tools/lguest: fix features_accepted logic in example launcher.
[linux-2.6-block.git] / tools / lguest / lguest.c
CommitLineData
2e04ef76
RR
1/*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6:*/
8ca47e00
RR
7#define _LARGEFILE64_SOURCE
8#define _GNU_SOURCE
9#include <stdio.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <elf.h>
16#include <sys/mman.h>
6649bb7a 17#include <sys/param.h>
8ca47e00
RR
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <sys/wait.h>
659a0e66 21#include <sys/eventfd.h>
8ca47e00
RR
22#include <fcntl.h>
23#include <stdbool.h>
24#include <errno.h>
25#include <ctype.h>
26#include <sys/socket.h>
27#include <sys/ioctl.h>
28#include <sys/time.h>
29#include <time.h>
30#include <netinet/in.h>
31#include <net/if.h>
32#include <linux/sockios.h>
33#include <linux/if_tun.h>
34#include <sys/uio.h>
35#include <termios.h>
36#include <getopt.h>
17cbca2b
RR
37#include <assert.h>
38#include <sched.h>
a586d4f6
RR
39#include <limits.h>
40#include <stddef.h>
a161883a 41#include <signal.h>
8aeb36e8
PS
42#include <pwd.h>
43#include <grp.h>
c565650b 44#include <sys/user.h>
d7fbf6e9 45#include <linux/pci_regs.h>
8aeb36e8 46
927cfb97
RR
47#ifndef VIRTIO_F_ANY_LAYOUT
48#define VIRTIO_F_ANY_LAYOUT 27
49#endif
50
2e04ef76 51/*L:110
9f54288d 52 * We can ignore the 43 include files we need for this program, but I do want
2e04ef76 53 * to draw attention to the use of kernel-style types.
db24e8c2
RR
54 *
55 * As Linus said, "C is a Spartan language, and so should your naming be." I
56 * like these abbreviations, so we define them here. Note that u64 is always
57 * unsigned long long, which works on all Linux systems: this means that we can
2e04ef76
RR
58 * use %llu in printf for any u64.
59 */
db24e8c2
RR
60typedef unsigned long long u64;
61typedef uint32_t u32;
62typedef uint16_t u16;
63typedef uint8_t u8;
dde79789 64/*:*/
8ca47e00 65
eb39f833 66#define VIRTIO_CONFIG_NO_LEGACY
93153077 67#define VIRTIO_PCI_NO_LEGACY
50516547 68#define VIRTIO_BLK_NO_LEGACY
93153077
RR
69
70/* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */
71#include "../../include/uapi/linux/virtio_config.h"
bf6d4034 72#include "../../include/uapi/linux/virtio_net.h"
50516547 73#include "../../include/uapi/linux/virtio_blk.h"
e8330d9b 74#include "../../include/uapi/linux/virtio_console.h"
0d5b5d39 75#include "../../include/uapi/linux/virtio_rng.h"
e6dc0418 76#include <linux/virtio_ring.h>
93153077 77#include "../../include/uapi/linux/virtio_pci.h"
e6dc0418
RR
78#include <asm/bootparam.h>
79#include "../../include/linux/lguest_launcher.h"
80
8ca47e00
RR
81#define BRIDGE_PFX "bridge:"
82#ifndef SIOCBRADDIF
83#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
84#endif
3c6b5bfa
RR
85/* We can have up to 256 pages for devices. */
86#define DEVICE_PAGES 256
0f0c4fab
RR
87/* This will occupy 3 pages: it must be a power of 2. */
88#define VIRTQUEUE_NUM 256
8ca47e00 89
2e04ef76
RR
90/*L:120
91 * verbose is both a global flag and a macro. The C preprocessor allows
92 * this, and although I wouldn't recommend it, it works quite nicely here.
93 */
8ca47e00
RR
94static bool verbose;
95#define verbose(args...) \
96 do { if (verbose) printf(args); } while(0)
dde79789
RR
97/*:*/
98
3c6b5bfa
RR
99/* The pointer to the start of guest memory. */
100static void *guest_base;
101/* The maximum guest physical address allowed, and maximum possible. */
0a6bcc18 102static unsigned long guest_limit, guest_max, guest_mmio;
56739c80
RR
103/* The /dev/lguest file descriptor. */
104static int lguest_fd;
8ca47e00 105
e3283fa0
GOC
106/* a per-cpu variable indicating whose vcpu is currently running */
107static unsigned int __thread cpu_id;
108
6a54f9ab
RR
109/* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */
110#define MAX_PCI_DEVICES 32
111
dde79789 112/* This is our list of devices. */
1842f23c 113struct device_list {
17cbca2b
RR
114 /* Counter to assign interrupt numbers. */
115 unsigned int next_irq;
116
117 /* Counter to print out convenient device numbers. */
118 unsigned int device_num;
119
6a54f9ab
RR
120 /* PCI devices. */
121 struct device *pci[MAX_PCI_DEVICES];
8ca47e00
RR
122};
123
17cbca2b
RR
124/* The list of Guest devices, based on command line arguments. */
125static struct device_list devices;
126
93153077
RR
127struct virtio_pci_cfg_cap {
128 struct virtio_pci_cap cap;
129 u32 window; /* Data for BAR access. */
130};
131
132struct virtio_pci_mmio {
133 struct virtio_pci_common_cfg cfg;
134 u16 notify;
135 u8 isr;
136 u8 padding;
137 /* Device-specific configuration follows this. */
138};
139
d7fbf6e9
RR
140/* This is the layout (little-endian) of the PCI config space. */
141struct pci_config {
142 u16 vendor_id, device_id;
143 u16 command, status;
144 u8 revid, prog_if, subclass, class;
145 u8 cacheline_size, lat_timer, header_type, bist;
146 u32 bar[6];
147 u32 cardbus_cis_ptr;
148 u16 subsystem_vendor_id, subsystem_device_id;
149 u32 expansion_rom_addr;
150 u8 capabilities, reserved1[3];
151 u32 reserved2;
152 u8 irq_line, irq_pin, min_grant, max_latency;
93153077
RR
153
154 /* Now, this is the linked capability list. */
155 struct virtio_pci_cap common;
156 struct virtio_pci_notify_cap notify;
157 struct virtio_pci_cap isr;
158 struct virtio_pci_cap device;
93153077 159 struct virtio_pci_cfg_cap cfg_access;
d7fbf6e9
RR
160};
161
dde79789 162/* The device structure describes a single device. */
1842f23c 163struct device {
17cbca2b
RR
164 /* The name of this device, for --verbose. */
165 const char *name;
8ca47e00 166
17cbca2b
RR
167 /* Any queues attached to this device */
168 struct virtqueue *vq;
8ca47e00 169
659a0e66
RR
170 /* Is it operational */
171 bool running;
a007a751 172
d7fbf6e9
RR
173 /* PCI configuration */
174 union {
175 struct pci_config config;
176 u32 config_words[sizeof(struct pci_config) / sizeof(u32)];
177 };
178
93153077
RR
179 /* Features we offer, and those accepted. */
180 u64 features, features_accepted;
181
d7fbf6e9
RR
182 /* Device-specific config hangs off the end of this. */
183 struct virtio_pci_mmio *mmio;
184
6a54f9ab
RR
185 /* PCI MMIO resources (all in BAR0) */
186 size_t mmio_size;
187 u32 mmio_addr;
188
8ca47e00
RR
189 /* Device-specific data. */
190 void *priv;
191};
192
17cbca2b 193/* The virtqueue structure describes a queue attached to a device. */
1842f23c 194struct virtqueue {
17cbca2b
RR
195 struct virtqueue *next;
196
197 /* Which device owns me. */
198 struct device *dev;
199
17cbca2b
RR
200 /* The actual ring of buffers. */
201 struct vring vring;
202
93153077
RR
203 /* The information about this virtqueue (we only use queue_size on) */
204 struct virtio_pci_common_cfg pci_config;
205
17cbca2b
RR
206 /* Last available index we saw. */
207 u16 last_avail_idx;
208
95c517c0
RR
209 /* How many are used since we sent last irq? */
210 unsigned int pending_used;
211
659a0e66
RR
212 /* Eventfd where Guest notifications arrive. */
213 int eventfd;
20887611 214
659a0e66
RR
215 /* Function for the thread which is servicing this virtqueue. */
216 void (*service)(struct virtqueue *vq);
217 pid_t thread;
17cbca2b
RR
218};
219
ec04b13f
BR
220/* Remember the arguments to the program so we can "reboot" */
221static char **main_args;
222
659a0e66
RR
223/* The original tty settings to restore on exit. */
224static struct termios orig_term;
225
2e04ef76
RR
226/*
227 * We have to be careful with barriers: our devices are all run in separate
f7027c63 228 * threads and so we need to make sure that changes visible to the Guest happen
2e04ef76
RR
229 * in precise order.
230 */
f7027c63 231#define wmb() __asm__ __volatile__("" : : : "memory")
0d69a65e
RR
232#define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
233#define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
17cbca2b 234
b5111790
RR
235/* Wrapper for the last available index. Makes it easier to change. */
236#define lg_last_avail(vq) ((vq)->last_avail_idx)
237
2e04ef76
RR
238/*
239 * The virtio configuration space is defined to be little-endian. x86 is
240 * little-endian too, but it's nice to be explicit so we have these helpers.
241 */
17cbca2b
RR
242#define cpu_to_le16(v16) (v16)
243#define cpu_to_le32(v32) (v32)
244#define cpu_to_le64(v64) (v64)
245#define le16_to_cpu(v16) (v16)
246#define le32_to_cpu(v32) (v32)
a586d4f6 247#define le64_to_cpu(v64) (v64)
17cbca2b 248
28fd6d7f
RR
249/* Is this iovec empty? */
250static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
251{
252 unsigned int i;
253
254 for (i = 0; i < num_iov; i++)
255 if (iov[i].iov_len)
256 return false;
257 return true;
258}
259
260/* Take len bytes from the front of this iovec. */
c0316a94
RR
261static void iov_consume(struct iovec iov[], unsigned num_iov,
262 void *dest, unsigned len)
28fd6d7f
RR
263{
264 unsigned int i;
265
266 for (i = 0; i < num_iov; i++) {
267 unsigned int used;
268
269 used = iov[i].iov_len < len ? iov[i].iov_len : len;
c0316a94
RR
270 if (dest) {
271 memcpy(dest, iov[i].iov_base, used);
272 dest += used;
273 }
28fd6d7f
RR
274 iov[i].iov_base += used;
275 iov[i].iov_len -= used;
276 len -= used;
277 }
c0316a94
RR
278 if (len != 0)
279 errx(1, "iovec too short!");
28fd6d7f
RR
280}
281
2e04ef76
RR
282/*L:100
283 * The Launcher code itself takes us out into userspace, that scary place where
284 * pointers run wild and free! Unfortunately, like most userspace programs,
285 * it's quite boring (which is why everyone likes to hack on the kernel!).
286 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
287 * you through this section. Or, maybe not.
3c6b5bfa
RR
288 *
289 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
290 * memory and stores it in "guest_base". In other words, Guest physical ==
291 * Launcher virtual with an offset.
292 *
293 * This can be tough to get your head around, but usually it just means that we
a33f3224 294 * use these trivial conversion functions when the Guest gives us its
2e04ef76
RR
295 * "physical" addresses:
296 */
3c6b5bfa
RR
297static void *from_guest_phys(unsigned long addr)
298{
299 return guest_base + addr;
300}
301
302static unsigned long to_guest_phys(const void *addr)
303{
304 return (addr - guest_base);
305}
306
dde79789
RR
307/*L:130
308 * Loading the Kernel.
309 *
310 * We start with couple of simple helper routines. open_or_die() avoids
2e04ef76
RR
311 * error-checking code cluttering the callers:
312 */
8ca47e00
RR
313static int open_or_die(const char *name, int flags)
314{
315 int fd = open(name, flags);
316 if (fd < 0)
317 err(1, "Failed to open %s", name);
318 return fd;
319}
320
3c6b5bfa
RR
321/* map_zeroed_pages() takes a number of pages. */
322static void *map_zeroed_pages(unsigned int num)
8ca47e00 323{
3c6b5bfa
RR
324 int fd = open_or_die("/dev/zero", O_RDONLY);
325 void *addr;
8ca47e00 326
2e04ef76
RR
327 /*
328 * We use a private mapping (ie. if we write to the page, it will be
5230ff0c
PS
329 * copied). We allocate an extra two pages PROT_NONE to act as guard
330 * pages against read/write attempts that exceed allocated space.
2e04ef76 331 */
5230ff0c
PS
332 addr = mmap(NULL, getpagesize() * (num+2),
333 PROT_NONE, MAP_PRIVATE, fd, 0);
334
3c6b5bfa 335 if (addr == MAP_FAILED)
af901ca1 336 err(1, "Mmapping %u pages of /dev/zero", num);
a91d74a3 337
5230ff0c
PS
338 if (mprotect(addr + getpagesize(), getpagesize() * num,
339 PROT_READ|PROT_WRITE) == -1)
340 err(1, "mprotect rw %u pages failed", num);
341
a91d74a3
RR
342 /*
343 * One neat mmap feature is that you can close the fd, and it
344 * stays mapped.
345 */
34bdaab4 346 close(fd);
3c6b5bfa 347
5230ff0c
PS
348 /* Return address after PROT_NONE page */
349 return addr + getpagesize();
3c6b5bfa
RR
350}
351
0a6bcc18
RR
352/* Get some bytes which won't be mapped into the guest. */
353static unsigned long get_mmio_region(size_t size)
354{
355 unsigned long addr = guest_mmio;
356 size_t i;
357
358 if (!size)
359 return addr;
360
361 /* Size has to be a power of 2 (and multiple of 16) */
362 for (i = 1; i < size; i <<= 1);
363
364 guest_mmio += i;
365
366 return addr;
367}
368
2e04ef76
RR
369/*
370 * This routine is used to load the kernel or initrd. It tries mmap, but if
6649bb7a 371 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
2e04ef76
RR
372 * it falls back to reading the memory in.
373 */
6649bb7a
RM
374static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
375{
376 ssize_t r;
377
2e04ef76
RR
378 /*
379 * We map writable even though for some segments are marked read-only.
