0; p < g->p.nr_proc; p++) {
870 for (t = 0; t < g->p.nr_threads; t++) {
871 struct thread_data *td;
872 int task_nr;
873 int n;
874
875 task_nr = p*g->p.nr_threads + t;
876 td = g->threads + task_nr;
877
878 n = numa_node_of_cpu(td->curr_cpu);
879 if (n == node) {
880 processes++;
881 break;
882 }
883 }
884 }
885
886 return processes;
887}
888
889static void calc_convergence_compression(int *strong)
890{
891 unsigned int nodes_min, nodes_max;
892 int p;
893
894 nodes_min = -1;
895 nodes_max = 0;
896
897 for (p = 0; p < g->p.nr_proc; p++) {
898 unsigned int nodes = count_process_nodes(p);
899
1d90a685
PH
900 if (!nodes) {
901 *strong = 0;
902 return;
903 }
904
1c13f3c9
IM
905 nodes_min = min(nodes, nodes_min);
906 nodes_max = max(nodes, nodes_max);
907 }
908
909 /* Strong convergence: all threads compress on a single node: */
910 if (nodes_min == 1 && nodes_max == 1) {
911 *strong = 1;
912 } else {
913 *strong = 0;
914 tprintf(" {%d-%d}", nodes_min, nodes_max);
915 }
916}
917
918static void calc_convergence(double runtime_ns_max, double *convergence)
919{
920 unsigned int loops_done_min, loops_done_max;
921 int process_groups;
922 int nodes[MAX_NR_NODES];
923 int distance;
924 int nr_min;
925 int nr_max;
926 int strong;
927 int sum;
928 int nr;
929 int node;
930 int cpu;
931 int t;
932
933 if (!g->p.show_convergence && !g->p.measure_convergence)
934 return;
935
936 for (node = 0; node < g->p.nr_nodes; node++)
937 nodes[node] = 0;
938
939 loops_done_min = -1;
940 loops_done_max = 0;
941
942 for (t = 0; t < g->p.nr_tasks; t++) {
943 struct thread_data *td = g->threads + t;
944 unsigned int loops_done;
945
946 cpu = td->curr_cpu;
947
948 /* Not all threads have written it yet: */
949 if (cpu < 0)
950 continue;
951
952 node = numa_node_of_cpu(cpu);
953
954 nodes[node]++;
955
956 loops_done = td->loops_done;
957 loops_done_min = min(loops_done, loops_done_min);
958 loops_done_max = max(loops_done, loops_done_max);
959 }
960
961 nr_max = 0;
962 nr_min = g->p.nr_tasks;
963 sum = 0;
964
965 for (node = 0; node < g->p.nr_nodes; node++) {
966 nr = nodes[node];
967 nr_min = min(nr, nr_min);
968 nr_max = max(nr, nr_max);
969 sum += nr;
970 }
971 BUG_ON(nr_min > nr_max);
972
973 BUG_ON(sum > g->p.nr_tasks);
974
975 if (0 && (sum < g->p.nr_tasks))
976 return;
977
978 /*
979 * Count the number of distinct process groups present
980 * on nodes - when we are converged this will decrease
981 * to g->p.nr_proc:
982 */
983 process_groups = 0;
984
985 for (node = 0; node < g->p.nr_nodes; node++) {
986 int processes = count_node_processes(node);
987
988 nr = nodes[node];
989 tprintf(" %2d/%-2d", nr, processes);
990
991 process_groups += processes;
992 }
993
994 distance = nr_max - nr_min;
995
996 tprintf(" [%2d/%-2d]", distance, process_groups);
997
998 tprintf(" l:%3d-%-3d (%3d)",
999 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1000
1001 if (loops_done_min && loops_done_max) {
1002 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1003
1004 tprintf(" [%4.1f%%]", skew * 100.0);
1005 }
1006
1007 calc_convergence_compression(&strong);
1008
1009 if (strong && process_groups == g->p.nr_proc) {
1010 if (!*convergence) {
1011 *convergence = runtime_ns_max;
a8ad8329 1012 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1c13f3c9
IM
1013 if (g->p.measure_convergence) {
1014 g->all_converged = true;
1015 g->stop_work = true;
1016 }
1017 }
1018 } else {
1019 if (*convergence) {
a8ad8329 1020 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1c13f3c9
IM
1021 *convergence = 0;
1022 }
1023 tprintf("\n");
1024 }
1025}
1026
1027static void show_summary(double runtime_ns_max, int l, double *convergence)
1028{
1029 tprintf("\r # %5.1f%% [%.1f mins]",
a8ad8329 1030 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1c13f3c9
IM
1031
1032 calc_convergence(runtime_ns_max, convergence);
1033
1034 if (g->p.show_details >= 0)
1035 fflush(stdout);
1036}
1037
1038static void *worker_thread(void *__tdata)
1039{
1040 struct thread_data *td = __tdata;
1041 struct timeval start0, start, stop, diff;
1042 int process_nr = td->process_nr;
1043 int thread_nr = td->thread_nr;
1044 unsigned long last_perturbance;
1045 int task_nr = td->task_nr;
1046 int details = g->p.show_details;
1047 int first_task, last_task;
1048 double convergence = 0;
1049 u64 val = td->val;
1050 double runtime_ns_max;
1051 u8 *global_data;
1052 u8 *process_data;
