ALSA: oxfw: code refactoring for jumbo-payload quirk in OXFW970
[linux-block.git] / sound / firewire / amdtp-stream.c
CommitLineData
da607e19 1// SPDX-License-Identifier: GPL-2.0-only
31ef9134
CL
2/*
3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4 * with Common Isochronous Packet (IEC 61883-1) headers
5 *
6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
31ef9134
CL
7 */
8
9#include <linux/device.h>
10#include <linux/err.h>
11#include <linux/firewire.h>
acfedcbe 12#include <linux/firewire-constants.h>
31ef9134
CL
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <sound/pcm.h>
7b2d99fa 16#include <sound/pcm_params.h>
d67c46b9 17#include "amdtp-stream.h"
31ef9134
CL
18
19#define TICKS_PER_CYCLE 3072
20#define CYCLES_PER_SECOND 8000
21#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
10aa8e4a
TS
23#define OHCI_MAX_SECOND 8
24
0c95c1d6
TS
25/* Always support Linux tracing subsystem. */
26#define CREATE_TRACE_POINTS
27#include "amdtp-stream-trace.h"
28
ca5b5050 29#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
31ef9134 30
b445db44
TS
31/* isochronous header parameters */
32#define ISO_DATA_LENGTH_SHIFT 16
3b196c39 33#define TAG_NO_CIP_HEADER 0
31ef9134
CL
34#define TAG_CIP 1
35
b445db44 36/* common isochronous packet header parameters */
9a2820c1
TS
37#define CIP_EOH_SHIFT 31
38#define CIP_EOH (1u << CIP_EOH_SHIFT)
b445db44 39#define CIP_EOH_MASK 0x80000000
9a2820c1
TS
40#define CIP_SID_SHIFT 24
41#define CIP_SID_MASK 0x3f000000
42#define CIP_DBS_MASK 0x00ff0000
43#define CIP_DBS_SHIFT 16
9863874f
TS
44#define CIP_SPH_MASK 0x00000400
45#define CIP_SPH_SHIFT 10
9a2820c1
TS
46#define CIP_DBC_MASK 0x000000ff
47#define CIP_FMT_SHIFT 24
b445db44 48#define CIP_FMT_MASK 0x3f000000
9a2820c1
TS
49#define CIP_FDF_MASK 0x00ff0000
50#define CIP_FDF_SHIFT 16
b445db44
TS
51#define CIP_SYT_MASK 0x0000ffff
52#define CIP_SYT_NO_INFO 0xffff
b445db44 53
51c29fd2 54/* Audio and Music transfer protocol specific parameters */
414ba022 55#define CIP_FMT_AM 0x10
2b3fc456 56#define AMDTP_FDF_NO_DATA 0xff
31ef9134 57
f11453c7
TS
58// For iso header, tstamp and 2 CIP header.
59#define IR_CTX_HEADER_SIZE_CIP 16
60// For iso header and tstamp.
61#define IR_CTX_HEADER_SIZE_NO_CIP 8
cc4f8e91 62#define HEADER_TSTAMP_MASK 0x0000ffff
4b7da117 63
b18f0cfa
TS
64#define IT_PKT_HEADER_SIZE_CIP 8 // For 2 CIP header.
