tools/headers: Synchronize kernel ABI headers, v4.17-rc1
[linux-2.6-block.git] / tools / include / uapi / linux / perf_event.h
CommitLineData
fb7df12d 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
c4b6014e
ACM
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * Generalized performance event event_id types, used by the
42 * attr.event_id parameter of the sys_perf_event_open()
43 * syscall:
44 */
45enum perf_hw_id {
46 /*
47 * Common hardware events, generalized by the kernel:
48 */
49 PERF_COUNT_HW_CPU_CYCLES = 0,
50 PERF_COUNT_HW_INSTRUCTIONS = 1,
51 PERF_COUNT_HW_CACHE_REFERENCES = 2,
52 PERF_COUNT_HW_CACHE_MISSES = 3,
53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
54 PERF_COUNT_HW_BRANCH_MISSES = 5,
55 PERF_COUNT_HW_BUS_CYCLES = 6,
56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
59
60 PERF_COUNT_HW_MAX, /* non-ABI */
61};
62
63/*
64 * Generalized hardware cache events:
65 *
66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
67 * { read, write, prefetch } x
68 * { accesses, misses }
69 */
70enum perf_hw_cache_id {
71 PERF_COUNT_HW_CACHE_L1D = 0,
72 PERF_COUNT_HW_CACHE_L1I = 1,
73 PERF_COUNT_HW_CACHE_LL = 2,
74 PERF_COUNT_HW_CACHE_DTLB = 3,
75 PERF_COUNT_HW_CACHE_ITLB = 4,
76 PERF_COUNT_HW_CACHE_BPU = 5,
77 PERF_COUNT_HW_CACHE_NODE = 6,
78
79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80};
81
82enum perf_hw_cache_op_id {
83 PERF_COUNT_HW_CACHE_OP_READ = 0,
84 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
86
87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88};
89
90enum perf_hw_cache_op_result_id {
91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
93
94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
95};
96
97/*
98 * Special "software" events provided by the kernel, even if the hardware
99 * does not support performance events. These events measure various
100 * physical and sw events of the kernel (and allow the profiling of them as
101 * well):
102 */
103enum perf_sw_ids {
104 PERF_COUNT_SW_CPU_CLOCK = 0,
105 PERF_COUNT_SW_TASK_CLOCK = 1,
106 PERF_COUNT_SW_PAGE_FAULTS = 2,
107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
108 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
112 PERF_COUNT_SW_EMULATION_FAULTS = 8,
113 PERF_COUNT_SW_DUMMY = 9,
114 PERF_COUNT_SW_BPF_OUTPUT = 10,
115
116 PERF_COUNT_SW_MAX, /* non-ABI */
117};
118
119/*
120 * Bits that can be set in attr.sample_type to request information
121 * in the overflow packets.
122 */
123enum perf_event_sample_format {
124 PERF_SAMPLE_IP = 1U << 0,
125 PERF_SAMPLE_TID = 1U << 1,
126 PERF_SAMPLE_TIME = 1U << 2,
127 PERF_SAMPLE_ADDR = 1U << 3,
128 PERF_SAMPLE_READ = 1U << 4,
129 PERF_SAMPLE_CALLCHAIN = 1U << 5,
130 PERF_SAMPLE_ID = 1U << 6,
131 PERF_SAMPLE_CPU = 1U << 7,
132 PERF_SAMPLE_PERIOD = 1U << 8,
133 PERF_SAMPLE_STREAM_ID = 1U << 9,
134 PERF_SAMPLE_RAW = 1U << 10,
135 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
136 PERF_SAMPLE_REGS_USER = 1U << 12,
137 PERF_SAMPLE_STACK_USER = 1U << 13,
138 PERF_SAMPLE_WEIGHT = 1U << 14,
139 PERF_SAMPLE_DATA_SRC = 1U << 15,
140 PERF_SAMPLE_IDENTIFIER = 1U << 16,
141 PERF_SAMPLE_TRANSACTION = 1U << 17,
142 PERF_SAMPLE_REGS_INTR = 1U << 18,
3b0a5daa 143 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
c4b6014e 144
3b0a5daa 145 PERF_SAMPLE_MAX = 1U << 20, /* non-ABI */
c4b6014e
ACM
146};
147
148/*
149 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
150 *
151 * If the user does not pass priv level information via branch_sample_type,
152 * the kernel uses the event's priv level. Branch and event priv levels do
153 * not have to match. Branch priv level is checked for permissions.
