ASoC: fsl: Move fsl-ssi binding doc to sound/
[linux-2.6-block.git] / sound / soc / fsl / fsl_ssi.c
CommitLineData
17467f23
TT
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
17467f23
TT
11 */
12
13#include <linux/init.h>
dfa1a107 14#include <linux/io.h>
17467f23
TT
15#include <linux/module.h>
16#include <linux/interrupt.h>
95cd98f9 17#include <linux/clk.h>
17467f23
TT
18#include <linux/device.h>
19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
dfa1a107
SG
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
f0fba2ad 23#include <linux/of_platform.h>
17467f23 24
17467f23
TT
25#include <sound/core.h>
26#include <sound/pcm.h>
27#include <sound/pcm_params.h>
28#include <sound/initval.h>
29#include <sound/soc.h>
a8909c9b 30#include <sound/dmaengine_pcm.h>
17467f23 31
17467f23 32#include "fsl_ssi.h"
09ce1111 33#include "imx-pcm.h"
17467f23 34
dfa1a107
SG
35#ifdef PPC
36#define read_ssi(addr) in_be32(addr)
37#define write_ssi(val, addr) out_be32(addr, val)
38#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
39#elif defined ARM
40#define read_ssi(addr) readl(addr)
41#define write_ssi(val, addr) writel(val, addr)
42/*
43 * FIXME: Proper locking should be added at write_ssi_mask caller level
44 * to ensure this register read/modify/write sequence is race free.
45 */
46static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
47{
48 u32 val = readl(addr);
49 val = (val & ~clear) | set;
50 writel(val, addr);
51}
52#endif
53
17467f23
TT
54/**
55 * FSLSSI_I2S_RATES: sample rates supported by the I2S
56 *
57 * This driver currently only supports the SSI running in I2S slave mode,
58 * which means the codec determines the sample rate. Therefore, we tell
59 * ALSA that we support all rates and let the codec driver decide what rates
60 * are really supported.
61 */
62#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
63 SNDRV_PCM_RATE_CONTINUOUS)
64
65/**
66 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
67 *
68 * This driver currently only supports the SSI running in I2S slave mode.
69 *
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU. This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order. The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness). Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in. So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79#ifdef __BIG_ENDIAN
80#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83#else
84#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87#endif
88
d5a908b2
TT
89/* SIER bitflag of interrupts to enable */
90#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
91 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
92 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
93 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
94 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
95
17467f23
TT
96/**
97 * fsl_ssi_private: per-SSI private data
98 *
17467f23
TT
99 * @ssi: pointer to the SSI's registers
100 * @ssi_phys: physical address of the SSI registers
101 * @irq: IRQ of this SSI
be41e941
TT
102 * @first_stream: pointer to the stream that was opened first
103 * @second_stream: pointer to second stream
17467f23
TT
104 * @playback: the number of playback streams opened
105 * @capture: the number of capture streams opened
106 * @cpu_dai: the CPU DAI for this device
107 * @dev_attr: the sysfs device attribute structure
108 * @stats: SSI statistics
f0fba2ad 109 * @name: name for this device
17467f23
TT
110 */
111struct fsl_ssi_private {
17467f23
TT
112 struct ccsr_ssi __iomem *ssi;
113 dma_addr_t ssi_phys;
114 unsigned int irq;
be41e941
TT
115 struct snd_pcm_substream *first_stream;
116 struct snd_pcm_substream *second_stream;
8e9d8690 117 unsigned int fifo_depth;
f0fba2ad 118 struct snd_soc_dai_driver cpu_dai_drv;
17467f23 119 struct device_attribute dev_attr;
f0fba2ad 120 struct platform_device *pdev;
17467f23 121
09ce1111
SG
122 bool new_binding;
123 bool ssi_on_imx;
95cd98f9 124 struct clk *clk;
a8909c9b
LPC
125 struct snd_dmaengine_dai_dma_data dma_params_tx;
126 struct snd_dmaengine_dai_dma_data dma_params_rx;
127 struct imx_dma_data filter_data_tx;
128 struct imx_dma_data filter_data_rx;
09ce1111 129
17467f23
TT
130 struct {
131 unsigned int rfrc;
132 unsigned int tfrc;
133 unsigned int cmdau;
134 unsigned int cmddu;
135 unsigned int rxt;
136 unsigned int rdr1;
137 unsigned int rdr0;
138 unsigned int tde1;
139 unsigned int tde0;
140 unsigned int roe1;
141 unsigned int roe0;
142 unsigned int tue1;
143 unsigned int tue0;
144 unsigned int tfs;
145 unsigned int rfs;
146 unsigned int tls;
147 unsigned int rls;
148 unsigned int rff1;
149 unsigned int rff0;
150 unsigned int tfe1;
151 unsigned int tfe0;
152 } stats;
f0fba2ad
LG
153
154 char name[1];
17467f23
TT
155};
156
157/**
158 * fsl_ssi_isr: SSI interrupt handler
159 *
160 * Although it's possible to use the interrupt handler to send and receive
161 * data to/from the SSI, we use the DMA instead. Programming is more
162 * complicated, but the performance is much better.
