net: dsa: Make dsa_master_set_mtu() static
[linux-2.6-block.git] / tools / include / uapi / linux / bpf.h
CommitLineData
fb7df12d 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
971e827b
ACM
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#ifndef _UAPI__LINUX_BPF_H__
9#define _UAPI__LINUX_BPF_H__
10
11#include <linux/types.h>
12#include <linux/bpf_common.h>
13
14/* Extended instruction set based on top of classic BPF */
15
16/* instruction classes */
17#define BPF_ALU64 0x07 /* alu mode in double word width */
18
19/* ld/ldx fields */
d6d4f60c 20#define BPF_DW 0x18 /* double word (64-bit) */
971e827b
ACM
21#define BPF_XADD 0xc0 /* exclusive add */
22
23/* alu/jmp fields */
24#define BPF_MOV 0xb0 /* mov reg to reg */
25#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
26
27/* change endianness of a register */
28#define BPF_END 0xd0 /* flags for endianness conversion: */
29#define BPF_TO_LE 0x00 /* convert to little-endian */
30#define BPF_TO_BE 0x08 /* convert to big-endian */
31#define BPF_FROM_LE BPF_TO_LE
32#define BPF_FROM_BE BPF_TO_BE
33
92b31a9a 34/* jmp encodings */
971e827b 35#define BPF_JNE 0x50 /* jump != */
92b31a9a
DB
36#define BPF_JLT 0xa0 /* LT is unsigned, '<' */
37#define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
971e827b
ACM
38#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
39#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
92b31a9a
DB
40#define BPF_JSLT 0xc0 /* SLT is signed, '<' */
41#define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
971e827b
ACM
42#define BPF_CALL 0x80 /* function call */
43#define BPF_EXIT 0x90 /* function return */
44
45/* Register numbers */
46enum {
47 BPF_REG_0 = 0,
48 BPF_REG_1,
49 BPF_REG_2,
50 BPF_REG_3,
51 BPF_REG_4,
52 BPF_REG_5,
53 BPF_REG_6,
54 BPF_REG_7,
55 BPF_REG_8,
56 BPF_REG_9,
57 BPF_REG_10,
58 __MAX_BPF_REG,
59};
60
61/* BPF has 10 general purpose 64-bit registers and stack frame. */
62#define MAX_BPF_REG __MAX_BPF_REG
63
64struct bpf_insn {
65 __u8 code; /* opcode */
66 __u8 dst_reg:4; /* dest register */
67 __u8 src_reg:4; /* source register */
68 __s16 off; /* signed offset */
69 __s32 imm; /* signed immediate constant */
70};
71
9a738266
MS
72/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
73struct bpf_lpm_trie_key {
74 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
75 __u8 data[0]; /* Arbitrary size */
76};
77
c419cf52
RG
78struct bpf_cgroup_storage_key {
79 __u64 cgroup_inode_id; /* cgroup inode id */
80 __u32 attach_type; /* program attach type */
81};
82
971e827b
ACM
83/* BPF syscall commands, see bpf(2) man-page for details. */
84enum bpf_cmd {
85 BPF_MAP_CREATE,
86 BPF_MAP_LOOKUP_ELEM,
87 BPF_MAP_UPDATE_ELEM,
88 BPF_MAP_DELETE_ELEM,
89 BPF_MAP_GET_NEXT_KEY,
90 BPF_PROG_LOAD,
91 BPF_OBJ_PIN,
92 BPF_OBJ_GET,
0cb34dc2
JS
93 BPF_PROG_ATTACH,
94 BPF_PROG_DETACH,
30848873 95 BPF_PROG_TEST_RUN,
95b9afd3
MKL
96 BPF_PROG_GET_NEXT_ID,
97 BPF_MAP_GET_NEXT_ID,
98 BPF_PROG_GET_FD_BY_ID,
99 BPF_MAP_GET_FD_BY_ID,
100 BPF_OBJ_GET_INFO_BY_FD,
defd9c47 101 BPF_PROG_QUERY,
a0fe3e57 102 BPF_RAW_TRACEPOINT_OPEN,
3bd86a84 103 BPF_BTF_LOAD,
7a01f6a3 104 BPF_BTF_GET_FD_BY_ID,
30687ad9 105 BPF_TASK_FD_QUERY,
da4e1b15 106 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
971e827b
ACM
107};
108
109enum bpf_map_type {
110 BPF_MAP_TYPE_UNSPEC,
111 BPF_MAP_TYPE_HASH,
112 BPF_MAP_TYPE_ARRAY,
113 BPF_MAP_TYPE_PROG_ARRAY,
114 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
115 BPF_MAP_TYPE_PERCPU_HASH,
116 BPF_MAP_TYPE_PERCPU_ARRAY,
117 BPF_MAP_TYPE_STACK_TRACE,
791cceb8 118 BPF_MAP_TYPE_CGROUP_ARRAY,
0cb34dc2
JS
119 BPF_MAP_TYPE_LRU_HASH,
120 BPF_MAP_TYPE_LRU_PERCPU_HASH,
9a738266 121 BPF_MAP_TYPE_LPM_TRIE,
fb30d4b7
MKL
122 BPF_MAP_TYPE_ARRAY_OF_MAPS,
123 BPF_MAP_TYPE_HASH_OF_MAPS,
81f6bf81 124 BPF_MAP_TYPE_DEVMAP,
69e8cc13 125 BPF_MAP_TYPE_SOCKMAP,
6710e112 126 BPF_MAP_TYPE_CPUMAP,
cb9c28ef 127 BPF_MAP_TYPE_XSKMAP,
b8b394fa 128 BPF_MAP_TYPE_SOCKHASH,
c419cf52 129 BPF_MAP_TYPE_CGROUP_STORAGE,
3bd43a8c 130 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
25025e0a 131 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
da4e1b15
MV
132 BPF_MAP_TYPE_QUEUE,
133 BPF_MAP_TYPE_STACK,
971e827b
ACM
134};
135
136enum bpf_prog_type {
137 BPF_PROG_TYPE_UNSPEC,
138 BPF_PROG_TYPE_SOCKET_FILTER,
139 BPF_PROG_TYPE_KPROBE,
140 BPF_PROG_TYPE_SCHED_CLS,
141 BPF_PROG_TYPE_SCHED_ACT,
142 BPF_PROG_TYPE_TRACEPOINT,
791cceb8 143 BPF_PROG_TYPE_XDP,
0cb34dc2
JS
144 BPF_PROG_TYPE_PERF_EVENT,
145 BPF_PROG_TYPE_CGROUP_SKB,
146 BPF_PROG_TYPE_CGROUP_SOCK,
147 BPF_PROG_TYPE_LWT_IN,
148 BPF_PROG_TYPE_LWT_OUT,
149 BPF_PROG_TYPE_LWT_XMIT,
04df41e3 150 BPF_PROG_TYPE_SOCK_OPS,
69e8cc13 151 BPF_PROG_TYPE_SK_SKB,
ebc614f6 152 BPF_PROG_TYPE_CGROUP_DEVICE,
82a86168 153 BPF_PROG_TYPE_SK_MSG,
a0fe3e57 154 BPF_PROG_TYPE_RAW_TRACEPOINT,
e50b0a6f 155 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
c99a84ea 156 BPF_PROG_TYPE_LWT_SEG6LOCAL,
6bdd533c 157 BPF_PROG_TYPE_LIRC_MODE2,
3bd43a8c 158 BPF_PROG_TYPE_SK_REUSEPORT,
2f965e3f 159 BPF_PROG_TYPE_FLOW_DISSECTOR,
971e827b
ACM
160};
161
0cb34dc2
JS
162enum bpf_attach_type {
163 BPF_CGROUP_INET_INGRESS,
164 BPF_CGROUP_INET_EGRESS,
165 BPF_CGROUP_INET_SOCK_CREATE,
04df41e3 166 BPF_CGROUP_SOCK_OPS,
464bc0fd
JF
167 BPF_SK_SKB_STREAM_PARSER,
168 BPF_SK_SKB_STREAM_VERDICT,
ebc614f6 169 BPF_CGROUP_DEVICE,
82a86168 170 BPF_SK_MSG_VERDICT,
e50b0a6f
AI
171 BPF_CGROUP_INET4_BIND,
172 BPF_CGROUP_INET6_BIND,
622adafb
AI
173 BPF_CGROUP_INET4_CONNECT,
174 BPF_CGROUP_INET6_CONNECT,
1d436885
AI
175 BPF_CGROUP_INET4_POST_BIND,
176 BPF_CGROUP_INET6_POST_BIND,
3024cf82
AI
177 BPF_CGROUP_UDP4_SENDMSG,
178 BPF_CGROUP_UDP6_SENDMSG,
6bdd533c 179 BPF_LIRC_MODE2,
2f965e3f 180 BPF_FLOW_DISSECTOR,
0cb34dc2
JS
181 __MAX_BPF_ATTACH_TYPE
182};
183
184#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
185
defd9c47
AS
186/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
187 *
188 * NONE(default): No further bpf programs allowed in the subtree.
189 *
190 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
191 * the program in this cgroup yields to sub-cgroup program.
192 *
193 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
194 * that cgroup program gets run in addition to the program in this cgroup.
195 *
196 * Only one program is allowed to be attached to a cgroup with
197 * NONE or BPF_F_ALLOW_OVERRIDE flag.
198 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
199 * release old program and attach the new one. Attach flags has to match.
200 *
201 * Multiple programs are allowed to be attached to a cgroup with
202 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
203 * (those that were attached first, run first)
204 * The programs of sub-cgroup are executed first, then programs of
205 * this cgroup and then programs of parent cgroup.
206 * When children program makes decision (like picking TCP CA or sock bind)
207 * parent program has a chance to override it.
208 *
209 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
210 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
211 * Ex1:
212 * cgrp1 (MULTI progs A, B) ->
213 * cgrp2 (OVERRIDE prog C) ->
214 * cgrp3 (MULTI prog D) ->
215 * cgrp4 (OVERRIDE prog E) ->
216 * cgrp5 (NONE prog F)
217 * the event in cgrp5 triggers execution of F,D,A,B in that order.
218 * if prog F is detached, the execution is E,D,A,B
219 * if prog F and D are detached, the execution is E,A,B
220 * if prog F, E and D are detached, the execution is C,A,B
221 *
222 * All eligible programs are executed regardless of return code from
223 * earlier programs.
5463b3d0
SR
224 */
225#define BPF_F_ALLOW_OVERRIDE (1U << 0)
defd9c47 226#define BPF_F_ALLOW_MULTI (1U << 1)
5463b3d0 227
e07b98d9
DM
228/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
229 * verifier will perform strict alignment checking as if the kernel
230 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
231 * and NET_IP_ALIGN defined to 2.
232 */
233#define BPF_F_STRICT_ALIGNMENT (1U << 0)
234
48cca7e4 235/* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
971e827b
ACM
236#define BPF_PSEUDO_MAP_FD 1
237
48cca7e4
AS
238/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
239 * offset to another bpf function
240 */
241#define BPF_PSEUDO_CALL 1
242
971e827b
ACM
243/* flags for BPF_MAP_UPDATE_ELEM command */
244#define BPF_ANY 0 /* create new element or update existing */
245#define BPF_NOEXIST 1 /* create new element if it didn't exist */
246#define BPF_EXIST 2 /* update existing element */
247
ad17d0e6 248/* flags for BPF_MAP_CREATE command */
971e827b 249#define BPF_F_NO_PREALLOC (1U << 0)
0cb34dc2
JS
250/* Instead of having one common LRU list in the
251 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
252 * which can scale and perform better.
253 * Note, the LRU nodes (including free nodes) cannot be moved
254 * across different LRU lists.
255 */
256#define BPF_F_NO_COMMON_LRU (1U << 1)
ad17d0e6
MKL
257/* Specify numa node during map creation */
258#define BPF_F_NUMA_NODE (1U << 2)
971e827b 259
88cda1c9
MKL
260#define BPF_OBJ_NAME_LEN 16U
261
e27afb84
AS
262/* Flags for accessing BPF object */
263#define BPF_F_RDONLY (1U << 3)
264#define BPF_F_WRONLY (1U << 4)
265
81f77fd0
SL
266/* Flag for stack_map, store build_id+offset instead of pointer */
267#define BPF_F_STACK_BUILD_ID (1U << 5)
268
608114e4
LB
269/* Zero-initialize hash function seed. This should only be used for testing. */
270#define BPF_F_ZERO_SEED (1U << 6)
271
272/* flags for BPF_PROG_QUERY */
273#define BPF_F_QUERY_EFFECTIVE (1U << 0)
274
81f77fd0
SL
275enum bpf_stack_build_id_status {
276 /* user space need an empty entry to identify end of a trace */
277 BPF_STACK_BUILD_ID_EMPTY = 0,
278 /* with valid build_id and offset */
279 BPF_STACK_BUILD_ID_VALID = 1,
280 /* couldn't get build_id, fallback to ip */
281 BPF_STACK_BUILD_ID_IP = 2,
282};
283
284#define BPF_BUILD_ID_SIZE 20
285struct bpf_stack_build_id {
286 __s32 status;
287 unsigned char build_id[BPF_BUILD_ID_SIZE];
288 union {
289 __u64 offset;
290 __u64 ip;
291 };
292};
293
971e827b
ACM
294union bpf_attr {
295 struct { /* anonymous struct used by BPF_MAP_CREATE command */
296 __u32 map_type; /* one of enum bpf_map_type */
297 __u32 key_size; /* size of key in bytes */
298 __u32 value_size; /* size of value in bytes */
299 __u32 max_entries; /* max number of entries in a map */
ad17d0e6
MKL
300 __u32 map_flags; /* BPF_MAP_CREATE related
301 * flags defined above.
302 */
fb30d4b7 303 __u32 inner_map_fd; /* fd pointing to the inner map */
ad17d0e6
MKL
304 __u32 numa_node; /* numa node (effective only if
305 * BPF_F_NUMA_NODE is set).
306 */
067cae47 307 char map_name[BPF_OBJ_NAME_LEN];
a3884572 308 __u32 map_ifindex; /* ifindex of netdev to create on */
3bd86a84 309 __u32 btf_fd; /* fd pointing to a BTF type data */
f03b15d3
MKL
310 __u32 btf_key_type_id; /* BTF type_id of the key */
311 __u32 btf_value_type_id; /* BTF type_id of the value */
971e827b
ACM
312 };
313
314 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
315 __u32 map_fd;
316 __aligned_u64 key;
317 union {
318 __aligned_u64 value;
319 __aligned_u64 next_key;
320 };
321 __u64 flags;
322 };
323
324 struct { /* anonymous struct used by BPF_PROG_LOAD command */
325 __u32 prog_type; /* one of enum bpf_prog_type */
326 __u32 insn_cnt;
327 __aligned_u64 insns;
328 __aligned_u64 license;
329 __u32 log_level; /* verbosity level of verifier */
330 __u32 log_size; /* size of user buffer */
331 __aligned_u64 log_buf; /* user supplied buffer */
332 __u32 kern_version; /* checked when prog_type=kprobe */
e07b98d9 333 __u32 prog_flags;
067cae47 334 char prog_name[BPF_OBJ_NAME_LEN];
1f6f4cb7 335 __u32 prog_ifindex; /* ifindex of netdev to prep for */
d7be143b
AI
336 /* For some prog types expected attach type must be known at
337 * load time to verify attach type specific parts of prog
338 * (context accesses, allowed helpers, etc).