65#define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
66
2b3d2987 67static void pcm_period_work(struct work_struct *work);
76fb8789 68
31ef9134 69/**
be4a2894
TS
70 * amdtp_stream_init - initialize an AMDTP stream structure
71 * @s: the AMDTP stream to initialize
31ef9134 72 * @unit: the target of the stream
3ff7e8f0 73 * @dir: the direction of stream
ffe66bbe 74 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
5955815e 75 * @fmt: the value of fmt field in CIP header
9a738ad1 76 * @process_ctx_payloads: callback handler to process payloads of isoc context
df075fee 77 * @protocol_size: the size to allocate newly for protocol
31ef9134 78 */
be4a2894 79int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
ffe66bbe 80 enum amdtp_stream_direction dir, unsigned int flags,
df075fee 81 unsigned int fmt,
9a738ad1 82 amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
df075fee 83 unsigned int protocol_size)
31ef9134 84{
9a738ad1 85 if (process_ctx_payloads == NULL)
df075fee
TS
86 return -EINVAL;
87
88 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
89 if (!s->protocol)
90 return -ENOMEM;
91
c6f224dc 92 s->unit = unit;
3ff7e8f0 93 s->direction = dir;
31ef9134
CL
94 s->flags = flags;
95 s->context = ERR_PTR(-1);
96 mutex_init(&s->mutex);
2b3d2987 97 INIT_WORK(&s->period_work, pcm_period_work);
ec00f5e4 98 s->packet_index = 0;
31ef9134 99
7b3b0d85
TS
100 init_waitqueue_head(&s->callback_wait);
101 s->callbacked = false;
7b3b0d85 102
5955815e 103 s->fmt = fmt;
9a738ad1 104 s->process_ctx_payloads = process_ctx_payloads;
414ba022 105
3baf3053
TS
106 if (dir == AMDTP_OUT_STREAM)
107 s->ctx_data.rx.syt_override = -1;
108
31ef9134
CL
109 return 0;
110}
be4a2894 111EXPORT_SYMBOL(amdtp_stream_init);
31ef9134
CL
112
113/**
be4a2894
TS
114 * amdtp_stream_destroy - free stream resources
115 * @s: the AMDTP stream to destroy
31ef9134 116 */
be4a2894 117void amdtp_stream_destroy(struct amdtp_stream *s)
31ef9134 118{
44c376b9
TS
119 /* Not initialized. */
120 if (s->protocol == NULL)
121 return;
122
be4a2894 123 WARN_ON(amdtp_stream_running(s));
df075fee 124 kfree(s->protocol);
31ef9134 125 mutex_destroy(&s->mutex);
31ef9134 126}
be4a2894 127EXPORT_SYMBOL(amdtp_stream_destroy);
31ef9134 128
c5280e99 129const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
a7304e3b
CL
130 [CIP_SFC_32000] = 8,
131 [CIP_SFC_44100] = 8,
132 [CIP_SFC_48000] = 8,
133 [CIP_SFC_88200] = 16,
134 [CIP_SFC_96000] = 16,
135 [CIP_SFC_176400] = 32,
136 [CIP_SFC_192000] = 32,
137};
138EXPORT_SYMBOL(amdtp_syt_intervals);
139
f9503a68 140const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
1017abed
TS
141 [CIP_SFC_32000] = 32000,
142 [CIP_SFC_44100] = 44100,
143 [CIP_SFC_48000] = 48000,
144 [CIP_SFC_88200] = 88200,
145 [CIP_SFC_96000] = 96000,
146 [CIP_SFC_176400] = 176400,
147 [CIP_SFC_192000] = 192000,
148};
149EXPORT_SYMBOL(amdtp_rate_table);
150
59502295
TS
151static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
152 struct snd_pcm_hw_rule *rule)
153{
154 struct snd_interval *s = hw_param_interval(params, rule->var);
155 const struct snd_interval *r =
156 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
826b5de9
TS
157 struct snd_interval t = {0};
158 unsigned int step = 0;
59502295
TS
159 int i;
160
161 for (i = 0; i < CIP_SFC_COUNT; ++i) {
826b5de9
TS
162 if (snd_interval_test(r, amdtp_rate_table[i]))
163 step = max(step, amdtp_syt_intervals[i]);
59502295
TS
164 }
165
826b5de9
TS
166 t.min = roundup(s->min, step);
167 t.max = rounddown(s->max, step);
168 t.integer = 1;
59502295
TS
169
170 return snd_interval_refine(s, &t);
171}
172
7b2d99fa
TS
173/**
174 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
175 * @s: the AMDTP stream, which must be initialized.
176 * @runtime: the PCM substream runtime
177 */
178int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
179 struct snd_pcm_runtime *runtime)
180{
55799c5a 181 struct snd_pcm_hardware *hw = &runtime->hw;
99921ec6
TS
182 unsigned int ctx_header_size;
183 unsigned int maximum_usec_per_period;
7b2d99fa
TS
184 int err;
185
55799c5a
TS
186 hw->info = SNDRV_PCM_INFO_BATCH |
187 SNDRV_PCM_INFO_BLOCK_TRANSFER |
188 SNDRV_PCM_INFO_INTERLEAVED |
189 SNDRV_PCM_INFO_JOINT_DUPLEX |
190 SNDRV_PCM_INFO_MMAP |
191 SNDRV_PCM_INFO_MMAP_VALID;
192
193 /* SNDRV_PCM_INFO_BATCH */
194 hw->periods_min = 2;
195 hw->periods_max = UINT_MAX;
196
197 /* bytes for a frame */
198 hw->period_bytes_min = 4 * hw->channels_max;
199
200 /* Just to prevent from allocating much pages. */
201 hw->period_bytes_max = hw->period_bytes_min * 2048;
202 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
203
99921ec6
TS
204 // Linux driver for 1394 OHCI controller voluntarily flushes isoc
205 // context when total size of accumulated context header reaches
2b3d2987 206 // PAGE_SIZE. This kicks work for the isoc context and brings
99921ec6
TS
207 // callback in the middle of scheduled interrupts.
