Merge tag 'fsnotify_for_v5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / sound / pci / sis7019.c
CommitLineData
7614a55e 1// SPDX-License-Identifier: GPL-2.0-only
175859bf
DD
2/*
3 * Driver for SiS7019 Audio Accelerator
4 *
5 * Copyright (C) 2004-2007, David Dillow
6 * Written by David Dillow <dave@thedillows.org>
7 * Inspired by the Trident 4D-WaveDX/NX driver.
8 *
9 * All rights reserved.
175859bf
DD
10 */
11
175859bf
DD
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/time.h>
5a0e3ad6 15#include <linux/slab.h>
65a77217 16#include <linux/module.h>
175859bf
DD
17#include <linux/interrupt.h>
18#include <linux/delay.h>
19#include <sound/core.h>
20#include <sound/ac97_codec.h>
21#include <sound/initval.h>
22#include "sis7019.h"
23
24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25MODULE_DESCRIPTION("SiS7019");
26MODULE_LICENSE("GPL");
27MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
28
29static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
30static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
a67ff6a5 31static bool enable = 1;
fc084e0b 32static int codecs = 1;
175859bf
DD
33
34module_param(index, int, 0444);
35MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
36module_param(id, charp, 0444);
37MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
38module_param(enable, bool, 0444);
39MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
fc084e0b
DD
40module_param(codecs, int, 0444);
41MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
175859bf 42
9baa3c34 43static const struct pci_device_id snd_sis7019_ids[] = {
175859bf
DD
44 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
45 { 0, }
46};
47
48MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
49
50/* There are three timing modes for the voices.
51 *
52 * For both playback and capture, when the buffer is one or two periods long,
53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
54 * to let us know when the periods have ended.
55 *
56 * When performing playback with more than two periods per buffer, we set
57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
58 * reach it. We then update the offset and continue on until we are
59 * interrupted for the next period.
60 *
61 * Capture channels do not have a SSO, so we allocate a playback channel to
62 * use as a timer for the capture periods. We use the SSO on the playback
63 * channel to clock out virtual periods, and adjust the virtual period length
64 * to maintain synchronization. This algorithm came from the Trident driver.
65 *
66 * FIXME: It'd be nice to make use of some of the synth features in the
67 * hardware, but a woeful lack of documentation is a significant roadblock.
68 */
69struct voice {
70 u16 flags;
71#define VOICE_IN_USE 1
72#define VOICE_CAPTURE 2
73#define VOICE_SSO_TIMING 4
74#define VOICE_SYNC_TIMING 8
75 u16 sync_cso;
76 u16 period_size;
77 u16 buffer_size;
78 u16 sync_period_size;
79 u16 sync_buffer_size;
80 u32 sso;
81 u32 vperiod;
82 struct snd_pcm_substream *substream;
83 struct voice *timing;
84 void __iomem *ctrl_base;
85 void __iomem *wave_base;
86 void __iomem *sync_base;
87 int num;
88};
89
90/* We need four pages to store our wave parameters during a suspend. If
91 * we're not doing power management, we still need to allocate a page
92 * for the silence buffer.
93 */
c7561cd8 94#ifdef CONFIG_PM_SLEEP
175859bf
DD
95#define SIS_SUSPEND_PAGES 4
96#else
97#define SIS_SUSPEND_PAGES 1
98#endif
99
100struct sis7019 {
101 unsigned long ioport;
102 void __iomem *ioaddr;
103 int irq;
104 int codecs_present;
105
106 struct pci_dev *pci;
107 struct snd_pcm *pcm;
108 struct snd_card *card;
109 struct snd_ac97 *ac97[3];
110
111 /* Protect against more than one thread hitting the AC97
112 * registers (in a more polite manner than pounding the hardware
113 * semaphore)
114 */
115 struct mutex ac97_mutex;
116
117 /* voice_lock protects allocation/freeing of the voice descriptions
118 */
119 spinlock_t voice_lock;
120
121 struct voice voices[64];
122 struct voice capture_voice;
123
124 /* Allocate pages to store the internal wave state during
125 * suspends. When we're operating, this can be used as a silence
126 * buffer for a timing channel.
127 */
128 void *suspend_state[SIS_SUSPEND_PAGES];
129
130 int silence_users;
131 dma_addr_t silence_dma_addr;
132};
133
fc084e0b
DD
134/* These values are also used by the module param 'codecs' to indicate
135 * which codecs should be present.
136 */
175859bf
DD
137#define SIS_PRIMARY_CODEC_PRESENT 0x0001
138#define SIS_SECONDARY_CODEC_PRESENT 0x0002
139#define SIS_TERTIARY_CODEC_PRESENT 0x0004
140
141/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
142 * documented range of 8-0xfff8 samples. Given that they are 0-based,
143 * that places our period/buffer range at 9-0xfff9 samples. That makes the
144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
145 * max samples / min samples gives us the max periods in a buffer.
146 *
147 * We'll add a constraint upon open that limits the period and buffer sample
148 * size to values that are legal for the hardware.