1053 u8 *thread_data;
1054 u64 bytes_done;
1055 long work_done;
1056 u32 l;
b64aa553 1057 struct rusage rusage;
1c13f3c9
IM
1058
1059 bind_to_cpumask(td->bind_cpumask);
1060 bind_to_memnode(td->bind_node);
1061
1062 set_taskname("thread %d/%d", process_nr, thread_nr);
1063
1064 global_data = g->data;
1065 process_data = td->process_data;
1066 thread_data = setup_private_data(g->p.bytes_thread);
1067
1068 bytes_done = 0;
1069
1070 last_task = 0;
1071 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1072 last_task = 1;
1073
1074 first_task = 0;
1075 if (process_nr == 0 && thread_nr == 0)
1076 first_task = 1;
1077
1078 if (details >= 2) {
1079 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1080 process_nr, thread_nr, global_data, process_data, thread_data);
1081 }
1082
1083 if (g->p.serialize_startup) {
1084 pthread_mutex_lock(&g->startup_mutex);
1085 g->nr_tasks_started++;
1086 pthread_mutex_unlock(&g->startup_mutex);
1087
1088 /* Here we will wait for the main process to start us all at once: */
1089 pthread_mutex_lock(&g->start_work_mutex);
1090 g->nr_tasks_working++;
1091
1092 /* Last one wake the main process: */
1093 if (g->nr_tasks_working == g->p.nr_tasks)
1094 pthread_mutex_unlock(&g->startup_done_mutex);
1095
1096 pthread_mutex_unlock(&g->start_work_mutex);
1097 }
1098
1099 gettimeofday(&start0, NULL);
1100
1101 start = stop = start0;
1102 last_perturbance = start.tv_sec;
1103
1104 for (l = 0; l < g->p.nr_loops; l++) {
1105 start = stop;
1106
1107 if (g->stop_work)
1108 break;
1109
1110 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1111 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1112 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1113
1114 if (g->p.sleep_usecs) {
1115 pthread_mutex_lock(td->process_lock);
1116 usleep(g->p.sleep_usecs);
1117 pthread_mutex_unlock(td->process_lock);
1118 }
1119 /*
1120 * Amount of work to be done under a process-global lock:
1121 */
1122 if (g->p.bytes_process_locked) {
1123 pthread_mutex_lock(td->process_lock);
1124 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1125 pthread_mutex_unlock(td->process_lock);
1126 }
1127
1128 work_done = g->p.bytes_global + g->p.bytes_process +
1129 g->p.bytes_process_locked + g->p.bytes_thread;
1130
1131 update_curr_cpu(task_nr, work_done);
1132 bytes_done += work_done;
1133
1134 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1135 continue;
1136
1137 td->loops_done = l;
1138
1139 gettimeofday(&stop, NULL);
1140
1141 /* Check whether our max runtime timed out: */
1142 if (g->p.nr_secs) {
1143 timersub(&stop, &start0, &diff);
2100f778 1144 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1c13f3c9
IM
1145 g->stop_work = true;
1146 break;
1147 }
1148 }
1149
1150 /* Update the summary at most once per second: */
1151 if (start.tv_sec == stop.tv_sec)
1152 continue;
1153
1154 /*
1155 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1156 * by migrating to CPU#0:
1157 */
1158 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1159 cpu_set_t orig_mask;
1160 int target_cpu;
1161 int this_cpu;
1162
1163 last_perturbance = stop.tv_sec;
1164
1165 /*
1166 * Depending on where we are running, move into
1167 * the other half of the system, to create some
1168 * real disturbance:
1169 */
1170 this_cpu = g->threads[task_nr].curr_cpu;
1171 if (this_cpu < g->p.nr_cpus/2)
1172 target_cpu = g->p.nr_cpus-1;
1173 else
1174 target_cpu = 0;
1175
1176 orig_mask = bind_to_cpu(target_cpu);
1177
1178 /* Here we are running on the target CPU already */
1179 if (details >= 1)
1180 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1181
1182 bind_to_cpumask(orig_mask);
1183 }
1184
1185 if (details >= 3) {
1186 timersub(&stop, &start, &diff);
a8ad8329
ACM
1187 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1188 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1c13f3c9
IM
1189
1190 if (details >= 0) {
2100f778 1191 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1c13f3c9
IM
1192 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1193 }
1194 fflush(stdout);
1195 }
1196 if (!last_task)
1197 continue;
1198
1199 timersub(&stop, &start0, &diff);
a8ad8329
ACM
1200 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1201 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1c13f3c9
IM
1202
1203 show_summary(runtime_ns_max, l, &convergence);
1204 }
1205
1206 gettimeofday(&stop, NULL);
1207 timersub(&stop, &start0, &diff);