339 */
340 __u32 expected_attach_type;
cc19435c
YS
341 __u32 prog_btf_fd; /* fd pointing to BTF type data */
342 __u32 func_info_rec_size; /* userspace bpf_func_info size */
343 __aligned_u64 func_info; /* func info */
344 __u32 func_info_cnt; /* number of bpf_func_info records */
971e827b
ACM
345 };
346
347 struct { /* anonymous struct used by BPF_OBJ_* commands */
348 __aligned_u64 pathname;
349 __u32 bpf_fd;
e27afb84 350 __u32 file_flags;
971e827b 351 };
0cb34dc2
JS
352
353 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
354 __u32 target_fd; /* container object to attach to */
355 __u32 attach_bpf_fd; /* eBPF program to attach */
356 __u32 attach_type;
5463b3d0 357 __u32 attach_flags;
0cb34dc2 358 };
30848873
AS
359
360 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
361 __u32 prog_fd;
362 __u32 retval;
363 __u32 data_size_in;
364 __u32 data_size_out;
365 __aligned_u64 data_in;
366 __aligned_u64 data_out;
367 __u32 repeat;
368 __u32 duration;
369 } test;
95b9afd3
MKL
370
371 struct { /* anonymous struct used by BPF_*_GET_*_ID */
372 union {
373 __u32 start_id;
374 __u32 prog_id;
375 __u32 map_id;
7a01f6a3 376 __u32 btf_id;
95b9afd3
MKL
377 };
378 __u32 next_id;
e27afb84 379 __u32 open_flags;
95b9afd3
MKL
380 };
381
382 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
383 __u32 bpf_fd;
384 __u32 info_len;
385 __aligned_u64 info;
386 } info;
defd9c47
AS
387
388 struct { /* anonymous struct used by BPF_PROG_QUERY command */
389 __u32 target_fd; /* container object to query */
390 __u32 attach_type;
391 __u32 query_flags;
392 __u32 attach_flags;
393 __aligned_u64 prog_ids;
394 __u32 prog_cnt;
395 } query;
a0fe3e57
AS
396
397 struct {
398 __u64 name;
399 __u32 prog_fd;
400 } raw_tracepoint;
3bd86a84
MKL
401
402 struct { /* anonymous struct for BPF_BTF_LOAD */
403 __aligned_u64 btf;
404 __aligned_u64 btf_log_buf;
405 __u32 btf_size;
406 __u32 btf_log_size;
407 __u32 btf_log_level;
408 };
30687ad9
YS
409
410 struct {
411 __u32 pid; /* input: pid */
412 __u32 fd; /* input: fd */
413 __u32 flags; /* input: flags */
414 __u32 buf_len; /* input/output: buf len */
415 __aligned_u64 buf; /* input/output:
416 * tp_name for tracepoint
417 * symbol for kprobe
418 * filename for uprobe
419 */
420 __u32 prog_id; /* output: prod_id */
421 __u32 fd_type; /* output: BPF_FD_TYPE_* */
422 __u64 probe_offset; /* output: probe_offset */
423 __u64 probe_addr; /* output: probe_addr */
424 } task_fd_query;
971e827b
ACM
425} __attribute__((aligned(8)));
426
9cde0c88
QM
427/* The description below is an attempt at providing documentation to eBPF
428 * developers about the multiple available eBPF helper functions. It can be
429 * parsed and used to produce a manual page. The workflow is the following,
430 * and requires the rst2man utility:
431 *
432 * $ ./scripts/bpf_helpers_doc.py \
433 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
434 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
435 * $ man /tmp/bpf-helpers.7
436 *
437 * Note that in order to produce this external documentation, some RST
438 * formatting is used in the descriptions to get "bold" and "italics" in
439 * manual pages. Also note that the few trailing white spaces are
440 * intentional, removing them would break paragraphs for rst2man.
441 *
442 * Start of BPF helper function descriptions:
443 *
444 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
445 * Description
446 * Perform a lookup in *map* for an entry associated to *key*.
447 * Return
448 * Map value associated to *key*, or **NULL** if no entry was
449 * found.
450 *
451 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
452 * Description
453 * Add or update the value of the entry associated to *key* in
454 * *map* with *value*. *flags* is one of:
455 *
456 * **BPF_NOEXIST**
457 * The entry for *key* must not exist in the map.
458 * **BPF_EXIST**
459 * The entry for *key* must already exist in the map.
460 * **BPF_ANY**
461 * No condition on the existence of the entry for *key*.
462 *
463 * Flag value **BPF_NOEXIST** cannot be used for maps of types
464 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
465 * elements always exist), the helper would return an error.
466 * Return
467 * 0 on success, or a negative error in case of failure.
468 *
469 * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
470 * Description
471 * Delete entry with *key* from *map*.
472 * Return
473 * 0 on success, or a negative error in case of failure.
474 *
da4e1b15
MV
475 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
476 * Description
477 * Push an element *value* in *map*. *flags* is one of:
478 *
479 * **BPF_EXIST**
480 * If the queue/stack is full, the oldest element is removed to
481 * make room for this.
482 * Return
483 * 0 on success, or a negative error in case of failure.
484 *
485 * int bpf_map_pop_elem(struct bpf_map *map, void *value)
486 * Description
487 * Pop an element from *map*.
488 * Return
489 * 0 on success, or a negative error in case of failure.
490 *
491 * int bpf_map_peek_elem(struct bpf_map *map, void *value)
492 * Description
493 * Get an element from *map* without removing it.
494 * Return
495 * 0 on success, or a negative error in case of failure.
496 *
9cde0c88
QM
497 * int bpf_probe_read(void *dst, u32 size, const void *src)
498 * Description
499 * For tracing programs, safely attempt to read *size* bytes from
500 * address *src* and store the data in *dst*.
501 * Return
502 * 0 on success, or a negative error in case of failure.
0cb34dc2
JS
503 *
504 * u64 bpf_ktime_get_ns(void)
9cde0c88
QM
505 * Description
506 * Return the time elapsed since system boot, in nanoseconds.
507 * Return
508 * Current *ktime*.
509 *
510 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
511 * Description
512 * This helper is a "printk()-like" facility for debugging. It
513 * prints a message defined by format *fmt* (of size *fmt_size*)
514 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
515 * available. It can take up to three additional **u64**
516 * arguments (as an eBPF helpers, the total number of arguments is
517 * limited to five).
518 *
519 * Each time the helper is called, it appends a line to the trace.
520 * The format of the trace is customizable, and the exact output
521 * one will get depends on the options set in
522 * *\/sys/kernel/debug/tracing/trace_options* (see also the
523 * *README* file under the same directory). However, it usually
524 * defaults to something like:
525 *
526 * ::
527 *
528 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
529 *
530 * In the above:
531 *
532 * * ``telnet`` is the name of the current task.
533 * * ``470`` is the PID of the current task.
534 * * ``001`` is the CPU number on which the task is
535 * running.
536 * * In ``.N..``, each character refers to a set of
537 * options (whether irqs are enabled, scheduling
538 * options, whether hard/softirqs are running, level of
539 * preempt_disabled respectively). **N** means that
540 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
541 * are set.
542 * * ``419421.045894`` is a timestamp.
543 * * ``0x00000001`` is a fake value used by BPF for the
544 * instruction pointer register.
545 * * ``<formatted msg>`` is the message formatted with
546 * *fmt*.
547 *
548 * The conversion specifiers supported by *fmt* are similar, but
549 * more limited than for printk(). They are **%d**, **%i**,
550 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
551 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
552 * of field, padding with zeroes, etc.) is available, and the
553 * helper will return **-EINVAL** (but print nothing) if it
554 * encounters an unknown specifier.
555 *
556 * Also, note that **bpf_trace_printk**\ () is slow, and should
557 * only be used for debugging purposes. For this reason, a notice
558 * bloc (spanning several lines) is printed to kernel logs and
559 * states that the helper should not be used "for production use"
560 * the first time this helper is used (or more precisely, when
561 * **trace_printk**\ () buffers are allocated). For passing values
562 * to user space, perf events should be preferred.
563 * Return
564 * The number of bytes written to the buffer, or a negative error
565 * in case of failure.
566 *
567 * u32 bpf_get_prandom_u32(void)
568 * Description
569 * Get a pseudo-random number.
570 *
571 * From a security point of view, this helper uses its own
572 * pseudo-random internal state, and cannot be used to infer the
573 * seed of other random functions in the kernel. However, it is
574 * essential to note that the generator used by the helper is not
575 * cryptographically secure.
576 * Return
577 * A random 32-bit unsigned value.
578 *
579 * u32 bpf_get_smp_processor_id(void)
580 * Description
581 * Get the SMP (symmetric multiprocessing) processor id. Note that
582 * all programs run with preemption disabled, which means that the
583 * SMP processor id is stable during all the execution of the
584 * program.
585 * Return
586 * The SMP id of the processor running the program.
587 *
588 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
589 * Description
590 * Store *len* bytes from address *from* into the packet
591 * associated to *skb*, at *offset*. *flags* are a combination of
592 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
593 * checksum for the packet after storing the bytes) and
594 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
595 * **->swhash** and *skb*\ **->l4hash** to 0).
596 *
597 * A call to this helper is susceptible to change the underlaying
598 * packet buffer. Therefore, at load time, all checks on pointers
599 * previously done by the verifier are invalidated and must be
600 * performed again, if the helper is used in combination with
601 * direct packet access.
602 * Return
603 * 0 on success, or a negative error in case of failure.
604 *
605 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
606 * Description
607 * Recompute the layer 3 (e.g. IP) checksum for the packet
608 * associated to *skb*. Computation is incremental, so the helper
609 * must know the former value of the header field that was
610 * modified (*from*), the new value of this field (*to*), and the
611 * number of bytes (2 or 4) for this field, stored in *size*.
612 * Alternatively, it is possible to store the difference between
613 * the previous and the new values of the header field in *to*, by
614 * setting *from* and *size* to 0. For both methods, *offset*
615 * indicates the location of the IP checksum within the packet.
616 *
617 * This helper works in combination with **bpf_csum_diff**\ (),
618 * which does not update the checksum in-place, but offers more
619 * flexibility and can handle sizes larger than 2 or 4 for the
620 * checksum to update.
621 *
622 * A call to this helper is susceptible to change the underlaying
623 * packet buffer. Therefore, at load time, all checks on pointers
624 * previously done by the verifier are invalidated and must be
625 * performed again, if the helper is used in combination with
626 * direct packet access.
627 * Return
628 * 0 on success, or a negative error in case of failure.
629 *
630 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
631 * Description
632 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
633 * packet associated to *skb*. Computation is incremental, so the
634 * helper must know the former value of the header field that was
635 * modified (*from*), the new value of this field (*to*), and the
636 * number of bytes (2 or 4) for this field, stored on the lowest
637 * four bits of *flags*. Alternatively, it is possible to store
638 * the difference between the previous and the new values of the
639 * header field in *to*, by setting *from* and the four lowest
640 * bits of *flags* to 0. For both methods, *offset* indicates the
641 * location of the IP checksum within the packet. In addition to
642 * the size of the field, *flags* can be added (bitwise OR) actual
643 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
644 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
645 * for updates resulting in a null checksum the value is set to
646 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
647 * the checksum is to be computed against a pseudo-header.
648 *
649 * This helper works in combination with **bpf_csum_diff**\ (),
650 * which does not update the checksum in-place, but offers more
651 * flexibility and can handle sizes larger than 2 or 4 for the
652 * checksum to update.
653 *
654 * A call to this helper is susceptible to change the underlaying
655 * packet buffer. Therefore, at load time, all checks on pointers
656 * previously done by the verifier are invalidated and must be
657 * performed again, if the helper is used in combination with
658 * direct packet access.
659 * Return
660 * 0 on success, or a negative error in case of failure.
661 *
662 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
663 * Description
664 * This special helper is used to trigger a "tail call", or in
665 * other words, to jump into another eBPF program. The same stack
666 * frame is used (but values on stack and in registers for the
667 * caller are not accessible to the callee). This mechanism allows
668 * for program chaining, either for raising the maximum number of
669 * available eBPF instructions, or to execute given programs in
670 * conditional blocks. For security reasons, there is an upper
671 * limit to the number of successive tail calls that can be
672 * performed.
673 *
674 * Upon call of this helper, the program attempts to jump into a
675 * program referenced at index *index* in *prog_array_map*, a
676 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
677 * *ctx*, a pointer to the context.
678 *
679 * If the call succeeds, the kernel immediately runs the first
680 * instruction of the new program. This is not a function call,
681 * and it never returns to the previous program. If the call
682 * fails, then the helper has no effect, and the caller continues
683 * to run its subsequent instructions. A call can fail if the
684 * destination program for the jump does not exist (i.e. *index*
685 * is superior to the number of entries in *prog_array_map*), or
686 * if the maximum number of tail calls has been reached for this
687 * chain of programs. This limit is defined in the kernel by the
688 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
689 * which is currently set to 32.
690 * Return
691 * 0 on success, or a negative error in case of failure.
692 *
693 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
694 * Description
695 * Clone and redirect the packet associated to *skb* to another
696 * net device of index *ifindex*. Both ingress and egress
697 * interfaces can be used for redirection. The **BPF_F_INGRESS**
698 * value in *flags* is used to make the distinction (ingress path
699 * is selected if the flag is present, egress path otherwise).
700 * This is the only flag supported for now.
701 *
702 * In comparison with **bpf_redirect**\ () helper,
703 * **bpf_clone_redirect**\ () has the associated cost of
704 * duplicating the packet buffer, but this can be executed out of
705 * the eBPF program. Conversely, **bpf_redirect**\ () is more
706 * efficient, but it is handled through an action code where the
707 * redirection happens only after the eBPF program has returned.
708 *
709 * A call to this helper is susceptible to change the underlaying
710 * packet buffer. Therefore, at load time, all checks on pointers
711 * previously done by the verifier are invalidated and must be
712 * performed again, if the helper is used in combination with
713 * direct packet access.
714 * Return
715 * 0 on success, or a negative error in case of failure.
0cb34dc2
JS
716 *
717 * u64 bpf_get_current_pid_tgid(void)
9cde0c88
QM
718 * Return
719 * A 64-bit integer containing the current tgid and pid, and
720 * created as such:
721 * *current_task*\ **->tgid << 32 \|**
722 * *current_task*\ **->pid**.
0cb34dc2
JS
723 *
724 * u64 bpf_get_current_uid_gid(void)
9cde0c88
QM
725 * Return
726 * A 64-bit integer containing the current GID and UID, and
727 * created as such: *current_gid* **<< 32 \|** *current_uid*.
