Merge tag 'rtc-5.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux-2.6-block.git] / tools / lib / rbtree.c
CommitLineData
3f735377
ACM
1/*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20
21 linux/lib/rbtree.c
22*/
23
24#include <linux/rbtree_augmented.h>
3aef2cad 25#include <linux/export.h>
3f735377
ACM
26
27/*
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
29 *
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
35 * of black nodes.
36 *
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
41 *
42 * We shall indicate color with case, where black nodes are uppercase and red
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
45 */
46
3aef2cad
DB
47/*
48 * Notes on lockless lookups:
49 *
50 * All stores to the tree structure (rb_left and rb_right) must be done using
51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52 * tree structure as seen in program order.
53 *
54 * These two requirements will allow lockless iteration of the tree -- not
55 * correct iteration mind you, tree rotations are not atomic so a lookup might
56 * miss entire subtrees.
57 *
58 * But they do guarantee that any such traversal will only see valid elements
59 * and that it will indeed complete -- does not get stuck in a loop.
60 *
61 * It also guarantees that if the lookup returns an element it is the 'correct'
62 * one. But not returning an element does _NOT_ mean it's not present.
63 *
64 * NOTE:
65 *
66 * Stores to __rb_parent_color are not important for simple lookups so those
67 * are left undone as of now. Nor did I check for loops involving parent
68 * pointers.
69 */
70
3f735377
ACM
71static inline void rb_set_black(struct rb_node *rb)
72{
73 rb->__rb_parent_color |= RB_BLACK;
74}
75
76static inline struct rb_node *rb_red_parent(struct rb_node *red)
77{
78 return (struct rb_node *)red->__rb_parent_color;
79}
80
81/*
82 * Helper function for rotations:
83 * - old's parent and color get assigned to new
84 * - old gets assigned new as a parent and 'color' as a color.
85 */
86static inline void
87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88 struct rb_root *root, int color)
89{
90 struct rb_node *parent = rb_parent(old);
91 new->__rb_parent_color = old->__rb_parent_color;
92 rb_set_parent_color(old, new, color);
93 __rb_change_child(old, new, parent, root);
94}
95
96static __always_inline void
97__rb_insert(struct rb_node *node, struct rb_root *root,
3aef2cad 98 bool newleft, struct rb_node **leftmost,
3f735377
ACM
99 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
100{
101 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
102
3aef2cad
DB
103 if (newleft)
104 *leftmost = node;
105
3f735377
ACM
106 while (true) {
107 /*
3aef2cad 108 * Loop invariant: node is red.
3f735377 109 */
3aef2cad
DB
110 if (unlikely(!parent)) {
111 /*
112 * The inserted node is root. Either this is the
113 * first node, or we recursed at Case 1 below and
114 * are no longer violating 4).
115 */
3f735377
ACM
116 rb_set_parent_color(node, NULL, RB_BLACK);
117 break;
3aef2cad
DB
118 }
119
120 /*
121 * If there is a black parent, we are done.
122 * Otherwise, take some corrective action as,
123 * per 4), we don't want a red root or two
124 * consecutive red nodes.
125 */
126 if(rb_is_black(parent))
3f735377
ACM
127 break;
128
129 gparent = rb_red_parent(parent);
130
131 tmp = gparent->rb_right;
132 if (parent != tmp) { /* parent == gparent->rb_left */
133 if (tmp && rb_is_red(tmp)) {
134 /*
3aef2cad 135 * Case 1 - node's uncle is red (color flips).
3f735377
ACM
136 *
137 * G g
138 * / \ / \
139 * p u --> P U
140 * / /
141 * n n
142 *
143 * However, since g's parent might be red, and
144 * 4) does not allow this, we need to recurse
145 * at g.
146 */
147 rb_set_parent_color(tmp, gparent, RB_BLACK);
148 rb_set_parent_color(parent, gparent, RB_BLACK);
149 node = gparent;
150 parent = rb_parent(node);
151 rb_set_parent_color(node, parent, RB_RED);
152 continue;
153 }
154
155 tmp = parent->rb_right;
156 if (node == tmp) {
157 /*
3aef2cad
DB
158 * Case 2 - node's uncle is black and node is
159 * the parent's right child (left rotate at parent).