149 */
dee49895 150static const struct snd_pcm_hardware sis_playback_hw_info = {
175859bf
DD
151 .info = (SNDRV_PCM_INFO_MMAP |
152 SNDRV_PCM_INFO_MMAP_VALID |
153 SNDRV_PCM_INFO_INTERLEAVED |
154 SNDRV_PCM_INFO_BLOCK_TRANSFER |
155 SNDRV_PCM_INFO_SYNC_START |
156 SNDRV_PCM_INFO_RESUME),
157 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
158 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
159 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
160 .rate_min = 4000,
161 .rate_max = 48000,
162 .channels_min = 1,
163 .channels_max = 2,
164 .buffer_bytes_max = (0xfff9 * 4),
165 .period_bytes_min = 9,
166 .period_bytes_max = (0xfff9 * 4),
167 .periods_min = 1,
168 .periods_max = (0xfff9 / 9),
169};
170
dee49895 171static const struct snd_pcm_hardware sis_capture_hw_info = {
175859bf
DD
172 .info = (SNDRV_PCM_INFO_MMAP |
173 SNDRV_PCM_INFO_MMAP_VALID |
174 SNDRV_PCM_INFO_INTERLEAVED |
175 SNDRV_PCM_INFO_BLOCK_TRANSFER |
176 SNDRV_PCM_INFO_SYNC_START |
177 SNDRV_PCM_INFO_RESUME),
178 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
179 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
180 .rates = SNDRV_PCM_RATE_48000,
181 .rate_min = 4000,
182 .rate_max = 48000,
183 .channels_min = 1,
184 .channels_max = 2,
185 .buffer_bytes_max = (0xfff9 * 4),
186 .period_bytes_min = 9,
187 .period_bytes_max = (0xfff9 * 4),
188 .periods_min = 1,
189 .periods_max = (0xfff9 / 9),
190};
191
192static void sis_update_sso(struct voice *voice, u16 period)
193{
194 void __iomem *base = voice->ctrl_base;
195
196 voice->sso += period;
197 if (voice->sso >= voice->buffer_size)
198 voice->sso -= voice->buffer_size;
199
200 /* Enforce the documented hardware minimum offset */
201 if (voice->sso < 8)
202 voice->sso = 8;
203
204 /* The SSO is in the upper 16 bits of the register. */
205 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
206}
207
208static void sis_update_voice(struct voice *voice)
209{
210 if (voice->flags & VOICE_SSO_TIMING) {
211 sis_update_sso(voice, voice->period_size);
212 } else if (voice->flags & VOICE_SYNC_TIMING) {
213 int sync;
214
215 /* If we've not hit the end of the virtual period, update
216 * our records and keep going.
217 */
218 if (voice->vperiod > voice->period_size) {
219 voice->vperiod -= voice->period_size;
220 if (voice->vperiod < voice->period_size)
221 sis_update_sso(voice, voice->vperiod);
222 else
223 sis_update_sso(voice, voice->period_size);
224 return;
225 }
226
227 /* Calculate our relative offset between the target and
228 * the actual CSO value. Since we're operating in a loop,
229 * if the value is more than half way around, we can
230 * consider ourselves wrapped.
231 */
232 sync = voice->sync_cso;
233 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
234 if (sync > (voice->sync_buffer_size / 2))
235 sync -= voice->sync_buffer_size;
236
237 /* If sync is positive, then we interrupted too early, and
238 * we'll need to come back in a few samples and try again.
239 * There's a minimum wait, as it takes some time for the DMA
240 * engine to startup, etc...
241 */
242 if (sync > 0) {
243 if (sync < 16)
244 sync = 16;
245 sis_update_sso(voice, sync);
246 return;
247 }
248
249 /* Ok, we interrupted right on time, or (hopefully) just
250 * a bit late. We'll adjst our next waiting period based
251 * on how close we got.
252 *
253 * We need to stay just behind the actual channel to ensure
254 * it really is past a period when we get our interrupt --
255 * otherwise we'll fall into the early code above and have
256 * a minimum wait time, which makes us quite late here,
257 * eating into the user's time to refresh the buffer, esp.
258 * if using small periods.
259 *
260 * If we're less than 9 samples behind, we're on target.
3a3d5fd1
DD
261 * Otherwise, shorten the next vperiod by the amount we've
262 * been delayed.
175859bf
DD
263 */
264 if (sync > -9)
265 voice->vperiod = voice->sync_period_size + 1;
266 else
3a3d5fd1 267 voice->vperiod = voice->sync_period_size + sync + 10;
175859bf
DD
268
269 if (voice->vperiod < voice->buffer_size) {
270 sis_update_sso(voice, voice->vperiod);
271 voice->vperiod = 0;
272 } else
273 sis_update_sso(voice, voice->period_size);
274
275 sync = voice->sync_cso + voice->sync_period_size;
276 if (sync >= voice->sync_buffer_size)
277 sync -= voice->sync_buffer_size;
278 voice->sync_cso = sync;
279 }
280
281 snd_pcm_period_elapsed(voice->substream);
282}
283
284static void sis_voice_irq(u32 status, struct voice *voice)
285{
286 int bit;
287
288 while (status) {
289 bit = __ffs(status);
290 status >>= bit + 1;
291 voice += bit;
292 sis_update_voice(voice);
293 voice++;
294 }
295}
296
297static irqreturn_t sis_interrupt(int irq, void *dev)
298{
299 struct sis7019 *sis = dev;
300 unsigned long io = sis->ioport;
301 struct voice *voice;
302 u32 intr, status;
303
304 /* We only use the DMA interrupts, and we don't enable any other
25985edc 305 * source of interrupts. But, it is possible to see an interrupt
175859bf
DD
306 * status that didn't actually interrupt us, so eliminate anything
307 * we're not expecting to avoid falsely claiming an IRQ, and an
308 * ensuing endless loop.
309 */
310 intr = inl(io + SIS_GISR);
311 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
312 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
313 if (!intr)
314 return IRQ_NONE;
315
316 do {
317 status = inl(io + SIS_PISR_A);
318 if (status) {
319 sis_voice_irq(status, sis->voices);
320 outl(status, io + SIS_PISR_A);
321 }
322
323 status = inl(io + SIS_PISR_B);
324 if (status) {
325 sis_voice_irq(status, &sis->voices[32]);
326 outl(status, io + SIS_PISR_B);
327 }
328
329 status = inl(io + SIS_RISR);
330 if (status) {
331 voice = &sis->capture_voice;
332 if (!voice->timing)
333 snd_pcm_period_elapsed(voice->substream);
334
335 outl(status, io + SIS_RISR);
336 }
337
338 outl(intr, io + SIS_GISR);
339 intr = inl(io + SIS_GISR);
340 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
341 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
342 } while (intr);
343
344 return IRQ_HANDLED;
345}
346
347static u32 sis_rate_to_delta(unsigned int rate)
348{
349 u32 delta;
350
351 /* This was copied from the trident driver, but it seems its gotten
352 * around a bit... nevertheless, it works well.