154 *
155 * The branch types can be combined, however BRANCH_ANY covers all types
156 * of branches and therefore it supersedes all the other types.
157 */
158enum perf_branch_sample_type_shift {
159 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
160 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
161 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
162
163 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
164 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
165 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
166 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
167 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
168 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
169 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
170 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
171
172 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
173 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
174 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
175
176 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
177 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
178
eb0baf8a
JY
179 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
180
c4b6014e
ACM
181 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
182};
183
184enum perf_branch_sample_type {
185 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
186 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
187 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
188
189 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
190 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
191 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
192 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
193 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
194 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
195 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
196 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
197
198 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
199 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
200 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
201
202 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
203 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
204
eb0baf8a
JY
205 PERF_SAMPLE_BRANCH_TYPE_SAVE =
206 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
207
c4b6014e
ACM
208 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
209};
210
eb0baf8a
JY
211/*
212 * Common flow change classification
213 */
214enum {
215 PERF_BR_UNKNOWN = 0, /* unknown */
216 PERF_BR_COND = 1, /* conditional */
217 PERF_BR_UNCOND = 2, /* unconditional */
218 PERF_BR_IND = 3, /* indirect */
219 PERF_BR_CALL = 4, /* function call */
220 PERF_BR_IND_CALL = 5, /* indirect function call */
221 PERF_BR_RET = 6, /* function return */
222 PERF_BR_SYSCALL = 7, /* syscall */
223 PERF_BR_SYSRET = 8, /* syscall return */
224 PERF_BR_COND_CALL = 9, /* conditional function call */
225 PERF_BR_COND_RET = 10, /* conditional function return */
226 PERF_BR_MAX,
227};
228
c4b6014e
ACM
229#define PERF_SAMPLE_BRANCH_PLM_ALL \
230 (PERF_SAMPLE_BRANCH_USER|\
231 PERF_SAMPLE_BRANCH_KERNEL|\
232 PERF_SAMPLE_BRANCH_HV)
233
234/*
235 * Values to determine ABI of the registers dump.
236 */
237enum perf_sample_regs_abi {
238 PERF_SAMPLE_REGS_ABI_NONE = 0,
239 PERF_SAMPLE_REGS_ABI_32 = 1,
240 PERF_SAMPLE_REGS_ABI_64 = 2,
241};
242
243/*
244 * Values for the memory transaction event qualifier, mostly for
245 * abort events. Multiple bits can be set.
246 */
247enum {
248 PERF_TXN_ELISION = (1 << 0), /* From elision */
249 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
250 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
251 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
252 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
253 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
254 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
255 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
256
257 PERF_TXN_MAX = (1 << 8), /* non-ABI */
258
259 /* bits 32..63 are reserved for the abort code */
260
261 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
262 PERF_TXN_ABORT_SHIFT = 32,
263};
264
265/*
266 * The format of the data returned by read() on a perf event fd,
267 * as specified by attr.read_format:
268 *
269 * struct read_format {
270 * { u64 value;
271 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
272 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
273 * { u64 id; } && PERF_FORMAT_ID
274 * } && !PERF_FORMAT_GROUP
275 *
276 * { u64 nr;
277 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
278 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
279 * { u64 value;
280 * { u64 id; } && PERF_FORMAT_ID
281 * } cntr[nr];
282 * } && PERF_FORMAT_GROUP
283 * };
284 */
285enum perf_event_read_format {
286 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
287 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
288 PERF_FORMAT_ID = 1U << 2,
289 PERF_FORMAT_GROUP = 1U << 3,
290
291 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
292};
293
294#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
295#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
296#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
297#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
298 /* add: sample_stack_user */
299#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
300#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
301
302/*
303 * Hardware event_id to monitor via a performance monitoring event:
304 *
305 * @sample_max_stack: Max number of frame pointers in a callchain,
306 * should be < /proc/sys/kernel/perf_event_max_stack
307 */
308struct perf_event_attr {
309
310 /*
311 * Major type: hardware/software/tracepoint/etc.