3f735377
ACM
160 *
161 * G G
162 * / \ / \
163 * p U --> n U
164 * \ /
165 * n p
166 *
167 * This still leaves us in violation of 4), the
168 * continuation into Case 3 will fix that.
169 */
3aef2cad
DB
170 tmp = node->rb_left;
171 WRITE_ONCE(parent->rb_right, tmp);
172 WRITE_ONCE(node->rb_left, parent);
3f735377
ACM
173 if (tmp)
174 rb_set_parent_color(tmp, parent,
175 RB_BLACK);
176 rb_set_parent_color(parent, node, RB_RED);
177 augment_rotate(parent, node);
178 parent = node;
179 tmp = node->rb_right;
180 }
181
182 /*
3aef2cad
DB
183 * Case 3 - node's uncle is black and node is
184 * the parent's left child (right rotate at gparent).
3f735377
ACM
185 *
186 * G P
187 * / \ / \
188 * p U --> n g
189 * / \
190 * n U
191 */
3aef2cad
DB
192 WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
193 WRITE_ONCE(parent->rb_right, gparent);
3f735377
ACM
194 if (tmp)
195 rb_set_parent_color(tmp, gparent, RB_BLACK);
196 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
197 augment_rotate(gparent, parent);
198 break;
199 } else {
200 tmp = gparent->rb_left;
201 if (tmp && rb_is_red(tmp)) {
202 /* Case 1 - color flips */
203 rb_set_parent_color(tmp, gparent, RB_BLACK);
204 rb_set_parent_color(parent, gparent, RB_BLACK);
205 node = gparent;
206 parent = rb_parent(node);
207 rb_set_parent_color(node, parent, RB_RED);
208 continue;
209 }
210
211 tmp = parent->rb_left;
212 if (node == tmp) {
213 /* Case 2 - right rotate at parent */
3aef2cad
DB
214 tmp = node->rb_right;
215 WRITE_ONCE(parent->rb_left, tmp);
216 WRITE_ONCE(node->rb_right, parent);
3f735377
ACM
217 if (tmp)
218 rb_set_parent_color(tmp, parent,
219 RB_BLACK);
220 rb_set_parent_color(parent, node, RB_RED);
221 augment_rotate(parent, node);
222 parent = node;
223 tmp = node->rb_left;
224 }
225
226 /* Case 3 - left rotate at gparent */
3aef2cad
DB
227 WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
228 WRITE_ONCE(parent->rb_left, gparent);
3f735377
ACM
229 if (tmp)
230 rb_set_parent_color(tmp, gparent, RB_BLACK);
231 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
232 augment_rotate(gparent, parent);
233 break;
234 }
235 }
236}
237
238/*
239 * Inline version for rb_erase() use - we want to be able to inline
240 * and eliminate the dummy_rotate callback there
241 */
242static __always_inline void
243____rb_erase_color(struct rb_node *parent, struct rb_root *root,
244 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
245{
246 struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
247
248 while (true) {
249 /*
250 * Loop invariants:
251 * - node is black (or NULL on first iteration)
252 * - node is not the root (parent is not NULL)
253 * - All leaf paths going through parent and node have a
254 * black node count that is 1 lower than other leaf paths.