353 *
354 * We special case 44100 and 8000 since rounding with the equation
355 * does not give us an accurate enough value. For 11025 and 22050
356 * the equation gives us the best answer. All other frequencies will
357 * also use the equation. JDW
358 */
359 if (rate == 44100)
360 delta = 0xeb3;
361 else if (rate == 8000)
362 delta = 0x2ab;
363 else if (rate == 48000)
364 delta = 0x1000;
365 else
366 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
367 return delta;
368}
369
370static void __sis_map_silence(struct sis7019 *sis)
371{
372 /* Helper function: must hold sis->voice_lock on entry */
373 if (!sis->silence_users)
412b979c 374 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
175859bf 375 sis->suspend_state[0],
412b979c 376 4096, DMA_TO_DEVICE);
175859bf
DD
377 sis->silence_users++;
378}
379
380static void __sis_unmap_silence(struct sis7019 *sis)
381{
382 /* Helper function: must hold sis->voice_lock on entry */
383 sis->silence_users--;
384 if (!sis->silence_users)
412b979c
QL
385 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
386 DMA_TO_DEVICE);
175859bf
DD
387}
388
389static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
390{
391 unsigned long flags;
392
393 spin_lock_irqsave(&sis->voice_lock, flags);
394 if (voice->timing) {
395 __sis_unmap_silence(sis);
396 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
397 VOICE_SYNC_TIMING);
398 voice->timing = NULL;
399 }
400 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
401 spin_unlock_irqrestore(&sis->voice_lock, flags);
402}
403
404static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
405{
406 /* Must hold the voice_lock on entry */
407 struct voice *voice;
408 int i;
409
410 for (i = 0; i < 64; i++) {
411 voice = &sis->voices[i];
412 if (voice->flags & VOICE_IN_USE)
413 continue;
414 voice->flags |= VOICE_IN_USE;
415 goto found_one;
416 }
417 voice = NULL;
418
419found_one:
420 return voice;
421}
422
423static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
424{
425 struct voice *voice;
426 unsigned long flags;
427
428 spin_lock_irqsave(&sis->voice_lock, flags);
429 voice = __sis_alloc_playback_voice(sis);
430 spin_unlock_irqrestore(&sis->voice_lock, flags);
431
432 return voice;
433}
434
435static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
436 struct snd_pcm_hw_params *hw_params)
437{
438 struct sis7019 *sis = snd_pcm_substream_chip(substream);
439 struct snd_pcm_runtime *runtime = substream->runtime;
440 struct voice *voice = runtime->private_data;
441 unsigned int period_size, buffer_size;
442 unsigned long flags;
443 int needed;
444
445 /* If there are one or two periods per buffer, we don't need a
446 * timing voice, as we can use the capture channel's interrupts
447 * to clock out the periods.
448 */
449 period_size = params_period_size(hw_params);
450 buffer_size = params_buffer_size(hw_params);
451 needed = (period_size != buffer_size &&
452 period_size != (buffer_size / 2));
453
454 if (needed && !voice->timing) {
455 spin_lock_irqsave(&sis->voice_lock, flags);
456 voice->timing = __sis_alloc_playback_voice(sis);
457 if (voice->timing)
458 __sis_map_silence(sis);
459 spin_unlock_irqrestore(&sis->voice_lock, flags);
460 if (!voice->timing)
461 return -ENOMEM;
462 voice->timing->substream = substream;
463 } else if (!needed && voice->timing) {
464 sis_free_voice(sis, voice);
465 voice->timing = NULL;
466 }
467
468 return 0;
469}
470
471static int sis_playback_open(struct snd_pcm_substream *substream)
472{
473 struct sis7019 *sis = snd_pcm_substream_chip(substream);
474 struct snd_pcm_runtime *runtime = substream->runtime;
475 struct voice *voice;
476
477 voice = sis_alloc_playback_voice(sis);
478 if (!voice)
479 return -EAGAIN;
480
481 voice->substream = substream;
482 runtime->private_data = voice;
483 runtime->hw = sis_playback_hw_info;
484 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
485 9, 0xfff9);
486 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
487 9, 0xfff9);
488 snd_pcm_set_sync(substream);
489 return 0;
490}
491
492static int sis_substream_close(struct snd_pcm_substream *substream)
493{
494 struct sis7019 *sis = snd_pcm_substream_chip(substream);
495 struct snd_pcm_runtime *runtime = substream->runtime;
496 struct voice *voice = runtime->private_data;
497
498 sis_free_voice(sis, voice);
499 return 0;
500}
501
502static int sis_playback_hw_params(struct snd_pcm_substream *substream,
503 struct snd_pcm_hw_params *hw_params)
504{
505 return snd_pcm_lib_malloc_pages(substream,
506 params_buffer_bytes(hw_params));
507}
508
509static int sis_hw_free(struct snd_pcm_substream *substream)
510{
511 return snd_pcm_lib_free_pages(substream);
512}
513
514static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
515{
516 struct snd_pcm_runtime *runtime = substream->runtime;
517 struct voice *voice = runtime->private_data;
518 void __iomem *ctrl_base = voice->ctrl_base;
519 void __iomem *wave_base = voice->wave_base;
520 u32 format, dma_addr, control, sso_eso, delta, reg;
521 u16 leo;
522
523 /* We rely on the PCM core to ensure that the parameters for this
524 * substream do not change on us while we're programming the HW.