728 *
729 * int bpf_get_current_comm(char *buf, u32 size_of_buf)
730 * Description
731 * Copy the **comm** attribute of the current task into *buf* of
732 * *size_of_buf*. The **comm** attribute contains the name of
733 * the executable (excluding the path) for the current task. The
734 * *size_of_buf* must be strictly positive. On success, the
735 * helper makes sure that the *buf* is NUL-terminated. On failure,
736 * it is filled with zeroes.
737 * Return
738 * 0 on success, or a negative error in case of failure.
739 *
740 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
741 * Description
742 * Retrieve the classid for the current task, i.e. for the net_cls
743 * cgroup to which *skb* belongs.
744 *
745 * This helper can be used on TC egress path, but not on ingress.
746 *
747 * The net_cls cgroup provides an interface to tag network packets
748 * based on a user-provided identifier for all traffic coming from
749 * the tasks belonging to the related cgroup. See also the related
750 * kernel documentation, available from the Linux sources in file
751 * *Documentation/cgroup-v1/net_cls.txt*.
752 *
753 * The Linux kernel has two versions for cgroups: there are
754 * cgroups v1 and cgroups v2. Both are available to users, who can
755 * use a mixture of them, but note that the net_cls cgroup is for
756 * cgroup v1 only. This makes it incompatible with BPF programs
757 * run on cgroups, which is a cgroup-v2-only feature (a socket can
758 * only hold data for one version of cgroups at a time).
759 *
760 * This helper is only available is the kernel was compiled with
761 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
762 * "**y**" or to "**m**".
763 * Return
764 * The classid, or 0 for the default unconfigured classid.
765 *
766 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
767 * Description
768 * Push a *vlan_tci* (VLAN tag control information) of protocol
769 * *vlan_proto* to the packet associated to *skb*, then update
770 * the checksum. Note that if *vlan_proto* is different from
771 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
772 * be **ETH_P_8021Q**.
773 *
774 * A call to this helper is susceptible to change the underlaying
775 * packet buffer. Therefore, at load time, all checks on pointers
776 * previously done by the verifier are invalidated and must be
777 * performed again, if the helper is used in combination with
778 * direct packet access.
779 * Return
780 * 0 on success, or a negative error in case of failure.
781 *
782 * int bpf_skb_vlan_pop(struct sk_buff *skb)
783 * Description
784 * Pop a VLAN header from the packet associated to *skb*.
785 *
786 * A call to this helper is susceptible to change the underlaying
787 * packet buffer. Therefore, at load time, all checks on pointers
788 * previously done by the verifier are invalidated and must be
789 * performed again, if the helper is used in combination with
790 * direct packet access.
791 * Return
792 * 0 on success, or a negative error in case of failure.
793 *
794 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
795 * Description
796 * Get tunnel metadata. This helper takes a pointer *key* to an
797 * empty **struct bpf_tunnel_key** of **size**, that will be
798 * filled with tunnel metadata for the packet associated to *skb*.
799 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
800 * indicates that the tunnel is based on IPv6 protocol instead of
801 * IPv4.
802 *
803 * The **struct bpf_tunnel_key** is an object that generalizes the
804 * principal parameters used by various tunneling protocols into a
805 * single struct. This way, it can be used to easily make a
806 * decision based on the contents of the encapsulation header,
807 * "summarized" in this struct. In particular, it holds the IP
808 * address of the remote end (IPv4 or IPv6, depending on the case)
809 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
810 * this struct exposes the *key*\ **->tunnel_id**, which is
811 * generally mapped to a VNI (Virtual Network Identifier), making
812 * it programmable together with the **bpf_skb_set_tunnel_key**\
813 * () helper.
814 *
815 * Let's imagine that the following code is part of a program
816 * attached to the TC ingress interface, on one end of a GRE
817 * tunnel, and is supposed to filter out all messages coming from
818 * remote ends with IPv4 address other than 10.0.0.1:
819 *
820 * ::
821 *
822 * int ret;
823 * struct bpf_tunnel_key key = {};
824 *
825 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
826 * if (ret < 0)
827 * return TC_ACT_SHOT; // drop packet
828 *
829 * if (key.remote_ipv4 != 0x0a000001)
830 * return TC_ACT_SHOT; // drop packet
831 *
832 * return TC_ACT_OK; // accept packet
833 *
834 * This interface can also be used with all encapsulation devices
835 * that can operate in "collect metadata" mode: instead of having
836 * one network device per specific configuration, the "collect
837 * metadata" mode only requires a single device where the
838 * configuration can be extracted from this helper.
839 *
840 * This can be used together with various tunnels such as VXLan,
841 * Geneve, GRE or IP in IP (IPIP).
842 * Return
843 * 0 on success, or a negative error in case of failure.
844 *
845 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
846 * Description
847 * Populate tunnel metadata for packet associated to *skb.* The
848 * tunnel metadata is set to the contents of *key*, of *size*. The
849 * *flags* can be set to a combination of the following values:
850 *
851 * **BPF_F_TUNINFO_IPV6**
852 * Indicate that the tunnel is based on IPv6 protocol
853 * instead of IPv4.
854 * **BPF_F_ZERO_CSUM_TX**
855 * For IPv4 packets, add a flag to tunnel metadata
856 * indicating that checksum computation should be skipped
857 * and checksum set to zeroes.
858 * **BPF_F_DONT_FRAGMENT**
859 * Add a flag to tunnel metadata indicating that the
860 * packet should not be fragmented.
861 * **BPF_F_SEQ_NUMBER**
862 * Add a flag to tunnel metadata indicating that a
863 * sequence number should be added to tunnel header before
864 * sending the packet. This flag was added for GRE
865 * encapsulation, but might be used with other protocols
866 * as well in the future.
867 *
868 * Here is a typical usage on the transmit path:
869 *
870 * ::
871 *
872 * struct bpf_tunnel_key key;
873 * populate key ...
874 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
875 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
876 *
877 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
878 * helper for additional information.
879 * Return
880 * 0 on success, or a negative error in case of failure.
881 *
882 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
883 * Description
884 * Read the value of a perf event counter. This helper relies on a
885 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
886 * the perf event counter is selected when *map* is updated with
887 * perf event file descriptors. The *map* is an array whose size
888 * is the number of available CPUs, and each cell contains a value
889 * relative to one CPU. The value to retrieve is indicated by
890 * *flags*, that contains the index of the CPU to look up, masked
891 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
892 * **BPF_F_CURRENT_CPU** to indicate that the value for the
893 * current CPU should be retrieved.
894 *
895 * Note that before Linux 4.13, only hardware perf event can be
896 * retrieved.
897 *
898 * Also, be aware that the newer helper
899 * **bpf_perf_event_read_value**\ () is recommended over
a56497d3 900 * **bpf_perf_event_read**\ () in general. The latter has some ABI
9cde0c88
QM
901 * quirks where error and counter value are used as a return code
902 * (which is wrong to do since ranges may overlap). This issue is
a56497d3
QM
903 * fixed with **bpf_perf_event_read_value**\ (), which at the same
904 * time provides more features over the **bpf_perf_event_read**\
905 * () interface. Please refer to the description of
9cde0c88
QM
906 * **bpf_perf_event_read_value**\ () for details.
907 * Return
908 * The value of the perf event counter read from the map, or a
909 * negative error code in case of failure.
910 *
911 * int bpf_redirect(u32 ifindex, u64 flags)
912 * Description
913 * Redirect the packet to another net device of index *ifindex*.
914 * This helper is somewhat similar to **bpf_clone_redirect**\
915 * (), except that the packet is not cloned, which provides
916 * increased performance.
917 *
918 * Except for XDP, both ingress and egress interfaces can be used
919 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
920 * to make the distinction (ingress path is selected if the flag
921 * is present, egress path otherwise). Currently, XDP only
922 * supports redirection to the egress interface, and accepts no
923 * flag at all.
924 *
925 * The same effect can be attained with the more generic
926 * **bpf_redirect_map**\ (), which requires specific maps to be
927 * used but offers better performance.
928 * Return
929 * For XDP, the helper returns **XDP_REDIRECT** on success or
930 * **XDP_ABORTED** on error. For other program types, the values
931 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
932 * error.
933 *
934 * u32 bpf_get_route_realm(struct sk_buff *skb)
935 * Description
936 * Retrieve the realm or the route, that is to say the
937 * **tclassid** field of the destination for the *skb*. The
938 * indentifier retrieved is a user-provided tag, similar to the
939 * one used with the net_cls cgroup (see description for
940 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
941 * held by a route (a destination entry), not by a task.
942 *
943 * Retrieving this identifier works with the clsact TC egress hook
944 * (see also **tc-bpf(8)**), or alternatively on conventional
945 * classful egress qdiscs, but not on TC ingress path. In case of
946 * clsact TC egress hook, this has the advantage that, internally,
947 * the destination entry has not been dropped yet in the transmit
948 * path. Therefore, the destination entry does not need to be
949 * artificially held via **netif_keep_dst**\ () for a classful
950 * qdisc until the *skb* is freed.
951 *
952 * This helper is available only if the kernel was compiled with
953 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
954 * Return
955 * The realm of the route for the packet associated to *skb*, or 0
956 * if none was found.
957 *
958 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
959 * Description
960 * Write raw *data* blob into a special BPF perf event held by
961 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
962 * event must have the following attributes: **PERF_SAMPLE_RAW**
963 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
964 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
965 *
966 * The *flags* are used to indicate the index in *map* for which
967 * the value must be put, masked with **BPF_F_INDEX_MASK**.
968 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
969 * to indicate that the index of the current CPU core should be
970 * used.
971 *
972 * The value to write, of *size*, is passed through eBPF stack and
973 * pointed by *data*.
974 *
975 * The context of the program *ctx* needs also be passed to the
976 * helper.
977 *
978 * On user space, a program willing to read the values needs to
979 * call **perf_event_open**\ () on the perf event (either for
980 * one or for all CPUs) and to store the file descriptor into the
981 * *map*. This must be done before the eBPF program can send data
982 * into it. An example is available in file
983 * *samples/bpf/trace_output_user.c* in the Linux kernel source
984 * tree (the eBPF program counterpart is in
985 * *samples/bpf/trace_output_kern.c*).
986 *
987 * **bpf_perf_event_output**\ () achieves better performance
988 * than **bpf_trace_printk**\ () for sharing data with user
989 * space, and is much better suitable for streaming data from eBPF
990 * programs.
991 *
992 * Note that this helper is not restricted to tracing use cases
993 * and can be used with programs attached to TC or XDP as well,
994 * where it allows for passing data to user space listeners. Data
995 * can be:
996 *
997 * * Only custom structs,
998 * * Only the packet payload, or
999 * * A combination of both.
1000 * Return
1001 * 0 on success, or a negative error in case of failure.
1002 *
1003 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1004 * Description
1005 * This helper was provided as an easy way to load data from a
1006 * packet. It can be used to load *len* bytes from *offset* from
1007 * the packet associated to *skb*, into the buffer pointed by
1008 * *to*.
1009 *
1010 * Since Linux 4.7, usage of this helper has mostly been replaced
1011 * by "direct packet access", enabling packet data to be
1012 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1013 * pointing respectively to the first byte of packet data and to
1014 * the byte after the last byte of packet data. However, it
1015 * remains useful if one wishes to read large quantities of data
1016 * at once from a packet into the eBPF stack.
1017 * Return
1018 * 0 on success, or a negative error in case of failure.
1019 *
1020 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
1021 * Description
1022 * Walk a user or a kernel stack and return its id. To achieve
1023 * this, the helper needs *ctx*, which is a pointer to the context
1024 * on which the tracing program is executed, and a pointer to a
1025 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1026 *
1027 * The last argument, *flags*, holds the number of stack frames to
1028 * skip (from 0 to 255), masked with
1029 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1030 * a combination of the following flags:
1031 *
1032 * **BPF_F_USER_STACK**
1033 * Collect a user space stack instead of a kernel stack.
1034 * **BPF_F_FAST_STACK_CMP**
1035 * Compare stacks by hash only.
1036 * **BPF_F_REUSE_STACKID**
1037 * If two different stacks hash into the same *stackid*,
1038 * discard the old one.
1039 *
1040 * The stack id retrieved is a 32 bit long integer handle which
1041 * can be further combined with other data (including other stack
1042 * ids) and used as a key into maps. This can be useful for
1043 * generating a variety of graphs (such as flame graphs or off-cpu
1044 * graphs).
1045 *
1046 * For walking a stack, this helper is an improvement over
1047 * **bpf_probe_read**\ (), which can be used with unrolled loops
1048 * but is not efficient and consumes a lot of eBPF instructions.
1049 * Instead, **bpf_get_stackid**\ () can collect up to
1050 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1051 * this limit can be controlled with the **sysctl** program, and
1052 * that it should be manually increased in order to profile long
1053 * user stacks (such as stacks for Java programs). To do so, use:
1054 *
1055 * ::
1056 *
1057 * # sysctl kernel.perf_event_max_stack=<new value>
9cde0c88
QM
1058 * Return
1059 * The positive or null stack id on success, or a negative error
1060 * in case of failure.
1061 *
1062 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1063 * Description
1064 * Compute a checksum difference, from the raw buffer pointed by
1065 * *from*, of length *from_size* (that must be a multiple of 4),
1066 * towards the raw buffer pointed by *to*, of size *to_size*
1067 * (same remark). An optional *seed* can be added to the value
1068 * (this can be cascaded, the seed may come from a previous call
1069 * to the helper).
1070 *
1071 * This is flexible enough to be used in several ways:
1072 *
1073 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
1074 * checksum, it can be used when pushing new data.
1075 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
1076 * checksum, it can be used when removing data from a packet.
1077 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1078 * can be used to compute a diff. Note that *from_size* and
1079 * *to_size* do not need to be equal.
1080 *
1081 * This helper can be used in combination with
1082 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1083 * which one can feed in the difference computed with
1084 * **bpf_csum_diff**\ ().
1085 * Return
1086 * The checksum result, or a negative error code in case of
1087 * failure.
1088 *
1089 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1090 * Description
1091 * Retrieve tunnel options metadata for the packet associated to
1092 * *skb*, and store the raw tunnel option data to the buffer *opt*
1093 * of *size*.
1094 *
1095 * This helper can be used with encapsulation devices that can
1096 * operate in "collect metadata" mode (please refer to the related
1097 * note in the description of **bpf_skb_get_tunnel_key**\ () for
1098 * more details). A particular example where this can be used is
1099 * in combination with the Geneve encapsulation protocol, where it
1100 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1101 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
1102 * the eBPF program. This allows for full customization of these
1103 * headers.
1104 * Return
1105 * The size of the option data retrieved.
1106 *
1107 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1108 * Description
1109 * Set tunnel options metadata for the packet associated to *skb*
1110 * to the option data contained in the raw buffer *opt* of *size*.
1111 *
1112 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1113 * helper for additional information.