312 */
313 __u32 type;
314
315 /*
316 * Size of the attr structure, for fwd/bwd compat.
317 */
318 __u32 size;
319
320 /*
321 * Type specific configuration information.
322 */
323 __u64 config;
324
325 union {
326 __u64 sample_period;
327 __u64 sample_freq;
328 };
329
330 __u64 sample_type;
331 __u64 read_format;
332
333 __u64 disabled : 1, /* off by default */
334 inherit : 1, /* children inherit it */
335 pinned : 1, /* must always be on PMU */
336 exclusive : 1, /* only group on PMU */
337 exclude_user : 1, /* don't count user */
338 exclude_kernel : 1, /* ditto kernel */
339 exclude_hv : 1, /* ditto hypervisor */
340 exclude_idle : 1, /* don't count when idle */
341 mmap : 1, /* include mmap data */
342 comm : 1, /* include comm data */
343 freq : 1, /* use freq, not period */
344 inherit_stat : 1, /* per task counts */
345 enable_on_exec : 1, /* next exec enables */
346 task : 1, /* trace fork/exit */
347 watermark : 1, /* wakeup_watermark */
348 /*
349 * precise_ip:
350 *
351 * 0 - SAMPLE_IP can have arbitrary skid
352 * 1 - SAMPLE_IP must have constant skid
353 * 2 - SAMPLE_IP requested to have 0 skid
354 * 3 - SAMPLE_IP must have 0 skid
355 *
356 * See also PERF_RECORD_MISC_EXACT_IP
357 */
358 precise_ip : 2, /* skid constraint */
359 mmap_data : 1, /* non-exec mmap data */
360 sample_id_all : 1, /* sample_type all events */
361
362 exclude_host : 1, /* don't count in host */
363 exclude_guest : 1, /* don't count in guest */
364
365 exclude_callchain_kernel : 1, /* exclude kernel callchains */
366 exclude_callchain_user : 1, /* exclude user callchains */
367 mmap2 : 1, /* include mmap with inode data */
368 comm_exec : 1, /* flag comm events that are due to an exec */
369 use_clockid : 1, /* use @clockid for time fields */
370 context_switch : 1, /* context switch data */
371 write_backward : 1, /* Write ring buffer from end to beginning */
f3b3614a
HB
372 namespaces : 1, /* include namespaces data */
373 __reserved_1 : 35;
c4b6014e
ACM
374
375 union {
376 __u32 wakeup_events; /* wakeup every n events */
377 __u32 wakeup_watermark; /* bytes before wakeup */
378 };
379
380 __u32 bp_type;
381 union {
382 __u64 bp_addr;
0d8dd67b
SL
383 __u64 kprobe_func; /* for perf_kprobe */
384 __u64 uprobe_path; /* for perf_uprobe */
c4b6014e
ACM
385 __u64 config1; /* extension of config */
386 };
387 union {
388 __u64 bp_len;
0d8dd67b
SL
389 __u64 kprobe_addr; /* when kprobe_func == NULL */
390 __u64 probe_offset; /* for perf_[k,u]probe */
c4b6014e
ACM
391 __u64 config2; /* extension of config1 */
392 };
393 __u64 branch_sample_type; /* enum perf_branch_sample_type */
394
395 /*
396 * Defines set of user regs to dump on samples.
397 * See asm/perf_regs.h for details.
398 */
399 __u64 sample_regs_user;
400
401 /*
402 * Defines size of the user stack to dump on samples.
403 */
404 __u32 sample_stack_user;
405
406 __s32 clockid;
407 /*
408 * Defines set of regs to dump for each sample
409 * state captured on:
410 * - precise = 0: PMU interrupt
411 * - precise > 0: sampled instruction
412 *
413 * See asm/perf_regs.h for details.