255 */
256 sibling = parent->rb_right;
257 if (node != sibling) { /* node == parent->rb_left */
258 if (rb_is_red(sibling)) {
259 /*
260 * Case 1 - left rotate at parent
261 *
262 * P S
263 * / \ / \
264 * N s --> p Sr
265 * / \ / \
266 * Sl Sr N Sl
267 */
3aef2cad
DB
268 tmp1 = sibling->rb_left;
269 WRITE_ONCE(parent->rb_right, tmp1);
270 WRITE_ONCE(sibling->rb_left, parent);
3f735377
ACM
271 rb_set_parent_color(tmp1, parent, RB_BLACK);
272 __rb_rotate_set_parents(parent, sibling, root,
273 RB_RED);
274 augment_rotate(parent, sibling);
275 sibling = tmp1;
276 }
277 tmp1 = sibling->rb_right;
278 if (!tmp1 || rb_is_black(tmp1)) {
279 tmp2 = sibling->rb_left;
280 if (!tmp2 || rb_is_black(tmp2)) {
281 /*
282 * Case 2 - sibling color flip
283 * (p could be either color here)
284 *
285 * (p) (p)
286 * / \ / \
287 * N S --> N s
288 * / \ / \
289 * Sl Sr Sl Sr
290 *
291 * This leaves us violating 5) which
292 * can be fixed by flipping p to black
293 * if it was red, or by recursing at p.
294 * p is red when coming from Case 1.
295 */
296 rb_set_parent_color(sibling, parent,
297 RB_RED);
298 if (rb_is_red(parent))
299 rb_set_black(parent);
300 else {
301 node = parent;
302 parent = rb_parent(node);
303 if (parent)
304 continue;
305 }
306 break;
307 }
308 /*
309 * Case 3 - right rotate at sibling
310 * (p could be either color here)
311 *
312 * (p) (p)
313 * / \ / \
3aef2cad 314 * N S --> N sl
3f735377 315 * / \ \
3aef2cad 316 * sl Sr S
3f735377
ACM
317 * \
318 * Sr
3aef2cad
DB
319 *
320 * Note: p might be red, and then both
321 * p and sl are red after rotation(which
322 * breaks property 4). This is fixed in
323 * Case 4 (in __rb_rotate_set_parents()
324 * which set sl the color of p
325 * and set p RB_BLACK)
326 *
327 * (p) (sl)
328 * / \ / \
329 * N sl --> P S
330 * \ / \
331 * S N Sr
332 * \
333 * Sr
3f735377 334 */
3aef2cad
DB
335 tmp1 = tmp2->rb_right;
336 WRITE_ONCE(sibling->rb_left, tmp1);
337 WRITE_ONCE(tmp2->rb_right, sibling);
338 WRITE_ONCE(parent->rb_right, tmp2);
3f735377
ACM
339 if (tmp1)
340 rb_set_parent_color(tmp1, sibling,
341 RB_BLACK);
342 augment_rotate(sibling, tmp2);
343 tmp1 = sibling;
344 sibling = tmp2;
345 }
346 /*
347 * Case 4 - left rotate at parent + color flips
348 * (p and sl could be either color here.
349 * After rotation, p becomes black, s acquires
350 * p's color, and sl keeps its color)
351 *
352 * (p) (s)
353 * / \ / \
354 * N S --> P Sr
355 * / \ / \
356 * (sl) sr N (sl)
357 */
3aef2cad
DB
358 tmp2 = sibling->rb_left;
359 WRITE_ONCE(parent->rb_right, tmp2);
360 WRITE_ONCE(sibling->rb_left, parent);
3f735377
ACM
361 rb_set_parent_color(tmp1, sibling, RB_BLACK);
362 if (tmp2)
363 rb_set_parent(tmp2, parent);
364 __rb_rotate_set_parents(parent, sibling, root,
365 RB_BLACK);
366 augment_rotate(parent, sibling);
367 break;
368 } else {
369 sibling = parent->rb_left;
370 if (rb_is_red(sibling)) {
371 /* Case 1 - right rotate at parent */
3aef2cad
DB
372 tmp1 = sibling->rb_right;
373 WRITE_ONCE(parent->rb_left, tmp1);
374 WRITE_ONCE(sibling->rb_right, parent);
3f735377
ACM
375 rb_set_parent_color(tmp1, parent, RB_BLACK);
376 __rb_rotate_set_parents(parent, sibling, root,
377 RB_RED);
378 augment_rotate(parent, sibling);
379 sibling = tmp1;
380 }
381 tmp1 = sibling->rb_left;
382 if (!tmp1 || rb_is_black(tmp1)) {
383 tmp2 = sibling->rb_right;
384 if (!tmp2 || rb_is_black(tmp2)) {
385 /* Case 2 - sibling color flip */