1114 * Return
1115 * 0 on success, or a negative error in case of failure.
1116 *
1117 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1118 * Description
1119 * Change the protocol of the *skb* to *proto*. Currently
1120 * supported are transition from IPv4 to IPv6, and from IPv6 to
1121 * IPv4. The helper takes care of the groundwork for the
1122 * transition, including resizing the socket buffer. The eBPF
1123 * program is expected to fill the new headers, if any, via
1124 * **skb_store_bytes**\ () and to recompute the checksums with
1125 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1126 * (). The main case for this helper is to perform NAT64
1127 * operations out of an eBPF program.
1128 *
1129 * Internally, the GSO type is marked as dodgy so that headers are
1130 * checked and segments are recalculated by the GSO/GRO engine.
1131 * The size for GSO target is adapted as well.
1132 *
1133 * All values for *flags* are reserved for future usage, and must
1134 * be left at zero.
1135 *
1136 * A call to this helper is susceptible to change the underlaying
1137 * packet buffer. Therefore, at load time, all checks on pointers
1138 * previously done by the verifier are invalidated and must be
1139 * performed again, if the helper is used in combination with
1140 * direct packet access.
1141 * Return
1142 * 0 on success, or a negative error in case of failure.
1143 *
1144 * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1145 * Description
1146 * Change the packet type for the packet associated to *skb*. This
1147 * comes down to setting *skb*\ **->pkt_type** to *type*, except
1148 * the eBPF program does not have a write access to *skb*\
1149 * **->pkt_type** beside this helper. Using a helper here allows
1150 * for graceful handling of errors.
1151 *
1152 * The major use case is to change incoming *skb*s to
1153 * **PACKET_HOST** in a programmatic way instead of having to
1154 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1155 * example.
1156 *
1157 * Note that *type* only allows certain values. At this time, they
1158 * are:
1159 *
1160 * **PACKET_HOST**
1161 * Packet is for us.
1162 * **PACKET_BROADCAST**
1163 * Send packet to all.
1164 * **PACKET_MULTICAST**
1165 * Send packet to group.
1166 * **PACKET_OTHERHOST**
1167 * Send packet to someone else.
1168 * Return
1169 * 0 on success, or a negative error in case of failure.
1170 *
1171 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1172 * Description
1173 * Check whether *skb* is a descendant of the cgroup2 held by
1174 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1175 * Return
1176 * The return value depends on the result of the test, and can be:
1177 *
1178 * * 0, if the *skb* failed the cgroup2 descendant test.
1179 * * 1, if the *skb* succeeded the cgroup2 descendant test.
1180 * * A negative error code, if an error occurred.
1181 *
1182 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1183 * Description
1184 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1185 * not set, in particular if the hash was cleared due to mangling,
1186 * recompute this hash. Later accesses to the hash can be done
1187 * directly with *skb*\ **->hash**.
1188 *
1189 * Calling **bpf_set_hash_invalid**\ (), changing a packet
1190 * prototype with **bpf_skb_change_proto**\ (), or calling
1191 * **bpf_skb_store_bytes**\ () with the
1192 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1193 * the hash and to trigger a new computation for the next call to
1194 * **bpf_get_hash_recalc**\ ().
1195 * Return
1196 * The 32-bit hash.
0cb34dc2
JS
1197 *
1198 * u64 bpf_get_current_task(void)
9cde0c88
QM
1199 * Return
1200 * A pointer to the current task struct.
1201 *
1202 * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1203 * Description
1204 * Attempt in a safe way to write *len* bytes from the buffer
1205 * *src* to *dst* in memory. It only works for threads that are in
1206 * user context, and *dst* must be a valid user space address.
1207 *
1208 * This helper should not be used to implement any kind of
1209 * security mechanism because of TOC-TOU attacks, but rather to
1210 * debug, divert, and manipulate execution of semi-cooperative
1211 * processes.
1212 *
1213 * Keep in mind that this feature is meant for experiments, and it
1214 * has a risk of crashing the system and running programs.
1215 * Therefore, when an eBPF program using this helper is attached,
1216 * a warning including PID and process name is printed to kernel
1217 * logs.
1218 * Return
1219 * 0 on success, or a negative error in case of failure.
1220 *
1221 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1222 * Description
1223 * Check whether the probe is being run is the context of a given
1224 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1225 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1226 * Return
1227 * The return value depends on the result of the test, and can be:
1228 *
1229 * * 0, if the *skb* task belongs to the cgroup2.
1230 * * 1, if the *skb* task does not belong to the cgroup2.
1231 * * A negative error code, if an error occurred.
1232 *
1233 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1234 * Description
1235 * Resize (trim or grow) the packet associated to *skb* to the
1236 * new *len*. The *flags* are reserved for future usage, and must
1237 * be left at zero.
1238 *
1239 * The basic idea is that the helper performs the needed work to
1240 * change the size of the packet, then the eBPF program rewrites
1241 * the rest via helpers like **bpf_skb_store_bytes**\ (),
1242 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1243 * and others. This helper is a slow path utility intended for
1244 * replies with control messages. And because it is targeted for
1245 * slow path, the helper itself can afford to be slow: it
1246 * implicitly linearizes, unclones and drops offloads from the
1247 * *skb*.
1248 *
1249 * A call to this helper is susceptible to change the underlaying
1250 * packet buffer. Therefore, at load time, all checks on pointers
1251 * previously done by the verifier are invalidated and must be
1252 * performed again, if the helper is used in combination with
1253 * direct packet access.
1254 * Return
1255 * 0 on success, or a negative error in case of failure.
1256 *
1257 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1258 * Description
1259 * Pull in non-linear data in case the *skb* is non-linear and not
1260 * all of *len* are part of the linear section. Make *len* bytes
1261 * from *skb* readable and writable. If a zero value is passed for
1262 * *len*, then the whole length of the *skb* is pulled.
1263 *
1264 * This helper is only needed for reading and writing with direct
1265 * packet access.
1266 *
1267 * For direct packet access, testing that offsets to access
1268 * are within packet boundaries (test on *skb*\ **->data_end**) is
1269 * susceptible to fail if offsets are invalid, or if the requested
1270 * data is in non-linear parts of the *skb*. On failure the
1271 * program can just bail out, or in the case of a non-linear
1272 * buffer, use a helper to make the data available. The
1273 * **bpf_skb_load_bytes**\ () helper is a first solution to access
1274 * the data. Another one consists in using **bpf_skb_pull_data**
1275 * to pull in once the non-linear parts, then retesting and
1276 * eventually access the data.
1277 *
1278 * At the same time, this also makes sure the *skb* is uncloned,
1279 * which is a necessary condition for direct write. As this needs
1280 * to be an invariant for the write part only, the verifier
1281 * detects writes and adds a prologue that is calling
1282 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
1283 * the very beginning in case it is indeed cloned.
1284 *
1285 * A call to this helper is susceptible to change the underlaying
1286 * packet buffer. Therefore, at load time, all checks on pointers
1287 * previously done by the verifier are invalidated and must be
1288 * performed again, if the helper is used in combination with
1289 * direct packet access.
1290 * Return
1291 * 0 on success, or a negative error in case of failure.
1292 *
1293 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1294 * Description
1295 * Add the checksum *csum* into *skb*\ **->csum** in case the
1296 * driver has supplied a checksum for the entire packet into that
1297 * field. Return an error otherwise. This helper is intended to be
1298 * used in combination with **bpf_csum_diff**\ (), in particular
1299 * when the checksum needs to be updated after data has been
1300 * written into the packet through direct packet access.
1301 * Return
1302 * The checksum on success, or a negative error code in case of
1303 * failure.
1304 *
1305 * void bpf_set_hash_invalid(struct sk_buff *skb)
1306 * Description
1307 * Invalidate the current *skb*\ **->hash**. It can be used after
1308 * mangling on headers through direct packet access, in order to
1309 * indicate that the hash is outdated and to trigger a
1310 * recalculation the next time the kernel tries to access this
1311 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
1312 *
1313 * int bpf_get_numa_node_id(void)
1314 * Description
1315 * Return the id of the current NUMA node. The primary use case
1316 * for this helper is the selection of sockets for the local NUMA
1317 * node, when the program is attached to sockets using the
1318 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1319 * but the helper is also available to other eBPF program types,
1320 * similarly to **bpf_get_smp_processor_id**\ ().
1321 * Return
1322 * The id of current NUMA node.
1323 *
1324 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1325 * Description
1326 * Grows headroom of packet associated to *skb* and adjusts the
1327 * offset of the MAC header accordingly, adding *len* bytes of
1328 * space. It automatically extends and reallocates memory as
1329 * required.
1330 *
1331 * This helper can be used on a layer 3 *skb* to push a MAC header
1332 * for redirection into a layer 2 device.
1333 *
1334 * All values for *flags* are reserved for future usage, and must
1335 * be left at zero.
1336 *
1337 * A call to this helper is susceptible to change the underlaying
1338 * packet buffer. Therefore, at load time, all checks on pointers
1339 * previously done by the verifier are invalidated and must be
1340 * performed again, if the helper is used in combination with
1341 * direct packet access.
1342 * Return
1343 * 0 on success, or a negative error in case of failure.
1344 *
1345 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1346 * Description
1347 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1348 * it is possible to use a negative value for *delta*. This helper
1349 * can be used to prepare the packet for pushing or popping
1350 * headers.
1351 *
1352 * A call to this helper is susceptible to change the underlaying
1353 * packet buffer. Therefore, at load time, all checks on pointers
1354 * previously done by the verifier are invalidated and must be
1355 * performed again, if the helper is used in combination with
1356 * direct packet access.
1357 * Return
1358 * 0 on success, or a negative error in case of failure.
9a738266
MS
1359 *
1360 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
9cde0c88
QM
1361 * Description
1362 * Copy a NUL terminated string from an unsafe address
1363 * *unsafe_ptr* to *dst*. The *size* should include the
1364 * terminating NUL byte. In case the string length is smaller than
1365 * *size*, the target is not padded with further NUL bytes. If the
1366 * string length is larger than *size*, just *size*-1 bytes are
1367 * copied and the last byte is set to NUL.
1368 *
1369 * On success, the length of the copied string is returned. This
1370 * makes this helper useful in tracing programs for reading
1371 * strings, and more importantly to get its length at runtime. See
1372 * the following snippet:
1373 *
1374 * ::
1375 *
1376 * SEC("kprobe/sys_open")
1377 * void bpf_sys_open(struct pt_regs *ctx)
1378 * {
1379 * char buf[PATHLEN]; // PATHLEN is defined to 256
1380 * int res = bpf_probe_read_str(buf, sizeof(buf),
1381 * ctx->di);
1382 *
1383 * // Consume buf, for example push it to
1384 * // userspace via bpf_perf_event_output(); we
1385 * // can use res (the string length) as event
1386 * // size, after checking its boundaries.
1387 * }
1388 *
1389 * In comparison, using **bpf_probe_read()** helper here instead
1390 * to read the string would require to estimate the length at
1391 * compile time, and would often result in copying more memory
1392 * than necessary.
1393 *
1394 * Another useful use case is when parsing individual process
1395 * arguments or individual environment variables navigating
1396 * *current*\ **->mm->arg_start** and *current*\
1397 * **->mm->env_start**: using this helper and the return value,
1398 * one can quickly iterate at the right offset of the memory area.
1399 * Return
1400 * On success, the strictly positive length of the string,
1401 * including the trailing NUL character. On error, a negative
1402 * value.
1403 *
1404 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1405 * Description
1406 * If the **struct sk_buff** pointed by *skb* has a known socket,
1407 * retrieve the cookie (generated by the kernel) of this socket.
1408 * If no cookie has been set yet, generate a new cookie. Once
1409 * generated, the socket cookie remains stable for the life of the
1410 * socket. This helper can be useful for monitoring per socket
1411 * networking traffic statistics as it provides a unique socket
1412 * identifier per namespace.
1413 * Return
1414 * A 8-byte long non-decreasing number on success, or 0 if the
1415 * socket field is missing inside *skb*.
1416 *
a40b712e
AI
1417 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1418 * Description
1419 * Equivalent to bpf_get_socket_cookie() helper that accepts
1420 * *skb*, but gets socket from **struct bpf_sock_addr** contex.
1421 * Return
1422 * A 8-byte long non-decreasing number.
1423 *
1424 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1425 * Description
1426 * Equivalent to bpf_get_socket_cookie() helper that accepts
1427 * *skb*, but gets socket from **struct bpf_sock_ops** contex.
1428 * Return
1429 * A 8-byte long non-decreasing number.
1430 *
9cde0c88
QM
1431 * u32 bpf_get_socket_uid(struct sk_buff *skb)
1432 * Return
1433 * The owner UID of the socket associated to *skb*. If the socket
1434 * is **NULL**, or if it is not a full socket (i.e. if it is a
1435 * time-wait or a request socket instead), **overflowuid** value
1436 * is returned (note that **overflowuid** might also be the actual
1437 * UID value for the socket).
1438 *
1439 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1440 * Description
1441 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
1442 * to value *hash*.
1443 * Return
1444 * 0
1445 *
96871b9f 1446 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
9cde0c88
QM
1447 * Description
1448 * Emulate a call to **setsockopt()** on the socket associated to
1449 * *bpf_socket*, which must be a full socket. The *level* at
1450 * which the option resides and the name *optname* of the option
1451 * must be specified, see **setsockopt(2)** for more information.
1452 * The option value of length *optlen* is pointed by *optval*.
1453 *
1454 * This helper actually implements a subset of **setsockopt()**.
1455 * It supports the following *level*\ s:
1456 *
1457 * * **SOL_SOCKET**, which supports the following *optname*\ s:
1458 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1459 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1460 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
1461 * **TCP_CONGESTION**, **TCP_BPF_IW**,
1462 * **TCP_BPF_SNDCWND_CLAMP**.
1463 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1464 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1465 * Return
1466 * 0 on success, or a negative error in case of failure.
1467 *
b55cbc8d 1468 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
9cde0c88
QM
1469 * Description
1470 * Grow or shrink the room for data in the packet associated to
1471 * *skb* by *len_diff*, and according to the selected *mode*.
1472 *
1473 * There is a single supported mode at this time:
1474 *
1475 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1476 * (room space is added or removed below the layer 3 header).
1477 *
1478 * All values for *flags* are reserved for future usage, and must
1479 * be left at zero.
1480 *
1481 * A call to this helper is susceptible to change the underlaying
1482 * packet buffer. Therefore, at load time, all checks on pointers
1483 * previously done by the verifier are invalidated and must be
1484 * performed again, if the helper is used in combination with
1485 * direct packet access.
1486 * Return
1487 * 0 on success, or a negative error in case of failure.
1488 *
1489 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1490 * Description
1491 * Redirect the packet to the endpoint referenced by *map* at
1492 * index *key*. Depending on its type, this *map* can contain
1493 * references to net devices (for forwarding packets through other
1494 * ports), or to CPUs (for redirecting XDP frames to another CPU;
1495 * but this is only implemented for native XDP (with driver
1496 * support) as of this writing).