414 */
415 __u64 sample_regs_intr;
416
417 /*
418 * Wakeup watermark for AUX area
419 */
420 __u32 aux_watermark;
421 __u16 sample_max_stack;
422 __u16 __reserved_2; /* align to __u64 */
423};
424
d279f1f8
YS
425/*
426 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
427 * to query bpf programs attached to the same perf tracepoint
428 * as the given perf event.
429 */
430struct perf_event_query_bpf {
431 /*
432 * The below ids array length
433 */
434 __u32 ids_len;
435 /*
436 * Set by the kernel to indicate the number of
437 * available programs
438 */
439 __u32 prog_cnt;
440 /*
441 * User provided buffer to store program ids
442 */
443 __u32 ids[0];
444};
445
c4b6014e
ACM
446#define perf_flags(attr) (*(&(attr)->read_format + 1))
447
448/*
449 * Ioctls that can be done on a perf event fd:
450 */
32ff77e8
MC
451#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
452#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
453#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
454#define PERF_EVENT_IOC_RESET _IO ('$', 3)
455#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
456#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
457#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
458#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
459#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
460#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
461#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
462#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
c4b6014e
ACM
463
464enum perf_event_ioc_flags {
465 PERF_IOC_FLAG_GROUP = 1U << 0,
466};
467
468/*
469 * Structure of the page that can be mapped via mmap
470 */
471struct perf_event_mmap_page {
472 __u32 version; /* version number of this structure */
473 __u32 compat_version; /* lowest version this is compat with */
474
475 /*
476 * Bits needed to read the hw events in user-space.
477 *
478 * u32 seq, time_mult, time_shift, index, width;
479 * u64 count, enabled, running;
480 * u64 cyc, time_offset;
481 * s64 pmc = 0;
482 *
483 * do {
484 * seq = pc->lock;
485 * barrier()
486 *
487 * enabled = pc->time_enabled;
488 * running = pc->time_running;
489 *
490 * if (pc->cap_usr_time && enabled != running) {
491 * cyc = rdtsc();
492 * time_offset = pc->time_offset;
493 * time_mult = pc->time_mult;
494 * time_shift = pc->time_shift;
495 * }
496 *
497 * index = pc->index;
498 * count = pc->offset;
499 * if (pc->cap_user_rdpmc && index) {
500 * width = pc->pmc_width;
501 * pmc = rdpmc(index - 1);
502 * }
503 *
504 * barrier();
505 * } while (pc->lock != seq);
506 *
507 * NOTE: for obvious reason this only works on self-monitoring
508 * processes.
509 */
510 __u32 lock; /* seqlock for synchronization */
511 __u32 index; /* hardware event identifier */
512 __s64 offset; /* add to hardware event value */
513 __u64 time_enabled; /* time event active */
514 __u64 time_running; /* time event on cpu */
515 union {
516 __u64 capabilities;
517 struct {
518 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
519 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
520
521 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
522 cap_user_time : 1, /* The time_* fields are used */
523 cap_user_time_zero : 1, /* The time_zero field is used */
524 cap_____res : 59;
525 };
526 };
527
528 /*
529 * If cap_user_rdpmc this field provides the bit-width of the value
530 * read using the rdpmc() or equivalent instruction. This can be used
531 * to sign extend the result like:
532 *
533 * pmc <<= 64 - width;
534 * pmc >>= 64 - width; // signed shift right
535 * count += pmc;
536 */
537 __u16 pmc_width;
538
539 /*
540 * If cap_usr_time the below fields can be used to compute the time
541 * delta since time_enabled (in ns) using rdtsc or similar.
542 *
543 * u64 quot, rem;
544 * u64 delta;
545 *
546 * quot = (cyc >> time_shift);
547 * rem = cyc & (((u64)1 << time_shift) - 1);
548 * delta = time_offset + quot * time_mult +
549 * ((rem * time_mult) >> time_shift);
550 *
551 * Where time_offset,time_mult,time_shift and cyc are read in the
552 * seqcount loop described above. This delta can then be added to
553 * enabled and possible running (if index), improving the scaling:
554 *
555 * enabled += delta;
556 * if (index)
557 * running += delta;
558 *
559 * quot = count / running;
560 * rem = count % running;
561 * count = quot * enabled + (rem * enabled) / running;
562 */
563 __u16 time_shift;
564 __u32 time_mult;
565 __u64 time_offset;
566 /*
567 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
568 * from sample timestamps.