6649bb7a
RM
380 * The kernel really wants to be writable: it patches its own
381 * instructions.
382 *
383 * MAP_PRIVATE means that the page won't be copied until a write is
384 * done to it. This allows us to share untouched memory between
2e04ef76
RR
385 * Guests.
386 */
5230ff0c 387 if (mmap(addr, len, PROT_READ|PROT_WRITE,
6649bb7a
RM
388 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
389 return;
390
391 /* pread does a seek and a read in one shot: saves a few lines. */
392 r = pread(fd, addr, len, offset);
393 if (r != len)
394 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
395}
396
2e04ef76
RR
397/*
398 * This routine takes an open vmlinux image, which is in ELF, and maps it into
dde79789
RR
399 * the Guest memory. ELF = Embedded Linking Format, which is the format used
400 * by all modern binaries on Linux including the kernel.
401 *
402 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
403 * address. We use the physical address; the Guest will map itself to the
404 * virtual address.
dde79789 405 *
2e04ef76
RR
406 * We return the starting address.
407 */
47436aa4 408static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 409{
8ca47e00
RR
410 Elf32_Phdr phdr[ehdr->e_phnum];
411 unsigned int i;
8ca47e00 412
2e04ef76
RR
413 /*
414 * Sanity checks on the main ELF header: an x86 executable with a
415 * reasonable number of correctly-sized program headers.
416 */
8ca47e00
RR
417 if (ehdr->e_type != ET_EXEC
418 || ehdr->e_machine != EM_386
419 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
420 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
421 errx(1, "Malformed elf header");
422
2e04ef76
RR
423 /*
424 * An ELF executable contains an ELF header and a number of "program"
dde79789 425 * headers which indicate which parts ("segments") of the program to
2e04ef76
RR
426 * load where.
427 */
dde79789
RR
428
429 /* We read in all the program headers at once: */
8ca47e00
RR
430 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
431 err(1, "Seeking to program headers");
432 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
433 err(1, "Reading program headers");
434
2e04ef76
RR
435 /*
436 * Try all the headers: there are usually only three. A read-only one,
437 * a read-write one, and a "note" section which we don't load.
438 */
8ca47e00 439 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 440 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
441 if (phdr[i].p_type != PT_LOAD)
442 continue;
443
444 verbose("Section %i: size %i addr %p\n",
445 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
446
6649bb7a 447 /* We map this section of the file at its physical address. */
3c6b5bfa 448 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 449 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
450 }
451
814a0e5c
RR
452 /* The entry point is given in the ELF header. */
453 return ehdr->e_entry;
8ca47e00
RR
454}
455
2e04ef76
RR
456/*L:150
457 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
458 * to jump into it and it will unpack itself. We used to have to perform some
459 * hairy magic because the unpacking code scared me.
dde79789 460 *
5bbf89fc
RR
461 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
462 * a small patch to jump over the tricky bits in the Guest, so now we just read
2e04ef76
RR
463 * the funky header so we know where in the file to load, and away we go!
464 */
47436aa4 465static unsigned long load_bzimage(int fd)
8ca47e00 466{
43d33b21 467 struct boot_params boot;
5bbf89fc
RR
468 int r;
469 /* Modern bzImages get loaded at 1M. */
470 void *p = from_guest_phys(0x100000);
471
2e04ef76
RR
472 /*
473 * Go back to the start of the file and read the header. It should be
395cf969 474 * a Linux boot header (see Documentation/x86/boot.txt)
2e04ef76 475 */
5bbf89fc 476 lseek(fd, 0, SEEK_SET);
43d33b21 477 read(fd, &boot, sizeof(boot));
5bbf89fc 478
43d33b21
RR
479 /* Inside the setup_hdr, we expect the magic "HdrS" */
480 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
481 errx(1, "This doesn't look like a bzImage to me");
482
43d33b21
RR
483 /* Skip over the extra sectors of the header. */
484 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
485
486 /* Now read everything into memory. in nice big chunks. */
487 while ((r = read(fd, p, 65536)) > 0)
488 p += r;
489
43d33b21
RR
490 /* Finally, code32_start tells us where to enter the kernel. */
491 return boot.hdr.code32_start;
8ca47e00
RR
492}
493
2e04ef76
RR
494/*L:140
495 * Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965 496 * come wrapped up in the self-decompressing "bzImage" format. With a little
2e04ef76
RR
497 * work, we can load those, too.
498 */
47436aa4 499static unsigned long load_kernel(int fd)
8ca47e00
RR
500{
501 Elf32_Ehdr hdr;
502
dde79789 503 /* Read in the first few bytes. */
8ca47e00
RR
504 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
505 err(1, "Reading kernel");
506
dde79789 507 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 508 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 509 return map_elf(fd, &hdr);
8ca47e00 510
a6bd8e13 511 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 512 return load_bzimage(fd);
8ca47e00
RR
513}
514
2e04ef76
RR
515/*
516 * This is a trivial little helper to align pages. Andi Kleen hated it because
dde79789
RR
517 * it calls getpagesize() twice: "it's dumb code."
518 *
519 * Kernel guys get really het up about optimization, even when it's not
2e04ef76
RR
520 * necessary. I leave this code as a reaction against that.
521 */
8ca47e00
RR
522static inline unsigned long page_align(unsigned long addr)
523{
dde79789 524 /* Add upwards and truncate downwards. */
8ca47e00
RR
525 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
526}
527
2e04ef76
RR
528/*L:180
529 * An "initial ram disk" is a disk image loaded into memory along with the
530 * kernel which the kernel can use to boot from without needing any drivers.
531 * Most distributions now use this as standard: the initrd contains the code to
532 * load the appropriate driver modules for the current machine.
dde79789
RR
533 *
534 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
2e04ef76
RR
535 * kernels. He sent me this (and tells me when I break it).
536 */
8ca47e00
RR
537static unsigned long load_initrd(const char *name, unsigned long mem)
538{
539 int ifd;
540 struct stat st;
541 unsigned long len;
8ca47e00
RR
542
543 ifd = open_or_die(name, O_RDONLY);
dde79789 544 /* fstat() is needed to get the file size. */
8ca47e00
RR
545 if (fstat(ifd, &st) < 0)
546 err(1, "fstat() on initrd '%s'", name);
547
2e04ef76
RR
548 /*
549 * We map the initrd at the top of memory, but mmap wants it to be
550 * page-aligned, so we round the size up for that.
551 */
8ca47e00 552 len = page_align(st.st_size);
3c6b5bfa 553 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
2e04ef76
RR
554 /*
555 * Once a file is mapped, you can close the file descriptor. It's a
556 * little odd, but quite useful.
557 */
8ca47e00 558 close(ifd);
6649bb7a 559 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
560
561 /* We return the initrd size. */
8ca47e00
RR
562 return len;
563}
e1e72965 564/*:*/
8ca47e00 565
2e04ef76
RR
566/*
567 * Simple routine to roll all the commandline arguments together with spaces
568 * between them.
569 */
8ca47e00
RR
570static void concat(char *dst, char *args[])
571{
572 unsigned int i, len = 0;
573
574 for (i = 0; args[i]; i++) {
1ef36fa6
PB
575 if (i) {
576 strcat(dst+len, " ");
577 len++;
578 }
8ca47e00 579 strcpy(dst+len, args[i]);
1ef36fa6 580 len += strlen(args[i]);
8ca47e00
RR
581 }
582 /* In case it's empty. */
583 dst[len] = '\0';
584}
585
2e04ef76
RR
586/*L:185
587 * This is where we actually tell the kernel to initialize the Guest. We
e1e72965 588 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566 589 * the base of Guest "physical" memory, the top physical page to allow and the
2e04ef76
RR
590 * entry point for the Guest.
591 */
56739c80 592static void tell_kernel(unsigned long start)
8ca47e00 593{
511801dc
JS
594 unsigned long args[] = { LHREQ_INITIALIZE,
595 (unsigned long)guest_base,
7313d521 596 guest_limit / getpagesize(), start,
0a6bcc18
RR
597 (guest_mmio+getpagesize()-1) / getpagesize() };
598 verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n",
599 guest_base, guest_base + guest_limit,
600 guest_limit, guest_mmio);
56739c80
RR
601 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
602 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 603 err(1, "Writing to /dev/lguest");
8ca47e00 604}
dde79789 605/*:*/
8ca47e00 606
a91d74a3 607/*L:200
dde79789
RR
608 * Device Handling.
609 *
e1e72965 610 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 611 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 612 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
613 * if something funny is going on:
614 */
8ca47e00
RR
615static void *_check_pointer(unsigned long addr, unsigned int size,
616 unsigned int line)
617{
2e04ef76 618 /*
5230ff0c
PS
619 * Check if the requested address and size exceeds the allocated memory,
620 * or addr + size wraps around.
2e04ef76 621 */
5230ff0c 622 if ((addr + size) > guest_limit || (addr + size) < addr)
17cbca2b 623 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
2e04ef76
RR
624 /*
625 * We return a pointer for the caller's convenience, now we know it's
626 * safe to use.
627 */
3c6b5bfa 628 return from_guest_phys(addr);
8ca47e00 629}
dde79789 630/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
631#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
632
2e04ef76
RR
633/*
634 * Each buffer in the virtqueues is actually a chain of descriptors. This
e1e72965 635 * function returns the next descriptor in the chain, or vq->vring.num if we're
2e04ef76
RR
636 * at the end.
637 */
d1f0132e
MM
638static unsigned next_desc(struct vring_desc *desc,
639 unsigned int i, unsigned int max)
17cbca2b
RR
640{
641 unsigned int next;
642
643 /* If this descriptor says it doesn't chain, we're done. */
d1f0132e
MM
644 if (!(desc[i].flags & VRING_DESC_F_NEXT))
645 return max;
17cbca2b
RR
646
647 /* Check they're not leading us off end of descriptors. */
d1f0132e 648 next = desc[i].next;
17cbca2b
RR
649 /* Make sure compiler knows to grab that: we don't want it changing! */
650 wmb();
651
d1f0132e 652 if (next >= max)
17cbca2b
RR
653 errx(1, "Desc next is %u", next);
654
655 return next;
656}
657
a91d74a3
RR
658/*
659 * This actually sends the interrupt for this virtqueue, if we've used a
660 * buffer.
661 */
38bc2b8c
RR
662static void trigger_irq(struct virtqueue *vq)
663{
d9028eda 664 unsigned long buf[] = { LHREQ_IRQ, vq->dev->config.irq_line };
38bc2b8c 665
95c517c0
RR
666 /* Don't inform them if nothing used. */
667 if (!vq->pending_used)
668 return;
669 vq->pending_used = 0;
670
ca60a42c
RR
671 /* If they don't want an interrupt, don't send one... */
672 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
990c91f0 673 return;
ca60a42c 674 }
38bc2b8c 675
d9028eda
RR
676 /* Set isr to 1 (queue interrupt pending) */
677 vq->dev->mmio->isr = 0x1;
93153077 678
38bc2b8c
RR
679 /* Send the Guest an interrupt tell them we used something up. */
680 if (write(lguest_fd, buf, sizeof(buf)) != 0)
d9028eda 681 err(1, "Triggering irq %i", vq->dev->config.irq_line);
38bc2b8c
RR
682}
683
2e04ef76 684/*
a91d74a3 685 * This looks in the virtqueue for the first available buffer, and converts
17cbca2b
RR
686 * it to an iovec for convenient access. Since descriptors consist of some
687 * number of output then some number of input descriptors, it's actually two
688 * iovecs, but we pack them into one and note how many of each there were.
689 *
a91d74a3 690 * This function waits if necessary, and returns the descriptor number found.
2e04ef76 691 */
659a0e66
RR
692static unsigned wait_for_vq_desc(struct virtqueue *vq,
693 struct iovec iov[],
694 unsigned int *out_num, unsigned int *in_num)
17cbca2b 695{
d1f0132e
MM
696 unsigned int i, head, max;
697 struct vring_desc *desc;
659a0e66
RR
698 u16 last_avail = lg_last_avail(vq);
699
a91d74a3 700 /* There's nothing available? */
659a0e66
RR
701 while (last_avail == vq->vring.avail->idx) {
702 u64 event;
703
a91d74a3
RR
704 /*
705 * Since we're about to sleep, now is a good time to tell the
706 * Guest about what we've used up to now.
707 */
38bc2b8c
RR
708 trigger_irq(vq);
709
b60da13f
RR
710 /* OK, now we need to know about added descriptors. */
711 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
712
2e04ef76
RR
713 /*
714 * They could have slipped one in as we were doing that: make
715 * sure it's written, then check again.
716 */
b60da13f
RR
717 mb();
718 if (last_avail != vq->vring.avail->idx) {
719 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
720 break;
721 }
722
659a0e66
RR
723 /* Nothing new? Wait for eventfd to tell us they refilled. */
724 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
725 errx(1, "Event read failed?");
b60da13f
RR
726
727 /* We don't need to be notified again. */
728 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
659a0e66 729 }
17cbca2b
RR
730
731 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 732 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 733 errx(1, "Guest moved used index from %u to %u",
b5111790 734 last_avail, vq->vring.avail->idx);
17cbca2b 735
8fd9a636
RR
736 /*
737 * Make sure we read the descriptor number *after* we read the ring
738 * update; don't let the cpu or compiler change the order.
739 */
740 rmb();
741
2e04ef76
RR
742 /*
743 * Grab the next descriptor number they're advertising, and increment
744 * the index we've seen.
745 */
b5111790
RR
746 head = vq->vring.avail->ring[last_avail % vq->vring.num];
747 lg_last_avail(vq)++;
17cbca2b
RR
748
749 /* If their number is silly, that's a fatal mistake. */
750 if (head >= vq->vring.num)
751 errx(1, "Guest says index %u is available", head);
752
753 /* When we start there are none of either input nor output. */
754 *out_num = *in_num = 0;
755
d1f0132e
MM
756 max = vq->vring.num;
757 desc = vq->vring.desc;
17cbca2b 758 i = head;
d1f0132e 759
8fd9a636
RR
760 /*
761 * We have to read the descriptor after we read the descriptor number,
762 * but there's a data dependency there so the CPU shouldn't reorder
763 * that: no rmb() required.