1497 *
1498 * All values for *flags* are reserved for future usage, and must
1499 * be left at zero.
1500 *
1501 * When used to redirect packets to net devices, this helper
1502 * provides a high performance increase over **bpf_redirect**\ ().
1503 * This is due to various implementation details of the underlying
1504 * mechanisms, one of which is the fact that **bpf_redirect_map**\
1505 * () tries to send packet as a "bulk" to the device.
1506 * Return
1507 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1508 *
1509 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1510 * Description
1511 * Redirect the packet to the socket referenced by *map* (of type
1512 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1513 * egress interfaces can be used for redirection. The
1514 * **BPF_F_INGRESS** value in *flags* is used to make the
1515 * distinction (ingress path is selected if the flag is present,
1516 * egress path otherwise). This is the only flag supported for now.
1517 * Return
1518 * **SK_PASS** on success, or **SK_DROP** on error.
1519 *
96871b9f 1520 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
9cde0c88
QM
1521 * Description
1522 * Add an entry to, or update a *map* referencing sockets. The
1523 * *skops* is used as a new value for the entry associated to
1524 * *key*. *flags* is one of:
1525 *
1526 * **BPF_NOEXIST**
1527 * The entry for *key* must not exist in the map.
1528 * **BPF_EXIST**
1529 * The entry for *key* must already exist in the map.
1530 * **BPF_ANY**
1531 * No condition on the existence of the entry for *key*.
1532 *
1533 * If the *map* has eBPF programs (parser and verdict), those will
1534 * be inherited by the socket being added. If the socket is
1535 * already attached to eBPF programs, this results in an error.
1536 * Return
1537 * 0 on success, or a negative error in case of failure.
1538 *
1539 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1540 * Description
1541 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
1542 * *delta* (which can be positive or negative). Note that this
1543 * operation modifies the address stored in *xdp_md*\ **->data**,
1544 * so the latter must be loaded only after the helper has been
1545 * called.
1546 *
1547 * The use of *xdp_md*\ **->data_meta** is optional and programs
1548 * are not required to use it. The rationale is that when the
1549 * packet is processed with XDP (e.g. as DoS filter), it is
1550 * possible to push further meta data along with it before passing
1551 * to the stack, and to give the guarantee that an ingress eBPF
1552 * program attached as a TC classifier on the same device can pick
1553 * this up for further post-processing. Since TC works with socket
1554 * buffers, it remains possible to set from XDP the **mark** or
1555 * **priority** pointers, or other pointers for the socket buffer.
1556 * Having this scratch space generic and programmable allows for
1557 * more flexibility as the user is free to store whatever meta
1558 * data they need.
1559 *
1560 * A call to this helper is susceptible to change the underlaying
1561 * packet buffer. Therefore, at load time, all checks on pointers
1562 * previously done by the verifier are invalidated and must be
1563 * performed again, if the helper is used in combination with
1564 * direct packet access.
1565 * Return
1566 * 0 on success, or a negative error in case of failure.
1567 *
1568 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1569 * Description
1570 * Read the value of a perf event counter, and store it into *buf*
1571 * of size *buf_size*. This helper relies on a *map* of type
1572 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1573 * counter is selected when *map* is updated with perf event file
1574 * descriptors. The *map* is an array whose size is the number of
1575 * available CPUs, and each cell contains a value relative to one
1576 * CPU. The value to retrieve is indicated by *flags*, that
1577 * contains the index of the CPU to look up, masked with
1578 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1579 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1580 * current CPU should be retrieved.
1581 *
1582 * This helper behaves in a way close to
1583 * **bpf_perf_event_read**\ () helper, save that instead of
1584 * just returning the value observed, it fills the *buf*
1585 * structure. This allows for additional data to be retrieved: in
1586 * particular, the enabled and running times (in *buf*\
1587 * **->enabled** and *buf*\ **->running**, respectively) are
1588 * copied. In general, **bpf_perf_event_read_value**\ () is
1589 * recommended over **bpf_perf_event_read**\ (), which has some
1590 * ABI issues and provides fewer functionalities.
1591 *
1592 * These values are interesting, because hardware PMU (Performance
1593 * Monitoring Unit) counters are limited resources. When there are
1594 * more PMU based perf events opened than available counters,
1595 * kernel will multiplex these events so each event gets certain
1596 * percentage (but not all) of the PMU time. In case that
1597 * multiplexing happens, the number of samples or counter value
1598 * will not reflect the case compared to when no multiplexing
1599 * occurs. This makes comparison between different runs difficult.
1600 * Typically, the counter value should be normalized before
1601 * comparing to other experiments. The usual normalization is done
1602 * as follows.
1603 *
1604 * ::
1605 *
1606 * normalized_counter = counter * t_enabled / t_running
1607 *
1608 * Where t_enabled is the time enabled for event and t_running is
1609 * the time running for event since last normalization. The
1610 * enabled and running times are accumulated since the perf event
1611 * open. To achieve scaling factor between two invocations of an
1612 * eBPF program, users can can use CPU id as the key (which is
1613 * typical for perf array usage model) to remember the previous
1614 * value and do the calculation inside the eBPF program.
1615 * Return
1616 * 0 on success, or a negative error in case of failure.
1617 *
96871b9f 1618 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
9cde0c88
QM
1619 * Description
1620 * For en eBPF program attached to a perf event, retrieve the
1621 * value of the event counter associated to *ctx* and store it in
1622 * the structure pointed by *buf* and of size *buf_size*. Enabled
1623 * and running times are also stored in the structure (see
1624 * description of helper **bpf_perf_event_read_value**\ () for
1625 * more details).
1626 * Return
1627 * 0 on success, or a negative error in case of failure.
1628 *
96871b9f 1629 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
9cde0c88
QM
1630 * Description
1631 * Emulate a call to **getsockopt()** on the socket associated to
1632 * *bpf_socket*, which must be a full socket. The *level* at
1633 * which the option resides and the name *optname* of the option
1634 * must be specified, see **getsockopt(2)** for more information.
1635 * The retrieved value is stored in the structure pointed by
1636 * *opval* and of length *optlen*.
1637 *
1638 * This helper actually implements a subset of **getsockopt()**.
1639 * It supports the following *level*\ s:
1640 *
1641 * * **IPPROTO_TCP**, which supports *optname*
1642 * **TCP_CONGESTION**.
1643 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1644 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1645 * Return
1646 * 0 on success, or a negative error in case of failure.
1647 *
1648 * int bpf_override_return(struct pt_reg *regs, u64 rc)
1649 * Description
1650 * Used for error injection, this helper uses kprobes to override
1651 * the return value of the probed function, and to set it to *rc*.
1652 * The first argument is the context *regs* on which the kprobe
1653 * works.
1654 *
1655 * This helper works by setting setting the PC (program counter)
1656 * to an override function which is run in place of the original
1657 * probed function. This means the probed function is not run at
1658 * all. The replacement function just returns with the required
1659 * value.
1660 *
1661 * This helper has security implications, and thus is subject to
1662 * restrictions. It is only available if the kernel was compiled
1663 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1664 * option, and in this case it only works on functions tagged with
1665 * **ALLOW_ERROR_INJECTION** in the kernel code.
1666 *
1667 * Also, the helper is only available for the architectures having
1668 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1669 * x86 architecture is the only one to support this feature.
1670 * Return
1671 * 0
1672 *
96871b9f 1673 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
9cde0c88
QM
1674 * Description
1675 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1676 * for the full TCP socket associated to *bpf_sock_ops* to
1677 * *argval*.
1678 *
1679 * The primary use of this field is to determine if there should
1680 * be calls to eBPF programs of type
1681 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1682 * code. A program of the same type can change its value, per
1683 * connection and as necessary, when the connection is
1684 * established. This field is directly accessible for reading, but
1685 * this helper must be used for updates in order to return an
1686 * error if an eBPF program tries to set a callback that is not
1687 * supported in the current kernel.
1688 *
1689 * The supported callback values that *argval* can combine are:
1690 *
1691 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1692 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1693 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1694 *
1695 * Here are some examples of where one could call such eBPF
1696 * program:
1697 *
1698 * * When RTO fires.
1699 * * When a packet is retransmitted.
1700 * * When the connection terminates.
1701 * * When a packet is sent.
1702 * * When a packet is received.
1703 * Return
1704 * Code **-EINVAL** if the socket is not a full TCP socket;
1705 * otherwise, a positive number containing the bits that could not
1706 * be set is returned (which comes down to 0 if all bits were set
1707 * as required).
1708 *
1709 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1710 * Description
1711 * This helper is used in programs implementing policies at the
1712 * socket level. If the message *msg* is allowed to pass (i.e. if
1713 * the verdict eBPF program returns **SK_PASS**), redirect it to
1714 * the socket referenced by *map* (of type
1715 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1716 * egress interfaces can be used for redirection. The
1717 * **BPF_F_INGRESS** value in *flags* is used to make the
1718 * distinction (ingress path is selected if the flag is present,
1719 * egress path otherwise). This is the only flag supported for now.
1720 * Return
1721 * **SK_PASS** on success, or **SK_DROP** on error.
1722 *
1723 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1724 * Description
1725 * For socket policies, apply the verdict of the eBPF program to
1726 * the next *bytes* (number of bytes) of message *msg*.
1727 *
1728 * For example, this helper can be used in the following cases:
1729 *
1730 * * A single **sendmsg**\ () or **sendfile**\ () system call
1731 * contains multiple logical messages that the eBPF program is
1732 * supposed to read and for which it should apply a verdict.
1733 * * An eBPF program only cares to read the first *bytes* of a
1734 * *msg*. If the message has a large payload, then setting up
1735 * and calling the eBPF program repeatedly for all bytes, even
1736 * though the verdict is already known, would create unnecessary
1737 * overhead.
1738 *
1739 * When called from within an eBPF program, the helper sets a
1740 * counter internal to the BPF infrastructure, that is used to
1741 * apply the last verdict to the next *bytes*. If *bytes* is
1742 * smaller than the current data being processed from a
1743 * **sendmsg**\ () or **sendfile**\ () system call, the first
1744 * *bytes* will be sent and the eBPF program will be re-run with
1745 * the pointer for start of data pointing to byte number *bytes*
1746 * **+ 1**. If *bytes* is larger than the current data being
1747 * processed, then the eBPF verdict will be applied to multiple
1748 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1749 * consumed.
1750 *
1751 * Note that if a socket closes with the internal counter holding
1752 * a non-zero value, this is not a problem because data is not
1753 * being buffered for *bytes* and is sent as it is received.
1754 * Return
1755 * 0
1756 *
1757 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1758 * Description
1759 * For socket policies, prevent the execution of the verdict eBPF
1760 * program for message *msg* until *bytes* (byte number) have been
1761 * accumulated.
1762 *
1763 * This can be used when one needs a specific number of bytes
1764 * before a verdict can be assigned, even if the data spans
1765 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1766 * case would be a user calling **sendmsg**\ () repeatedly with
1767 * 1-byte long message segments. Obviously, this is bad for
1768 * performance, but it is still valid. If the eBPF program needs
1769 * *bytes* bytes to validate a header, this helper can be used to
1770 * prevent the eBPF program to be called again until *bytes* have
1771 * been accumulated.
1772 * Return
1773 * 0
1774 *
1775 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1776 * Description
1777 * For socket policies, pull in non-linear data from user space
1778 * for *msg* and set pointers *msg*\ **->data** and *msg*\
1779 * **->data_end** to *start* and *end* bytes offsets into *msg*,
1780 * respectively.
1781 *
1782 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1783 * *msg* it can only parse data that the (**data**, **data_end**)
1784 * pointers have already consumed. For **sendmsg**\ () hooks this
1785 * is likely the first scatterlist element. But for calls relying
1786 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1787 * be the range (**0**, **0**) because the data is shared with
1788 * user space and by default the objective is to avoid allowing
1789 * user space to modify data while (or after) eBPF verdict is
1790 * being decided. This helper can be used to pull in data and to
1791 * set the start and end pointer to given values. Data will be
1792 * copied if necessary (i.e. if data was not linear and if start
1793 * and end pointers do not point to the same chunk).
1794 *
1795 * A call to this helper is susceptible to change the underlaying
1796 * packet buffer. Therefore, at load time, all checks on pointers
1797 * previously done by the verifier are invalidated and must be
1798 * performed again, if the helper is used in combination with
1799 * direct packet access.
1800 *
1801 * All values for *flags* are reserved for future usage, and must
1802 * be left at zero.
1803 * Return
1804 * 0 on success, or a negative error in case of failure.
1805 *
96871b9f 1806 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
9cde0c88
QM
1807 * Description
1808 * Bind the socket associated to *ctx* to the address pointed by
1809 * *addr*, of length *addr_len*. This allows for making outgoing
1810 * connection from the desired IP address, which can be useful for
1811 * example when all processes inside a cgroup should use one
1812 * single IP address on a host that has multiple IP configured.
1813 *
1814 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1815 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1816 * **AF_INET6**). Looking for a free port to bind to can be
1817 * expensive, therefore binding to port is not permitted by the
1818 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1819 * must be set to zero.
1820 * Return
1821 * 0 on success, or a negative error in case of failure.
1822 *
1823 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1824 * Description
1825 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1826 * only possible to shrink the packet as of this writing,
1827 * therefore *delta* must be a negative integer.
1828 *
1829 * A call to this helper is susceptible to change the underlaying
1830 * packet buffer. Therefore, at load time, all checks on pointers
1831 * previously done by the verifier are invalidated and must be
1832 * performed again, if the helper is used in combination with
1833 * direct packet access.
1834 * Return
1835 * 0 on success, or a negative error in case of failure.
1836 *
1837 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1838 * Description
1839 * Retrieve the XFRM state (IP transform framework, see also
1840 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1841 *
1842 * The retrieved value is stored in the **struct bpf_xfrm_state**
1843 * pointed by *xfrm_state* and of length *size*.
1844 *
1845 * All values for *flags* are reserved for future usage, and must
1846 * be left at zero.
1847 *
1848 * This helper is available only if the kernel was compiled with
1849 * **CONFIG_XFRM** configuration option.
1850 * Return
1851 * 0 on success, or a negative error in case of failure.
de2ff05f
YS
1852 *
1853 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1854 * Description
a56497d3
QM
1855 * Return a user or a kernel stack in bpf program provided buffer.
1856 * To achieve this, the helper needs *ctx*, which is a pointer
1857 * to the context on which the tracing program is executed.
1858 * To store the stacktrace, the bpf program provides *buf* with
1859 * a nonnegative *size*.
1860 *
1861 * The last argument, *flags*, holds the number of stack frames to
1862 * skip (from 0 to 255), masked with
1863 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1864 * the following flags:
1865 *
1866 * **BPF_F_USER_STACK**
1867 * Collect a user space stack instead of a kernel stack.
1868 * **BPF_F_USER_BUILD_ID**
1869 * Collect buildid+offset instead of ips for user stack,
1870 * only valid if **BPF_F_USER_STACK** is also specified.