163 *
164 * This interrupt handler is used only to gather statistics.
165 *
166 * @irq: IRQ of the SSI device
167 * @dev_id: pointer to the ssi_private structure for this SSI device
168 */
169static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
170{
171 struct fsl_ssi_private *ssi_private = dev_id;
172 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
173 irqreturn_t ret = IRQ_NONE;
174 __be32 sisr;
175 __be32 sisr2 = 0;
176
177 /* We got an interrupt, so read the status register to see what we
178 were interrupted for. We mask it with the Interrupt Enable register
179 so that we only check for events that we're interested in.
180 */
dfa1a107 181 sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
17467f23
TT
182
183 if (sisr & CCSR_SSI_SISR_RFRC) {
184 ssi_private->stats.rfrc++;
185 sisr2 |= CCSR_SSI_SISR_RFRC;
186 ret = IRQ_HANDLED;
187 }
188
189 if (sisr & CCSR_SSI_SISR_TFRC) {
190 ssi_private->stats.tfrc++;
191 sisr2 |= CCSR_SSI_SISR_TFRC;
192 ret = IRQ_HANDLED;
193 }
194
195 if (sisr & CCSR_SSI_SISR_CMDAU) {
196 ssi_private->stats.cmdau++;
197 ret = IRQ_HANDLED;
198 }
199
200 if (sisr & CCSR_SSI_SISR_CMDDU) {
201 ssi_private->stats.cmddu++;
202 ret = IRQ_HANDLED;
203 }
204
205 if (sisr & CCSR_SSI_SISR_RXT) {
206 ssi_private->stats.rxt++;
207 ret = IRQ_HANDLED;
208 }
209
210 if (sisr & CCSR_SSI_SISR_RDR1) {
211 ssi_private->stats.rdr1++;
212 ret = IRQ_HANDLED;
213 }
214
215 if (sisr & CCSR_SSI_SISR_RDR0) {
216 ssi_private->stats.rdr0++;
217 ret = IRQ_HANDLED;
218 }
219
220 if (sisr & CCSR_SSI_SISR_TDE1) {
221 ssi_private->stats.tde1++;
222 ret = IRQ_HANDLED;
223 }
224
225 if (sisr & CCSR_SSI_SISR_TDE0) {
226 ssi_private->stats.tde0++;
227 ret = IRQ_HANDLED;
228 }
229
230 if (sisr & CCSR_SSI_SISR_ROE1) {
231 ssi_private->stats.roe1++;
232 sisr2 |= CCSR_SSI_SISR_ROE1;
233 ret = IRQ_HANDLED;
234 }
235
236 if (sisr & CCSR_SSI_SISR_ROE0) {
237 ssi_private->stats.roe0++;
238 sisr2 |= CCSR_SSI_SISR_ROE0;
239 ret = IRQ_HANDLED;
240 }
241
242 if (sisr & CCSR_SSI_SISR_TUE1) {
243 ssi_private->stats.tue1++;
244 sisr2 |= CCSR_SSI_SISR_TUE1;
245 ret = IRQ_HANDLED;
246 }
247
248 if (sisr & CCSR_SSI_SISR_TUE0) {
249 ssi_private->stats.tue0++;
250 sisr2 |= CCSR_SSI_SISR_TUE0;
251 ret = IRQ_HANDLED;
252 }
253
254 if (sisr & CCSR_SSI_SISR_TFS) {
255 ssi_private->stats.tfs++;
256 ret = IRQ_HANDLED;
257 }
258
259 if (sisr & CCSR_SSI_SISR_RFS) {
260 ssi_private->stats.rfs++;
261 ret = IRQ_HANDLED;
262 }
263
264 if (sisr & CCSR_SSI_SISR_TLS) {
265 ssi_private->stats.tls++;
266 ret = IRQ_HANDLED;
267 }
268
269 if (sisr & CCSR_SSI_SISR_RLS) {
270 ssi_private->stats.rls++;
271 ret = IRQ_HANDLED;
272 }
273
274 if (sisr & CCSR_SSI_SISR_RFF1) {
275 ssi_private->stats.rff1++;
276 ret = IRQ_HANDLED;
277 }
278
279 if (sisr & CCSR_SSI_SISR_RFF0) {
280 ssi_private->stats.rff0++;
281 ret = IRQ_HANDLED;
282 }
283
284 if (sisr & CCSR_SSI_SISR_TFE1) {
285 ssi_private->stats.tfe1++;
286 ret = IRQ_HANDLED;
287 }
288
289 if (sisr & CCSR_SSI_SISR_TFE0) {
290 ssi_private->stats.tfe0++;
291 ret = IRQ_HANDLED;