569 *
570 * time = timestamp - time_zero;
571 * quot = time / time_mult;
572 * rem = time % time_mult;
573 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
574 *
575 * And vice versa:
576 *
577 * quot = cyc >> time_shift;
578 * rem = cyc & (((u64)1 << time_shift) - 1);
579 * timestamp = time_zero + quot * time_mult +
580 * ((rem * time_mult) >> time_shift);
581 */
582 __u64 time_zero;
583 __u32 size; /* Header size up to __reserved[] fields. */
584
585 /*
586 * Hole for extension of the self monitor capabilities
587 */
588
589 __u8 __reserved[118*8+4]; /* align to 1k. */
590
591 /*
592 * Control data for the mmap() data buffer.
593 *
594 * User-space reading the @data_head value should issue an smp_rmb(),
595 * after reading this value.
596 *
597 * When the mapping is PROT_WRITE the @data_tail value should be
598 * written by userspace to reflect the last read data, after issueing
599 * an smp_mb() to separate the data read from the ->data_tail store.
600 * In this case the kernel will not over-write unread data.
601 *
602 * See perf_output_put_handle() for the data ordering.
603 *
604 * data_{offset,size} indicate the location and size of the perf record
605 * buffer within the mmapped area.
606 */
607 __u64 data_head; /* head in the data section */
608 __u64 data_tail; /* user-space written tail */
609 __u64 data_offset; /* where the buffer starts */
610 __u64 data_size; /* data buffer size */
611
612 /*
613 * AUX area is defined by aux_{offset,size} fields that should be set
614 * by the userspace, so that
615 *
616 * aux_offset >= data_offset + data_size
617 *
618 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
619 *
620 * Ring buffer pointers aux_{head,tail} have the same semantics as
621 * data_{head,tail} and same ordering rules apply.
622 */
623 __u64 aux_head;
624 __u64 aux_tail;
625 __u64 aux_offset;
626 __u64 aux_size;
627};
628
629#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
630#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
631#define PERF_RECORD_MISC_KERNEL (1 << 0)
632#define PERF_RECORD_MISC_USER (2 << 0)
633#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
634#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
635#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
636
637/*
638 * Indicates that /proc/PID/maps parsing are truncated by time out.
639 */
640#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
641/*
972c1488
JO
642 * Following PERF_RECORD_MISC_* are used on different
643 * events, so can reuse the same bit position:
644 *
645 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
646 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
647 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
c4b6014e
ACM
648 */
649#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
650#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
651#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
652/*
653 * Indicates that the content of PERF_SAMPLE_IP points to
654 * the actual instruction that triggered the event. See also
655 * perf_event_attr::precise_ip.
656 */
657#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
658/*
659 * Reserve the last bit to indicate some extended misc field
660 */
661#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
662
663struct perf_event_header {
664 __u32 type;
665 __u16 misc;
666 __u16 size;
667};
668
f3b3614a
HB
669struct perf_ns_link_info {
670 __u64 dev;
671 __u64 ino;
672};
673
674enum {
675 NET_NS_INDEX = 0,
676 UTS_NS_INDEX = 1,
677 IPC_NS_INDEX = 2,
678 PID_NS_INDEX = 3,
679 USER_NS_INDEX = 4,
680 MNT_NS_INDEX = 5,
681 CGROUP_NS_INDEX = 6,
682
683 NR_NAMESPACES, /* number of available namespaces */
684};
685
c4b6014e
ACM
686enum perf_event_type {
687
688 /*
689 * If perf_event_attr.sample_id_all is set then all event types will
690 * have the sample_type selected fields related to where/when
691 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
692 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
693 * just after the perf_event_header and the fields already present for
694 * the existing fields, i.e. at the end of the payload. That way a newer
695 * perf.data file will be supported by older perf tools, with these new
696 * optional fields being ignored.