208 // Although AMDTP streams in the same domain use the same events per
209 // IRQ, use the largest size of context header between IT/IR contexts.
210 // Here, use the value of context header in IR context is for both
211 // contexts.
212 if (!(s->flags & CIP_NO_HEADER))
213 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
214 else
215 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
216 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
217 CYCLES_PER_SECOND / ctx_header_size;
218
f706df4f
TS
219 // In IEC 61883-6, one isoc packet can transfer events up to the value
220 // of syt interval. This comes from the interval of isoc cycle. As 1394
221 // OHCI controller can generate hardware IRQ per isoc packet, the
222 // interval is 125 usec.
223 // However, there are two ways of transmission in IEC 61883-6; blocking
224 // and non-blocking modes. In blocking mode, the sequence of isoc packet
225 // includes 'empty' or 'NODATA' packets which include no event. In
226 // non-blocking mode, the number of events per packet is variable up to
227 // the syt interval.
228 // Due to the above protocol design, the minimum PCM frames per
229 // interrupt should be double of the value of syt interval, thus it is
230 // 250 usec.
7b2d99fa
TS
231 err = snd_pcm_hw_constraint_minmax(runtime,
232 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
f706df4f 233 250, maximum_usec_per_period);
7b2d99fa
TS
234 if (err < 0)
235 goto end;
236
237 /* Non-Blocking stream has no more constraints */
238 if (!(s->flags & CIP_BLOCKING))
239 goto end;
240
241 /*
242 * One AMDTP packet can include some frames. In blocking mode, the
243 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
244 * depending on its sampling rate. For accurate period interrupt, it's
ce991981 245 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
7b2d99fa 246 */
59502295
TS
247 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
248 apply_constraint_to_size, NULL,
826b5de9 249 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
59502295
TS
250 SNDRV_PCM_HW_PARAM_RATE, -1);
251 if (err < 0)
252 goto end;
59502295
TS
253 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
254 apply_constraint_to_size, NULL,
826b5de9 255 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
59502295
TS
256 SNDRV_PCM_HW_PARAM_RATE, -1);
257 if (err < 0)
258 goto end;
7b2d99fa
TS
259end:
260 return err;
261}
262EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
263
31ef9134 264/**
be4a2894
TS
265 * amdtp_stream_set_parameters - set stream parameters
266 * @s: the AMDTP stream to configure
31ef9134 267 * @rate: the sample rate
df075fee 268 * @data_block_quadlets: the size of a data block in quadlet unit
31ef9134 269 *
a7304e3b 270 * The parameters must be set before the stream is started, and must not be
31ef9134
CL
271 * changed while the stream is running.
272 */
df075fee
TS
273int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
274 unsigned int data_block_quadlets)
31ef9134 275{
df075fee 276 unsigned int sfc;
31ef9134 277
547e631c 278 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
1017abed 279 if (amdtp_rate_table[sfc] == rate)
547e631c
TS
280 break;
281 }
282 if (sfc == ARRAY_SIZE(amdtp_rate_table))
283 return -EINVAL;
e84d15f6 284
e84d15f6 285 s->sfc = sfc;
df075fee 286 s->data_block_quadlets = data_block_quadlets;
a7304e3b 287 s->syt_interval = amdtp_syt_intervals[sfc];
e84d15f6 288
d3d10a4a
TS
289 // default buffering in the device.
290 if (s->direction == AMDTP_OUT_STREAM) {
291 s->ctx_data.rx.transfer_delay =
292 TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
293
294 if (s->flags & CIP_BLOCKING) {
295 // additional buffering needed to adjust for no-data
296 // packets.