a8ad8329
ACM
1208 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1209 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1210 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
b64aa553
PH
1211
1212 getrusage(RUSAGE_THREAD, &rusage);
a8ad8329
ACM
1213 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1214 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1215 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1216 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1c13f3c9
IM
1217
1218 free_data(thread_data, g->p.bytes_thread);
1219
1220 pthread_mutex_lock(&g->stop_work_mutex);
1221 g->bytes_done += bytes_done;
1222 pthread_mutex_unlock(&g->stop_work_mutex);
1223
1224 return NULL;
1225}
1226
1227/*
1228 * A worker process starts a couple of threads:
1229 */
1230static void worker_process(int process_nr)
1231{
1232 pthread_mutex_t process_lock;
1233 struct thread_data *td;
1234 pthread_t *pthreads;
1235 u8 *process_data;
1236 int task_nr;
1237 int ret;
1238 int t;
1239
1240 pthread_mutex_init(&process_lock, NULL);
1241 set_taskname("process %d", process_nr);
1242
1243 /*
1244 * Pick up the memory policy and the CPU binding of our first thread,
1245 * so that we initialize memory accordingly:
1246 */
1247 task_nr = process_nr*g->p.nr_threads;
1248 td = g->threads + task_nr;
1249
1250 bind_to_memnode(td->bind_node);
1251 bind_to_cpumask(td->bind_cpumask);
1252
1253 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1254 process_data = setup_private_data(g->p.bytes_process);
1255
1256 if (g->p.show_details >= 3) {
1257 printf(" # process %2d global mem: %p, process mem: %p\n",
1258 process_nr, g->data, process_data);
1259 }
1260
1261 for (t = 0; t < g->p.nr_threads; t++) {
1262 task_nr = process_nr*g->p.nr_threads + t;
1263 td = g->threads + task_nr;
1264
1265 td->process_data = process_data;
1266 td->process_nr = process_nr;
1267 td->thread_nr = t;
1268 td->task_nr = task_nr;
1269 td->val = rand();
1270 td->curr_cpu = -1;
1271 td->process_lock = &process_lock;
1272
1273 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1274 BUG_ON(ret);
1275 }
1276
1277 for (t = 0; t < g->p.nr_threads; t++) {
1278 ret = pthread_join(pthreads[t], NULL);
1279 BUG_ON(ret);
1280 }
1281
1282 free_data(process_data, g->p.bytes_process);
1283 free(pthreads);
1284}
1285
1286static void print_summary(void)
1287{
1288 if (g->p.show_details < 0)
1289 return;
1290
1291 printf("\n ###\n");
1292 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1293 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1294 printf(" # %5dx %5ldMB global shared mem operations\n",
1295 g->p.nr_loops, g->p.bytes_global/1024/1024);
1296 printf(" # %5dx %5ldMB process shared mem operations\n",
1297 g->p.nr_loops, g->p.bytes_process/1024/1024);
1298 printf(" # %5dx %5ldMB thread local mem operations\n",
1299 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1300
1301 printf(" ###\n");
1302
1303 printf("\n ###\n"); fflush(stdout);
1304}
1305
1306static void init_thread_data(void)
1307{
1308 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1309 int t;
1310
1311 g->threads = zalloc_shared_data(size);
1312
1313 for (t = 0; t < g->p.nr_tasks; t++) {
1314 struct thread_data *td = g->threads + t;
1315 int cpu;
1316
1317 /* Allow all nodes by default: */
1318 td->bind_node = -1;
1319
1320 /* Allow all CPUs by default: */
1321 CPU_ZERO(&td->bind_cpumask);
1322 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1323 CPU_SET(cpu, &td->bind_cpumask);
1324 }
1325}
1326
1327static void deinit_thread_data(void)
1328{
1329 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1330
1331 free_data(g->threads, size);
1332}
1333
1334static int init(void)
1335{
1336 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1337
1338 /* Copy over options: */
1339 g->p = p0;
1340
1341 g->p.nr_cpus = numa_num_configured_cpus();
1342
1343 g->p.nr_nodes = numa_max_node() + 1;
1344
1345 /* char array in count_process_nodes(): */
1346 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1347
1348 if (g->p.show_quiet && !g->p.show_details)
1349 g->p.show_details = -1;
1350
1351 /* Some memory should be specified: */
1352 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1353 return -1;
1354
1355 if (g->p.mb_global_str) {
1356 g->p.mb_global = atof(g->p.mb_global_str);
1357 BUG_ON(g->p.mb_global < 0);
1358 }
1359
1360 if (g->p.mb_proc_str) {