697 *
698 * struct sample_id {
699 * { u32 pid, tid; } && PERF_SAMPLE_TID
700 * { u64 time; } && PERF_SAMPLE_TIME
701 * { u64 id; } && PERF_SAMPLE_ID
702 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
703 * { u32 cpu, res; } && PERF_SAMPLE_CPU
704 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
705 * } && perf_event_attr::sample_id_all
706 *
707 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
708 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
709 * relative to header.size.
710 */
711
712 /*
713 * The MMAP events record the PROT_EXEC mappings so that we can
714 * correlate userspace IPs to code. They have the following structure:
715 *
716 * struct {
717 * struct perf_event_header header;
718 *
719 * u32 pid, tid;
720 * u64 addr;
721 * u64 len;
722 * u64 pgoff;
723 * char filename[];
724 * struct sample_id sample_id;
725 * };
726 */
727 PERF_RECORD_MMAP = 1,
728
729 /*
730 * struct {
731 * struct perf_event_header header;
732 * u64 id;
733 * u64 lost;
734 * struct sample_id sample_id;
735 * };
736 */
737 PERF_RECORD_LOST = 2,
738
739 /*
740 * struct {
741 * struct perf_event_header header;
742 *
743 * u32 pid, tid;
744 * char comm[];
745 * struct sample_id sample_id;
746 * };
747 */
748 PERF_RECORD_COMM = 3,
749
750 /*
751 * struct {
752 * struct perf_event_header header;
753 * u32 pid, ppid;
754 * u32 tid, ptid;
755 * u64 time;
756 * struct sample_id sample_id;
757 * };
758 */
759 PERF_RECORD_EXIT = 4,
760
761 /*
762 * struct {
763 * struct perf_event_header header;
764 * u64 time;
765 * u64 id;
766 * u64 stream_id;
767 * struct sample_id sample_id;
768 * };
769 */
770 PERF_RECORD_THROTTLE = 5,
771 PERF_RECORD_UNTHROTTLE = 6,
772
773 /*
774 * struct {
775 * struct perf_event_header header;
776 * u32 pid, ppid;
777 * u32 tid, ptid;
778 * u64 time;
779 * struct sample_id sample_id;
780 * };
781 */
782 PERF_RECORD_FORK = 7,
783
784 /*
785 * struct {
786 * struct perf_event_header header;
787 * u32 pid, tid;
788 *
789 * struct read_format values;
790 * struct sample_id sample_id;
791 * };
792 */
793 PERF_RECORD_READ = 8,
794
795 /*
796 * struct {
797 * struct perf_event_header header;
798 *
799 * #
800 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
801 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
802 * # is fixed relative to header.
803 * #
804 *
805 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
806 * { u64 ip; } && PERF_SAMPLE_IP
807 * { u32 pid, tid; } && PERF_SAMPLE_TID
808 * { u64 time; } && PERF_SAMPLE_TIME
809 * { u64 addr; } && PERF_SAMPLE_ADDR
810 * { u64 id; } && PERF_SAMPLE_ID
811 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
812 * { u32 cpu, res; } && PERF_SAMPLE_CPU
813 * { u64 period; } && PERF_SAMPLE_PERIOD
814 *
815 * { struct read_format values; } && PERF_SAMPLE_READ
816 *
817 * { u64 nr,
818 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
819 *
820 * #
821 * # The RAW record below is opaque data wrt the ABI
822 * #
823 * # That is, the ABI doesn't make any promises wrt to
824 * # the stability of its content, it may vary depending
825 * # on event, hardware, kernel version and phase of
826 * # the moon.
827 * #
828 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
829 * #
830 *
831 * { u32 size;
832 * char data[size];}&& PERF_SAMPLE_RAW
833 *
834 * { u64 nr;
835 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
836 *
837 * { u64 abi; # enum perf_sample_regs_abi
838 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
839 *
840 * { u64 size;
841 * char data[size];
842 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
843 *
844 * { u64 weight; } && PERF_SAMPLE_WEIGHT
845 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
846 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
847 * { u64 abi; # enum perf_sample_regs_abi
848 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
3b0a5daa 849 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
c4b6014e
ACM
850 * };
851 */
852 PERF_RECORD_SAMPLE = 9,
853
854 /*
855 * The MMAP2 records are an augmented version of MMAP, they add
856 * maj, min, ino numbers to be used to uniquely identify each mapping
857 *
858 * struct {
859 * struct perf_event_header header;
860 *
861 * u32 pid, tid;
862 * u64 addr;
863 * u64 len;
864 * u64 pgoff;
865 * u32 maj;
866 * u32 min;
867 * u64 ino;
868 * u64 ino_generation;
869 * u32 prot, flags;
870 * char filename[];
871 * struct sample_id sample_id;
872 * };
873 */
874 PERF_RECORD_MMAP2 = 10,
875
876 /*
877 * Records that new data landed in the AUX buffer part.