1871 *
1872 * **bpf_get_stack**\ () can collect up to
1873 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1874 * to sufficient large buffer size. Note that
1875 * this limit can be controlled with the **sysctl** program, and
1876 * that it should be manually increased in order to profile long
1877 * user stacks (such as stacks for Java programs). To do so, use:
1878 *
1879 * ::
1880 *
1881 * # sysctl kernel.perf_event_max_stack=<new value>
de2ff05f 1882 * Return
7a279e93
QM
1883 * A non-negative value equal to or less than *size* on success,
1884 * or a negative error in case of failure.
32b3652c 1885 *
9b8ca379 1886 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
32b3652c
DB
1887 * Description
1888 * This helper is similar to **bpf_skb_load_bytes**\ () in that
1889 * it provides an easy way to load *len* bytes from *offset*
1890 * from the packet associated to *skb*, into the buffer pointed
1891 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1892 * a fifth argument *start_header* exists in order to select a
1893 * base offset to start from. *start_header* can be one of:
1894 *
1895 * **BPF_HDR_START_MAC**
1896 * Base offset to load data from is *skb*'s mac header.
1897 * **BPF_HDR_START_NET**
1898 * Base offset to load data from is *skb*'s network header.
1899 *
1900 * In general, "direct packet access" is the preferred method to
1901 * access packet data, however, this helper is in particular useful
1902 * in socket filters where *skb*\ **->data** does not always point
1903 * to the start of the mac header and where "direct packet access"
1904 * is not available.
32b3652c
DB
1905 * Return
1906 * 0 on success, or a negative error in case of failure.
1907 *
cb9c28ef
PB
1908 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1909 * Description
1910 * Do FIB lookup in kernel tables using parameters in *params*.
1911 * If lookup is successful and result shows packet is to be
1912 * forwarded, the neighbor tables are searched for the nexthop.
1913 * If successful (ie., FIB lookup shows forwarding and nexthop
6bdd533c
SY
1914 * is resolved), the nexthop address is returned in ipv4_dst
1915 * or ipv6_dst based on family, smac is set to mac address of
1916 * egress device, dmac is set to nexthop mac address, rt_metric
9b8ca379
QM
1917 * is set to metric from route (IPv4/IPv6 only), and ifindex
1918 * is set to the device index of the nexthop from the FIB lookup.
cb9c28ef
PB
1919 *
1920 * *plen* argument is the size of the passed in struct.
7a279e93
QM
1921 * *flags* argument can be a combination of one or more of the
1922 * following values:
cb9c28ef 1923 *
7a279e93
QM
1924 * **BPF_FIB_LOOKUP_DIRECT**
1925 * Do a direct table lookup vs full lookup using FIB
1926 * rules.
1927 * **BPF_FIB_LOOKUP_OUTPUT**
1928 * Perform lookup from an egress perspective (default is
1929 * ingress).
cb9c28ef
PB
1930 *
1931 * *ctx* is either **struct xdp_md** for XDP programs or
1932 * **struct sk_buff** tc cls_act programs.
cb9c28ef 1933 * Return
9b8ca379
QM
1934 * * < 0 if any input argument is invalid
1935 * * 0 on success (packet is forwarded, nexthop neighbor exists)
1936 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
1937 * packet is not forwarded or needs assist from full stack
b8b394fa
JF
1938 *
1939 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
1940 * Description
1941 * Add an entry to, or update a sockhash *map* referencing sockets.
1942 * The *skops* is used as a new value for the entry associated to
1943 * *key*. *flags* is one of:
1944 *
1945 * **BPF_NOEXIST**
1946 * The entry for *key* must not exist in the map.
1947 * **BPF_EXIST**
1948 * The entry for *key* must already exist in the map.
1949 * **BPF_ANY**
1950 * No condition on the existence of the entry for *key*.
1951 *
1952 * If the *map* has eBPF programs (parser and verdict), those will
1953 * be inherited by the socket being added. If the socket is
1954 * already attached to eBPF programs, this results in an error.
1955 * Return
1956 * 0 on success, or a negative error in case of failure.
1957 *
1958 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
1959 * Description
1960 * This helper is used in programs implementing policies at the
1961 * socket level. If the message *msg* is allowed to pass (i.e. if
1962 * the verdict eBPF program returns **SK_PASS**), redirect it to
1963 * the socket referenced by *map* (of type
1964 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1965 * egress interfaces can be used for redirection. The
1966 * **BPF_F_INGRESS** value in *flags* is used to make the
1967 * distinction (ingress path is selected if the flag is present,
1968 * egress path otherwise). This is the only flag supported for now.
1969 * Return
1970 * **SK_PASS** on success, or **SK_DROP** on error.
1971 *
1972 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
1973 * Description
1974 * This helper is used in programs implementing policies at the
1975 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
1976 * if the verdeict eBPF program returns **SK_PASS**), redirect it
1977 * to the socket referenced by *map* (of type
1978 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1979 * egress interfaces can be used for redirection. The
1980 * **BPF_F_INGRESS** value in *flags* is used to make the
1981 * distinction (ingress path is selected if the flag is present,
1982 * egress otherwise). This is the only flag supported for now.
1983 * Return
1984 * **SK_PASS** on success, or **SK_DROP** on error.
c99a84ea
MX
1985 *
1986 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
1987 * Description
1988 * Encapsulate the packet associated to *skb* within a Layer 3
1989 * protocol header. This header is provided in the buffer at
1990 * address *hdr*, with *len* its size in bytes. *type* indicates
1991 * the protocol of the header and can be one of:
1992 *
1993 * **BPF_LWT_ENCAP_SEG6**
1994 * IPv6 encapsulation with Segment Routing Header
1995 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
1996 * the IPv6 header is computed by the kernel.
1997 * **BPF_LWT_ENCAP_SEG6_INLINE**
1998 * Only works if *skb* contains an IPv6 packet. Insert a
1999 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
2000 * the IPv6 header.
2001 *
2002 * A call to this helper is susceptible to change the underlaying
2003 * packet buffer. Therefore, at load time, all checks on pointers
2004 * previously done by the verifier are invalidated and must be
2005 * performed again, if the helper is used in combination with
2006 * direct packet access.
2007 * Return
2008 * 0 on success, or a negative error in case of failure.
2009 *
2010 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2011 * Description
2012 * Store *len* bytes from address *from* into the packet
2013 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
2014 * inside the outermost IPv6 Segment Routing Header can be
2015 * modified through this helper.
2016 *
2017 * A call to this helper is susceptible to change the underlaying
2018 * packet buffer. Therefore, at load time, all checks on pointers
2019 * previously done by the verifier are invalidated and must be
2020 * performed again, if the helper is used in combination with
2021 * direct packet access.
2022 * Return
2023 * 0 on success, or a negative error in case of failure.
2024 *
2025 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2026 * Description
2027 * Adjust the size allocated to TLVs in the outermost IPv6
2028 * Segment Routing Header contained in the packet associated to
2029 * *skb*, at position *offset* by *delta* bytes. Only offsets
2030 * after the segments are accepted. *delta* can be as well
2031 * positive (growing) as negative (shrinking).
2032 *
2033 * A call to this helper is susceptible to change the underlaying
2034 * packet buffer. Therefore, at load time, all checks on pointers
2035 * previously done by the verifier are invalidated and must be
2036 * performed again, if the helper is used in combination with
2037 * direct packet access.
2038 * Return
2039 * 0 on success, or a negative error in case of failure.
2040 *
2041 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2042 * Description
2043 * Apply an IPv6 Segment Routing action of type *action* to the
2044 * packet associated to *skb*. Each action takes a parameter
2045 * contained at address *param*, and of length *param_len* bytes.
2046 * *action* can be one of:
2047 *
2048 * **SEG6_LOCAL_ACTION_END_X**
2049 * End.X action: Endpoint with Layer-3 cross-connect.
2050 * Type of *param*: **struct in6_addr**.
2051 * **SEG6_LOCAL_ACTION_END_T**
2052 * End.T action: Endpoint with specific IPv6 table lookup.
2053 * Type of *param*: **int**.
2054 * **SEG6_LOCAL_ACTION_END_B6**
2055 * End.B6 action: Endpoint bound to an SRv6 policy.
2056 * Type of param: **struct ipv6_sr_hdr**.
2057 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
2058 * End.B6.Encap action: Endpoint bound to an SRv6
2059 * encapsulation policy.
2060 * Type of param: **struct ipv6_sr_hdr**.
2061 *
2062 * A call to this helper is susceptible to change the underlaying
2063 * packet buffer. Therefore, at load time, all checks on pointers
2064 * previously done by the verifier are invalidated and must be
2065 * performed again, if the helper is used in combination with
2066 * direct packet access.
2067 * Return
2068 * 0 on success, or a negative error in case of failure.
6bdd533c
SY
2069 *
2070 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2071 * Description
2072 * This helper is used in programs implementing IR decoding, to
2073 * report a successfully decoded key press with *scancode*,
2074 * *toggle* value in the given *protocol*. The scancode will be
2075 * translated to a keycode using the rc keymap, and reported as
2076 * an input key down event. After a period a key up event is
2077 * generated. This period can be extended by calling either
2078 * **bpf_rc_keydown** () again with the same values, or calling
2079 * **bpf_rc_repeat** ().
2080 *
2081 * Some protocols include a toggle bit, in case the button was
2082 * released and pressed again between consecutive scancodes.
2083 *
2084 * The *ctx* should point to the lirc sample as passed into
2085 * the program.
2086 *
2087 * The *protocol* is the decoded protocol number (see
2088 * **enum rc_proto** for some predefined values).
2089 *
2090 * This helper is only available is the kernel was compiled with
2091 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2092 * "**y**".
6bdd533c
SY
2093 * Return
2094 * 0
2095 *
2096 * int bpf_rc_repeat(void *ctx)
2097 * Description
2098 * This helper is used in programs implementing IR decoding, to
2099 * report a successfully decoded repeat key message. This delays
2100 * the generation of a key up event for previously generated
2101 * key down event.
2102 *
2103 * Some IR protocols like NEC have a special IR message for
2104 * repeating last button, for when a button is held down.
2105 *
2106 * The *ctx* should point to the lirc sample as passed into
2107 * the program.
2108 *
2109 * This helper is only available is the kernel was compiled with
2110 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2111 * "**y**".
6bdd533c
SY
2112 * Return
2113 * 0
6b6a1925
DB
2114 *
2115 * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb)
2116 * Description
2117 * Return the cgroup v2 id of the socket associated with the *skb*.
2118 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2119 * helper for cgroup v1 by providing a tag resp. identifier that
2120 * can be matched on or used for map lookups e.g. to implement
2121 * policy. The cgroup v2 id of a given path in the hierarchy is
2122 * exposed in user space through the f_handle API in order to get
2123 * to the same 64-bit id.
2124 *
2125 * This helper can be used on TC egress path, but not on ingress,
2126 * and is available only if the kernel was compiled with the
2127 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
2128 * Return
2129 * The id is returned or 0 in case the id could not be retrieved.
c7ddbbaf 2130 *
539764d0
AI
2131 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2132 * Description
2133 * Return id of cgroup v2 that is ancestor of cgroup associated
2134 * with the *skb* at the *ancestor_level*. The root cgroup is at
2135 * *ancestor_level* zero and each step down the hierarchy
2136 * increments the level. If *ancestor_level* == level of cgroup
2137 * associated with *skb*, then return value will be same as that
2138 * of **bpf_skb_cgroup_id**\ ().
2139 *
2140 * The helper is useful to implement policies based on cgroups
2141 * that are upper in hierarchy than immediate cgroup associated
2142 * with *skb*.
2143 *
2144 * The format of returned id and helper limitations are same as in
2145 * **bpf_skb_cgroup_id**\ ().
2146 * Return
2147 * The id is returned or 0 in case the id could not be retrieved.
2148 *
c7ddbbaf
YS
2149 * u64 bpf_get_current_cgroup_id(void)
2150 * Return
2151 * A 64-bit integer containing the current cgroup id based
2152 * on the cgroup within which the current task is running.
c419cf52
RG
2153 *
2154 * void* get_local_storage(void *map, u64 flags)
2155 * Description
2156 * Get the pointer to the local storage area.
2157 * The type and the size of the local storage is defined
2158 * by the *map* argument.
2159 * The *flags* meaning is specific for each map type,
2160 * and has to be 0 for cgroup local storage.
2161 *
2162 * Depending on the bpf program type, a local storage area
2163 * can be shared between multiple instances of the bpf program,
2164 * running simultaneously.
2165 *
2166 * A user should care about the synchronization by himself.
2167 * For example, by using the BPF_STX_XADD instruction to alter
2168 * the shared data.
2169 * Return
2170 * Pointer to the local storage area.
3bd43a8c
MKL
2171 *
2172 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2173 * Description
2174 * Select a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY map
2175 * It checks the selected sk is matching the incoming
2176 * request in the skb.
2177 * Return
2178 * 0 on success, or a negative error in case of failure.
6acc9b43
JS
2179 *
2180 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u32 netns, u64 flags)
2181 * Description
2182 * Look for TCP socket matching *tuple*, optionally in a child
2183 * network namespace *netns*. The return value must be checked,
2184 * and if non-NULL, released via **bpf_sk_release**\ ().
2185 *
2186 * The *ctx* should point to the context of the program, such as
2187 * the skb or socket (depending on the hook in use). This is used
2188 * to determine the base network namespace for the lookup.
2189 *
2190 * *tuple_size* must be one of:
2191 *
2192 * **sizeof**\ (*tuple*\ **->ipv4**)
2193 * Look for an IPv4 socket.
2194 * **sizeof**\ (*tuple*\ **->ipv6**)
2195 * Look for an IPv6 socket.
2196 *
2197 * If the *netns* is zero, then the socket lookup table in the
2198 * netns associated with the *ctx* will be used. For the TC hooks,
2199 * this in the netns of the device in the skb. For socket hooks,
2200 * this in the netns of the socket. If *netns* is non-zero, then
2201 * it specifies the ID of the netns relative to the netns
2202 * associated with the *ctx*.
2203 *
2204 * All values for *flags* are reserved for future usage, and must
2205 * be left at zero.
2206 *
2207 * This helper is available only if the kernel was compiled with
2208 * **CONFIG_NET** configuration option.
2209 * Return
2210 * Pointer to *struct bpf_sock*, or NULL in case of failure.
608114e4
LB
2211 * For sockets with reuseport option, *struct bpf_sock*
2212 * return is from reuse->socks[] using hash of the packet.
6acc9b43
JS
2213 *
2214 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u32 netns, u64 flags)
2215 * Description
2216 * Look for UDP socket matching *tuple*, optionally in a child
2217 * network namespace *netns*. The return value must be checked,
2218 * and if non-NULL, released via **bpf_sk_release**\ ().
2219 *
2220 * The *ctx* should point to the context of the program, such as
2221 * the skb or socket (depending on the hook in use). This is used
2222 * to determine the base network namespace for the lookup.