764 */
765
2e04ef76
RR
766 /*
767 * If this is an indirect entry, then this buffer contains a descriptor
768 * table which we handle as if it's any normal descriptor chain.
769 */
d1f0132e
MM
770 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
771 if (desc[i].len % sizeof(struct vring_desc))
772 errx(1, "Invalid size for indirect buffer table");
773
774 max = desc[i].len / sizeof(struct vring_desc);
775 desc = check_pointer(desc[i].addr, desc[i].len);
776 i = 0;
777 }
778
17cbca2b
RR
779 do {
780 /* Grab the first descriptor, and check it's OK. */
d1f0132e 781 iov[*out_num + *in_num].iov_len = desc[i].len;
17cbca2b 782 iov[*out_num + *in_num].iov_base
d1f0132e 783 = check_pointer(desc[i].addr, desc[i].len);
17cbca2b 784 /* If this is an input descriptor, increment that count. */
d1f0132e 785 if (desc[i].flags & VRING_DESC_F_WRITE)
17cbca2b
RR
786 (*in_num)++;
787 else {
2e04ef76
RR
788 /*
789 * If it's an output descriptor, they're all supposed
790 * to come before any input descriptors.
791 */
17cbca2b
RR
792 if (*in_num)
793 errx(1, "Descriptor has out after in");
794 (*out_num)++;
795 }
796
797 /* If we've got too many, that implies a descriptor loop. */
d1f0132e 798 if (*out_num + *in_num > max)
17cbca2b 799 errx(1, "Looped descriptor");
d1f0132e 800 } while ((i = next_desc(desc, i, max)) != max);
dde79789 801
17cbca2b 802 return head;
8ca47e00
RR
803}
804
2e04ef76 805/*
a91d74a3
RR
806 * After we've used one of their buffers, we tell the Guest about it. Sometime
807 * later we'll want to send them an interrupt using trigger_irq(); note that
808 * wait_for_vq_desc() does that for us if it has to wait.
2e04ef76 809 */
17cbca2b 810static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 811{
17cbca2b
RR
812 struct vring_used_elem *used;
813
2e04ef76
RR
814 /*
815 * The virtqueue contains a ring of used buffers. Get a pointer to the
816 * next entry in that used ring.
817 */
17cbca2b
RR
818 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
819 used->id = head;
820 used->len = len;
821 /* Make sure buffer is written before we update index. */
822 wmb();
823 vq->vring.used->idx++;
95c517c0 824 vq->pending_used++;
8ca47e00
RR
825}
826
17cbca2b 827/* And here's the combo meal deal. Supersize me! */
56739c80 828static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 829{
17cbca2b 830 add_used(vq, head, len);
56739c80 831 trigger_irq(vq);
8ca47e00
RR
832}
833
e1e72965
RR
834/*
835 * The Console
836 *
2e04ef76
RR
837 * We associate some data with the console for our exit hack.
838 */
1842f23c 839struct console_abort {
dde79789 840 /* How many times have they hit ^C? */
8ca47e00 841 int count;
dde79789 842 /* When did they start? */
8ca47e00
RR
843 struct timeval start;
844};
845
dde79789 846/* This is the routine which handles console input (ie. stdin). */
659a0e66 847static void console_input(struct virtqueue *vq)
8ca47e00 848{
8ca47e00 849 int len;
17cbca2b 850 unsigned int head, in_num, out_num;
659a0e66
RR
851 struct console_abort *abort = vq->dev->priv;
852 struct iovec iov[vq->vring.num];
56ae43df 853
a91d74a3 854 /* Make sure there's a descriptor available. */
659a0e66 855 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 856 if (out_num)
17cbca2b 857 errx(1, "Output buffers in console in queue?");
8ca47e00 858
a91d74a3 859 /* Read into it. This is where we usually wait. */
659a0e66 860 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 861 if (len <= 0) {
659a0e66 862 /* Ran out of input? */
8ca47e00 863 warnx("Failed to get console input, ignoring console.");
2e04ef76
RR
864 /*
865 * For simplicity, dying threads kill the whole Launcher. So
866 * just nap here.
867 */
659a0e66
RR
868 for (;;)
869 pause();
8ca47e00
RR
870 }
871
a91d74a3 872 /* Tell the Guest we used a buffer. */
659a0e66 873 add_used_and_trigger(vq, head, len);
8ca47e00 874
2e04ef76
RR
875 /*
876 * Three ^C within one second? Exit.
dde79789 877 *
659a0e66
RR
878 * This is such a hack, but works surprisingly well. Each ^C has to
879 * be in a buffer by itself, so they can't be too fast. But we check
880 * that we get three within about a second, so they can't be too
2e04ef76
RR
881 * slow.
882 */
659a0e66 883 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 884 abort->count = 0;
659a0e66
RR
885 return;
886 }
8ca47e00 887
659a0e66
RR
888 abort->count++;
889 if (abort->count == 1)
890 gettimeofday(&abort->start, NULL);
891 else if (abort->count == 3) {
892 struct timeval now;
893 gettimeofday(&now, NULL);
894 /* Kill all Launcher processes with SIGINT, like normal ^C */
895 if (now.tv_sec <= abort->start.tv_sec+1)
896 kill(0, SIGINT);
897 abort->count = 0;
898 }
8ca47e00
RR
899}
900
659a0e66
RR
901/* This is the routine which handles console output (ie. stdout). */
902static void console_output(struct virtqueue *vq)
8ca47e00 903{
17cbca2b 904 unsigned int head, out, in;
17cbca2b
RR
905 struct iovec iov[vq->vring.num];
906
a91d74a3 907 /* We usually wait in here, for the Guest to give us something. */
659a0e66
RR
908 head = wait_for_vq_desc(vq, iov, &out, &in);
909 if (in)
910 errx(1, "Input buffers in console output queue?");
a91d74a3
RR
911
912 /* writev can return a partial write, so we loop here. */
659a0e66
RR
913 while (!iov_empty(iov, out)) {
914 int len = writev(STDOUT_FILENO, iov, out);
e0377e25
SA
915 if (len <= 0) {
916 warn("Write to stdout gave %i (%d)", len, errno);
917 break;
918 }
c0316a94 919 iov_consume(iov, out, NULL, len);
17cbca2b 920 }
a91d74a3
RR
921
922 /*
923 * We're finished with that buffer: if we're going to sleep,
924 * wait_for_vq_desc() will prod the Guest with an interrupt.
925 */
38bc2b8c 926 add_used(vq, head, 0);
a161883a
RR
927}
928
e1e72965
RR
929/*
930 * The Network
931 *
932 * Handling output for network is also simple: we get all the output buffers
659a0e66 933 * and write them to /dev/net/tun.
a6bd8e13 934 */
659a0e66
RR
935struct net_info {
936 int tunfd;
937};
938
939static void net_output(struct virtqueue *vq)
8ca47e00 940{
659a0e66
RR
941 struct net_info *net_info = vq->dev->priv;
942 unsigned int head, out, in;
17cbca2b 943 struct iovec iov[vq->vring.num];
a161883a 944
a91d74a3 945 /* We usually wait in here for the Guest to give us a packet. */
659a0e66
RR
946 head = wait_for_vq_desc(vq, iov, &out, &in);
947 if (in)
948 errx(1, "Input buffers in net output queue?");
a91d74a3
RR
949 /*
950 * Send the whole thing through to /dev/net/tun. It expects the exact
951 * same format: what a coincidence!
952 */
659a0e66 953 if (writev(net_info->tunfd, iov, out) < 0)
e0377e25 954 warnx("Write to tun failed (%d)?", errno);
a91d74a3
RR
955
956 /*
957 * Done with that one; wait_for_vq_desc() will send the interrupt if
958 * all packets are processed.
959 */
38bc2b8c 960 add_used(vq, head, 0);
8ca47e00
RR
961}
962
a91d74a3
RR
963/*
964 * Handling network input is a bit trickier, because I've tried to optimize it.
965 *
966 * First we have a helper routine which tells is if from this file descriptor
967 * (ie. the /dev/net/tun device) will block:
968 */
4a8962e2
RR
969static bool will_block(int fd)
970{
971 fd_set fdset;
972 struct timeval zero = { 0, 0 };
973 FD_ZERO(&fdset);
974 FD_SET(fd, &fdset);
975 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
976}
977
a91d74a3
RR
978/*
979 * This handles packets coming in from the tun device to our Guest. Like all
980 * service routines, it gets called again as soon as it returns, so you don't
981 * see a while(1) loop here.
982 */
659a0e66 983static void net_input(struct virtqueue *vq)
8ca47e00 984{
8ca47e00 985 int len;
659a0e66
RR
986 unsigned int head, out, in;
987 struct iovec iov[vq->vring.num];
988 struct net_info *net_info = vq->dev->priv;
989
a91d74a3
RR
990 /*
991 * Get a descriptor to write an incoming packet into. This will also
992 * send an interrupt if they're out of descriptors.
993 */
659a0e66
RR
994 head = wait_for_vq_desc(vq, iov, &out, &in);
995 if (out)
996 errx(1, "Output buffers in net input queue?");
4a8962e2 997
a91d74a3
RR
998 /*
999 * If it looks like we'll block reading from the tun device, send them
1000 * an interrupt.
1001 */
4a8962e2
RR
1002 if (vq->pending_used && will_block(net_info->tunfd))
1003 trigger_irq(vq);
1004
a91d74a3
RR
1005 /*
1006 * Read in the packet. This is where we normally wait (when there's no
1007 * incoming network traffic).
1008 */
659a0e66 1009 len = readv(net_info->tunfd, iov, in);
8ca47e00 1010 if (len <= 0)
e0377e25 1011 warn("Failed to read from tun (%d).", errno);
a91d74a3
RR
1012
1013 /*
1014 * Mark that packet buffer as used, but don't interrupt here. We want
1015 * to wait until we've done as much work as we can.
1016 */
4a8962e2 1017 add_used(vq, head, len);
659a0e66 1018}
a91d74a3 1019/*:*/
dde79789 1020
a91d74a3 1021/* This is the helper to create threads: run the service routine in a loop. */
659a0e66
RR
1022static int do_thread(void *_vq)
1023{
1024 struct virtqueue *vq = _vq;
17cbca2b 1025
659a0e66
RR
1026 for (;;)
1027 vq->service(vq);
1028 return 0;
1029}
17cbca2b 1030
2e04ef76
RR
1031/*
1032 * When a child dies, we kill our entire process group with SIGTERM. This
1033 * also has the side effect that the shell restores the console for us!
1034 */
659a0e66
RR
1035static void kill_launcher(int signal)
1036{
1037 kill(0, SIGTERM);
8ca47e00
RR
1038}
1039
d2dbdac3
RR
1040static void reset_vq_pci_config(struct virtqueue *vq)
1041{
1042 vq->pci_config.queue_size = VIRTQUEUE_NUM;
1043 vq->pci_config.queue_enable = 0;
1044}
1045
659a0e66 1046static void reset_device(struct device *dev)
56ae43df 1047{
659a0e66
RR
1048 struct virtqueue *vq;
1049
1050 verbose("Resetting device %s\n", dev->name);
1051
1052 /* Clear any features they've acked. */
d9028eda 1053 dev->features_accepted = 0;
659a0e66
RR
1054
1055 /* We're going to be explicitly killing threads, so ignore them. */
1056 signal(SIGCHLD, SIG_IGN);
1057
d2dbdac3
RR
1058 /*
1059 * 4.1.4.3.1:
1060 *
1061 * The device MUST present a 0 in queue_enable on reset.
1062 *
1063 * This means we set it here, and reset the saved ones in every vq.
1064 */
1065 dev->mmio->cfg.queue_enable = 0;
1066
d9028eda 1067 /* Get rid of the virtqueue threads */
659a0e66 1068 for (vq = dev->vq; vq; vq = vq->next) {
d2dbdac3
RR
1069 vq->last_avail_idx = 0;
1070 reset_vq_pci_config(vq);
659a0e66
RR
1071 if (vq->thread != (pid_t)-1) {
1072 kill(vq->thread, SIGTERM);
1073 waitpid(vq->thread, NULL, 0);
1074 vq->thread = (pid_t)-1;
1075 }
659a0e66
RR
1076 }
1077 dev->running = false;
1078
1079 /* Now we care if threads die. */
1080 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
1081}
1082
d9028eda 1083static void cleanup_devices(void)
6e5aa7ef 1084{
659a0e66 1085 unsigned int i;
659a0e66 1086
d9028eda
RR
1087 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1088 struct device *d = devices.pci[i];
1089 if (!d)
1090 continue;
1091 reset_device(d);
659a0e66 1092 }
6e5aa7ef 1093
659a0e66
RR
1094 /* If we saved off the original terminal settings, restore them now. */
1095 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1096 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1097}
6e5aa7ef 1098
d7fbf6e9
RR
1099/*L:217
1100 * We do PCI. This is mainly done to let us test the kernel virtio PCI
1101 * code.
1102 */
1103
8e709469
RR
1104/* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */
1105static struct device pci_host_bridge;
1106
1107static void init_pci_host_bridge(void)
1108{
1109 pci_host_bridge.name = "PCI Host Bridge";
1110 pci_host_bridge.config.class = 0x06; /* bridge */
1111 pci_host_bridge.config.subclass = 0; /* host bridge */
1112 devices.pci[0] = &pci_host_bridge;
1113}
1114
d7fbf6e9
RR
1115/* The IO ports used to read the PCI config space. */
1116#define PCI_CONFIG_ADDR 0xCF8
1117#define PCI_CONFIG_DATA 0xCFC
1118
1119/*
1120 * Not really portable, but does help readability: this is what the Guest
1121 * writes to the PCI_CONFIG_ADDR IO port.
1122 */
1123union pci_config_addr {
1124 struct {
1125 unsigned mbz: 2;
1126 unsigned offset: 6;
1127 unsigned funcnum: 3;
1128 unsigned devnum: 5;
1129 unsigned busnum: 8;
1130 unsigned reserved: 7;
1131 unsigned enabled : 1;
1132 } bits;
1133 u32 val;
1134};
1135
1136/*
1137 * We cache what they wrote to the address port, so we know what they're
1138 * talking about when they access the data port.