292 }
293
294 /* Clear the bits that we set */
295 if (sisr2)
dfa1a107 296 write_ssi(sisr2, &ssi->sisr);
17467f23
TT
297
298 return ret;
299}
300
301/**
302 * fsl_ssi_startup: create a new substream
303 *
304 * This is the first function called when a stream is opened.
305 *
306 * If this is the first stream open, then grab the IRQ and program most of
307 * the SSI registers.
308 */
dee89c4d
MB
309static int fsl_ssi_startup(struct snd_pcm_substream *substream,
310 struct snd_soc_dai *dai)
17467f23
TT
311{
312 struct snd_soc_pcm_runtime *rtd = substream->private_data;
5e538eca
TT
313 struct fsl_ssi_private *ssi_private =
314 snd_soc_dai_get_drvdata(rtd->cpu_dai);
315 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
17467f23
TT
316
317 /*
318 * If this is the first stream opened, then request the IRQ
319 * and initialize the SSI registers.
320 */
5e538eca 321 if (!ssi_private->first_stream) {
17467f23 322 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
17467f23 323
5e538eca
TT
324 ssi_private->first_stream = substream;
325
17467f23
TT
326 /*
327 * Section 16.5 of the MPC8610 reference manual says that the
328 * SSI needs to be disabled before updating the registers we set
329 * here.
330 */
dfa1a107 331 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
17467f23
TT
332
333 /*
334 * Program the SSI into I2S Slave Non-Network Synchronous mode.
335 * Also enable the transmit and receive FIFO.
336 *
337 * FIXME: Little-endian samples require a different shift dir
338 */
dfa1a107 339 write_ssi_mask(&ssi->scr,
a454dad1
TT
340 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
341 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
5e538eca 342 | (synchronous ? CCSR_SSI_SCR_SYN : 0));
17467f23 343
dfa1a107 344 write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
17467f23 345 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
dfa1a107 346 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
17467f23 347
dfa1a107 348 write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
17467f23 349 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
dfa1a107 350 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
17467f23
TT
351
352 /*
353 * The DC and PM bits are only used if the SSI is the clock
354 * master.
355 */
356
5e538eca 357 /* Enable the interrupts and DMA requests */
dfa1a107 358 write_ssi(SIER_FLAGS, &ssi->sier);
17467f23
TT
359
360 /*
361 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
8e9d8690
TT
362 * don't use FIFO 1. We program the transmit water to signal a
363 * DMA transfer if there are only two (or fewer) elements left
364 * in the FIFO. Two elements equals one frame (left channel,
365 * right channel). This value, however, depends on the depth of
366 * the transmit buffer.
367 *
368 * We program the receive FIFO to notify us if at least two
369 * elements (one frame) have been written to the FIFO. We could
370 * make this value larger (and maybe we should), but this way
371 * data will be written to memory as soon as it's available.