2223 *
2224 * *tuple_size* must be one of:
2225 *
2226 * **sizeof**\ (*tuple*\ **->ipv4**)
2227 * Look for an IPv4 socket.
2228 * **sizeof**\ (*tuple*\ **->ipv6**)
2229 * Look for an IPv6 socket.
2230 *
2231 * If the *netns* is zero, then the socket lookup table in the
2232 * netns associated with the *ctx* will be used. For the TC hooks,
2233 * this in the netns of the device in the skb. For socket hooks,
2234 * this in the netns of the socket. If *netns* is non-zero, then
2235 * it specifies the ID of the netns relative to the netns
2236 * associated with the *ctx*.
2237 *
2238 * All values for *flags* are reserved for future usage, and must
2239 * be left at zero.
2240 *
2241 * This helper is available only if the kernel was compiled with
2242 * **CONFIG_NET** configuration option.
2243 * Return
2244 * Pointer to *struct bpf_sock*, or NULL in case of failure.
608114e4
LB
2245 * For sockets with reuseport option, *struct bpf_sock*
2246 * return is from reuse->socks[] using hash of the packet.
6acc9b43
JS
2247 *
2248 * int bpf_sk_release(struct bpf_sock *sk)
2249 * Description
2250 * Release the reference held by *sock*. *sock* must be a non-NULL
2251 * pointer that was returned from bpf_sk_lookup_xxx\ ().
2252 * Return
2253 * 0 on success, or a negative error in case of failure.
f908d26b
JF
2254 *
2255 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags)
2256 * Description
2257 * For socket policies, insert *len* bytes into msg at offset
2258 * *start*.
2259 *
2260 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2261 * *msg* it may want to insert metadata or options into the msg.
2262 * This can later be read and used by any of the lower layer BPF
2263 * hooks.
2264 *
2265 * This helper may fail if under memory pressure (a malloc
2266 * fails) in these cases BPF programs will get an appropriate
2267 * error and BPF programs will need to handle them.
2268 *
2269 * Return
2270 * 0 on success, or a negative error in case of failure.
d913a227
JF
2271 *
2272 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags)
2273 * Description
2274 * Will remove *pop* bytes from a *msg* starting at byte *start*.
2275 * This may result in **ENOMEM** errors under certain situations if
2276 * an allocation and copy are required due to a full ring buffer.
2277 * However, the helper will try to avoid doing the allocation
2278 * if possible. Other errors can occur if input parameters are
2279 * invalid either due to *start* byte not being valid part of msg
2280 * payload and/or *pop* value being to large.
2281 *
2282 * Return
2283 * 0 on success, or a negative erro in case of failure.
0cb34dc2
JS
2284 */
2285#define __BPF_FUNC_MAPPER(FN) \
2286 FN(unspec), \
2287 FN(map_lookup_elem), \
2288 FN(map_update_elem), \
2289 FN(map_delete_elem), \
2290 FN(probe_read), \
2291 FN(ktime_get_ns), \
2292 FN(trace_printk), \
2293 FN(get_prandom_u32), \
2294 FN(get_smp_processor_id), \
2295 FN(skb_store_bytes), \
2296 FN(l3_csum_replace), \
2297 FN(l4_csum_replace), \
2298 FN(tail_call), \
2299 FN(clone_redirect), \
2300 FN(get_current_pid_tgid), \
2301 FN(get_current_uid_gid), \
2302 FN(get_current_comm), \
2303 FN(get_cgroup_classid), \
2304 FN(skb_vlan_push), \
2305 FN(skb_vlan_pop), \
2306 FN(skb_get_tunnel_key), \
2307 FN(skb_set_tunnel_key), \
2308 FN(perf_event_read), \
2309 FN(redirect), \
2310 FN(get_route_realm), \
2311 FN(perf_event_output), \
2312 FN(skb_load_bytes), \
2313 FN(get_stackid), \
2314 FN(csum_diff), \
2315 FN(skb_get_tunnel_opt), \
2316 FN(skb_set_tunnel_opt), \
2317 FN(skb_change_proto), \
2318 FN(skb_change_type), \
2319 FN(skb_under_cgroup), \
2320 FN(get_hash_recalc), \
2321 FN(get_current_task), \
2322 FN(probe_write_user), \
2323 FN(current_task_under_cgroup), \
2324 FN(skb_change_tail), \
2325 FN(skb_pull_data), \
2326 FN(csum_update), \
2327 FN(set_hash_invalid), \
2328 FN(get_numa_node_id), \
2329 FN(skb_change_head), \
9a738266 2330 FN(xdp_adjust_head), \
91b8270f 2331 FN(probe_read_str), \
6acc5c29 2332 FN(get_socket_cookie), \
ded092cd 2333 FN(get_socket_uid), \
04df41e3 2334 FN(set_hash), \
2be7e212 2335 FN(setsockopt), \
996139e8 2336 FN(skb_adjust_room), \
69e8cc13
JF
2337 FN(redirect_map), \
2338 FN(sk_redirect_map), \
ac29991b 2339 FN(sock_map_update), \
020a32d9 2340 FN(xdp_adjust_meta), \
81b9cf80 2341 FN(perf_event_read_value), \
e27afb84 2342 FN(perf_prog_read_value), \
965de87e 2343 FN(getsockopt), \
d6d4f60c 2344 FN(override_return), \
4c4c3c27
JF
2345 FN(sock_ops_cb_flags_set), \
2346 FN(msg_redirect_map), \
468b3fde 2347 FN(msg_apply_bytes), \
0dcbbf67 2348 FN(msg_cork_bytes), \
622adafb 2349 FN(msg_pull_data), \
0367d0a2 2350 FN(bind), \
29a36f9e 2351 FN(xdp_adjust_tail), \
de2ff05f 2352 FN(skb_get_xfrm_state), \
32b3652c 2353 FN(get_stack), \
cb9c28ef 2354 FN(skb_load_bytes_relative), \
b8b394fa
JF
2355 FN(fib_lookup), \
2356 FN(sock_hash_update), \
2357 FN(msg_redirect_hash), \
c99a84ea
MX
2358 FN(sk_redirect_hash), \
2359 FN(lwt_push_encap), \
2360 FN(lwt_seg6_store_bytes), \
2361 FN(lwt_seg6_adjust_srh), \
6bdd533c
SY
2362 FN(lwt_seg6_action), \
2363 FN(rc_repeat), \
6b6a1925 2364 FN(rc_keydown), \
c7ddbbaf 2365 FN(skb_cgroup_id), \
c419cf52 2366 FN(get_current_cgroup_id), \
3bd43a8c 2367 FN(get_local_storage), \
539764d0 2368 FN(sk_select_reuseport), \
6acc9b43
JS
2369 FN(skb_ancestor_cgroup_id), \
2370 FN(sk_lookup_tcp), \
2371 FN(sk_lookup_udp), \
da4e1b15
MV
2372 FN(sk_release), \
2373 FN(map_push_elem), \
2374 FN(map_pop_elem), \
f908d26b 2375 FN(map_peek_elem), \
d913a227
JF
2376 FN(msg_push_data), \
2377 FN(msg_pop_data),
0cb34dc2 2378
971e827b
ACM
2379/* integer value in 'imm' field of BPF_CALL instruction selects which helper
2380 * function eBPF program intends to call
2381 */
0cb34dc2 2382#define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
971e827b 2383enum bpf_func_id {
0cb34dc2 2384 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
971e827b
ACM
2385 __BPF_FUNC_MAX_ID,
2386};
0cb34dc2 2387#undef __BPF_ENUM_FN
971e827b
ACM
2388
2389/* All flags used by eBPF helper functions, placed here. */
2390
2391/* BPF_FUNC_skb_store_bytes flags. */
2392#define BPF_F_RECOMPUTE_CSUM (1ULL << 0)
2393#define BPF_F_INVALIDATE_HASH (1ULL << 1)
2394
2395/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2396 * First 4 bits are for passing the header field size.
2397 */
2398#define BPF_F_HDR_FIELD_MASK 0xfULL
2399
2400/* BPF_FUNC_l4_csum_replace flags. */
2401#define BPF_F_PSEUDO_HDR (1ULL << 4)
2402#define BPF_F_MARK_MANGLED_0 (1ULL << 5)
9a738266 2403#define BPF_F_MARK_ENFORCE (1ULL << 6)
971e827b
ACM
2404
2405/* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2406#define BPF_F_INGRESS (1ULL << 0)
2407
2408/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2409#define BPF_F_TUNINFO_IPV6 (1ULL << 0)
2410
de2ff05f 2411/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
971e827b
ACM
2412#define BPF_F_SKIP_FIELD_MASK 0xffULL
2413#define BPF_F_USER_STACK (1ULL << 8)
de2ff05f 2414/* flags used by BPF_FUNC_get_stackid only. */
971e827b
ACM
2415#define BPF_F_FAST_STACK_CMP (1ULL << 9)
2416#define BPF_F_REUSE_STACKID (1ULL << 10)
de2ff05f
YS
2417/* flags used by BPF_FUNC_get_stack only. */
2418#define BPF_F_USER_BUILD_ID (1ULL << 11)
971e827b
ACM
2419
2420/* BPF_FUNC_skb_set_tunnel_key flags. */
2421#define BPF_F_ZERO_CSUM_TX (1ULL << 1)
2422#define BPF_F_DONT_FRAGMENT (1ULL << 2)
16962b24 2423#define BPF_F_SEQ_NUMBER (1ULL << 3)
971e827b 2424
e27afb84
AS
2425/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2426 * BPF_FUNC_perf_event_read_value flags.
2427 */
971e827b
ACM
2428#define BPF_F_INDEX_MASK 0xffffffffULL
2429#define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK
791cceb8
ACM
2430/* BPF_FUNC_perf_event_output for sk_buff input context. */
2431#define BPF_F_CTXLEN_MASK (0xfffffULL << 32)
971e827b 2432
2be7e212
DB
2433/* Mode for BPF_FUNC_skb_adjust_room helper. */
2434enum bpf_adj_room_mode {
d62c1d72 2435 BPF_ADJ_ROOM_NET,
2be7e212
DB
2436};
2437
32b3652c
DB
2438/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2439enum bpf_hdr_start_off {
2440 BPF_HDR_START_MAC,
2441 BPF_HDR_START_NET,
2442};
2443
c99a84ea
MX
2444/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2445enum bpf_lwt_encap_mode {
2446 BPF_LWT_ENCAP_SEG6,
2447 BPF_LWT_ENCAP_SEG6_INLINE
2448};
2449
971e827b
ACM
2450/* user accessible mirror of in-kernel sk_buff.
2451 * new fields can only be added to the end of this structure
2452 */
2453struct __sk_buff {
2454 __u32 len;
2455 __u32 pkt_type;
2456 __u32 mark;
2457 __u32 queue_mapping;
2458 __u32 protocol;
2459 __u32 vlan_present;
2460 __u32 vlan_tci;
2461 __u32 vlan_proto;
2462 __u32 priority;
2463 __u32 ingress_ifindex;
2464 __u32 ifindex;
2465 __u32 tc_index;
2466 __u32 cb[5];
2467 __u32 hash;
2468 __u32 tc_classid;
2469 __u32 data;
2470 __u32 data_end;
b1d9fc41 2471 __u32 napi_id;
69e8cc13 2472
ac29991b 2473 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
69e8cc13
JF
2474 __u32 family;
2475 __u32 remote_ip4; /* Stored in network byte order */
2476 __u32 local_ip4; /* Stored in network byte order */
2477 __u32 remote_ip6[4]; /* Stored in network byte order */
2478 __u32 local_ip6[4]; /* Stored in network byte order */
2479 __u32 remote_port; /* Stored in network byte order */
2480 __u32 local_port; /* stored in host byte order */
ac29991b
DB
2481 /* ... here. */
2482
2483 __u32 data_meta;
2f965e3f 2484 struct bpf_flow_keys *flow_keys;
f11216b2 2485 __u64 tstamp;
971e827b
ACM
2486};
2487
2488struct bpf_tunnel_key {
2489 __u32 tunnel_id;
2490 union {
2491 __u32 remote_ipv4;
2492 __u32 remote_ipv6[4];
2493 };
2494 __u8 tunnel_tos;
2495 __u8 tunnel_ttl;
6b6a1925 2496 __u16 tunnel_ext; /* Padding, future use. */
971e827b
ACM
2497 __u32 tunnel_label;
2498};
2499
29a36f9e
EB
2500/* user accessible mirror of in-kernel xfrm_state.
2501 * new fields can only be added to the end of this structure
2502 */
2503struct bpf_xfrm_state {
2504 __u32 reqid;
2505 __u32 spi; /* Stored in network byte order */
2506 __u16 family;
6b6a1925 2507 __u16 ext; /* Padding, future use. */
29a36f9e
EB
2508 union {
2509 __u32 remote_ipv4; /* Stored in network byte order */
2510 __u32 remote_ipv6[4]; /* Stored in network byte order */
2511 };
2512};
2513
0cb34dc2
JS
2514/* Generic BPF return codes which all BPF program types may support.
2515 * The values are binary compatible with their TC_ACT_* counter-part to
2516 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2517 * programs.
2518 *
2519 * XDP is handled seprately, see XDP_*.
2520 */
2521enum bpf_ret_code {
2522 BPF_OK = 0,
2523 /* 1 reserved */
2524 BPF_DROP = 2,
2525 /* 3-6 reserved */
2526 BPF_REDIRECT = 7,
2527 /* >127 are reserved for prog type specific return codes */
2528};
2529
2530struct bpf_sock {
2531 __u32 bound_dev_if;
2532 __u32 family;
2533 __u32 type;
2534 __u32 protocol;
ac29991b
DB
2535 __u32 mark;
2536 __u32 priority;
1d436885
AI
2537 __u32 src_ip4; /* Allows 1,2,4-byte read.
2538 * Stored in network byte order.
2539 */
2540 __u32 src_ip6[4]; /* Allows 1,2,4-byte read.
2541 * Stored in network byte order.
2542 */
2543 __u32 src_port; /* Allows 4-byte read.
2544 * Stored in host byte order
2545 */
0cb34dc2
JS
2546};
2547
6acc9b43
JS
2548struct bpf_sock_tuple {
2549 union {
2550 struct {
2551 __be32 saddr;
2552 __be32 daddr;
2553 __be16 sport;
2554 __be16 dport;
2555 } ipv4;
2556 struct {
2557 __be32 saddr[4];
2558 __be32 daddr[4];
2559 __be16 sport;
2560 __be16 dport;
2561 } ipv6;
2562 };
2563};
2564
0cb34dc2
JS
2565#define XDP_PACKET_HEADROOM 256
2566
791cceb8
ACM
2567/* User return codes for XDP prog type.