1139 */
1140static union pci_config_addr pci_config_addr;
1141
1142static struct device *find_pci_device(unsigned int index)
1143{
1144 return devices.pci[index];
1145}
1146
1147/* PCI can do 1, 2 and 4 byte reads; we handle that here. */
1148static void ioread(u16 off, u32 v, u32 mask, u32 *val)
1149{
1150 assert(off < 4);
1151 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1152 *val = (v >> (off * 8)) & mask;
1153}
1154
1155/* PCI can do 1, 2 and 4 byte writes; we handle that here. */
1156static void iowrite(u16 off, u32 v, u32 mask, u32 *dst)
1157{
1158 assert(off < 4);
1159 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1160 *dst &= ~(mask << (off * 8));
1161 *dst |= (v & mask) << (off * 8);
1162}
1163
1164/*
1165 * Where PCI_CONFIG_DATA accesses depends on the previous write to
1166 * PCI_CONFIG_ADDR.
1167 */
1168static struct device *dev_and_reg(u32 *reg)
1169{
1170 if (!pci_config_addr.bits.enabled)
1171 return NULL;
1172
1173 if (pci_config_addr.bits.funcnum != 0)
1174 return NULL;
1175
1176 if (pci_config_addr.bits.busnum != 0)
1177 return NULL;
1178
1179 if (pci_config_addr.bits.offset * 4 >= sizeof(struct pci_config))
1180 return NULL;
1181
1182 *reg = pci_config_addr.bits.offset;
1183 return find_pci_device(pci_config_addr.bits.devnum);
1184}
1185
59eba788
RR
1186/*
1187 * We can get invalid combinations of values while they're writing, so we
1188 * only fault if they try to write with some invalid bar/offset/length.
1189 */
1190static bool valid_bar_access(struct device *d,
1191 struct virtio_pci_cfg_cap *cfg_access)
1192{
1193 /* We only have 1 bar (BAR0) */
1194 if (cfg_access->cap.bar != 0)
1195 return false;
1196
1197 /* Check it's within BAR0. */
1198 if (cfg_access->cap.offset >= d->mmio_size
1199 || cfg_access->cap.offset + cfg_access->cap.length > d->mmio_size)
1200 return false;
1201
1202 /* Check length is 1, 2 or 4. */
1203 if (cfg_access->cap.length != 1
1204 && cfg_access->cap.length != 2
1205 && cfg_access->cap.length != 4)
1206 return false;
1207
1208 /* Offset must be multiple of length */
1209 if (cfg_access->cap.offset % cfg_access->cap.length != 0)
1210 return false;
1211
1212 /* Return pointer into word in BAR0. */
1213 return true;
1214}
1215
d7fbf6e9
RR
1216/* Is this accessing the PCI config address port?. */
1217static bool is_pci_addr_port(u16 port)
1218{
1219 return port >= PCI_CONFIG_ADDR && port < PCI_CONFIG_ADDR + 4;
1220}
1221
1222static bool pci_addr_iowrite(u16 port, u32 mask, u32 val)
1223{
1224 iowrite(port - PCI_CONFIG_ADDR, val, mask,
1225 &pci_config_addr.val);
1226 verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n",
1227 pci_config_addr.bits.enabled ? "" : " DISABLED",
1228 val, mask,
1229 pci_config_addr.bits.busnum,
1230 pci_config_addr.bits.devnum,
1231 pci_config_addr.bits.funcnum,
1232 pci_config_addr.bits.offset);
1233 return true;
1234}
1235
1236static void pci_addr_ioread(u16 port, u32 mask, u32 *val)
1237{
1238 ioread(port - PCI_CONFIG_ADDR, pci_config_addr.val, mask, val);
1239}
1240
1241/* Is this accessing the PCI config data port?. */
1242static bool is_pci_data_port(u16 port)
1243{
1244 return port >= PCI_CONFIG_DATA && port < PCI_CONFIG_DATA + 4;
1245}
1246
59eba788
RR
1247static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask);
1248
d7fbf6e9
RR
1249static bool pci_data_iowrite(u16 port, u32 mask, u32 val)
1250{
1251 u32 reg, portoff;
1252 struct device *d = dev_and_reg(&reg);
1253
1254 /* Complain if they don't belong to a device. */
1255 if (!d)
1256 return false;
1257
1258 /* They can do 1 byte writes, etc. */
1259 portoff = port - PCI_CONFIG_DATA;
1260
1261 /*
1262 * PCI uses a weird way to determine the BAR size: the OS
1263 * writes all 1's, and sees which ones stick.
1264 */
1265 if (&d->config_words[reg] == &d->config.bar[0]) {
1266 int i;
1267
1268 iowrite(portoff, val, mask, &d->config.bar[0]);
1269 for (i = 0; (1 << i) < d->mmio_size; i++)
1270 d->config.bar[0] &= ~(1 << i);
1271 return true;
1272 } else if ((&d->config_words[reg] > &d->config.bar[0]
1273 && &d->config_words[reg] <= &d->config.bar[6])
1274 || &d->config_words[reg] == &d->config.expansion_rom_addr) {
1275 /* Allow writing to any other BAR, or expansion ROM */
1276 iowrite(portoff, val, mask, &d->config_words[reg]);
1277 return true;
1278 /* We let them overide latency timer and cacheline size */
1279 } else if (&d->config_words[reg] == (void *)&d->config.cacheline_size) {
1280 /* Only let them change the first two fields. */
1281 if (mask == 0xFFFFFFFF)
1282 mask = 0xFFFF;
1283 iowrite(portoff, val, mask, &d->config_words[reg]);
1284 return true;
1285 } else if (&d->config_words[reg] == (void *)&d->config.command
1286 && mask == 0xFFFF) {
1287 /* Ignore command writes. */
1288 return true;
59eba788
RR
1289 } else if (&d->config_words[reg]
1290 == (void *)&d->config.cfg_access.cap.bar
1291 || &d->config_words[reg]
1292 == &d->config.cfg_access.cap.length
1293 || &d->config_words[reg]
1294 == &d->config.cfg_access.cap.offset) {
1295
1296 /*
1297 * The VIRTIO_PCI_CAP_PCI_CFG capability
1298 * provides a backdoor to access the MMIO
1299 * regions without mapping them. Weird, but
1300 * useful.
1301 */
1302 iowrite(portoff, val, mask, &d->config_words[reg]);
1303 return true;
1304 } else if (&d->config_words[reg] == &d->config.cfg_access.window) {
1305 u32 write_mask;
1306
1307 /* Must be bar 0 */
1308 if (!valid_bar_access(d, &d->config.cfg_access))
1309 return false;
1310
1311 /* First copy what they wrote into the window */
1312 iowrite(portoff, val, mask, &d->config.cfg_access.window);
1313
1314 /*
1315 * Now emulate a write. The mask we use is set by
1316 * len, *not* this write!
1317 */
1318 write_mask = (1ULL<<(8*d->config.cfg_access.cap.length)) - 1;
1319 verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n",
1320 d->config.cfg_access.window, write_mask,
1321 d->config.cfg_access.cap.bar,
1322 d->config.cfg_access.cap.offset,
1323 d->config.cfg_access.cap.length);
1324
1325 emulate_mmio_write(d, d->config.cfg_access.cap.offset,
1326 d->config.cfg_access.window, write_mask);
1327 return true;
d7fbf6e9
RR
1328 }
1329
1330 /* Complain about other writes. */
1331 return false;
1332}
1333
59eba788
RR
1334static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask);
1335
d7fbf6e9
RR
1336static void pci_data_ioread(u16 port, u32 mask, u32 *val)
1337{
1338 u32 reg;
1339 struct device *d = dev_and_reg(&reg);
1340
1341 if (!d)
1342 return;
59eba788
RR
1343
1344 /* Read through the PCI MMIO access window is special */
1345 if (&d->config_words[reg] == &d->config.cfg_access.window) {
1346 u32 read_mask;
1347
1348 /* Must be bar 0 */
1349 if (!valid_bar_access(d, &d->config.cfg_access))
1350 errx(1, "Invalid cfg_access to bar%u, offset %u len %u",
1351 d->config.cfg_access.cap.bar,
1352 d->config.cfg_access.cap.offset,
1353 d->config.cfg_access.cap.length);
1354
1355 /*
1356 * Read into the window. The mask we use is set by
1357 * len, *not* this read!
1358 */
1359 read_mask = (1ULL<<(8*d->config.cfg_access.cap.length))-1;
1360 d->config.cfg_access.window
1361 = emulate_mmio_read(d,
1362 d->config.cfg_access.cap.offset,
1363 read_mask);
1364 verbose("Window read %#x/%#x from bar %u, offset %u len %u\n",
1365 d->config.cfg_access.window, read_mask,
1366 d->config.cfg_access.cap.bar,
1367 d->config.cfg_access.cap.offset,
1368 d->config.cfg_access.cap.length);
1369 }
d7fbf6e9
RR
1370 ioread(port - PCI_CONFIG_DATA, d->config_words[reg], mask, val);
1371}
1372
c565650b
RR
1373/*L:216
1374 * This is where we emulate a handful of Guest instructions. It's ugly
1375 * and we used to do it in the kernel but it grew over time.
1376 */
1377
1378/*
1379 * We use the ptrace syscall's pt_regs struct to talk about registers
1380 * to lguest: these macros convert the names to the offsets.
1381 */
1382#define getreg(name) getreg_off(offsetof(struct user_regs_struct, name))
1383#define setreg(name, val) \
1384 setreg_off(offsetof(struct user_regs_struct, name), (val))
1385
1386static u32 getreg_off(size_t offset)
1387{
1388 u32 r;
1389 unsigned long args[] = { LHREQ_GETREG, offset };
1390
1391 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1392 err(1, "Getting register %u", offset);
1393 if (pread(lguest_fd, &r, sizeof(r), cpu_id) != sizeof(r))
1394 err(1, "Reading register %u", offset);
1395
1396 return r;
1397}
1398
1399static void setreg_off(size_t offset, u32 val)
1400{
1401 unsigned long args[] = { LHREQ_SETREG, offset, val };
1402
1403 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1404 err(1, "Setting register %u", offset);
1405}
1406
6a54f9ab
RR
1407/* Get register by instruction encoding */
1408static u32 getreg_num(unsigned regnum, u32 mask)
1409{
1410 /* 8 bit ops use regnums 4-7 for high parts of word */
1411 if (mask == 0xFF && (regnum & 0x4))
1412 return getreg_num(regnum & 0x3, 0xFFFF) >> 8;
1413
1414 switch (regnum) {
1415 case 0: return getreg(eax) & mask;
1416 case 1: return getreg(ecx) & mask;
1417 case 2: return getreg(edx) & mask;
1418 case 3: return getreg(ebx) & mask;
1419 case 4: return getreg(esp) & mask;
1420 case 5: return getreg(ebp) & mask;
1421 case 6: return getreg(esi) & mask;
1422 case 7: return getreg(edi) & mask;
1423 }
1424 abort();
1425}
1426
1427/* Set register by instruction encoding */
1428static void setreg_num(unsigned regnum, u32 val, u32 mask)
1429{
1430 /* Don't try to set bits out of range */
1431 assert(~(val & ~mask));
1432
1433 /* 8 bit ops use regnums 4-7 for high parts of word */
1434 if (mask == 0xFF && (regnum & 0x4)) {
1435 /* Construct the 16 bits we want. */
1436 val = (val << 8) | getreg_num(regnum & 0x3, 0xFF);
1437 setreg_num(regnum & 0x3, val, 0xFFFF);
1438 return;
1439 }
1440
1441 switch (regnum) {
1442 case 0: setreg(eax, val | (getreg(eax) & ~mask)); return;
1443 case 1: setreg(ecx, val | (getreg(ecx) & ~mask)); return;
1444 case 2: setreg(edx, val | (getreg(edx) & ~mask)); return;
1445 case 3: setreg(ebx, val | (getreg(ebx) & ~mask)); return;
1446 case 4: setreg(esp, val | (getreg(esp) & ~mask)); return;
1447 case 5: setreg(ebp, val | (getreg(ebp) & ~mask)); return;
1448 case 6: setreg(esi, val | (getreg(esi) & ~mask)); return;
1449 case 7: setreg(edi, val | (getreg(edi) & ~mask)); return;
1450 }
1451 abort();
1452}
1453
1454/* Get bytes of displacement appended to instruction, from r/m encoding */
1455static u32 insn_displacement_len(u8 mod_reg_rm)
1456{
1457 /* Switch on the mod bits */
1458 switch (mod_reg_rm >> 6) {
1459 case 0:
1460 /* If mod == 0, and r/m == 101, 16-bit displacement follows */
1461 if ((mod_reg_rm & 0x7) == 0x5)
1462 return 2;
1463 /* Normally, mod == 0 means no literal displacement */
1464 return 0;
1465 case 1:
1466 /* One byte displacement */
1467 return 1;
1468 case 2:
1469 /* Four byte displacement */
1470 return 4;
1471 case 3:
1472 /* Register mode */
1473 return 0;
1474 }
1475 abort();
1476}
1477
c565650b
RR
1478static void emulate_insn(const u8 insn[])
1479{
1480 unsigned long args[] = { LHREQ_TRAP, 13 };
1481 unsigned int insnlen = 0, in = 0, small_operand = 0, byte_access;
1482 unsigned int eax, port, mask;
1483 /*
d7fbf6e9 1484 * Default is to return all-ones on IO port reads, which traditionally
c565650b
RR
1485 * means "there's nothing there".
1486 */
1487 u32 val = 0xFFFFFFFF;
1488
1489 /*
1490 * This must be the Guest kernel trying to do something, not userspace!
1491 * The bottom two bits of the CS segment register are the privilege
1492 * level.
1493 */
1494 if ((getreg(xcs) & 3) != 0x1)
1495 goto no_emulate;
1496
1497 /* Decoding x86 instructions is icky. */
1498
1499 /*
1500 * Around 2.6.33, the kernel started using an emulation for the
1501 * cmpxchg8b instruction in early boot on many configurations. This
1502 * code isn't paravirtualized, and it tries to disable interrupts.