17467f23 372 */
dfa1a107
SG
373 write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
374 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
375 &ssi->sfcsr);
17467f23
TT
376
377 /*
378 * We keep the SSI disabled because if we enable it, then the
379 * DMA controller will start. It's not supposed to start until
380 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
381 * DMA controller will transfer one "BWC" of data (i.e. the
382 * amount of data that the MR.BWC bits are set to). The reason
383 * this is bad is because at this point, the PCM driver has not
384 * finished initializing the DMA controller.
385 */
5e538eca
TT
386 } else {
387 if (synchronous) {
388 struct snd_pcm_runtime *first_runtime =
389 ssi_private->first_stream->runtime;
390 /*
391 * This is the second stream open, and we're in
392 * synchronous mode, so we need to impose sample
393 * sample size constraints. This is because STCCR is
394 * used for playback and capture in synchronous mode,
395 * so there's no way to specify different word
396 * lengths.
397 *
398 * Note that this can cause a race condition if the
399 * second stream is opened before the first stream is
400 * fully initialized. We provide some protection by
401 * checking to make sure the first stream is
402 * initialized, but it's not perfect. ALSA sometimes
403 * re-initializes the driver with a different sample
404 * rate or size. If the second stream is opened
405 * before the first stream has received its final
406 * parameters, then the second stream may be
407 * constrained to the wrong sample rate or size.
408 */
409 if (!first_runtime->sample_bits) {
410 dev_err(substream->pcm->card->dev,
411 "set sample size in %s stream first\n",
412 substream->stream ==
413 SNDRV_PCM_STREAM_PLAYBACK
414 ? "capture" : "playback");
415 return -EAGAIN;
416 }
be41e941 417
a454dad1
TT
418 snd_pcm_hw_constraint_minmax(substream->runtime,
419 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
420 first_runtime->sample_bits,
421 first_runtime->sample_bits);
5e538eca 422 }
be41e941
TT
423
424 ssi_private->second_stream = substream;
425 }
426
17467f23
TT
427 return 0;
428}
429
430/**
85ef2375 431 * fsl_ssi_hw_params - program the sample size
17467f23
TT
432 *
433 * Most of the SSI registers have been programmed in the startup function,
434 * but the word length must be programmed here. Unfortunately, programming
435 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
436 * cause a problem with supporting simultaneous playback and capture. If
437 * the SSI is already playing a stream, then that stream may be temporarily
438 * stopped when you start capture.
439 *
440 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
441 * clock master.
442 */
85ef2375
TT
443static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
444 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
17467f23 445{
f0fba2ad 446 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
5e538eca
TT
447 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
448 unsigned int sample_size =
449 snd_pcm_format_width(params_format(hw_params));
450 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
dfa1a107 451 int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
17467f23 452
5e538eca
TT
453 /*
454 * If we're in synchronous mode, and the SSI is already enabled,
455 * then STCCR is already set properly.
456 */
457 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
458 return 0;
17467f23 459
5e538eca
TT
460 /*
461 * FIXME: The documentation says that SxCCR[WL] should not be
462 * modified while the SSI is enabled. The only time this can
463 * happen is if we're trying to do simultaneous playback and
464 * capture in asynchronous mode. Unfortunately, I have been enable
465 * to get that to work at all on the P1022DS. Therefore, we don't
466 * bother to disable/enable the SSI when setting SxCCR[WL], because
467 * the SSI will stop anyway. Maybe one day, this will get fixed.
468 */
17467f23 469
5e538eca
TT
470 /* In synchronous mode, the SSI uses STCCR for capture */
471 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
472 ssi_private->cpu_dai_drv.symmetric_rates)
dfa1a107 473 write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
5e538eca 474 else
dfa1a107 475 write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
17467f23
TT
476
477 return 0;
478}
479
480/**
481 * fsl_ssi_trigger: start and stop the DMA transfer.
482 *
483 * This function is called by ALSA to start, stop, pause, and resume the DMA
484 * transfer of data.
485 *
486 * The DMA channel is in external master start and pause mode, which
487 * means the SSI completely controls the flow of data.