1361 g->p.mb_proc = atof(g->p.mb_proc_str);
1362 BUG_ON(g->p.mb_proc < 0);
1363 }
1364
1365 if (g->p.mb_proc_locked_str) {
1366 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1367 BUG_ON(g->p.mb_proc_locked < 0);
1368 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1369 }
1370
1371 if (g->p.mb_thread_str) {
1372 g->p.mb_thread = atof(g->p.mb_thread_str);
1373 BUG_ON(g->p.mb_thread < 0);
1374 }
1375
1376 BUG_ON(g->p.nr_threads <= 0);
1377 BUG_ON(g->p.nr_proc <= 0);
1378
1379 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1380
1381 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1382 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1383 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1384 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1385
1386 g->data = setup_shared_data(g->p.bytes_global);
1387
1388 /* Startup serialization: */
1389 init_global_mutex(&g->start_work_mutex);
1390 init_global_mutex(&g->startup_mutex);
1391 init_global_mutex(&g->startup_done_mutex);
1392 init_global_mutex(&g->stop_work_mutex);
1393
1394 init_thread_data();
1395
1396 tprintf("#\n");
b81a48ea
PH
1397 if (parse_setup_cpu_list() || parse_setup_node_list())
1398 return -1;
1c13f3c9
IM
1399 tprintf("#\n");
1400
1401 print_summary();
1402
1403 return 0;
1404}
1405
1406static void deinit(void)
1407{
1408 free_data(g->data, g->p.bytes_global);
1409 g->data = NULL;
1410
1411 deinit_thread_data();
1412
1413 free_data(g, sizeof(*g));
1414 g = NULL;
1415}
1416
1417/*
1418 * Print a short or long result, depending on the verbosity setting:
1419 */
1420static void print_res(const char *name, double val,
1421 const char *txt_unit, const char *txt_short, const char *txt_long)
1422{
1423 if (!name)
1424 name = "main,";
1425
24f1ced1 1426 if (!g->p.show_quiet)
1c13f3c9
IM
1427 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1428 else
1429 printf(" %14.3f %s\n", val, txt_long);
1430}
1431
1432static int __bench_numa(const char *name)
1433{
1434 struct timeval start, stop, diff;
1435 u64 runtime_ns_min, runtime_ns_sum;
1436 pid_t *pids, pid, wpid;
1437 double delta_runtime;
1438 double runtime_avg;
1439 double runtime_sec_max;
1440 double runtime_sec_min;
1441 int wait_stat;
1442 double bytes;
b64aa553 1443 int i, t, p;
1c13f3c9
IM
1444
1445 if (init())
1446 return -1;
1447
1448 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1449 pid = -1;
1450
1451 /* All threads try to acquire it, this way we can wait for them to start up: */
1452 pthread_mutex_lock(&g->start_work_mutex);
1453
1454 if (g->p.serialize_startup) {
1455 tprintf(" #\n");
1456 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1457 }
1458
1459 gettimeofday(&start, NULL);
1460
1461 for (i = 0; i < g->p.nr_proc; i++) {
1462 pid = fork();
1463 dprintf(" # process %2d: PID %d\n", i, pid);
1464
1465 BUG_ON(pid < 0);
1466 if (!pid) {
1467 /* Child process: */
1468 worker_process(i);
1469
1470 exit(0);
1471 }
1472 pids[i] = pid;
1473
1474 }
1475 /* Wait for all the threads to start up: */
1476 while (g->nr_tasks_started != g->p.nr_tasks)
a8ad8329 1477 usleep(USEC_PER_MSEC);
1c13f3c9
IM
1478
1479 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1480
1481 if (g->p.serialize_startup) {
1482 double startup_sec;
1483
1484 pthread_mutex_lock(&g->startup_done_mutex);
1485
1486 /* This will start all threads: */
1487 pthread_mutex_unlock(&g->start_work_mutex);
1488
1489 /* This mutex is locked - the last started thread will wake us: */
1490 pthread_mutex_lock(&g->startup_done_mutex);
1491
1492 gettimeofday(&stop, NULL);
1493
1494 timersub(&stop, &start, &diff);
1495
a8ad8329
ACM
1496 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1497 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1498 startup_sec /= NSEC_PER_SEC;
1c13f3c9
IM
1499
1500 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1501 tprintf(" #\n");
1502
1503 start = stop;
1504 pthread_mutex_unlock(&g->startup_done_mutex);
1505 } else {
1506 gettimeofday(&start, NULL);
1507 }
1508
1509 /* Parent process: */
1510
1511
1512 for (i = 0; i < g->p.nr_proc; i++) {
1513 wpid = waitpid(pids[i], &wait_stat, 0);
1514 BUG_ON(wpid < 0);
1515 BUG_ON(!WIFEXITED(wait_stat));
1516
1517 }
1518
1519 runtime_ns_sum = 0;
1520 runtime_ns_min = -1LL;
1521
1522 for (t = 0; t < g->p.nr_tasks; t++) {
1523 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1524
1525 runtime_ns_sum += thread_runtime_ns;