1503 * Ignore it, which will Mostly Work.
1504 */
1505 if (insn[insnlen] == 0xfa) {
1506 /* "cli", or Clear Interrupt Enable instruction. Skip it. */
1507 insnlen = 1;
1508 goto skip_insn;
1509 }
1510
1511 /*
1512 * 0x66 is an "operand prefix". It means a 16, not 32 bit in/out.
1513 */
1514 if (insn[insnlen] == 0x66) {
1515 small_operand = 1;
1516 /* The instruction is 1 byte so far, read the next byte. */
1517 insnlen = 1;
1518 }
1519
1520 /* If the lower bit isn't set, it's a single byte access */
1521 byte_access = !(insn[insnlen] & 1);
1522
1523 /*
1524 * Now we can ignore the lower bit and decode the 4 opcodes
1525 * we need to emulate.
1526 */
1527 switch (insn[insnlen] & 0xFE) {
1528 case 0xE4: /* in <next byte>,%al */
1529 port = insn[insnlen+1];
1530 insnlen += 2;
1531 in = 1;
1532 break;
1533 case 0xEC: /* in (%dx),%al */
1534 port = getreg(edx) & 0xFFFF;
1535 insnlen += 1;
1536 in = 1;
1537 break;
1538 case 0xE6: /* out %al,<next byte> */
1539 port = insn[insnlen+1];
1540 insnlen += 2;
1541 break;
1542 case 0xEE: /* out %al,(%dx) */
1543 port = getreg(edx) & 0xFFFF;
1544 insnlen += 1;
1545 break;
1546 default:
1547 /* OK, we don't know what this is, can't emulate. */
1548 goto no_emulate;
1549 }
1550
1551 /* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */
1552 if (byte_access)
1553 mask = 0xFF;
1554 else if (small_operand)
1555 mask = 0xFFFF;
1556 else
1557 mask = 0xFFFFFFFF;
1558
1559 /*
1560 * If it was an "IN" instruction, they expect the result to be read
1561 * into %eax, so we change %eax.
1562 */
1563 eax = getreg(eax);
1564
1565 if (in) {
d7fbf6e9
RR
1566 /* This is the PS/2 keyboard status; 1 means ready for output */
1567 if (port == 0x64)
1568 val = 1;
1569 else if (is_pci_addr_port(port))
1570 pci_addr_ioread(port, mask, &val);
1571 else if (is_pci_data_port(port))
1572 pci_data_ioread(port, mask, &val);
1573
c565650b
RR
1574 /* Clear the bits we're about to read */
1575 eax &= ~mask;
1576 /* Copy bits in from val. */
1577 eax |= val & mask;
1578 /* Now update the register. */
1579 setreg(eax, eax);
d7fbf6e9
RR
1580 } else {
1581 if (is_pci_addr_port(port)) {
1582 if (!pci_addr_iowrite(port, mask, eax))
1583 goto bad_io;
1584 } else if (is_pci_data_port(port)) {
1585 if (!pci_data_iowrite(port, mask, eax))
1586 goto bad_io;
1587 }
1588 /* There are many other ports, eg. CMOS clock, serial
1589 * and parallel ports, so we ignore them all. */
c565650b
RR
1590 }
1591
1592 verbose("IO %s of %x to %u: %#08x\n",
1593 in ? "IN" : "OUT", mask, port, eax);
1594skip_insn:
1595 /* Finally, we've "done" the instruction, so move past it. */
1596 setreg(eip, getreg(eip) + insnlen);
1597 return;
1598
d7fbf6e9
RR
1599bad_io:
1600 warnx("Attempt to %s port %u (%#x mask)",
1601 in ? "read from" : "write to", port, mask);
1602
c565650b
RR
1603no_emulate:
1604 /* Inject trap into Guest. */
1605 if (write(lguest_fd, args, sizeof(args)) < 0)
1606 err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip));
1607}
1608
6a54f9ab
RR
1609static struct device *find_mmio_region(unsigned long paddr, u32 *off)
1610{
1611 unsigned int i;
1612
1613 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1614 struct device *d = devices.pci[i];
1615
1616 if (!d)
1617 continue;
1618 if (paddr < d->mmio_addr)
1619 continue;
1620 if (paddr >= d->mmio_addr + d->mmio_size)
1621 continue;
1622 *off = paddr - d->mmio_addr;
1623 return d;
1624 }
1625 return NULL;
1626}
1627
93153077
RR
1628/* FIXME: Use vq array. */
1629static struct virtqueue *vq_by_num(struct device *d, u32 num)
1630{
1631 struct virtqueue *vq = d->vq;
1632
1633 while (num-- && vq)
1634 vq = vq->next;
1635
1636 return vq;
1637}
1638
1639static void save_vq_config(const struct virtio_pci_common_cfg *cfg,
1640 struct virtqueue *vq)
1641{
1642 vq->pci_config = *cfg;
1643}
1644
1645static void restore_vq_config(struct virtio_pci_common_cfg *cfg,
1646 struct virtqueue *vq)
1647{
1648 /* Only restore the per-vq part */
1649 size_t off = offsetof(struct virtio_pci_common_cfg, queue_size);
1650
1651 memcpy((void *)cfg + off, (void *)&vq->pci_config + off,
1652 sizeof(*cfg) - off);
1653}
1654
1655/*
1656 * When they enable the virtqueue, we check that their setup is valid.
1657 */
1658static void enable_virtqueue(struct device *d, struct virtqueue *vq)
1659{
1660 /*
1661 * Create stack for thread. Since the stack grows upwards, we point
1662 * the stack pointer to the end of this region.
1663 */
1664 char *stack = malloc(32768);
1665
1666 /* Because lguest is 32 bit, all the descriptor high bits must be 0 */
1667 if (vq->pci_config.queue_desc_hi
1668 || vq->pci_config.queue_avail_hi
1669 || vq->pci_config.queue_used_hi)
1670 errx(1, "%s: invalid 64-bit queue address", d->name);
1671
1672 /* Initialize the virtqueue and check they're all in range. */
1673 vq->vring.num = vq->pci_config.queue_size;
1674 vq->vring.desc = check_pointer(vq->pci_config.queue_desc_lo,
1675 sizeof(*vq->vring.desc) * vq->vring.num);
1676 vq->vring.avail = check_pointer(vq->pci_config.queue_avail_lo,
1677 sizeof(*vq->vring.avail)
1678 + (sizeof(vq->vring.avail->ring[0])
1679 * vq->vring.num));
1680 vq->vring.used = check_pointer(vq->pci_config.queue_used_lo,
1681 sizeof(*vq->vring.used)
1682 + (sizeof(vq->vring.used->ring[0])
1683 * vq->vring.num));
1684
1685
1686 /* Create a zero-initialized eventfd. */
1687 vq->eventfd = eventfd(0, 0);
1688 if (vq->eventfd < 0)
1689 err(1, "Creating eventfd");
1690
1691 /*
1692 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1693 * we get a signal if it dies.
1694 */
1695 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1696 if (vq->thread == (pid_t)-1)
1697 err(1, "Creating clone");
1698}
1699
6a54f9ab
RR
1700static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask)
1701{
93153077
RR
1702 struct virtqueue *vq;
1703
1704 switch (off) {
1705 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1706 if (val == 0)
1707 d->mmio->cfg.device_feature = d->features;
1708 else if (val == 1)
1709 d->mmio->cfg.device_feature = (d->features >> 32);
1710 else
1711 d->mmio->cfg.device_feature = 0;
1712 goto write_through32;
1713 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1714 if (val > 1)
1715 errx(1, "%s: Unexpected driver select %u",
1716 d->name, val);
1717 goto write_through32;
1718 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1719 if (d->mmio->cfg.guest_feature_select == 0) {
1720 d->features_accepted &= ~((u64)0xFFFFFFFF);
1721 d->features_accepted |= val;
1722 } else {
1723 assert(d->mmio->cfg.guest_feature_select == 1);
53aceb49 1724 d->features_accepted &= 0xFFFFFFFF;
93153077
RR
1725 d->features_accepted |= ((u64)val) << 32;
1726 }
1727 if (d->features_accepted & ~d->features)
1728 errx(1, "%s: over-accepted features %#llx of %#llx",
1729 d->name, d->features_accepted, d->features);
1730 goto write_through32;
1731 case offsetof(struct virtio_pci_mmio, cfg.device_status):
1732 verbose("%s: device status -> %#x\n", d->name, val);
1733 if (val == 0)
d9028eda 1734 reset_device(d);
93153077
RR
1735 goto write_through8;
1736 case offsetof(struct virtio_pci_mmio, cfg.queue_select):
1737 vq = vq_by_num(d, val);
1738 /* Out of range? Return size 0 */
1739 if (!vq) {
1740 d->mmio->cfg.queue_size = 0;
1741 goto write_through16;
1742 }
1743 /* Save registers for old vq, if it was a valid vq */
1744 if (d->mmio->cfg.queue_size)
1745 save_vq_config(&d->mmio->cfg,
1746 vq_by_num(d, d->mmio->cfg.queue_select));
1747 /* Restore the registers for the queue they asked for */
1748 restore_vq_config(&d->mmio->cfg, vq);
1749 goto write_through16;
1750 case offsetof(struct virtio_pci_mmio, cfg.queue_size):
1751 if (val & (val-1))
1752 errx(1, "%s: invalid queue size %u\n", d->name, val);
1753 if (d->mmio->cfg.queue_enable)
1754 errx(1, "%s: changing queue size on live device",
1755 d->name);
1756 goto write_through16;
1757 case offsetof(struct virtio_pci_mmio, cfg.queue_msix_vector):
1758 errx(1, "%s: attempt to set MSIX vector to %u",
1759 d->name, val);
1760 case offsetof(struct virtio_pci_mmio, cfg.queue_enable):
1761 if (val != 1)
1762 errx(1, "%s: setting queue_enable to %u", d->name, val);
1763 d->mmio->cfg.queue_enable = val;
1764 save_vq_config(&d->mmio->cfg,
1765 vq_by_num(d, d->mmio->cfg.queue_select));
1766 enable_virtqueue(d, vq_by_num(d, d->mmio->cfg.queue_select));
1767 goto write_through16;
1768 case offsetof(struct virtio_pci_mmio, cfg.queue_notify_off):
1769 errx(1, "%s: attempt to write to queue_notify_off", d->name);
1770 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_lo):
1771 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_hi):
1772 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_lo):
1773 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_hi):
1774 case offsetof(struct virtio_pci_mmio, cfg.queue_used_lo):
1775 case offsetof(struct virtio_pci_mmio, cfg.queue_used_hi):
1776 if (d->mmio->cfg.queue_enable)
1777 errx(1, "%s: changing queue on live device",
1778 d->name);
1779 goto write_through32;
1780 case offsetof(struct virtio_pci_mmio, notify):
1781 vq = vq_by_num(d, val);
1782 if (!vq)
1783 errx(1, "Invalid vq notification on %u", val);
1784 /* Notify the process handling this vq by adding 1 to eventfd */
1785 write(vq->eventfd, "\1\0\0\0\0\0\0\0", 8);
1786 goto write_through16;
1787 case offsetof(struct virtio_pci_mmio, isr):
1788 errx(1, "%s: Unexpected write to isr", d->name);
e8330d9b
RR
1789 /* Weird corner case: write to emerg_wr of console */
1790 case sizeof(struct virtio_pci_mmio)
1791 + offsetof(struct virtio_console_config, emerg_wr):
1792 if (strcmp(d->name, "console") == 0) {
1793 char c = val;
1794 write(STDOUT_FILENO, &c, 1);
1795 goto write_through32;
1796 }
1797 /* Fall through... */
93153077
RR
1798 default:
1799 errx(1, "%s: Unexpected write to offset %u", d->name, off);
1800 }
1801
1802write_through32:
1803 if (mask != 0xFFFFFFFF) {
1804 errx(1, "%s: non-32-bit write to offset %u (%#x)",
1805 d->name, off, getreg(eip));
1806 return;
1807 }
1808 memcpy((char *)d->mmio + off, &val, 4);
1809 return;
1810
1811write_through16:
1812 if (mask != 0xFFFF)
1813 errx(1, "%s: non-16-bit (%#x) write to offset %u (%#x)",
1814 d->name, mask, off, getreg(eip));
1815 memcpy((char *)d->mmio + off, &val, 2);
1816 return;
1817
1818write_through8:
1819 if (mask != 0xFF)
1820 errx(1, "%s: non-8-bit write to offset %u (%#x)",
1821 d->name, off, getreg(eip));
1822 memcpy((char *)d->mmio + off, &val, 1);
1823 return;
6a54f9ab
RR
1824}
1825
1826static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask)
1827{
93153077
RR
1828 u8 isr;
1829 u32 val = 0;
1830
1831 switch (off) {
1832 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1833 case offsetof(struct virtio_pci_mmio, cfg.device_feature):
1834 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1835 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1836 goto read_through32;
1837 case offsetof(struct virtio_pci_mmio, cfg.msix_config):
1838 errx(1, "%s: read of msix_config", d->name);
1839 case offsetof(struct virtio_pci_mmio, cfg.num_queues):
1840 goto read_through16;
1841 case offsetof(struct virtio_pci_mmio, cfg.device_status):
1842 case offsetof(struct virtio_pci_mmio, cfg.config_generation):
1843 goto read_through8;
1844 case offsetof(struct virtio_pci_mmio, notify):
1845 goto read_through16;
1846 case offsetof(struct virtio_pci_mmio, isr):
1847 if (mask != 0xFF)
1848 errx(1, "%s: non-8-bit read from offset %u (%#x)",
1849 d->name, off, getreg(eip));
1850 /* Read resets the isr */
1851 isr = d->mmio->isr;
1852 d->mmio->isr = 0;
1853 return isr;
1854 case offsetof(struct virtio_pci_mmio, padding):
1855 errx(1, "%s: read from padding (%#x)",
1856 d->name, getreg(eip));
1857 default:
1858 /* Read from device config space, beware unaligned overflow */
1859 if (off > d->mmio_size - 4)
1860 errx(1, "%s: read past end (%#x)",
1861 d->name, getreg(eip));
1862 if (mask == 0xFFFFFFFF)
1863 goto read_through32;
1864 else if (mask == 0xFFFF)
1865 goto read_through16;
1866 else
1867 goto read_through8;
1868 }
1869
1870read_through32:
1871 if (mask != 0xFFFFFFFF)
1872 errx(1, "%s: non-32-bit read to offset %u (%#x)",
1873 d->name, off, getreg(eip));
1874 memcpy(&val, (char *)d->mmio + off, 4);
1875 return val;
1876
1877read_through16:
1878 if (mask != 0xFFFF)
1879 errx(1, "%s: non-16-bit read to offset %u (%#x)",
1880 d->name, off, getreg(eip));
1881 memcpy(&val, (char *)d->mmio + off, 2);
1882 return val;
1883
1884read_through8:
1885 if (mask != 0xFF)
1886 errx(1, "%s: non-8-bit read to offset %u (%#x)",
1887 d->name, off, getreg(eip));
1888 memcpy(&val, (char *)d->mmio + off, 1);
1889 return val;
6a54f9ab
RR
1890}
1891
1892static void emulate_mmio(unsigned long paddr, const u8 *insn)
1893{
1894 u32 val, off, mask = 0xFFFFFFFF, insnlen = 0;
1895 struct device *d = find_mmio_region(paddr, &off);
1896 unsigned long args[] = { LHREQ_TRAP, 14 };
1897
1898 if (!d) {
1899 warnx("MMIO touching %#08lx (not a device)", paddr);
1900 goto reinject;
1901 }
1902
1903 /* Prefix makes it a 16 bit op */
1904 if (insn[0] == 0x66) {
1905 mask = 0xFFFF;
1906 insnlen++;
1907 }
1908
1909 /* iowrite */
1910 if (insn[insnlen] == 0x89) {
1911 /* Next byte is r/m byte: bits 3-5 are register. */
1912 val = getreg_num((insn[insnlen+1] >> 3) & 0x7, mask);
1913 emulate_mmio_write(d, off, val, mask);
1914 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
1915 } else if (insn[insnlen] == 0x8b) { /* ioread */
1916 /* Next byte is r/m byte: bits 3-5 are register. */
1917 val = emulate_mmio_read(d, off, mask);
1918 setreg_num((insn[insnlen+1] >> 3) & 0x7, val, mask);
1919 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
1920 } else if (insn[0] == 0x88) { /* 8-bit iowrite */
1921 mask = 0xff;
1922 /* Next byte is r/m byte: bits 3-5 are register. */
1923 val = getreg_num((insn[1] >> 3) & 0x7, mask);
1924 emulate_mmio_write(d, off, val, mask);
1925 insnlen = 2 + insn_displacement_len(insn[1]);
1926 } else if (insn[0] == 0x8a) { /* 8-bit ioread */
1927 mask = 0xff;
1928 val = emulate_mmio_read(d, off, mask);
1929 setreg_num((insn[1] >> 3) & 0x7, val, mask);
1930 insnlen = 2 + insn_displacement_len(insn[1]);
1931 } else {
1932 warnx("Unknown MMIO instruction touching %#08lx:"
1933 " %02x %02x %02x %02x at %u",
1934 paddr, insn[0], insn[1], insn[2], insn[3], getreg(eip));
1935 reinject:
1936 /* Inject trap into Guest. */
1937 if (write(lguest_fd, args, sizeof(args)) < 0)
1938 err(1, "Reinjecting trap 14 for fault at %#x",
1939 getreg(eip));
1940 return;
1941 }
1942
1943 /* Finally, we've "done" the instruction, so move past it. */
1944 setreg(eip, getreg(eip) + insnlen);
1945}
c565650b 1946
dde79789
RR
1947/*L:190
1948 * Device Setup
1949 *
1950 * All devices need a descriptor so the Guest knows it exists, and a "struct
1951 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1952 * routines to allocate and manage them.