525 */
526 format = 0;
527 if (snd_pcm_format_width(runtime->format) == 8)
528 format |= SIS_PLAY_DMA_FORMAT_8BIT;
529 if (!snd_pcm_format_signed(runtime->format))
530 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
531 if (runtime->channels == 1)
532 format |= SIS_PLAY_DMA_FORMAT_MONO;
533
534 /* The baseline setup is for a single period per buffer, and
535 * we add bells and whistles as needed from there.
536 */
537 dma_addr = runtime->dma_addr;
538 leo = runtime->buffer_size - 1;
539 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
540 sso_eso = leo;
541
542 if (runtime->period_size == (runtime->buffer_size / 2)) {
543 control |= SIS_PLAY_DMA_INTR_AT_MLP;
544 } else if (runtime->period_size != runtime->buffer_size) {
545 voice->flags |= VOICE_SSO_TIMING;
546 voice->sso = runtime->period_size - 1;
547 voice->period_size = runtime->period_size;
548 voice->buffer_size = runtime->buffer_size;
549
550 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
551 control |= SIS_PLAY_DMA_INTR_AT_SSO;
552 sso_eso |= (runtime->period_size - 1) << 16;
553 }
554
555 delta = sis_rate_to_delta(runtime->rate);
556
557 /* Ok, we're ready to go, set up the channel.
558 */
559 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
560 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
561 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
562 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
563
564 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
565 writel(0, wave_base + reg);
566
567 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
568 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
569 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
570 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
571 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
572 wave_base + SIS_WAVE_CHANNEL_CONTROL);
573
574 /* Force PCI writes to post. */
575 readl(ctrl_base);
576
577 return 0;
578}
579
580static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
581{
582 struct sis7019 *sis = snd_pcm_substream_chip(substream);
583 unsigned long io = sis->ioport;
584 struct snd_pcm_substream *s;
585 struct voice *voice;
586 void *chip;
587 int starting;
588 u32 record = 0;
589 u32 play[2] = { 0, 0 };
590
591 /* No locks needed, as the PCM core will hold the locks on the
592 * substreams, and the HW will only start/stop the indicated voices
593 * without changing the state of the others.
594 */
595 switch (cmd) {
596 case SNDRV_PCM_TRIGGER_START:
597 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
598 case SNDRV_PCM_TRIGGER_RESUME:
599 starting = 1;
600 break;
601 case SNDRV_PCM_TRIGGER_STOP:
602 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
603 case SNDRV_PCM_TRIGGER_SUSPEND:
604 starting = 0;
605 break;
606 default:
607 return -EINVAL;
608 }
609
610 snd_pcm_group_for_each_entry(s, substream) {
611 /* Make sure it is for us... */
612 chip = snd_pcm_substream_chip(s);
613 if (chip != sis)
614 continue;
615
616 voice = s->runtime->private_data;
617 if (voice->flags & VOICE_CAPTURE) {
618 record |= 1 << voice->num;
619 voice = voice->timing;
620 }
621
622 /* voice could be NULL if this a recording stream, and it
623 * doesn't have an external timing channel.
624 */
625 if (voice)
626 play[voice->num / 32] |= 1 << (voice->num & 0x1f);
627
628 snd_pcm_trigger_done(s, substream);
629 }
630
631 if (starting) {
632 if (record)
633 outl(record, io + SIS_RECORD_START_REG);
634 if (play[0])
635 outl(play[0], io + SIS_PLAY_START_A_REG);
636 if (play[1])
637 outl(play[1], io + SIS_PLAY_START_B_REG);
638 } else {
639 if (record)
640 outl(record, io + SIS_RECORD_STOP_REG);
641 if (play[0])
642 outl(play[0], io + SIS_PLAY_STOP_A_REG);
643 if (play[1])
644 outl(play[1], io + SIS_PLAY_STOP_B_REG);
645 }
646 return 0;
647}
648
649static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
650{
651 struct snd_pcm_runtime *runtime = substream->runtime;
652 struct voice *voice = runtime->private_data;
653 u32 cso;
654
655 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
656 cso &= 0xffff;
657 return cso;
658}
659
660static int sis_capture_open(struct snd_pcm_substream *substream)
661{
662 struct sis7019 *sis = snd_pcm_substream_chip(substream);
663 struct snd_pcm_runtime *runtime = substream->runtime;
664 struct voice *voice = &sis->capture_voice;
665 unsigned long flags;
666
667 /* FIXME: The driver only supports recording from one channel
668 * at the moment, but it could support more.
669 */
670 spin_lock_irqsave(&sis->voice_lock, flags);
671 if (voice->flags & VOICE_IN_USE)
672 voice = NULL;
673 else
674 voice->flags |= VOICE_IN_USE;
675 spin_unlock_irqrestore(&sis->voice_lock, flags);
676
677 if (!voice)
678 return -EAGAIN;
679
680 voice->substream = substream;
681 runtime->private_data = voice;
682 runtime->hw = sis_capture_hw_info;
683 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
684 snd_pcm_limit_hw_rates(runtime);
685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
686 9, 0xfff9);
687 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
688 9, 0xfff9);
689 snd_pcm_set_sync(substream);
690 return 0;
691}
692
693static int sis_capture_hw_params(struct snd_pcm_substream *substream,
694 struct snd_pcm_hw_params *hw_params)
695{
696 struct sis7019 *sis = snd_pcm_substream_chip(substream);
697 int rc;
698
699 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
700 params_rate(hw_params));
701 if (rc)
702 goto out;
703
704 rc = snd_pcm_lib_malloc_pages(substream,
705 params_buffer_bytes(hw_params));
706 if (rc < 0)
707 goto out;
708
709 rc = sis_alloc_timing_voice(substream, hw_params);
710
711out:
712 return rc;
713}
714
715static void sis_prepare_timing_voice(struct voice *voice,
716 struct snd_pcm_substream *substream)
717{
718 struct sis7019 *sis = snd_pcm_substream_chip(substream);
719 struct snd_pcm_runtime *runtime = substream->runtime;
720 struct voice *timing = voice->timing;
721 void __iomem *play_base = timing->ctrl_base;
722 void __iomem *wave_base = timing->wave_base;
723 u16 buffer_size, period_size;
724 u32 format, control, sso_eso, delta;
725 u32 vperiod, sso, reg;
726
727 /* Set our initial buffer and period as large as we can given a
728 * single page of silence.