1526 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1527 }
1528
1529 gettimeofday(&stop, NULL);
1530 timersub(&stop, &start, &diff);
1531
1532 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1533
1534 tprintf("\n ###\n");
1535 tprintf("\n");
1536
a8ad8329
ACM
1537 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1538 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1539 runtime_sec_max /= NSEC_PER_SEC;
1c13f3c9 1540
a8ad8329 1541 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1c13f3c9
IM
1542
1543 bytes = g->bytes_done;
a8ad8329 1544 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1c13f3c9
IM
1545
1546 if (g->p.measure_convergence) {
1547 print_res(name, runtime_sec_max,
1548 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1549 }
1550
1551 print_res(name, runtime_sec_max,
1552 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1553
1554 print_res(name, runtime_sec_min,
1555 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1556
1557 print_res(name, runtime_avg,
1558 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1559
1560 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1561 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1562 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1563
1564 print_res(name, bytes / g->p.nr_tasks / 1e9,
1565 "GB,", "data/thread", "GB data processed, per thread");
1566
1567 print_res(name, bytes / 1e9,
1568 "GB,", "data-total", "GB data processed, total");
1569
a8ad8329 1570 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1c13f3c9
IM
1571 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1572
1573 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1574 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1575
1576 print_res(name, bytes / runtime_sec_max / 1e9,
1577 "GB/sec,", "total-speed", "GB/sec total speed");
1578
b64aa553 1579 if (g->p.show_details >= 2) {
3aff8ba0 1580 char tname[14 + 2 * 10 + 1];
b64aa553
PH
1581 struct thread_data *td;
1582 for (p = 0; p < g->p.nr_proc; p++) {
1583 for (t = 0; t < g->p.nr_threads; t++) {
3aff8ba0 1584 memset(tname, 0, sizeof(tname));
b64aa553 1585 td = g->threads + p*g->p.nr_threads + t;
3aff8ba0 1586 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
b64aa553
PH
1587 print_res(tname, td->speed_gbs,
1588 "GB/sec", "thread-speed", "GB/sec/thread speed");
a8ad8329 1589 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
b64aa553 1590 "secs", "thread-system-time", "system CPU time/thread");
a8ad8329 1591 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
b64aa553
PH
1592 "secs", "thread-user-time", "user CPU time/thread");
1593 }
1594 }
1595 }
1596
1c13f3c9
IM
1597 free(pids);
1598
1599 deinit();
1600
1601 return 0;
1602}
1603
1604#define MAX_ARGS 50
1605
1606static int command_size(const char **argv)
1607{
1608 int size = 0;
1609
1610 while (*argv) {
1611 size++;
1612 argv++;
1613 }
1614
1615 BUG_ON(size >= MAX_ARGS);
1616
1617 return size;
1618}
1619
1620static void init_params(struct params *p, const char *name, int argc, const char **argv)
1621{
1622 int i;
1623
1624 printf("\n # Running %s \"perf bench numa", name);
1625
1626 for (i = 0; i < argc; i++)
1627 printf(" %s", argv[i]);
1628
1629 printf("\"\n");
1630
1631 memset(p, 0, sizeof(*p));
1632
1633 /* Initialize nonzero defaults: */
1634
1635 p->serialize_startup = 1;
1636 p->data_reads = true;
1637 p->data_writes = true;
1638 p->data_backwards = true;
1639 p->data_rand_walk = true;
1640 p->nr_loops = -1;
1641 p->init_random = true;
40ba93e3
RR
1642 p->mb_global_str = "1";
1643 p->nr_proc = 1;
1644 p->nr_threads = 1;
1645 p->nr_secs = 5;
0fae799e 1646 p->run_all = argc == 1;
1c13f3c9
IM
1647}
1648
1649static int run_bench_numa(const char *name, const char **argv)
1650{
1651 int argc = command_size(argv);
1652
1653 init_params(&p0, name, argc, argv);
1654 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1655 if (argc)
1656 goto err;
1657
1658 if (__bench_numa(name))
1659 goto err;
1660
1661 return 0;
1662
1663err:
1c13f3c9
IM
1664 return -1;
1665}
1666
1667#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1668#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1669
1670#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1671#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1672
1673#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1674#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1675