488 */
dee89c4d
MB
489static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
490 struct snd_soc_dai *dai)
17467f23
TT
491{
492 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 493 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23
TT
494 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
495
496 switch (cmd) {
497 case SNDRV_PCM_TRIGGER_START:
17467f23 498 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
a4d11fe5 499 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dfa1a107 500 write_ssi_mask(&ssi->scr, 0,
be41e941 501 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
a4d11fe5 502 else
dfa1a107 503 write_ssi_mask(&ssi->scr, 0,
be41e941 504 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
17467f23
TT
505 break;
506
507 case SNDRV_PCM_TRIGGER_STOP:
17467f23
TT
508 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
509 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dfa1a107 510 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
17467f23 511 else
dfa1a107 512 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
17467f23
TT
513 break;
514
515 default:
516 return -EINVAL;
517 }
518
519 return 0;
520}
521
522/**
523 * fsl_ssi_shutdown: shutdown the SSI
524 *
525 * Shutdown the SSI if there are no other substreams open.
526 */
dee89c4d
MB
527static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
528 struct snd_soc_dai *dai)
17467f23
TT
529{
530 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 531 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23 532
be41e941
TT
533 if (ssi_private->first_stream == substream)
534 ssi_private->first_stream = ssi_private->second_stream;
535
536 ssi_private->second_stream = NULL;
537
17467f23 538 /*
1fab6caf 539 * If this is the last active substream, disable the SSI.
17467f23 540 */
5e538eca 541 if (!ssi_private->first_stream) {
17467f23
TT
542 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
543
dfa1a107 544 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
17467f23
TT
545 }
546}
547
fc8ba7f9
LPC
548static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
549{
550 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
551
552 if (ssi_private->ssi_on_imx) {
553 dai->playback_dma_data = &ssi_private->dma_params_tx;
554 dai->capture_dma_data = &ssi_private->dma_params_rx;
555 }
556
557 return 0;
558}
559
85e7652d 560static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
6335d055
EM
561 .startup = fsl_ssi_startup,
562 .hw_params = fsl_ssi_hw_params,
563 .shutdown = fsl_ssi_shutdown,
564 .trigger = fsl_ssi_trigger,
6335d055
EM
565};
566
f0fba2ad
LG
567/* Template for the CPU dai driver structure */
568static struct snd_soc_dai_driver fsl_ssi_dai_template = {
fc8ba7f9 569 .probe = fsl_ssi_dai_probe,
17467f23
TT
570 .playback = {
571 /* The SSI does not support monaural audio. */
572 .channels_min = 2,
573 .channels_max = 2,
574 .rates = FSLSSI_I2S_RATES,
575 .formats = FSLSSI_I2S_FORMATS,
576 },
577 .capture = {
578 .channels_min = 2,
579 .channels_max = 2,
580 .rates = FSLSSI_I2S_RATES,
581 .formats = FSLSSI_I2S_FORMATS,
582 },
6335d055 583 .ops = &fsl_ssi_dai_ops,
17467f23
TT
584};
585
3580aa10
KM
586static const struct snd_soc_component_driver fsl_ssi_component = {
587 .name = "fsl-ssi",
588};
589
d5a908b2
TT
590/* Show the statistics of a flag only if its interrupt is enabled. The
591 * compiler will optimze this code to a no-op if the interrupt is not
592 * enabled.
593 */
594#define SIER_SHOW(flag, name) \
595 do { \
596 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
597 length += sprintf(buf + length, #name "=%u\n", \
598 ssi_private->stats.name); \
599 } while (0)
600
601
17467f23
TT
602/**
603 * fsl_sysfs_ssi_show: display SSI statistics
604 *
d5a908b2
TT
605 * Display the statistics for the current SSI device. To avoid confusion,
606 * we only show those counts that are enabled.