729 */
730 buffer_size = 4096 / runtime->channels;
731 buffer_size /= snd_pcm_format_size(runtime->format, 1);
732 period_size = buffer_size;
733
734 /* Initially, we want to interrupt just a bit behind the end of
3a3d5fd1 735 * the period we're clocking out. 12 samples seems to give a good
175859bf
DD
736 * delay.
737 *
738 * We want to spread our interrupts throughout the virtual period,
739 * so that we don't end up with two interrupts back to back at the
740 * end -- this helps minimize the effects of any jitter. Adjust our
741 * clocking period size so that the last period is at least a fourth
742 * of a full period.
743 *
744 * This is all moot if we don't need to use virtual periods.
745 */
3a3d5fd1 746 vperiod = runtime->period_size + 12;
175859bf
DD
747 if (vperiod > period_size) {
748 u16 tail = vperiod % period_size;
749 u16 quarter_period = period_size / 4;
750
751 if (tail && tail < quarter_period) {
752 u16 loops = vperiod / period_size;
753
754 tail = quarter_period - tail;
755 tail += loops - 1;
756 tail /= loops;
757 period_size -= tail;
758 }
759
760 sso = period_size - 1;
761 } else {
762 /* The initial period will fit inside the buffer, so we
763 * don't need to use virtual periods -- disable them.
764 */
765 period_size = runtime->period_size;
766 sso = vperiod - 1;
767 vperiod = 0;
768 }
769
25985edc 770 /* The interrupt handler implements the timing synchronization, so
175859bf
DD
771 * setup its state.
772 */
773 timing->flags |= VOICE_SYNC_TIMING;
774 timing->sync_base = voice->ctrl_base;
3a3d5fd1 775 timing->sync_cso = runtime->period_size;
175859bf
DD
776 timing->sync_period_size = runtime->period_size;
777 timing->sync_buffer_size = runtime->buffer_size;
778 timing->period_size = period_size;
779 timing->buffer_size = buffer_size;
780 timing->sso = sso;
781 timing->vperiod = vperiod;
782
783 /* Using unsigned samples with the all-zero silence buffer
784 * forces the output to the lower rail, killing playback.
785 * So ignore unsigned vs signed -- it doesn't change the timing.
786 */
787 format = 0;
788 if (snd_pcm_format_width(runtime->format) == 8)
789 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
790 if (runtime->channels == 1)
791 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
792
793 control = timing->buffer_size - 1;
794 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
795 sso_eso = timing->buffer_size - 1;
796 sso_eso |= timing->sso << 16;
797
798 delta = sis_rate_to_delta(runtime->rate);
799
800 /* We've done the math, now configure the channel.
801 */
802 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
803 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
804 writel(control, play_base + SIS_PLAY_DMA_CONTROL);
805 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
806
807 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
808 writel(0, wave_base + reg);
809
810 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
811 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
812 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
813 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
814 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
815 wave_base + SIS_WAVE_CHANNEL_CONTROL);
816}
817
818static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
819{
820 struct snd_pcm_runtime *runtime = substream->runtime;
821 struct voice *voice = runtime->private_data;
822 void __iomem *rec_base = voice->ctrl_base;
823 u32 format, dma_addr, control;
824 u16 leo;
825
826 /* We rely on the PCM core to ensure that the parameters for this
827 * substream do not change on us while we're programming the HW.
828 */
829 format = 0;
830 if (snd_pcm_format_width(runtime->format) == 8)
831 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
832 if (!snd_pcm_format_signed(runtime->format))
833 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
834 if (runtime->channels == 1)
835 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
836
837 dma_addr = runtime->dma_addr;
838 leo = runtime->buffer_size - 1;
839 control = leo | SIS_CAPTURE_DMA_LOOP;
840
841 /* If we've got more than two periods per buffer, then we have
842 * use a timing voice to clock out the periods. Otherwise, we can
843 * use the capture channel's interrupts.
844 */
845 if (voice->timing) {
846 sis_prepare_timing_voice(voice, substream);
847 } else {
848 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
849 if (runtime->period_size != runtime->buffer_size)
850 control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
851 }
852
853 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
854 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
855 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
856
857 /* Force the writes to post. */
858 readl(rec_base);
859
860 return 0;
861}
862
2aa0eae9 863static const struct snd_pcm_ops sis_playback_ops = {
175859bf
DD
864 .open = sis_playback_open,
865 .close = sis_substream_close,
866 .ioctl = snd_pcm_lib_ioctl,
867 .hw_params = sis_playback_hw_params,
868 .hw_free = sis_hw_free,
869 .prepare = sis_pcm_playback_prepare,
870 .trigger = sis_pcm_trigger,
871 .pointer = sis_pcm_pointer,
872};
873
2aa0eae9 874static const struct snd_pcm_ops sis_capture_ops = {
175859bf
DD
875 .open = sis_capture_open,
876 .close = sis_substream_close,
877 .ioctl = snd_pcm_lib_ioctl,
878 .hw_params = sis_capture_hw_params,
879 .hw_free = sis_hw_free,
880 .prepare = sis_pcm_capture_prepare,
881 .trigger = sis_pcm_trigger,
882 .pointer = sis_pcm_pointer,
883};
884
e23e7a14 885static int sis_pcm_create(struct sis7019 *sis)
175859bf
DD
886{
887 struct snd_pcm *pcm;
888 int rc;
889
890 /* We have 64 voices, and the driver currently records from
891 * only one channel, though that could change in the future.