1953 */
93153077
RR
1954static void add_pci_virtqueue(struct device *dev,
1955 void (*service)(struct virtqueue *))
1956{
1957 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1958
1959 /* Initialize the virtqueue */
1960 vq->next = NULL;
1961 vq->last_avail_idx = 0;
1962 vq->dev = dev;
1963
1964 /*
1965 * This is the routine the service thread will run, and its Process ID
1966 * once it's running.
1967 */
1968 vq->service = service;
1969 vq->thread = (pid_t)-1;
1970
1971 /* Initialize the configuration. */
d2dbdac3 1972 reset_vq_pci_config(vq);
93153077
RR
1973 vq->pci_config.queue_notify_off = 0;
1974
1975 /* Add one to the number of queues */
1976 vq->dev->mmio->cfg.num_queues++;
1977
93153077
RR
1978 /*
1979 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1980 * second.
1981 */
1982 for (i = &dev->vq; *i; i = &(*i)->next);
1983 *i = vq;
1984}
1985
d9028eda 1986/* The Guest accesses the feature bits via the PCI common config MMIO region */
93153077
RR
1987static void add_pci_feature(struct device *dev, unsigned bit)
1988{
1989 dev->features |= (1ULL << bit);
1990}
1991
93153077
RR
1992/* For devices with no config. */
1993static void no_device_config(struct device *dev)
1994{
1995 dev->mmio_addr = get_mmio_region(dev->mmio_size);
1996
1997 dev->config.bar[0] = dev->mmio_addr;
1998 /* Bottom 4 bits must be zero */
1999 assert(~(dev->config.bar[0] & 0xF));
2000}
2001
2002/* This puts the device config into BAR0 */
2003static void set_device_config(struct device *dev, const void *conf, size_t len)
2004{
2005 /* Set up BAR 0 */
2006 dev->mmio_size += len;
2007 dev->mmio = realloc(dev->mmio, dev->mmio_size);
2008 memcpy(dev->mmio + 1, conf, len);
2009
2010 /* Hook up device cfg */
2011 dev->config.cfg_access.cap.cap_next
2012 = offsetof(struct pci_config, device);
2013
2014 /* Fix up device cfg field length. */
2015 dev->config.device.length = len;
2016
2017 /* The rest is the same as the no-config case */
2018 no_device_config(dev);
2019}
2020
2021static void init_cap(struct virtio_pci_cap *cap, size_t caplen, int type,
2022 size_t bar_offset, size_t bar_bytes, u8 next)
2023{
2024 cap->cap_vndr = PCI_CAP_ID_VNDR;
2025 cap->cap_next = next;
2026 cap->cap_len = caplen;
2027 cap->cfg_type = type;
2028 cap->bar = 0;
2029 memset(cap->padding, 0, sizeof(cap->padding));
2030 cap->offset = bar_offset;
2031 cap->length = bar_bytes;
2032}
2033
2034/*
2035 * This sets up the pci_config structure, as defined in the virtio 1.0
2036 * standard (and PCI standard).
2037 */
2038static void init_pci_config(struct pci_config *pci, u16 type,
2039 u8 class, u8 subclass)
2040{
2041 size_t bar_offset, bar_len;
2042
2043 /* Save typing: most thing are happy being zero. */
2044 memset(pci, 0, sizeof(*pci));
2045
2046 /* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */
2047 pci->vendor_id = 0x1AF4;
2048 /* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */
2049 pci->device_id = 0x1040 + type;
2050
2051 /*
2052 * PCI have specific codes for different types of devices.
2053 * Linux doesn't care, but it's a good clue for people looking
2054 * at the device.
93153077
RR
2055 */
2056 pci->class = class;
2057 pci->subclass = subclass;
2058
2059 /*
2060 * 4.1.2.1 Non-transitional devices SHOULD have a PCI Revision
2061 * ID of 1 or higher
2062 */
2063 pci->revid = 1;
2064
2065 /*
2066 * 4.1.2.1 Non-transitional devices SHOULD have a PCI
2067 * Subsystem Device ID of 0x40 or higher.
2068 */
2069 pci->subsystem_device_id = 0x40;
2070
2071 /* We use our dummy interrupt controller, and irq_line is the irq */
2072 pci->irq_line = devices.next_irq++;
2073 pci->irq_pin = 0;
2074
2075 /* Support for extended capabilities. */
2076 pci->status = (1 << 4);
2077
2078 /* Link them in. */
2079 pci->capabilities = offsetof(struct pci_config, common);
2080
2081 bar_offset = offsetof(struct virtio_pci_mmio, cfg);
2082 bar_len = sizeof(((struct virtio_pci_mmio *)0)->cfg);
2083 init_cap(&pci->common, sizeof(pci->common), VIRTIO_PCI_CAP_COMMON_CFG,
2084 bar_offset, bar_len,
2085 offsetof(struct pci_config, notify));
2086
2087 bar_offset += bar_len;
2088 bar_len = sizeof(((struct virtio_pci_mmio *)0)->notify);
2089 /* FIXME: Use a non-zero notify_off, for per-queue notification? */
2090 init_cap(&pci->notify.cap, sizeof(pci->notify),
2091 VIRTIO_PCI_CAP_NOTIFY_CFG,
2092 bar_offset, bar_len,
2093 offsetof(struct pci_config, isr));
2094
2095 bar_offset += bar_len;
2096 bar_len = sizeof(((struct virtio_pci_mmio *)0)->isr);
2097 init_cap(&pci->isr, sizeof(pci->isr),
2098 VIRTIO_PCI_CAP_ISR_CFG,
2099 bar_offset, bar_len,
2100 offsetof(struct pci_config, cfg_access));
2101
2102 /* This doesn't have any presence in the BAR */
2103 init_cap(&pci->cfg_access.cap, sizeof(pci->cfg_access),
2104 VIRTIO_PCI_CAP_PCI_CFG,
2105 0, 0, 0);
2106
2107 bar_offset += bar_len + sizeof(((struct virtio_pci_mmio *)0)->padding);
2108 assert(bar_offset == sizeof(struct virtio_pci_mmio));
2109
2110 /*
2111 * This gets sewn in and length set in set_device_config().
2112 * Some devices don't have a device configuration interface, so
2113 * we never expose this if we don't call set_device_config().
2114 */
2115 init_cap(&pci->device, sizeof(pci->device), VIRTIO_PCI_CAP_DEVICE_CFG,
2116 bar_offset, 0, 0);
2117}
2118
2e04ef76 2119/*
d9028eda
RR
2120 * This routine does all the creation and setup of a new device, but we don't
2121 * actually place the MMIO region until we know the size (if any) of the
2122 * device-specific config. And we don't actually start the service threads
2123 * until later.
a6bd8e13 2124 *
2e04ef76
RR
2125 * See what I mean about userspace being boring?
2126 */
93153077
RR
2127static struct device *new_pci_device(const char *name, u16 type,
2128 u8 class, u8 subclass)
2129{
2130 struct device *dev = malloc(sizeof(*dev));
2131
2132 /* Now we populate the fields one at a time. */
93153077
RR
2133 dev->name = name;
2134 dev->vq = NULL;
93153077 2135 dev->running = false;
93153077
RR
2136 dev->mmio_size = sizeof(struct virtio_pci_mmio);
2137 dev->mmio = calloc(1, dev->mmio_size);
2138 dev->features = (u64)1 << VIRTIO_F_VERSION_1;
2139 dev->features_accepted = 0;
2140
d9028eda 2141 if (devices.device_num + 1 >= MAX_PCI_DEVICES)
93153077
RR
2142 errx(1, "Can only handle 31 PCI devices");
2143
2144 init_pci_config(&dev->config, type, class, subclass);
2145 assert(!devices.pci[devices.device_num+1]);
2146 devices.pci[++devices.device_num] = dev;
2147
2148 return dev;
2149}
2150
2e04ef76
RR
2151/*
2152 * Our first setup routine is the console. It's a fairly simple device, but
2153 * UNIX tty handling makes it uglier than it could be.
2154 */
17cbca2b 2155static void setup_console(void)
8ca47e00
RR
2156{
2157 struct device *dev;
e8330d9b 2158 struct virtio_console_config conf;
8ca47e00 2159
dde79789 2160 /* If we can save the initial standard input settings... */
8ca47e00
RR
2161 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
2162 struct termios term = orig_term;
2e04ef76
RR
2163 /*
2164 * Then we turn off echo, line buffering and ^C etc: We want a
2165 * raw input stream to the Guest.
2166 */
8ca47e00
RR
2167 term.c_lflag &= ~(ISIG|ICANON|ECHO);
2168 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
2169 }
2170
ebff0113 2171 dev = new_pci_device("console", VIRTIO_ID_CONSOLE, 0x07, 0x00);
659a0e66 2172
dde79789 2173 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
2174 dev->priv = malloc(sizeof(struct console_abort));
2175 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 2176
2e04ef76
RR
2177 /*
2178 * The console needs two virtqueues: the input then the output. When
56ae43df
RR
2179 * they put something the input queue, we make sure we're listening to
2180 * stdin. When they put something in the output queue, we write it to
2e04ef76
RR
2181 * stdout.
2182 */
ebff0113
RR
2183 add_pci_virtqueue(dev, console_input);
2184 add_pci_virtqueue(dev, console_output);
2185
e8330d9b
RR
2186 /* We need a configuration area for the emerg_wr early writes. */
2187 add_pci_feature(dev, VIRTIO_CONSOLE_F_EMERG_WRITE);
2188 set_device_config(dev, &conf, sizeof(conf));
17cbca2b 2189
ebff0113 2190 verbose("device %u: console\n", devices.device_num);
8ca47e00 2191}
17cbca2b 2192/*:*/
8ca47e00 2193
2e04ef76
RR
2194/*M:010
2195 * Inter-guest networking is an interesting area. Simplest is to have a
17cbca2b
RR
2196 * --sharenet=<name> option which opens or creates a named pipe. This can be
2197 * used to send packets to another guest in a 1:1 manner.
dde79789 2198 *
9f54288d 2199 * More sophisticated is to use one of the tools developed for project like UML
17cbca2b 2200 * to do networking.
dde79789 2201 *
17cbca2b
RR
2202 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
2203 * completely generic ("here's my vring, attach to your vring") and would work
2204 * for any traffic. Of course, namespace and permissions issues need to be
2205 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
2206 * multiple inter-guest channels behind one interface, although it would
2207 * require some manner of hotplugging new virtio channels.