878 *
879 * struct {
880 * struct perf_event_header header;
881 *
882 * u64 aux_offset;
883 * u64 aux_size;
884 * u64 flags;
885 * struct sample_id sample_id;
886 * };
887 */
888 PERF_RECORD_AUX = 11,
889
890 /*
891 * Indicates that instruction trace has started
892 *
893 * struct {
894 * struct perf_event_header header;
895 * u32 pid;
896 * u32 tid;
81df978c 897 * struct sample_id sample_id;
c4b6014e
ACM
898 * };
899 */
900 PERF_RECORD_ITRACE_START = 12,
901
902 /*
903 * Records the dropped/lost sample number.
904 *
905 * struct {
906 * struct perf_event_header header;
907 *
908 * u64 lost;
909 * struct sample_id sample_id;
910 * };
911 */
912 PERF_RECORD_LOST_SAMPLES = 13,
913
914 /*
915 * Records a context switch in or out (flagged by
916 * PERF_RECORD_MISC_SWITCH_OUT). See also
917 * PERF_RECORD_SWITCH_CPU_WIDE.
918 *
919 * struct {
920 * struct perf_event_header header;
921 * struct sample_id sample_id;
922 * };
923 */
924 PERF_RECORD_SWITCH = 14,
925
926 /*
927 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
928 * next_prev_tid that are the next (switching out) or previous
929 * (switching in) pid/tid.
930 *
931 * struct {
932 * struct perf_event_header header;
933 * u32 next_prev_pid;
934 * u32 next_prev_tid;
935 * struct sample_id sample_id;
936 * };
937 */
938 PERF_RECORD_SWITCH_CPU_WIDE = 15,
939
f3b3614a
HB
940 /*
941 * struct {
942 * struct perf_event_header header;
943 * u32 pid;
944 * u32 tid;
945 * u64 nr_namespaces;
946 * { u64 dev, inode; } [nr_namespaces];
947 * struct sample_id sample_id;
948 * };
949 */
950 PERF_RECORD_NAMESPACES = 16,
951
c4b6014e
ACM
952 PERF_RECORD_MAX, /* non-ABI */
953};
954
955#define PERF_MAX_STACK_DEPTH 127
956#define PERF_MAX_CONTEXTS_PER_STACK 8
957
958enum perf_callchain_context {
959 PERF_CONTEXT_HV = (__u64)-32,
960 PERF_CONTEXT_KERNEL = (__u64)-128,
961 PERF_CONTEXT_USER = (__u64)-512,
962
963 PERF_CONTEXT_GUEST = (__u64)-2048,
964 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
965 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
966
967 PERF_CONTEXT_MAX = (__u64)-4095,
968};
969
970/**
971 * PERF_RECORD_AUX::flags bits
972 */
973#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
974#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
38a33f07 975#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
0f1aabeb 976#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
c4b6014e
ACM
977
978#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
979#define PERF_FLAG_FD_OUTPUT (1UL << 1)
980#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
981#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
982
8c5073db 983#if defined(__LITTLE_ENDIAN_BITFIELD)
c4b6014e
ACM
984union perf_mem_data_src {
985 __u64 val;
986 struct {
987 __u64 mem_op:5, /* type of opcode */
988 mem_lvl:14, /* memory hierarchy level */
989 mem_snoop:5, /* snoop mode */
990 mem_lock:2, /* lock instr */
991 mem_dtlb:7, /* tlb access */
52839e65
AK
992 mem_lvl_num:4, /* memory hierarchy level number */
993 mem_remote:1, /* remote */
994 mem_snoopx:2, /* snoop mode, ext */
995 mem_rsvd:24;
c4b6014e
ACM
996 };
997};
8c5073db
SB
998#elif defined(__BIG_ENDIAN_BITFIELD)
999union perf_mem_data_src {
1000 __u64 val;
1001 struct {
52839e65
AK
1002 __u64 mem_rsvd:24,
1003 mem_snoopx:2, /* snoop mode, ext */
1004 mem_remote:1, /* remote */
1005 mem_lvl_num:4, /* memory hierarchy level number */
8c5073db
SB
1006 mem_dtlb:7, /* tlb access */
1007 mem_lock:2, /* lock instr */
1008 mem_snoop:5, /* snoop mode */
1009 mem_lvl:14, /* memory hierarchy level */
1010 mem_op:5; /* type of opcode */
1011 };
1012};
1013#else
1014#error "Unknown endianness"
1015#endif
c4b6014e
ACM
1016
1017/* type of opcode (load/store/prefetch,code) */
1018#define PERF_MEM_OP_NA 0x01 /* not available */