892 */
893 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
894 if (rc)
895 return rc;
896
897 pcm->private_data = sis;
898 strcpy(pcm->name, "SiS7019");
899 sis->pcm = pcm;
900
901 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
902 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
903
904 /* Try to preallocate some memory, but it's not the end of the
905 * world if this fails.
906 */
907 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
908 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
909
910 return 0;
911}
912
913static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
914{
915 unsigned long io = sis->ioport;
916 unsigned short val = 0xffff;
917 u16 status;
918 u16 rdy;
919 int count;
3f76d984 920 static const u16 codec_ready[3] = {
175859bf
DD
921 SIS_AC97_STATUS_CODEC_READY,
922 SIS_AC97_STATUS_CODEC2_READY,
923 SIS_AC97_STATUS_CODEC3_READY,
924 };
925
926 rdy = codec_ready[codec];
927
928
929 /* Get the AC97 semaphore -- software first, so we don't spin
930 * pounding out IO reads on the hardware semaphore...
931 */
932 mutex_lock(&sis->ac97_mutex);
933
934 count = 0xffff;
935 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
936 udelay(1);
937
938 if (!count)
939 goto timeout;
940
941 /* ... and wait for any outstanding commands to complete ...
942 */
943 count = 0xffff;
944 do {
945 status = inw(io + SIS_AC97_STATUS);
946 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
947 break;
948
949 udelay(1);
950 } while (--count);
951
952 if (!count)
953 goto timeout_sema;
954
955 /* ... before sending our command and waiting for it to finish ...
956 */
957 outl(cmd, io + SIS_AC97_CMD);
958 udelay(10);
959
960 count = 0xffff;
961 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
962 udelay(1);
963
964 /* ... and reading the results (if any).
965 */
966 val = inl(io + SIS_AC97_CMD) >> 16;
967
968timeout_sema:
969 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
970timeout:
971 mutex_unlock(&sis->ac97_mutex);
972
973 if (!count) {
70597851 974 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
175859bf
DD
975 codec, cmd);
976 }
977
978 return val;
979}
980
981static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
982 unsigned short val)
983{
3f76d984 984 static const u32 cmd[3] = {
175859bf
DD
985 SIS_AC97_CMD_CODEC_WRITE,
986 SIS_AC97_CMD_CODEC2_WRITE,
987 SIS_AC97_CMD_CODEC3_WRITE,
988 };
989 sis_ac97_rw(ac97->private_data, ac97->num,
990 (val << 16) | (reg << 8) | cmd[ac97->num]);
991}
992
993static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
994{
3f76d984 995 static const u32 cmd[3] = {
175859bf
DD
996 SIS_AC97_CMD_CODEC_READ,
997 SIS_AC97_CMD_CODEC2_READ,
998 SIS_AC97_CMD_CODEC3_READ,
999 };
1000 return sis_ac97_rw(ac97->private_data, ac97->num,
1001 (reg << 8) | cmd[ac97->num]);
1002}
1003
e23e7a14 1004static int sis_mixer_create(struct sis7019 *sis)
175859bf
DD
1005{
1006 struct snd_ac97_bus *bus;
1007 struct snd_ac97_template ac97;
1008 static struct snd_ac97_bus_ops ops = {
1009 .write = sis_ac97_write,
1010 .read = sis_ac97_read,
1011 };
1012 int rc;
1013
1014 memset(&ac97, 0, sizeof(ac97));
1015 ac97.private_data = sis;
1016
1017 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1018 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1019 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1020 ac97.num = 1;
1021 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1022 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1023 ac97.num = 2;
1024 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1025 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1026
1027 /* If we return an error here, then snd_card_free() should
1028 * free up any ac97 codecs that got created, as well as the bus.
1029 */
1030 return rc;
1031}
1032
1033static void sis_free_suspend(struct sis7019 *sis)
1034{
1035 int i;
1036
1037 for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1038 kfree(sis->suspend_state[i]);
1039}
1040
1041static int sis_chip_free(struct sis7019 *sis)
1042{
1043 /* Reset the chip, and disable all interrputs.
1044 */
1045 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
08b45098 1046 udelay(25);
175859bf
DD
1047 outl(0, sis->ioport + SIS_GCR);
1048 outl(0, sis->ioport + SIS_GIER);
1049
1050 /* Now, free everything we allocated.
1051 */
1052 if (sis->irq >= 0)
1053 free_irq(sis->irq, sis);
1054
ff6defa6 1055 iounmap(sis->ioaddr);
175859bf
DD
1056 pci_release_regions(sis->pci);
1057 pci_disable_device(sis->pci);
175859bf
DD
1058 sis_free_suspend(sis);
1059 return 0;
1060}
1061
1062static int sis_dev_free(struct snd_device *dev)
1063{
1064 struct sis7019 *sis = dev->device_data;
1065 return sis_chip_free(sis);
1066}
1067
1068static int sis_chip_init(struct sis7019 *sis)
1069{
1070 unsigned long io = sis->ioport;
1071 void __iomem *ioaddr = sis->ioaddr;
fc084e0b 1072 unsigned long timeout;
175859bf
DD
1073 u16 status;
1074 int count;
1075 int i;
1076
1077 /* Reset the audio controller
1078 */
1079 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
08b45098 1080 udelay(25);
175859bf
DD
1081 outl(0, io + SIS_GCR);
1082
1083 /* Get the AC-link semaphore, and reset the codecs
1084 */
1085 count = 0xffff;
1086 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1087 udelay(1);
1088
1089 if (!count)
1090 return -EIO;
1091
1092 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
08b45098 1093 udelay(250);
175859bf
DD
1094
1095 count = 0xffff;
1096 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1097 udelay(1);
1098
fc084e0b
DD
1099 /* Command complete, we can let go of the semaphore now.