2568 * A valid XDP program must return one of these defined values. All other
ac29991b
DB
2569 * return codes are reserved for future use. Unknown return codes will
2570 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
791cceb8
ACM
2571 */
2572enum xdp_action {
2573 XDP_ABORTED = 0,
2574 XDP_DROP,
2575 XDP_PASS,
2576 XDP_TX,
ac29991b 2577 XDP_REDIRECT,
791cceb8
ACM
2578};
2579
2580/* user accessible metadata for XDP packet hook
2581 * new fields must be added to the end of this structure
2582 */
2583struct xdp_md {
2584 __u32 data;
2585 __u32 data_end;
ac29991b 2586 __u32 data_meta;
e7b2823a
JDB
2587 /* Below access go through struct xdp_rxq_info */
2588 __u32 ingress_ifindex; /* rxq->dev->ifindex */
2589 __u32 rx_queue_index; /* rxq->queue_index */
791cceb8
ACM
2590};
2591
69e8cc13 2592enum sk_action {
bfa64075
JF
2593 SK_DROP = 0,
2594 SK_PASS,
69e8cc13
JF
2595};
2596
82a86168
JF
2597/* user accessible metadata for SK_MSG packet hook, new fields must
2598 * be added to the end of this structure
2599 */
2600struct sk_msg_md {
2601 void *data;
2602 void *data_end;
4da0dcab
JF
2603
2604 __u32 family;
2605 __u32 remote_ip4; /* Stored in network byte order */
2606 __u32 local_ip4; /* Stored in network byte order */
2607 __u32 remote_ip6[4]; /* Stored in network byte order */
2608 __u32 local_ip6[4]; /* Stored in network byte order */
2609 __u32 remote_port; /* Stored in network byte order */
2610 __u32 local_port; /* stored in host byte order */
82a86168
JF
2611};
2612
3bd43a8c
MKL
2613struct sk_reuseport_md {
2614 /*
2615 * Start of directly accessible data. It begins from
2616 * the tcp/udp header.
2617 */
2618 void *data;
2619 void *data_end; /* End of directly accessible data */
2620 /*
2621 * Total length of packet (starting from the tcp/udp header).
2622 * Note that the directly accessible bytes (data_end - data)
2623 * could be less than this "len". Those bytes could be
2624 * indirectly read by a helper "bpf_skb_load_bytes()".
2625 */
2626 __u32 len;
2627 /*
2628 * Eth protocol in the mac header (network byte order). e.g.
2629 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
2630 */
2631 __u32 eth_protocol;
2632 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
2633 __u32 bind_inany; /* Is sock bound to an INANY address? */
2634 __u32 hash; /* A hash of the packet 4 tuples */
2635};
2636
95b9afd3
MKL
2637#define BPF_TAG_SIZE 8
2638
2639struct bpf_prog_info {
2640 __u32 type;
2641 __u32 id;
2642 __u8 tag[BPF_TAG_SIZE];
2643 __u32 jited_prog_len;
2644 __u32 xlated_prog_len;
2645 __aligned_u64 jited_prog_insns;
2646 __aligned_u64 xlated_prog_insns;
88cda1c9
MKL
2647 __u64 load_time; /* ns since boottime */
2648 __u32 created_by_uid;
2649 __u32 nr_map_ids;
2650 __aligned_u64 map_ids;
e27afb84 2651 char name[BPF_OBJ_NAME_LEN];
675fc275 2652 __u32 ifindex;
fb6ef42b 2653 __u32 gpl_compatible:1;
675fc275
JK
2654 __u64 netns_dev;
2655 __u64 netns_ino;
dd0c5f07 2656 __u32 nr_jited_ksyms;
bd980d43 2657 __u32 nr_jited_func_lens;
dd0c5f07 2658 __aligned_u64 jited_ksyms;
bd980d43 2659 __aligned_u64 jited_func_lens;
cc19435c
YS
2660 __u32 btf_id;
2661 __u32 func_info_rec_size;
2662 __aligned_u64 func_info;
2663 __u32 func_info_cnt;
95b9afd3
MKL
2664} __attribute__((aligned(8)));
2665
2666struct bpf_map_info {
2667 __u32 type;
2668 __u32 id;
2669 __u32 key_size;
2670 __u32 value_size;
2671 __u32 max_entries;
2672 __u32 map_flags;
067cae47 2673 char name[BPF_OBJ_NAME_LEN];
52775b33 2674 __u32 ifindex;
36f9814a 2675 __u32 :32;
52775b33
JK
2676 __u64 netns_dev;
2677 __u64 netns_ino;
7a01f6a3 2678 __u32 btf_id;
f03b15d3
MKL
2679 __u32 btf_key_type_id;
2680 __u32 btf_value_type_id;
7a01f6a3
MKL
2681} __attribute__((aligned(8)));
2682
2683struct bpf_btf_info {
2684 __aligned_u64 btf;
2685 __u32 btf_size;
2686 __u32 id;
95b9afd3
MKL
2687} __attribute__((aligned(8)));
2688
e50b0a6f
AI
2689/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2690 * by user and intended to be used by socket (e.g. to bind to, depends on
2691 * attach attach type).
2692 */
2693struct bpf_sock_addr {
2694 __u32 user_family; /* Allows 4-byte read, but no write. */
2695 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
2696 * Stored in network byte order.
2697 */
2698 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write.
2699 * Stored in network byte order.
2700 */
2701 __u32 user_port; /* Allows 4-byte read and write.
2702 * Stored in network byte order
2703 */
2704 __u32 family; /* Allows 4-byte read, but no write */
2705 __u32 type; /* Allows 4-byte read, but no write */
2706 __u32 protocol; /* Allows 4-byte read, but no write */
3024cf82
AI
2707 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write.
2708 * Stored in network byte order.
2709 */
2710 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write.
2711 * Stored in network byte order.
2712 */
e50b0a6f
AI
2713};
2714
04df41e3
LB
2715/* User bpf_sock_ops struct to access socket values and specify request ops
2716 * and their replies.
f1d6cb2d
ACM
2717 * Some of this fields are in network (bigendian) byte order and may need
2718 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
04df41e3
LB
2719 * New fields can only be added at the end of this structure
2720 */
2721struct bpf_sock_ops {
2722 __u32 op;
2723 union {
d6d4f60c
LB
2724 __u32 args[4]; /* Optionally passed to bpf program */
2725 __u32 reply; /* Returned by bpf program */
2726 __u32 replylong[4]; /* Optionally returned by bpf prog */
04df41e3
LB
2727 };
2728 __u32 family;
f1d6cb2d
ACM
2729 __u32 remote_ip4; /* Stored in network byte order */
2730 __u32 local_ip4; /* Stored in network byte order */
2731 __u32 remote_ip6[4]; /* Stored in network byte order */
2732 __u32 local_ip6[4]; /* Stored in network byte order */
2733 __u32 remote_port; /* Stored in network byte order */
2734 __u32 local_port; /* stored in host byte order */
e7b2823a
JDB
2735 __u32 is_fullsock; /* Some TCP fields are only valid if
2736 * there is a full socket. If not, the
2737 * fields read as zero.
2738 */
2739 __u32 snd_cwnd;
2740 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
d6d4f60c
LB
2741 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
2742 __u32 state;
2743 __u32 rtt_min;
2744 __u32 snd_ssthresh;
2745 __u32 rcv_nxt;
2746 __u32 snd_nxt;
2747 __u32 snd_una;
2748 __u32 mss_cache;
2749 __u32 ecn_flags;
2750 __u32 rate_delivered;
2751 __u32 rate_interval_us;
2752 __u32 packets_out;
2753 __u32 retrans_out;
2754 __u32 total_retrans;
2755 __u32 segs_in;
2756 __u32 data_segs_in;
2757 __u32 segs_out;
2758 __u32 data_segs_out;
2759 __u32 lost_out;
2760 __u32 sacked_out;
2761 __u32 sk_txhash;
2762 __u64 bytes_received;
2763 __u64 bytes_acked;
04df41e3
LB
2764};
2765
d6d4f60c
LB
2766/* Definitions for bpf_sock_ops_cb_flags */
2767#define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0)
2768#define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1)
2769#define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2)
2770#define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently
2771 * supported cb flags
2772 */
2773
04df41e3
LB
2774/* List of known BPF sock_ops operators.
2775 * New entries can only be added at the end
2776 */
2777enum {
2778 BPF_SOCK_OPS_VOID,
2779 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
2780 * -1 if default value should be used
2781 */
2782 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
2783 * window (in packets) or -1 if default
2784 * value should be used
2785 */
2786 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
2787 * active connection is initialized
2788 */
2789 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
2790 * active connection is
2791 * established
2792 */
2793 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
2794 * passive connection is
2795 * established
2796 */
2797 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
2798 * needs ECN
2799 */
e27afb84
AS
2800 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
2801 * based on the path and may be
2802 * dependent on the congestion control
2803 * algorithm. In general it indicates
2804 * a congestion threshold. RTTs above
2805 * this indicate congestion
2806 */
d6d4f60c
LB
2807 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
2808 * Arg1: value of icsk_retransmits
2809 * Arg2: value of icsk_rto
2810 * Arg3: whether RTO has expired
2811 */
2812 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
2813 * Arg1: sequence number of 1st byte
2814 * Arg2: # segments
2815 * Arg3: return value of
2816 * tcp_transmit_skb (0 => success)
2817 */
2818 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
2819 * Arg1: old_state
2820 * Arg2: new_state
2821 */
060a7fcc
AI
2822 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
2823 * socket transition to LISTEN state.
2824 */
d6d4f60c
LB
2825};
2826
2827/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
2828 * changes between the TCP and BPF versions. Ideally this should never happen.
2829 * If it does, we need to add code to convert them before calling
2830 * the BPF sock_ops function.
2831 */
2832enum {
2833 BPF_TCP_ESTABLISHED = 1,
2834 BPF_TCP_SYN_SENT,
2835 BPF_TCP_SYN_RECV,
2836 BPF_TCP_FIN_WAIT1,
2837 BPF_TCP_FIN_WAIT2,
2838 BPF_TCP_TIME_WAIT,
2839 BPF_TCP_CLOSE,
2840 BPF_TCP_CLOSE_WAIT,
2841 BPF_TCP_LAST_ACK,
2842 BPF_TCP_LISTEN,
2843 BPF_TCP_CLOSING, /* Now a valid state */
2844 BPF_TCP_NEW_SYN_RECV,
2845
2846 BPF_TCP_MAX_STATES /* Leave at the end! */
04df41e3
LB
2847};
2848
2849#define TCP_BPF_IW 1001 /* Set TCP initial congestion window */
2850#define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */
2851
e27afb84
AS
2852struct bpf_perf_event_value {
2853 __u64 counter;
2854 __u64 enabled;
2855 __u64 running;
2856};
2857
ebc614f6
RG
2858#define BPF_DEVCG_ACC_MKNOD (1ULL << 0)
2859#define BPF_DEVCG_ACC_READ (1ULL << 1)
2860#define BPF_DEVCG_ACC_WRITE (1ULL << 2)
2861
2862#define BPF_DEVCG_DEV_BLOCK (1ULL << 0)
2863#define BPF_DEVCG_DEV_CHAR (1ULL << 1)
2864
2865struct bpf_cgroup_dev_ctx {
e7b2823a
JDB
2866 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
2867 __u32 access_type;
ebc614f6
RG
2868 __u32 major;
2869 __u32 minor;
2870};
2871
a0fe3e57
AS
2872struct bpf_raw_tracepoint_args {
2873 __u64 args[0];
2874};
2875
cb9c28ef
PB
2876/* DIRECT: Skip the FIB rules and go to FIB table associated with device
2877 * OUTPUT: Do lookup from egress perspective; default is ingress
2878 */
2879#define BPF_FIB_LOOKUP_DIRECT BIT(0)
2880#define BPF_FIB_LOOKUP_OUTPUT BIT(1)
2881
9b8ca379
QM
2882enum {
2883 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
2884 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
2885 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
2886 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
2887 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
2888 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
2889 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
2890 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
2891 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
2892};
2893
cb9c28ef 2894struct bpf_fib_lookup {
6bdd533c
SY
2895 /* input: network family for lookup (AF_INET, AF_INET6)
2896 * output: network family of egress nexthop
2897 */
2898 __u8 family;
cb9c28ef
PB
2899
2900 /* set if lookup is to consider L4 data - e.g., FIB rules */
2901 __u8 l4_protocol;
2902 __be16 sport;
2903 __be16 dport;
2904
2905 /* total length of packet from network header - used for MTU check */
2906 __u16 tot_len;
9b8ca379
QM
2907
2908 /* input: L3 device index for lookup
2909 * output: device index from FIB lookup
2910 */
2911 __u32 ifindex;
cb9c28ef
PB
2912
2913 union {
2914 /* inputs to lookup */
2915 __u8 tos; /* AF_INET */
f568b472 2916 __be32 flowinfo; /* AF_INET6, flow_label + priority */
cb9c28ef 2917
6bdd533c
SY
2918 /* output: metric of fib result (IPv4/IPv6 only) */
2919 __u32 rt_metric;
cb9c28ef
PB
2920 };
2921
2922 union {
cb9c28ef
PB
2923 __be32 ipv4_src;
2924 __u32 ipv6_src[4]; /* in6_addr; network order */
2925 };
2926
6bdd533c
SY
2927 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
2928 * network header. output: bpf_fib_lookup sets to gateway address
2929 * if FIB lookup returns gateway route
cb9c28ef
PB
2930 */
2931 union {
cb9c28ef
PB
2932 __be32 ipv4_dst;
2933 __u32 ipv6_dst[4]; /* in6_addr; network order */
2934 };
2935
2936 /* output */
2937 __be16 h_vlan_proto;
2938 __be16 h_vlan_TCI;
2939 __u8 smac[6]; /* ETH_ALEN */
2940 __u8 dmac[6]; /* ETH_ALEN */
2941};
2942
30687ad9
YS
2943enum bpf_task_fd_type {
2944 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
2945 BPF_FD_TYPE_TRACEPOINT, /* tp name */
2946 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
2947 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
2948 BPF_FD_TYPE_UPROBE, /* filename + offset */
2949 BPF_FD_TYPE_URETPROBE, /* filename + offset */
2950};
2951
2f965e3f
PP
2952struct bpf_flow_keys {
2953 __u16 nhoff;
2954 __u16 thoff;
2955 __u16 addr_proto; /* ETH_P_* of valid addrs */
2956 __u8 is_frag;
2957 __u8 is_first_frag;
2958 __u8 is_encap;
2959 __u8 ip_proto;
2960 __be16 n_proto;
2961 __be16 sport;
2962 __be16 dport;
2963 union {
2964 struct {
2965 __be32 ipv4_src;
2966 __be32 ipv4_dst;
2967 };
2968 struct {
2969 __u32 ipv6_src[4]; /* in6_addr; network order */
2970 __u32 ipv6_dst[4]; /* in6_addr; network order */
2971 };
2972 };
2973};
2974
cc19435c
YS
2975struct bpf_func_info {
2976 __u32 insn_offset;
2977 __u32 type_id;
2978};
2979
971e827b 2980#endif /* _UAPI__LINUX_BPF_H__ */