17467f23
TT
607 */
608static ssize_t fsl_sysfs_ssi_show(struct device *dev,
609 struct device_attribute *attr, char *buf)
610{
611 struct fsl_ssi_private *ssi_private =
d5a908b2
TT
612 container_of(attr, struct fsl_ssi_private, dev_attr);
613 ssize_t length = 0;
614
615 SIER_SHOW(RFRC_EN, rfrc);
616 SIER_SHOW(TFRC_EN, tfrc);
617 SIER_SHOW(CMDAU_EN, cmdau);
618 SIER_SHOW(CMDDU_EN, cmddu);
619 SIER_SHOW(RXT_EN, rxt);
620 SIER_SHOW(RDR1_EN, rdr1);
621 SIER_SHOW(RDR0_EN, rdr0);
622 SIER_SHOW(TDE1_EN, tde1);
623 SIER_SHOW(TDE0_EN, tde0);
624 SIER_SHOW(ROE1_EN, roe1);
625 SIER_SHOW(ROE0_EN, roe0);
626 SIER_SHOW(TUE1_EN, tue1);
627 SIER_SHOW(TUE0_EN, tue0);
628 SIER_SHOW(TFS_EN, tfs);
629 SIER_SHOW(RFS_EN, rfs);
630 SIER_SHOW(TLS_EN, tls);
631 SIER_SHOW(RLS_EN, rls);
632 SIER_SHOW(RFF1_EN, rff1);
633 SIER_SHOW(RFF0_EN, rff0);
634 SIER_SHOW(TFE1_EN, tfe1);
635 SIER_SHOW(TFE0_EN, tfe0);
17467f23
TT
636
637 return length;
638}
639
640/**
f0fba2ad 641 * Make every character in a string lower-case
17467f23 642 */
f0fba2ad
LG
643static void make_lowercase(char *s)
644{
645 char *p = s;
646 char c;
647
648 while ((c = *p)) {
649 if ((c >= 'A') && (c <= 'Z'))
650 *p = c + ('a' - 'A');
651 p++;
652 }
653}
654
a0a3d518 655static int fsl_ssi_probe(struct platform_device *pdev)
17467f23 656{
17467f23
TT
657 struct fsl_ssi_private *ssi_private;
658 int ret = 0;
87a0632b 659 struct device_attribute *dev_attr = NULL;
38fec727 660 struct device_node *np = pdev->dev.of_node;
f0fba2ad 661 const char *p, *sprop;
8e9d8690 662 const uint32_t *iprop;
f0fba2ad
LG
663 struct resource res;
664 char name[64];
312bb4f6 665 bool shared;
17467f23 666
ff71334a
TT
667 /* SSIs that are not connected on the board should have a
668 * status = "disabled"
669 * property in their device tree nodes.
f0fba2ad 670 */
ff71334a 671 if (!of_device_is_available(np))
f0fba2ad
LG
672 return -ENODEV;
673
674 /* We only support the SSI in "I2S Slave" mode */
675 sprop = of_get_property(np, "fsl,mode", NULL);
676 if (!sprop || strcmp(sprop, "i2s-slave")) {
38fec727 677 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
f0fba2ad
LG
678 return -ENODEV;
679 }
680
681 /* The DAI name is the last part of the full name of the node. */
682 p = strrchr(np->full_name, '/') + 1;
683 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
684 GFP_KERNEL);
17467f23 685 if (!ssi_private) {
38fec727 686 dev_err(&pdev->dev, "could not allocate DAI object\n");
f0fba2ad 687 return -ENOMEM;
17467f23 688 }
17467f23 689
f0fba2ad 690 strcpy(ssi_private->name, p);
17467f23 691
f0fba2ad
LG
692 /* Initialize this copy of the CPU DAI driver structure */
693 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
694 sizeof(fsl_ssi_dai_template));
695 ssi_private->cpu_dai_drv.name = ssi_private->name;
696
697 /* Get the addresses and IRQ */
698 ret = of_address_to_resource(np, 0, &res);
699 if (ret) {
38fec727 700 dev_err(&pdev->dev, "could not determine device resources\n");
1fab6caf 701 goto error_kmalloc;
f0fba2ad 702 }
147dfe90
TT
703 ssi_private->ssi = of_iomap(np, 0);
704 if (!ssi_private->ssi) {
705 dev_err(&pdev->dev, "could not map device resources\n");
1fab6caf
TT
706 ret = -ENOMEM;
707 goto error_kmalloc;
147dfe90 708 }
f0fba2ad 709 ssi_private->ssi_phys = res.start;
1fab6caf 710
f0fba2ad 711 ssi_private->irq = irq_of_parse_and_map(np, 0);
1fab6caf
TT
712 if (ssi_private->irq == NO_IRQ) {
713 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
714 ret = -ENXIO;
715 goto error_iomap;
716 }
717
718 /* The 'name' should not have any slashes in it. */
719 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
720 ssi_private);
721 if (ret < 0) {