1100 */
1101 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1102 if (!count)
1103 return -EIO;
1104
175859bf 1105 /* Now that we've finished the reset, find out what's attached.
fc084e0b
DD
1106 * There are some codec/board combinations that take an extremely
1107 * long time to come up. 350+ ms has been observed in the field,
1108 * so we'll give them up to 500ms.
175859bf 1109 */
fc084e0b
DD
1110 sis->codecs_present = 0;
1111 timeout = msecs_to_jiffies(500) + jiffies;
1112 while (time_before_eq(jiffies, timeout)) {
1113 status = inl(io + SIS_AC97_STATUS);
1114 if (status & SIS_AC97_STATUS_CODEC_READY)
1115 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1116 if (status & SIS_AC97_STATUS_CODEC2_READY)
1117 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1118 if (status & SIS_AC97_STATUS_CODEC3_READY)
1119 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1120
1121 if (sis->codecs_present == codecs)
1122 break;
1123
1124 msleep(1);
1125 }
1126
1127 /* All done, check for errors.
175859bf 1128 */
fc084e0b 1129 if (!sis->codecs_present) {
70597851 1130 dev_err(&sis->pci->dev, "could not find any codecs\n");
175859bf 1131 return -EIO;
fc084e0b
DD
1132 }
1133
1134 if (sis->codecs_present != codecs) {
70597851
DD
1135 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1136 sis->codecs_present, codecs);
fc084e0b 1137 }
175859bf
DD
1138
1139 /* Let the hardware know that the audio driver is alive,
1140 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1141 * record channels. We're going to want to use Variable Rate Audio
1142 * for recording, to avoid needlessly resampling from 48kHZ.
1143 */
1144 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1145 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1146 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1147 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1148 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1149
1150 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1151 */
1152 outl(0, io + SIS_AC97_PSR);
1153
1154 /* There is only one valid DMA setup for a PCI environment.
1155 */
1156 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1157
25985edc 1158 /* Reset the synchronization groups for all of the channels
b3834be5 1159 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
175859bf
DD
1160 * we'll need to change how we handle these. Until then, we just
1161 * assign sub-mixer 0 to all playback channels, and avoid any
1162 * attenuation on the audio.
1163 */
1164 outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1165 outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1166 outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1167 outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1168 outl(0, io + SIS_MIXER_SYNC_GROUP);
1169
1170 for (i = 0; i < 64; i++) {
1171 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1172 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1173 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1174 }
1175
1176 /* Don't attenuate any audio set for the wave amplifier.
1177 *
1178 * FIXME: Maximum attenuation is set for the music amp, which will
1179 * need to change if we start using the synth engine.
1180 */
1181 outl(0xffff0000, io + SIS_WEVCR);
1182
1183 /* Ensure that the wave engine is in normal operating mode.
1184 */
1185 outl(0, io + SIS_WECCR);
1186
1187 /* Go ahead and enable the DMA interrupts. They won't go live
1188 * until we start a channel.
1189 */
1190 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1191 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1192
1193 return 0;
1194}
1195
c7561cd8 1196#ifdef CONFIG_PM_SLEEP
68cb2b55 1197static int sis_suspend(struct device *dev)
175859bf 1198{
68cb2b55 1199 struct snd_card *card = dev_get_drvdata(dev);
175859bf
DD
1200 struct sis7019 *sis = card->private_data;
1201 void __iomem *ioaddr = sis->ioaddr;
1202 int i;
1203
1204 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
175859bf
DD
1205 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1206 snd_ac97_suspend(sis->ac97[0]);
1207 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1208 snd_ac97_suspend(sis->ac97[1]);
1209 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1210 snd_ac97_suspend(sis->ac97[2]);
1211
1212 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1213 */
1214 if (sis->irq >= 0) {
175859bf
DD
1215 free_irq(sis->irq, sis);
1216 sis->irq = -1;
1217 }
1218
1219 /* Save the internal state away
1220 */
1221 for (i = 0; i < 4; i++) {
1222 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1223 ioaddr += 4096;
1224 }
1225
175859bf
DD
1226 return 0;
1227}
1228
68cb2b55 1229static int sis_resume(struct device *dev)
175859bf 1230{
68cb2b55
TI
1231 struct pci_dev *pci = to_pci_dev(dev);
1232 struct snd_card *card = dev_get_drvdata(dev);
175859bf
DD
1233 struct sis7019 *sis = card->private_data;
1234 void __iomem *ioaddr = sis->ioaddr;
1235 int i;
1236
175859bf 1237 if (sis_chip_init(sis)) {
70597851 1238 dev_err(&pci->dev, "unable to re-init controller\n");
175859bf
DD
1239 goto error;
1240 }
1241
88e24c3a 1242 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
934c2b6d 1243 KBUILD_MODNAME, sis)) {
70597851 1244 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
175859bf
DD
1245 goto error;
1246 }
1247
1248 /* Restore saved state, then clear out the page we use for the
1249 * silence buffer.
1250 */
1251 for (i = 0; i < 4; i++) {
1252 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1253 ioaddr += 4096;
1254 }
1255
1256 memset(sis->suspend_state[0], 0, 4096);
1257
1258 sis->irq = pci->irq;
175859bf
DD
1259
1260 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1261 snd_ac97_resume(sis->ac97[0]);
1262 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1263 snd_ac97_resume(sis->ac97[1]);
1264 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1265 snd_ac97_resume(sis->ac97[2]);
1266
1267 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1268 return 0;
1269
1270error:
1271 snd_card_disconnect(card);
1272 return -EIO;
1273}
68cb2b55
TI
1274
1275static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1276#define SIS_PM_OPS &sis_pm
1277#else
1278#define SIS_PM_OPS NULL
c7561cd8 1279#endif /* CONFIG_PM_SLEEP */
175859bf
DD
1280
1281static int sis_alloc_suspend(struct sis7019 *sis)
1282{
1283 int i;
1284
1285 /* We need 16K to store the internal wave engine state during a
1286 * suspend, but we don't need it to be contiguous, so play nice
1287 * with the memory system. We'll also use this area for a silence
1288 * buffer.