2208 *
9f54288d 2209 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2e04ef76 2210:*/
8ca47e00
RR
2211
2212static u32 str2ip(const char *ipaddr)
2213{
dec6a2be 2214 unsigned int b[4];
8ca47e00 2215
dec6a2be
MM
2216 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
2217 errx(1, "Failed to parse IP address '%s'", ipaddr);
2218 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
2219}
2220
2221static void str2mac(const char *macaddr, unsigned char mac[6])
2222{
2223 unsigned int m[6];
2224 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
2225 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
2226 errx(1, "Failed to parse mac address '%s'", macaddr);
2227 mac[0] = m[0];
2228 mac[1] = m[1];
2229 mac[2] = m[2];
2230 mac[3] = m[3];
2231 mac[4] = m[4];
2232 mac[5] = m[5];
8ca47e00
RR
2233}
2234
2e04ef76
RR
2235/*
2236 * This code is "adapted" from libbridge: it attaches the Host end of the
dde79789
RR
2237 * network device to the bridge device specified by the command line.
2238 *
2239 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2e04ef76
RR
2240 * dislike bridging), and I just try not to break it.
2241 */
8ca47e00
RR
2242static void add_to_bridge(int fd, const char *if_name, const char *br_name)
2243{
2244 int ifidx;
2245 struct ifreq ifr;
2246
2247 if (!*br_name)
2248 errx(1, "must specify bridge name");
2249
2250 ifidx = if_nametoindex(if_name);
2251 if (!ifidx)
2252 errx(1, "interface %s does not exist!", if_name);
2253
2254 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 2255 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
2256 ifr.ifr_ifindex = ifidx;
2257 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
2258 err(1, "can't add %s to bridge %s", if_name, br_name);
2259}
2260
2e04ef76
RR
2261/*
2262 * This sets up the Host end of the network device with an IP address, brings
dde79789 2263 * it up so packets will flow, the copies the MAC address into the hwaddr
2e04ef76
RR
2264 * pointer.
2265 */
dec6a2be 2266static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
2267{
2268 struct ifreq ifr;
f846619e 2269 struct sockaddr_in sin;
8ca47e00
RR
2270
2271 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
2272 strcpy(ifr.ifr_name, tapif);
2273
2274 /* Don't read these incantations. Just cut & paste them like I did! */
f846619e
RR
2275 sin.sin_family = AF_INET;
2276 sin.sin_addr.s_addr = htonl(ipaddr);
2277 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
8ca47e00 2278 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 2279 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
2280 ifr.ifr_flags = IFF_UP;
2281 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
2282 err(1, "Bringing interface %s up", tapif);
2283}
2284
dec6a2be 2285static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 2286{
8ca47e00 2287 struct ifreq ifr;
bf6d4034 2288 int vnet_hdr_sz;
dec6a2be
MM
2289 int netfd;
2290
2291 /* Start with this zeroed. Messy but sure. */
2292 memset(&ifr, 0, sizeof(ifr));
8ca47e00 2293
2e04ef76
RR
2294 /*
2295 * We open the /dev/net/tun device and tell it we want a tap device. A
dde79789
RR
2296 * tap device is like a tun device, only somehow different. To tell
2297 * the truth, I completely blundered my way through this code, but it
2e04ef76
RR
2298 * works now!
2299 */
8ca47e00 2300 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 2301 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
2302 strcpy(ifr.ifr_name, "tap%d");
2303 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
2304 err(1, "configuring /dev/net/tun");
dec6a2be 2305
398f187d
RR
2306 if (ioctl(netfd, TUNSETOFFLOAD,
2307 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
2308 err(1, "Could not set features for tun device");
2309
2e04ef76
RR
2310 /*
2311 * We don't need checksums calculated for packets coming in this
2312 * device: trust us!
2313 */
8ca47e00
RR
2314 ioctl(netfd, TUNSETNOCSUM, 1);
2315
bf6d4034
RR
2316 /*
2317 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit
2318 * field at the end of the network header iff
2319 * VIRTIO_NET_F_MRG_RXBUF was negotiated. For virtio 1.0,
2320 * that became the norm, but we need to tell the tun device
2321 * about our expanded header (which is called
2322 * virtio_net_hdr_mrg_rxbuf in the legacy system).
2323 */
2324 vnet_hdr_sz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
2325 if (ioctl(netfd, TUNSETVNETHDRSZ, &vnet_hdr_sz) != 0)
2326 err(1, "Setting tun header size to %u", vnet_hdr_sz);
2327
dec6a2be
MM
2328 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
2329 return netfd;
2330}
2331
2e04ef76
RR
2332/*L:195
2333 * Our network is a Host<->Guest network. This can either use bridging or
dec6a2be
MM
2334 * routing, but the principle is the same: it uses the "tun" device to inject
2335 * packets into the Host as if they came in from a normal network card. We
2e04ef76
RR
2336 * just shunt packets between the Guest and the tun device.
2337 */
dec6a2be
MM
2338static void setup_tun_net(char *arg)
2339{
2340 struct device *dev;
659a0e66
RR
2341 struct net_info *net_info = malloc(sizeof(*net_info));
2342 int ipfd;
dec6a2be
MM
2343 u32 ip = INADDR_ANY;
2344 bool bridging = false;
2345 char tapif[IFNAMSIZ], *p;
2346 struct virtio_net_config conf;
2347
659a0e66 2348 net_info->tunfd = get_tun_device(tapif);
dec6a2be 2349
17cbca2b 2350 /* First we create a new network device. */
bf6d4034 2351 dev = new_pci_device("net", VIRTIO_ID_NET, 0x02, 0x00);
659a0e66 2352 dev->priv = net_info;
dde79789 2353
2e04ef76 2354 /* Network devices need a recv and a send queue, just like console. */
bf6d4034
RR
2355 add_pci_virtqueue(dev, net_input);
2356 add_pci_virtqueue(dev, net_output);
8ca47e00 2357
2e04ef76
RR
2358 /*
2359 * We need a socket to perform the magic network ioctls to bring up the
2360 * tap interface, connect to the bridge etc. Any socket will do!
2361 */
8ca47e00
RR
2362 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
2363 if (ipfd < 0)
2364 err(1, "opening IP socket");
2365
dde79789 2366 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 2367 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
2368 arg += strlen(BRIDGE_PFX);
2369 bridging = true;
2370 }
2371
2372 /* A mac address may follow the bridge name or IP address */
2373 p = strchr(arg, ':');
2374 if (p) {
2375 str2mac(p+1, conf.mac);
bf6d4034 2376 add_pci_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 2377 *p = '\0';
dec6a2be
MM
2378 }
2379
2380 /* arg is now either an IP address or a bridge name */
2381 if (bridging)
2382 add_to_bridge(ipfd, tapif, arg);
2383 else
8ca47e00
RR
2384 ip = str2ip(arg);
2385
dec6a2be
MM
2386 /* Set up the tun device. */
2387 configure_device(ipfd, tapif, ip);
8ca47e00 2388
398f187d 2389 /* Expect Guest to handle everything except UFO */
bf6d4034
RR
2390 add_pci_feature(dev, VIRTIO_NET_F_CSUM);
2391 add_pci_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
2392 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
2393 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
2394 add_pci_feature(dev, VIRTIO_NET_F_GUEST_ECN);
2395 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO4);
2396 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO6);
2397 add_pci_feature(dev, VIRTIO_NET_F_HOST_ECN);
d1f0132e 2398 /* We handle indirect ring entries */
bf6d4034
RR
2399 add_pci_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
2400 set_device_config(dev, &conf, sizeof(conf));
8ca47e00 2401
a586d4f6 2402 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
2403 close(ipfd);
2404
dec6a2be
MM
2405 if (bridging)
2406 verbose("device %u: tun %s attached to bridge: %s\n",
2407 devices.device_num, tapif, arg);
2408 else
2409 verbose("device %u: tun %s: %s\n",
2410 devices.device_num, tapif, arg);
8ca47e00 2411}
a91d74a3 2412/*:*/
17cbca2b 2413
e1e72965 2414/* This hangs off device->priv. */
1842f23c 2415struct vblk_info {
17cbca2b
RR
2416 /* The size of the file. */
2417 off64_t len;
2418
2419 /* The file descriptor for the file. */
2420 int fd;
2421
17cbca2b
RR
2422};
2423
e1e72965
RR
2424/*L:210
2425 * The Disk
2426 *
a91d74a3
RR
2427 * The disk only has one virtqueue, so it only has one thread. It is really
2428 * simple: the Guest asks for a block number and we read or write that position
2429 * in the file.
2430 *
2431 * Before we serviced each virtqueue in a separate thread, that was unacceptably
2432 * slow: the Guest waits until the read is finished before running anything
2433 * else, even if it could have been doing useful work.
2434 *
2435 * We could have used async I/O, except it's reputed to suck so hard that
2436 * characters actually go missing from your code when you try to use it.
e1e72965 2437 */
659a0e66 2438static void blk_request(struct virtqueue *vq)
17cbca2b 2439{
659a0e66 2440 struct vblk_info *vblk = vq->dev->priv;
17cbca2b 2441 unsigned int head, out_num, in_num, wlen;
c0316a94 2442 int ret, i;
cb38fa23 2443 u8 *in;
c0316a94 2444 struct virtio_blk_outhdr out;
659a0e66 2445 struct iovec iov[vq->vring.num];
17cbca2b
RR
2446 off64_t off;
2447
a91d74a3
RR
2448 /*
2449 * Get the next request, where we normally wait. It triggers the
2450 * interrupt to acknowledge previously serviced requests (if any).
2451 */
659a0e66 2452 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 2453
c0316a94
RR
2454 /* Copy the output header from the front of the iov (adjusts iov) */
2455 iov_consume(iov, out_num, &out, sizeof(out));
2456
2457 /* Find and trim end of iov input array, for our status byte. */
2458 in = NULL;
2459 for (i = out_num + in_num - 1; i >= out_num; i--) {
2460 if (iov[i].iov_len > 0) {
2461 in = iov[i].iov_base + iov[i].iov_len - 1;
2462 iov[i].iov_len--;
2463 break;
2464 }
2465 }
2466 if (!in)
2467 errx(1, "Bad virtblk cmd with no room for status");
17cbca2b 2468
a91d74a3
RR
2469 /*
2470 * For historical reasons, block operations are expressed in 512 byte
2471 * "sectors".
2472 */
c0316a94 2473 off = out.sector * 512;
17cbca2b 2474
50516547 2475 if (out.type & VIRTIO_BLK_T_OUT) {
2e04ef76
RR
2476 /*
2477 * Write
2478 *
2479 * Move to the right location in the block file. This can fail
2480 * if they try to write past end.
2481 */
17cbca2b 2482 if (lseek64(vblk->fd, off, SEEK_SET) != off)
c0316a94 2483 err(1, "Bad seek to sector %llu", out.sector);
17cbca2b 2484
c0316a94
RR
2485 ret = writev(vblk->fd, iov, out_num);
2486 verbose("WRITE to sector %llu: %i\n", out.sector, ret);
17cbca2b 2487
2e04ef76
RR
2488 /*
2489 * Grr... Now we know how long the descriptor they sent was, we
17cbca2b 2490 * make sure they didn't try to write over the end of the block
2e04ef76
RR
2491 * file (possibly extending it).
2492 */
17cbca2b
RR
2493 if (ret > 0 && off + ret > vblk->len) {
2494 /* Trim it back to the correct length */
2495 ftruncate64(vblk->fd, vblk->len);
2496 /* Die, bad Guest, die. */
2497 errx(1, "Write past end %llu+%u", off, ret);
2498 }
7bc9fdda
TH
2499
2500 wlen = sizeof(*in);
2501 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
c0316a94 2502 } else if (out.type & VIRTIO_BLK_T_FLUSH) {
7bc9fdda
TH
2503 /* Flush */
2504 ret = fdatasync(vblk->fd);
2505 verbose("FLUSH fdatasync: %i\n", ret);
1200e646 2506 wlen = sizeof(*in);
cb38fa23 2507 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b 2508 } else {
2e04ef76
RR
2509 /*
2510 * Read
2511 *
2512 * Move to the right location in the block file. This can fail
2513 * if they try to read past end.
2514 */
17cbca2b 2515 if (lseek64(vblk->fd, off, SEEK_SET) != off)
c0316a94 2516 err(1, "Bad seek to sector %llu", out.sector);
17cbca2b 2517
c0316a94 2518 ret = readv(vblk->fd, iov + out_num, in_num);
17cbca2b 2519 if (ret >= 0) {
1200e646 2520 wlen = sizeof(*in) + ret;
cb38fa23 2521 *in = VIRTIO_BLK_S_OK;
17cbca2b 2522 } else {
1200e646 2523 wlen = sizeof(*in);
cb38fa23 2524 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
2525 }
2526 }
2527
a91d74a3 2528 /* Finished that request. */
38bc2b8c 2529 add_used(vq, head, wlen);
17cbca2b
RR
2530}
2531
e1e72965 2532/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
2533static void setup_block_file(const char *filename)
2534{
17cbca2b
RR
2535 struct device *dev;
2536 struct vblk_info *vblk;
a586d4f6 2537 struct virtio_blk_config conf;
17cbca2b 2538
50516547
RR
2539 /* Create the device. */
2540 dev = new_pci_device("block", VIRTIO_ID_BLOCK, 0x01, 0x80);
17cbca2b 2541
e1e72965 2542 /* The device has one virtqueue, where the Guest places requests. */
50516547 2543 add_pci_virtqueue(dev, blk_request);
17cbca2b
RR
2544
2545 /* Allocate the room for our own bookkeeping */
2546 vblk = dev->priv = malloc(sizeof(*vblk));
2547
2548 /* First we open the file and store the length. */
2549 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
2550 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
2551
2552 /* Tell Guest how many sectors this device has. */
a586d4f6 2553 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b 2554
2e04ef76
RR
2555 /*
2556 * Tell Guest not to put in too many descriptors at once: two are used
2557 * for the in and out elements.