722 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
723 goto error_irqmap;
724 }
17467f23 725
f0fba2ad 726 /* Are the RX and the TX clocks locked? */
5e538eca 727 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
f0fba2ad 728 ssi_private->cpu_dai_drv.symmetric_rates = 1;
17467f23 729
8e9d8690
TT
730 /* Determine the FIFO depth. */
731 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
732 if (iprop)
147dfe90 733 ssi_private->fifo_depth = be32_to_cpup(iprop);
8e9d8690
TT
734 else
735 /* Older 8610 DTs didn't have the fifo-depth property */
736 ssi_private->fifo_depth = 8;
737
09ce1111
SG
738 if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
739 u32 dma_events[2];
740 ssi_private->ssi_on_imx = true;
95cd98f9
SG
741
742 ssi_private->clk = clk_get(&pdev->dev, NULL);
743 if (IS_ERR(ssi_private->clk)) {
744 ret = PTR_ERR(ssi_private->clk);
745 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
746 goto error_irq;
747 }
748 clk_prepare_enable(ssi_private->clk);
749
09ce1111
SG
750 /*
751 * We have burstsize be "fifo_depth - 2" to match the SSI
752 * watermark setting in fsl_ssi_startup().
753 */
a8909c9b 754 ssi_private->dma_params_tx.maxburst =
09ce1111 755 ssi_private->fifo_depth - 2;
a8909c9b 756 ssi_private->dma_params_rx.maxburst =
09ce1111 757 ssi_private->fifo_depth - 2;
a8909c9b 758 ssi_private->dma_params_tx.addr =
09ce1111 759 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
a8909c9b 760 ssi_private->dma_params_rx.addr =
09ce1111 761 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
a8909c9b
LPC
762 ssi_private->dma_params_tx.filter_data =
763 &ssi_private->filter_data_tx;
764 ssi_private->dma_params_rx.filter_data =
765 &ssi_private->filter_data_rx;
09ce1111
SG
766 /*
767 * TODO: This is a temporary solution and should be changed
768 * to use generic DMA binding later when the helplers get in.
769 */
770 ret = of_property_read_u32_array(pdev->dev.of_node,
771 "fsl,ssi-dma-events", dma_events, 2);
772 if (ret) {
773 dev_err(&pdev->dev, "could not get dma events\n");
95cd98f9 774 goto error_clk;
09ce1111 775 }
312bb4f6
LPC
776
777 shared = of_device_is_compatible(of_get_parent(np),
778 "fsl,spba-bus");
779
a8909c9b 780 imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
312bb4f6 781 dma_events[0], shared);
a8909c9b 782 imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
312bb4f6 783 dma_events[1], shared);
09ce1111
SG
784 }
785
17467f23 786 /* Initialize the the device_attribute structure */
f0fba2ad 787 dev_attr = &ssi_private->dev_attr;
0f768a72 788 sysfs_attr_init(&dev_attr->attr);
f0fba2ad 789 dev_attr->attr.name = "statistics";
17467f23
TT
790 dev_attr->attr.mode = S_IRUGO;
791 dev_attr->show = fsl_sysfs_ssi_show;
792
38fec727 793 ret = device_create_file(&pdev->dev, dev_attr);
17467f23 794 if (ret) {
38fec727 795 dev_err(&pdev->dev, "could not create sysfs %s file\n",
17467f23 796 ssi_private->dev_attr.attr.name);
1fab6caf 797 goto error_irq;
17467f23
TT
798 }
799
f0fba2ad 800 /* Register with ASoC */
38fec727 801 dev_set_drvdata(&pdev->dev, ssi_private);
3f4b783c 802
3580aa10
KM
803 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
804 &ssi_private->cpu_dai_drv, 1);
87a0632b 805 if (ret) {
38fec727 806 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1fab6caf 807 goto error_dev;
f0fba2ad
LG
808 }
809
09ce1111 810 if (ssi_private->ssi_on_imx) {
bd41bc96
SG
811 ret = imx_pcm_dma_init(pdev);
812 if (ret)
09ce1111 813 goto error_dev;
09ce1111
SG
814 }
815
816 /*
817 * If codec-handle property is missing from SSI node, we assume
818 * that the machine driver uses new binding which does not require
819 * SSI driver to trigger machine driver's probe.