1289 */
1290 for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1291 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1292 if (!sis->suspend_state[i])
1293 return -ENOMEM;
1294 }
1295 memset(sis->suspend_state[0], 0, 4096);
1296
1297 return 0;
1298}
1299
e23e7a14
BP
1300static int sis_chip_create(struct snd_card *card,
1301 struct pci_dev *pci)
175859bf
DD
1302{
1303 struct sis7019 *sis = card->private_data;
1304 struct voice *voice;
1305 static struct snd_device_ops ops = {
1306 .dev_free = sis_dev_free,
1307 };
1308 int rc;
1309 int i;
1310
1311 rc = pci_enable_device(pci);
1312 if (rc)
1313 goto error_out;
1314
412b979c 1315 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
8b1dacb6 1316 if (rc < 0) {
70597851 1317 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
175859bf
DD
1318 goto error_out_enabled;
1319 }
1320
1321 memset(sis, 0, sizeof(*sis));
1322 mutex_init(&sis->ac97_mutex);
1323 spin_lock_init(&sis->voice_lock);
1324 sis->card = card;
1325 sis->pci = pci;
1326 sis->irq = -1;
1327 sis->ioport = pci_resource_start(pci, 0);
1328
1329 rc = pci_request_regions(pci, "SiS7019");
1330 if (rc) {
70597851 1331 dev_err(&pci->dev, "unable request regions\n");
175859bf
DD
1332 goto error_out_enabled;
1333 }
1334
1335 rc = -EIO;
1336 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1337 if (!sis->ioaddr) {
70597851 1338 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
175859bf
DD
1339 goto error_out_cleanup;
1340 }
1341
1342 rc = sis_alloc_suspend(sis);
1343 if (rc < 0) {
70597851 1344 dev_err(&pci->dev, "unable to allocate state storage\n");
175859bf
DD
1345 goto error_out_cleanup;
1346 }
1347
1348 rc = sis_chip_init(sis);
1349 if (rc)
1350 goto error_out_cleanup;
1351
ae970eb4
JL
1352 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1353 sis);
1354 if (rc) {
70597851 1355 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
175859bf
DD
1356 goto error_out_cleanup;
1357 }
1358
1359 sis->irq = pci->irq;
1360 pci_set_master(pci);
1361
1362 for (i = 0; i < 64; i++) {
1363 voice = &sis->voices[i];
1364 voice->num = i;
1365 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1366 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1367 }
1368
1369 voice = &sis->capture_voice;
1370 voice->flags = VOICE_CAPTURE;
1371 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1372 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1373
1374 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1375 if (rc)
1376 goto error_out_cleanup;
1377
175859bf
DD
1378 return 0;
1379
1380error_out_cleanup:
1381 sis_chip_free(sis);
1382
1383error_out_enabled:
1384 pci_disable_device(pci);
1385
1386error_out:
1387 return rc;
1388}
1389
e23e7a14
BP
1390static int snd_sis7019_probe(struct pci_dev *pci,
1391 const struct pci_device_id *pci_id)
175859bf
DD
1392{
1393 struct snd_card *card;
1394 struct sis7019 *sis;
1395 int rc;
1396
1397 rc = -ENOENT;
1398 if (!enable)
1399 goto error_out;
1400
fc084e0b
DD
1401 /* The user can specify which codecs should be present so that we
1402 * can wait for them to show up if they are slow to recover from
1403 * the AC97 cold reset. We default to a single codec, the primary.
1404 *
1405 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1406 */
1407 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1408 SIS_TERTIARY_CODEC_PRESENT;
1409 if (!codecs)
1410 codecs = SIS_PRIMARY_CODEC_PRESENT;
1411
60c5772b
TI
1412 rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1413 sizeof(*sis), &card);
e58de7ba 1414 if (rc < 0)
175859bf
DD
1415 goto error_out;
1416
1417 strcpy(card->driver, "SiS7019");
1418 strcpy(card->shortname, "SiS7019");
1419 rc = sis_chip_create(card, pci);
1420 if (rc)
1421 goto card_error_out;
1422
1423 sis = card->private_data;
1424
1425 rc = sis_mixer_create(sis);
1426 if (rc)
1427 goto card_error_out;
1428
1429 rc = sis_pcm_create(sis);
1430 if (rc)
1431 goto card_error_out;
1432
1433 snprintf(card->longname, sizeof(card->longname),
1434 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1435 card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1436 sis->ioport, sis->irq);
1437
1438 rc = snd_card_register(card);
1439 if (rc)
1440 goto card_error_out;
1441
1442 pci_set_drvdata(pci, card);
1443 return 0;
1444
1445card_error_out:
1446 snd_card_free(card);
1447
1448error_out:
1449 return rc;
1450}
1451
e23e7a14 1452static void snd_sis7019_remove(struct pci_dev *pci)
175859bf
DD
1453{
1454 snd_card_free(pci_get_drvdata(pci));
175859bf
DD
1455}
1456
1457static struct pci_driver sis7019_driver = {
3733e424 1458 .name = KBUILD_MODNAME,
175859bf
DD
1459 .id_table = snd_sis7019_ids,
1460 .probe = snd_sis7019_probe,
e23e7a14 1461 .remove = snd_sis7019_remove,
68cb2b55
TI
1462 .driver = {
1463 .pm = SIS_PM_OPS,
1464 },
175859bf
DD
1465};
1466
e9f66d9b 1467module_pci_driver(sis7019_driver);