386 rb_set_parent_color(sibling, parent,
387 RB_RED);
388 if (rb_is_red(parent))
389 rb_set_black(parent);
390 else {
391 node = parent;
392 parent = rb_parent(node);
393 if (parent)
394 continue;
395 }
396 break;
397 }
3aef2cad
DB
398 /* Case 3 - left rotate at sibling */
399 tmp1 = tmp2->rb_left;
400 WRITE_ONCE(sibling->rb_right, tmp1);
401 WRITE_ONCE(tmp2->rb_left, sibling);
402 WRITE_ONCE(parent->rb_left, tmp2);
3f735377
ACM
403 if (tmp1)
404 rb_set_parent_color(tmp1, sibling,
405 RB_BLACK);
406 augment_rotate(sibling, tmp2);
407 tmp1 = sibling;
408 sibling = tmp2;
409 }
3aef2cad
DB
410 /* Case 4 - right rotate at parent + color flips */
411 tmp2 = sibling->rb_right;
412 WRITE_ONCE(parent->rb_left, tmp2);
413 WRITE_ONCE(sibling->rb_right, parent);
3f735377
ACM
414 rb_set_parent_color(tmp1, sibling, RB_BLACK);
415 if (tmp2)
416 rb_set_parent(tmp2, parent);
417 __rb_rotate_set_parents(parent, sibling, root,
418 RB_BLACK);
419 augment_rotate(parent, sibling);
420 break;
421 }
422 }
423}
424
425/* Non-inline version for rb_erase_augmented() use */
426void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
427 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
428{
429 ____rb_erase_color(parent, root, augment_rotate);
430}
431
432/*
433 * Non-augmented rbtree manipulation functions.
434 *
435 * We use dummy augmented callbacks here, and have the compiler optimize them
436 * out of the rb_insert_color() and rb_erase() function definitions.
437 */
438
439static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
440static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
441static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
442
443static const struct rb_augment_callbacks dummy_callbacks = {
3aef2cad
DB
444 .propagate = dummy_propagate,
445 .copy = dummy_copy,
446 .rotate = dummy_rotate
3f735377
ACM
447};
448
449void rb_insert_color(struct rb_node *node, struct rb_root *root)
450{
3aef2cad 451 __rb_insert(node, root, false, NULL, dummy_rotate);
3f735377
ACM
452}
453
454void rb_erase(struct rb_node *node, struct rb_root *root)
455{
456 struct rb_node *rebalance;
3aef2cad
DB
457 rebalance = __rb_erase_augmented(node, root,
458 NULL, &dummy_callbacks);
3f735377
ACM
459 if (rebalance)
460 ____rb_erase_color(rebalance, root, dummy_rotate);
461}
462
3aef2cad
DB
463void rb_insert_color_cached(struct rb_node *node,
464 struct rb_root_cached *root, bool leftmost)
465{
466 __rb_insert(node, &root->rb_root, leftmost,
467 &root->rb_leftmost, dummy_rotate);
468}
469
470void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
471{
472 struct rb_node *rebalance;
473 rebalance = __rb_erase_augmented(node, &root->rb_root,
474 &root->rb_leftmost, &dummy_callbacks);
475 if (rebalance)
476 ____rb_erase_color(rebalance, &root->rb_root, dummy_rotate);
477}
478
3f735377
ACM
479/*
480 * Augmented rbtree manipulation functions.
481 *
482 * This instantiates the same __always_inline functions as in the non-augmented
483 * case, but this time with user-defined callbacks.
484 */
485
486void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
3aef2cad 487 bool newleft, struct rb_node **leftmost,
3f735377
ACM
488 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
489{
3aef2cad 490 __rb_insert(node, root, newleft, leftmost, augment_rotate);
3f735377
ACM
491}
492
493/*
494 * This function returns the first node (in sort order) of the tree.