820 */
821 if (!of_get_property(np, "codec-handle", NULL)) {
822 ssi_private->new_binding = true;
823 goto done;
824 }
825
f0fba2ad 826 /* Trigger the machine driver's probe function. The platform driver
2b81ec69 827 * name of the machine driver is taken from /compatible property of the
f0fba2ad
LG
828 * device tree. We also pass the address of the CPU DAI driver
829 * structure.
830 */
2b81ec69
SG
831 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
832 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
f0fba2ad
LG
833 p = strrchr(sprop, ',');
834 if (p)
835 sprop = p + 1;
836 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
837 make_lowercase(name);
838
839 ssi_private->pdev =
38fec727 840 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
f0fba2ad
LG
841 if (IS_ERR(ssi_private->pdev)) {
842 ret = PTR_ERR(ssi_private->pdev);
38fec727 843 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1fab6caf 844 goto error_dai;
3f4b783c 845 }
17467f23 846
09ce1111 847done:
f0fba2ad 848 return 0;
87a0632b 849
1fab6caf 850error_dai:
09ce1111 851 if (ssi_private->ssi_on_imx)
bd41bc96 852 imx_pcm_dma_exit(pdev);
3580aa10 853 snd_soc_unregister_component(&pdev->dev);
1fab6caf
TT
854
855error_dev:
38fec727 856 dev_set_drvdata(&pdev->dev, NULL);
1fab6caf
TT
857 device_remove_file(&pdev->dev, dev_attr);
858
95cd98f9
SG
859error_clk:
860 if (ssi_private->ssi_on_imx) {
861 clk_disable_unprepare(ssi_private->clk);
862 clk_put(ssi_private->clk);
863 }
864
1fab6caf
TT
865error_irq:
866 free_irq(ssi_private->irq, ssi_private);
867
868error_irqmap:
87a0632b 869 irq_dispose_mapping(ssi_private->irq);
1fab6caf
TT
870
871error_iomap:
87a0632b 872 iounmap(ssi_private->ssi);
1fab6caf
TT
873
874error_kmalloc:
87a0632b
TT
875 kfree(ssi_private);
876
877 return ret;
17467f23 878}
17467f23 879
38fec727 880static int fsl_ssi_remove(struct platform_device *pdev)
17467f23 881{
38fec727 882 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
17467f23 883
09ce1111
SG
884 if (!ssi_private->new_binding)
885 platform_device_unregister(ssi_private->pdev);
95cd98f9 886 if (ssi_private->ssi_on_imx) {
bd41bc96 887 imx_pcm_dma_exit(pdev);
95cd98f9
SG
888 clk_disable_unprepare(ssi_private->clk);
889 clk_put(ssi_private->clk);
890 }
3580aa10 891 snd_soc_unregister_component(&pdev->dev);
38fec727 892 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
3f4b783c 893
1fab6caf
TT
894 free_irq(ssi_private->irq, ssi_private);
895 irq_dispose_mapping(ssi_private->irq);
896
17467f23 897 kfree(ssi_private);
38fec727 898 dev_set_drvdata(&pdev->dev, NULL);
f0fba2ad
LG
899
900 return 0;
17467f23 901}
f0fba2ad
LG
902
903static const struct of_device_id fsl_ssi_ids[] = {
904 { .compatible = "fsl,mpc8610-ssi", },
09ce1111 905 { .compatible = "fsl,imx21-ssi", },
f0fba2ad
LG
906 {}
907};
908MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
909
f07eb223 910static struct platform_driver fsl_ssi_driver = {
f0fba2ad
LG
911 .driver = {
912 .name = "fsl-ssi-dai",
913 .owner = THIS_MODULE,
914 .of_match_table = fsl_ssi_ids,
915 },
916 .probe = fsl_ssi_probe,
917 .remove = fsl_ssi_remove,
918};
17467f23 919
ba0a7e02 920module_platform_driver(fsl_ssi_driver);
a454dad1 921
17467f23
TT
922MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
923MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
f0fba2ad 924MODULE_LICENSE("GPL v2");