1019#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1020#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1021#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1022#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1023#define PERF_MEM_OP_SHIFT 0
1024
1025/* memory hierarchy (memory level, hit or miss) */
1026#define PERF_MEM_LVL_NA 0x01 /* not available */
1027#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1028#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1029#define PERF_MEM_LVL_L1 0x08 /* L1 */
1030#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1031#define PERF_MEM_LVL_L2 0x20 /* L2 */
1032#define PERF_MEM_LVL_L3 0x40 /* L3 */
1033#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1034#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1035#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1036#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1037#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1038#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1039#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1040#define PERF_MEM_LVL_SHIFT 5
1041
52839e65
AK
1042#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1043#define PERF_MEM_REMOTE_SHIFT 37
1044
1045#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1046#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1047#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1048#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1049/* 5-0xa available */
1050#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1051#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1052#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1053#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1054#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1055
1056#define PERF_MEM_LVLNUM_SHIFT 33
1057
c4b6014e
ACM
1058/* snoop mode */
1059#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1060#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1061#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1062#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1063#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1064#define PERF_MEM_SNOOP_SHIFT 19
1065
52839e65
AK
1066#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1067/* 1 free */
1068#define PERF_MEM_SNOOPX_SHIFT 37
1069
c4b6014e
ACM
1070/* locked instruction */
1071#define PERF_MEM_LOCK_NA 0x01 /* not available */
1072#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1073#define PERF_MEM_LOCK_SHIFT 24
1074
1075/* TLB access */
1076#define PERF_MEM_TLB_NA 0x01 /* not available */
1077#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1078#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1079#define PERF_MEM_TLB_L1 0x08 /* L1 */
1080#define PERF_MEM_TLB_L2 0x10 /* L2 */
1081#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1082#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1083#define PERF_MEM_TLB_SHIFT 26
1084
1085#define PERF_MEM_S(a, s) \
1086 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1087
1088/*
1089 * single taken branch record layout:
1090 *
1091 * from: source instruction (may not always be a branch insn)
1092 * to: branch target
1093 * mispred: branch target was mispredicted
1094 * predicted: branch target was predicted
1095 *
1096 * support for mispred, predicted is optional. In case it
1097 * is not supported mispred = predicted = 0.
1098 *
1099 * in_tx: running in a hardware transaction
1100 * abort: aborting a hardware transaction
1101 * cycles: cycles from last branch (or 0 if not supported)
eb0baf8a 1102 * type: branch type
c4b6014e
ACM
1103 */
1104struct perf_branch_entry {
1105 __u64 from;
1106 __u64 to;
1107 __u64 mispred:1, /* target mispredicted */
1108 predicted:1,/* target predicted */
1109 in_tx:1, /* in transaction */
1110 abort:1, /* transaction abort */
1111 cycles:16, /* cycle count to last branch */
eb0baf8a
JY
1112 type:4, /* branch type */
1113 reserved:40;
c4b6014e
ACM
1114};
1115
1116#endif /* _UAPI_LINUX_PERF_EVENT_H */