495 */
496struct rb_node *rb_first(const struct rb_root *root)
497{
498 struct rb_node *n;
499
500 n = root->rb_node;
501 if (!n)
502 return NULL;
503 while (n->rb_left)
504 n = n->rb_left;
505 return n;
506}
507
508struct rb_node *rb_last(const struct rb_root *root)
509{
510 struct rb_node *n;
511
512 n = root->rb_node;
513 if (!n)
514 return NULL;
515 while (n->rb_right)
516 n = n->rb_right;
517 return n;
518}
519
520struct rb_node *rb_next(const struct rb_node *node)
521{
522 struct rb_node *parent;
523
524 if (RB_EMPTY_NODE(node))
525 return NULL;
526
527 /*
528 * If we have a right-hand child, go down and then left as far
529 * as we can.
530 */
531 if (node->rb_right) {
532 node = node->rb_right;
533 while (node->rb_left)
534 node=node->rb_left;
535 return (struct rb_node *)node;
536 }
537
538 /*
539 * No right-hand children. Everything down and left is smaller than us,
540 * so any 'next' node must be in the general direction of our parent.
541 * Go up the tree; any time the ancestor is a right-hand child of its
542 * parent, keep going up. First time it's a left-hand child of its
543 * parent, said parent is our 'next' node.
544 */
545 while ((parent = rb_parent(node)) && node == parent->rb_right)
546 node = parent;
547
548 return parent;
549}
550
551struct rb_node *rb_prev(const struct rb_node *node)
552{
553 struct rb_node *parent;
554
555 if (RB_EMPTY_NODE(node))
556 return NULL;
557
558 /*
559 * If we have a left-hand child, go down and then right as far
560 * as we can.
561 */
562 if (node->rb_left) {
563 node = node->rb_left;
564 while (node->rb_right)
565 node=node->rb_right;
566 return (struct rb_node *)node;
567 }
568
569 /*
570 * No left-hand children. Go up till we find an ancestor which
571 * is a right-hand child of its parent.
572 */
573 while ((parent = rb_parent(node)) && node == parent->rb_left)
574 node = parent;
575
576 return parent;
577}
578
579void rb_replace_node(struct rb_node *victim, struct rb_node *new,
580 struct rb_root *root)
581{
582 struct rb_node *parent = rb_parent(victim);
583
3aef2cad
DB
584 /* Copy the pointers/colour from the victim to the replacement */
585 *new = *victim;
586
3f735377 587 /* Set the surrounding nodes to point to the replacement */
3f735377
ACM
588 if (victim->rb_left)
589 rb_set_parent(victim->rb_left, new);
590 if (victim->rb_right)
591 rb_set_parent(victim->rb_right, new);
3aef2cad
DB
592 __rb_change_child(victim, new, parent, root);
593}
3f735377 594
3aef2cad
DB
595void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new,
596 struct rb_root_cached *root)
597{
598 rb_replace_node(victim, new, &root->rb_root);
599
600 if (root->rb_leftmost == victim)
601 root->rb_leftmost = new;
3f735377
ACM
602}
603
604static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
605{
606 for (;;) {
607 if (node->rb_left)
608 node = node->rb_left;
609 else if (node->rb_right)
610 node = node->rb_right;
611 else
612 return (struct rb_node *)node;
613 }
614}
615
616struct rb_node *rb_next_postorder(const struct rb_node *node)
617{
618 const struct rb_node *parent;
619 if (!node)
620 return NULL;
621 parent = rb_parent(node);
622
623 /* If we're sitting on node, we've already seen our children */
624 if (parent && node == parent->rb_left && parent->rb_right) {
625 /* If we are the parent's left node, go to the parent's right
626 * node then all the way down to the left */
627 return rb_left_deepest_node(parent->rb_right);
628 } else
629 /* Otherwise we are the parent's right node, and the parent
630 * should be next */
631 return (struct rb_node *)parent;
632}
633
634struct rb_node *rb_first_postorder(const struct rb_root *root)
635{
636 if (!root->rb_node)
637 return NULL;
638
639 return rb_left_deepest_node(root->rb_node);
640}