1676/*
1677 * The built-in test-suite executed by "perf bench numa -a".
1678 *
1679 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1680 */
1681static const char *tests[][MAX_ARGS] = {
1682 /* Basic single-stream NUMA bandwidth measurements: */
1683 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1684 "-C" , "0", "-M", "0", OPT_BW_RAM },
1685 { "RAM-bw-local-NOTHP,",
1686 "mem", "-p", "1", "-t", "1", "-P", "1024",
1687 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1688 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1689 "-C" , "0", "-M", "1", OPT_BW_RAM },
1690
1691 /* 2-stream NUMA bandwidth measurements: */
1692 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1693 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1694 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1695 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1696
1697 /* Cross-stream NUMA bandwidth measurement: */
1698 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1699 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1700
1701 /* Convergence latency measurements: */
1702 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1703 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1704 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1705 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1706 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1707 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1708 { " 4x4-convergence-NOTHP,",
1709 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1710 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1711 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1712 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1713 { " 8x4-convergence-NOTHP,",
1714 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1715 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1716 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1717 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1718 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1719 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1720
1721 /* Various NUMA process/thread layout bandwidth measurements: */
1722 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1723 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1724 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1725 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1726 { " 8x1-bw-process-NOTHP,",
1727 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1728 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1729
1730 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1731 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1732 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1733 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1734
1735 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1736 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1737 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1738 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1739 { " 4x8-bw-thread-NOTHP,",
1740 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1741 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1742 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1743
1744 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1745 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1746
1747 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1748 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1749 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1750 { "numa01-bw-thread-NOTHP,",
1751 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1752};
1753
1754static int bench_all(void)
1755{
1756 int nr = ARRAY_SIZE(tests);
1757 int ret;
1758 int i;
1759
1760 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1761 BUG_ON(ret < 0);
1762
1763 for (i = 0; i < nr; i++) {
b81a48ea 1764 run_bench_numa(tests[i][0], tests[i] + 1);
1c13f3c9
IM
1765 }
1766
1767 printf("\n");
1768
1769 return 0;
1770}
1771
b0ad8ea6 1772int bench_numa(int argc, const char **argv)
1c13f3c9
IM
1773{
1774 init_params(&p0, "main,", argc, argv);
1775 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1776 if (argc)
1777 goto err;
1778
1779 if (p0.run_all)
1780 return bench_all();
1781
1782 if (__bench_numa(NULL))
1783 goto err;
1784
1785 return 0;
1786
1787err:
1788 usage_with_options(numa_usage, options);
1789 return -1;
1790}