2558 */
50516547 2559 add_pci_feature(dev, VIRTIO_BLK_F_SEG_MAX);
a586d4f6
RR
2560 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
2561
50516547 2562 set_device_config(dev, &conf, sizeof(struct virtio_blk_config));
17cbca2b 2563
17cbca2b 2564 verbose("device %u: virtblock %llu sectors\n",
50516547 2565 devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 2566}
28fd6d7f 2567
2e04ef76 2568/*L:211
a454bb36 2569 * Our random number generator device reads from /dev/urandom into the Guest's
28fd6d7f 2570 * input buffers. The usual case is that the Guest doesn't want random numbers
a454bb36 2571 * and so has no buffers although /dev/urandom is still readable, whereas
28fd6d7f
RR
2572 * console is the reverse.
2573 *
2e04ef76
RR
2574 * The same logic applies, however.
2575 */
2576struct rng_info {
2577 int rfd;
2578};
2579
659a0e66 2580static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
2581{
2582 int len;
2583 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
2584 struct rng_info *rng_info = vq->dev->priv;
2585 struct iovec iov[vq->vring.num];
28fd6d7f
RR
2586
2587 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 2588 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
2589 if (out_num)
2590 errx(1, "Output buffers in rng?");
2591
2e04ef76 2592 /*
a91d74a3
RR
2593 * Just like the console write, we loop to cover the whole iovec.
2594 * In this case, short reads actually happen quite a bit.
2e04ef76 2595 */
28fd6d7f 2596 while (!iov_empty(iov, in_num)) {
659a0e66 2597 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f 2598 if (len <= 0)
a454bb36 2599 err(1, "Read from /dev/urandom gave %i", len);
c0316a94 2600 iov_consume(iov, in_num, NULL, len);
28fd6d7f
RR
2601 totlen += len;
2602 }
2603
2604 /* Tell the Guest about the new input. */
38bc2b8c 2605 add_used(vq, head, totlen);
28fd6d7f
RR
2606}
2607
2e04ef76
RR
2608/*L:199
2609 * This creates a "hardware" random number device for the Guest.
2610 */
28fd6d7f
RR
2611static void setup_rng(void)
2612{
2613 struct device *dev;
659a0e66 2614 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 2615
a454bb36
RR
2616 /* Our device's private info simply contains the /dev/urandom fd. */
2617 rng_info->rfd = open_or_die("/dev/urandom", O_RDONLY);
28fd6d7f 2618
2e04ef76 2619 /* Create the new device. */
0d5b5d39 2620 dev = new_pci_device("rng", VIRTIO_ID_RNG, 0xff, 0);
659a0e66 2621 dev->priv = rng_info;
28fd6d7f
RR
2622
2623 /* The device has one virtqueue, where the Guest places inbufs. */
0d5b5d39 2624 add_pci_virtqueue(dev, rng_input);
28fd6d7f 2625
0d5b5d39
RR
2626 /* We don't have any configuration space */
2627 no_device_config(dev);
2628
2629 verbose("device %u: rng\n", devices.device_num);
28fd6d7f 2630}
a6bd8e13 2631/* That's the end of device setup. */
ec04b13f 2632
a6bd8e13 2633/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
2634static void __attribute__((noreturn)) restart_guest(void)
2635{
2636 unsigned int i;
2637
2e04ef76
RR
2638 /*
2639 * Since we don't track all open fds, we simply close everything beyond
2640 * stderr.
2641 */
ec04b13f
BR
2642 for (i = 3; i < FD_SETSIZE; i++)
2643 close(i);
8c79873d 2644
659a0e66
RR
2645 /* Reset all the devices (kills all threads). */
2646 cleanup_devices();
2647
ec04b13f
BR
2648 execv(main_args[0], main_args);
2649 err(1, "Could not exec %s", main_args[0]);
2650}
8ca47e00 2651
2e04ef76
RR
2652/*L:220
2653 * Finally we reach the core of the Launcher which runs the Guest, serves
2654 * its input and output, and finally, lays it to rest.
2655 */
56739c80 2656static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
2657{
2658 for (;;) {
69a09dc1 2659 struct lguest_pending notify;
8ca47e00
RR
2660 int readval;
2661
2662 /* We read from the /dev/lguest device to run the Guest. */
69a09dc1 2663 readval = pread(lguest_fd, &notify, sizeof(notify), cpu_id);
69a09dc1 2664 if (readval == sizeof(notify)) {
00f8d546 2665 if (notify.trap == 13) {
c565650b
RR
2666 verbose("Emulating instruction at %#x\n",
2667 getreg(eip));
2668 emulate_insn(notify.insn);
6a54f9ab
RR
2669 } else if (notify.trap == 14) {
2670 verbose("Emulating MMIO at %#x\n",
2671 getreg(eip));
2672 emulate_mmio(notify.addr, notify.insn);
69a09dc1
RR
2673 } else
2674 errx(1, "Unknown trap %i addr %#08x\n",
2675 notify.trap, notify.addr);
dde79789 2676 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
2677 } else if (errno == ENOENT) {
2678 char reason[1024] = { 0 };
e3283fa0 2679 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 2680 errx(1, "%s", reason);
ec04b13f
BR
2681 /* ERESTART means that we need to reboot the guest */
2682 } else if (errno == ERESTART) {
2683 restart_guest();
659a0e66
RR
2684 /* Anything else means a bug or incompatible change. */
2685 } else
8ca47e00 2686 err(1, "Running guest failed");
8ca47e00
RR
2687 }
2688}
a6bd8e13 2689/*L:240
e1e72965
RR
2690 * This is the end of the Launcher. The good news: we are over halfway
2691 * through! The bad news: the most fiendish part of the code still lies ahead
2692 * of us.
dde79789 2693 *
e1e72965
RR
2694 * Are you ready? Take a deep breath and join me in the core of the Host, in
2695 * "make Host".
2e04ef76 2696:*/
8ca47e00
RR
2697
2698static struct option opts[] = {
2699 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
2700 { "tunnet", 1, NULL, 't' },
2701 { "block", 1, NULL, 'b' },
28fd6d7f 2702 { "rng", 0, NULL, 'r' },
8ca47e00 2703 { "initrd", 1, NULL, 'i' },
8aeb36e8
PS
2704 { "username", 1, NULL, 'u' },
2705 { "chroot", 1, NULL, 'c' },
8ca47e00
RR
2706 { NULL },
2707};
2708static void usage(void)
2709{
2710 errx(1, "Usage: lguest [--verbose] "
dec6a2be 2711 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
2712 "|--block=<filename>|--initrd=<filename>]...\n"
2713 "<mem-in-mb> vmlinux [args...]");
2714}
2715
3c6b5bfa 2716/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
2717int main(int argc, char *argv[])
2718{
2e04ef76 2719 /* Memory, code startpoint and size of the (optional) initrd. */
58a24566 2720 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
2721 /* Two temporaries. */
2722 int i, c;
3c6b5bfa 2723 /* The boot information for the Guest. */
43d33b21 2724 struct boot_params *boot;
dde79789 2725 /* If they specify an initrd file to load. */
8ca47e00
RR
2726 const char *initrd_name = NULL;
2727
8aeb36e8
PS
2728 /* Password structure for initgroups/setres[gu]id */
2729 struct passwd *user_details = NULL;
2730
2731 /* Directory to chroot to */
2732 char *chroot_path = NULL;
2733
ec04b13f
BR
2734 /* Save the args: we "reboot" by execing ourselves again. */
2735 main_args = argv;
ec04b13f 2736
2e04ef76 2737 /*
d9028eda
RR
2738 * First we initialize the device list. We remember next interrupt
2739 * number to use for devices (1: remember that 0 is used by the timer).
2e04ef76 2740 */
17cbca2b 2741 devices.next_irq = 1;
8ca47e00 2742
a91d74a3 2743 /* We're CPU 0. In fact, that's the only CPU possible right now. */
e3283fa0 2744 cpu_id = 0;
a91d74a3 2745
2e04ef76
RR
2746 /*
2747 * We need to know how much memory so we can set up the device
dde79789
RR
2748 * descriptor and memory pages for the devices as we parse the command
2749 * line. So we quickly look through the arguments to find the amount
2e04ef76
RR
2750 * of memory now.
2751 */
6570c459
RR
2752 for (i = 1; i < argc; i++) {
2753 if (argv[i][0] != '-') {
3c6b5bfa 2754 mem = atoi(argv[i]) * 1024 * 1024;
2e04ef76
RR
2755 /*
2756 * We start by mapping anonymous pages over all of
3c6b5bfa
RR
2757 * guest-physical memory range. This fills it with 0,
2758 * and ensures that the Guest won't be killed when it
2e04ef76
RR
2759 * tries to access it.
2760 */
3c6b5bfa
RR
2761 guest_base = map_zeroed_pages(mem / getpagesize()
2762 + DEVICE_PAGES);
2763 guest_limit = mem;
0a6bcc18 2764 guest_max = guest_mmio = mem + DEVICE_PAGES*getpagesize();
6570c459
RR
2765 break;
2766 }
2767 }
dde79789 2768
713e3f72
RR
2769 /* We always have a console device, and it's always device 1. */
2770 setup_console();
2771
dde79789 2772 /* The options are fairly straight-forward */
8ca47e00
RR
2773 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
2774 switch (c) {
2775 case 'v':
2776 verbose = true;
2777 break;
8ca47e00 2778 case 't':
17cbca2b 2779 setup_tun_net(optarg);
8ca47e00
RR
2780 break;
2781 case 'b':
17cbca2b 2782 setup_block_file(optarg);
8ca47e00 2783 break;
28fd6d7f
RR
2784 case 'r':
2785 setup_rng();
2786 break;
8ca47e00
RR
2787 case 'i':
2788 initrd_name = optarg;
2789 break;
8aeb36e8
PS
2790 case 'u':
2791 user_details = getpwnam(optarg);
2792 if (!user_details)
2793 err(1, "getpwnam failed, incorrect username?");
2794 break;
2795 case 'c':
2796 chroot_path = optarg;
2797 break;
8ca47e00
RR
2798 default:
2799 warnx("Unknown argument %s", argv[optind]);
2800 usage();
2801 }
2802 }
2e04ef76
RR
2803 /*
2804 * After the other arguments we expect memory and kernel image name,
2805 * followed by command line arguments for the kernel.
2806 */
8ca47e00
RR
2807 if (optind + 2 > argc)
2808 usage();
2809
3c6b5bfa
RR
2810 verbose("Guest base is at %p\n", guest_base);
2811
8e709469
RR
2812 /* Initialize the (fake) PCI host bridge device. */
2813 init_pci_host_bridge();
2814
8ca47e00 2815 /* Now we load the kernel */
47436aa4 2816 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 2817
3c6b5bfa
RR
2818 /* Boot information is stashed at physical address 0 */
2819 boot = from_guest_phys(0);
2820
dde79789 2821 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
2822 if (initrd_name) {
2823 initrd_size = load_initrd(initrd_name, mem);
2e04ef76
RR
2824 /*
2825 * These are the location in the Linux boot header where the
2826 * start and size of the initrd are expected to be found.
2827 */
43d33b21
RR
2828 boot->hdr.ramdisk_image = mem - initrd_size;
2829 boot->hdr.ramdisk_size = initrd_size;
dde79789 2830 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 2831 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
2832 }
2833
2e04ef76
RR
2834 /*
2835 * The Linux boot header contains an "E820" memory map: ours is a
2836 * simple, single region.
2837 */
43d33b21
RR
2838 boot->e820_entries = 1;
2839 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2e04ef76
RR
2840 /*
2841 * The boot header contains a command line pointer: we put the command
2842 * line after the boot header.
2843 */
43d33b21 2844 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 2845 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 2846 concat((char *)(boot + 1), argv+optind+2);
dde79789 2847
e22a5398
RR
2848 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
2849 boot->hdr.kernel_alignment = 0x1000000;
2850
814a0e5c 2851 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 2852 boot->hdr.version = 0x207;
814a0e5c
RR
2853
2854 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2855 boot->hdr.hardware_subarch = 1;
814a0e5c 2856
43d33b21
RR
2857 /* Tell the entry path not to try to reload segment registers. */
2858 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2859
9f54288d 2860 /* We tell the kernel to initialize the Guest. */
56739c80 2861 tell_kernel(start);
dde79789 2862
a91d74a3 2863 /* Ensure that we terminate if a device-servicing child dies. */
659a0e66
RR
2864 signal(SIGCHLD, kill_launcher);
2865
2866 /* If we exit via err(), this kills all the threads, restores tty. */
2867 atexit(cleanup_devices);
8ca47e00 2868
8aeb36e8
PS
2869 /* If requested, chroot to a directory */
2870 if (chroot_path) {
2871 if (chroot(chroot_path) != 0)
2872 err(1, "chroot(\"%s\") failed", chroot_path);
2873
2874 if (chdir("/") != 0)
2875 err(1, "chdir(\"/\") failed");
2876
2877 verbose("chroot done\n");
2878 }
2879
2880 /* If requested, drop privileges */
2881 if (user_details) {
2882 uid_t u;
2883 gid_t g;
2884
2885 u = user_details->pw_uid;
2886 g = user_details->pw_gid;
2887
2888 if (initgroups(user_details->pw_name, g) != 0)
2889 err(1, "initgroups failed");
2890
2891 if (setresgid(g, g, g) != 0)
2892 err(1, "setresgid failed");
2893
2894 if (setresuid(u, u, u) != 0)
2895 err(1, "setresuid failed");
2896
2897 verbose("Dropping privileges completed\n");
2898 }
2899
dde79789 2900 /* Finally, run the Guest. This doesn't return. */
56739c80 2901 run_guest();
8ca47e00 2902}
f56a384e
RR
2903/*:*/
2904
2905/*M:999
2906 * Mastery is done: you now know everything I do.
2907 *
2908 * But surely you have seen code, features and bugs in your wanderings which
2909 * you now yearn to attack? That is the real game, and I look forward to you
2910 * patching and forking lguest into the Your-Name-Here-visor.
2911 *
2912 * Farewell, and good coding!
2913 * Rusty Russell.
2914 */