297 s->ctx_data.rx.transfer_delay +=
298 TICKS_PER_SECOND * s->syt_interval / rate;
299 }
300 }
77d2a8a4 301
547e631c 302 return 0;
31ef9134 303}
be4a2894 304EXPORT_SYMBOL(amdtp_stream_set_parameters);
31ef9134
CL
305
306/**
be4a2894
TS
307 * amdtp_stream_get_max_payload - get the stream's packet size
308 * @s: the AMDTP stream
31ef9134
CL
309 *
310 * This function must not be called before the stream has been configured
be4a2894 311 * with amdtp_stream_set_parameters().
31ef9134 312 */
be4a2894 313unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
31ef9134 314{
a2064710 315 unsigned int multiplier = 1;
07ea238c 316 unsigned int cip_header_size = 0;
a2064710
TS
317
318 if (s->flags & CIP_JUMBO_PAYLOAD)
319 multiplier = 5;
3b196c39 320 if (!(s->flags & CIP_NO_HEADER))
07ea238c 321 cip_header_size = sizeof(__be32) * 2;
a2064710 322
07ea238c
TS
323 return cip_header_size +
324 s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
31ef9134 325}
be4a2894 326EXPORT_SYMBOL(amdtp_stream_get_max_payload);
31ef9134 327
76fb8789 328/**
be4a2894
TS
329 * amdtp_stream_pcm_prepare - prepare PCM device for running
330 * @s: the AMDTP stream
76fb8789
CL
331 *
332 * This function should be called from the PCM device's .prepare callback.
333 */
be4a2894 334void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
76fb8789 335{
2b3d2987 336 cancel_work_sync(&s->period_work);
76fb8789
CL
337 s->pcm_buffer_pointer = 0;
338 s->pcm_period_pointer = 0;
339}
be4a2894 340EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
76fb8789 341
274fc355
TS
342static unsigned int calculate_data_blocks(unsigned int *data_block_state,
343 bool is_blocking, bool is_no_info,
344 unsigned int syt_interval, enum cip_sfc sfc)
31ef9134 345{
274fc355 346 unsigned int data_blocks;
31ef9134 347
875be091 348 /* Blocking mode. */
274fc355 349 if (is_blocking) {
875be091 350 /* This module generate empty packet for 'no data'. */
274fc355 351 if (is_no_info)
875be091
TS
352 data_blocks = 0;
353 else
274fc355 354 data_blocks = syt_interval;
875be091 355 /* Non-blocking mode. */
31ef9134 356 } else {
274fc355 357 if (!cip_sfc_is_base_44100(sfc)) {
d3d10a4a 358 // Sample_rate / 8000 is an integer, and precomputed.
274fc355 359 data_blocks = *data_block_state;
875be091 360 } else {
274fc355 361 unsigned int phase = *data_block_state;
31ef9134
CL
362
363 /*
364 * This calculates the number of data blocks per packet so that
365 * 1) the overall rate is correct and exactly synchronized to
366 * the bus clock, and
367 * 2) packets with a rounded-up number of blocks occur as early
368 * as possible in the sequence (to prevent underruns of the
369 * device's buffer).
370 */
274fc355 371 if (sfc == CIP_SFC_44100)
875be091
TS
372 /* 6 6 5 6 5 6 5 ... */
373 data_blocks = 5 + ((phase & 1) ^
374 (phase == 0 || phase >= 40));
375 else
376 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
274fc355
TS
377 data_blocks = 11 * (sfc >> 1) + (phase == 0);
378 if (++phase >= (80 >> (sfc >> 1)))
875be091 379 phase = 0;
274fc355 380 *data_block_state = phase;
875be091 381 }
31ef9134
CL
382 }
383
384 return data_blocks;
385}
386
816d8482
TS
387static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
388 unsigned int *syt_offset_state, enum cip_sfc sfc)
31ef9134 389{
816d8482 390 unsigned int syt_offset;
31ef9134 391
816d8482
TS
392 if (*last_syt_offset < TICKS_PER_CYCLE) {
393 if (!cip_sfc_is_base_44100(sfc))
394 syt_offset = *last_syt_offset + *syt_offset_state;
31ef9134
CL
395 else {
396 /*
397 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
398 * n * SYT_INTERVAL * 24576000 / sample_rate
399 * Modulo TICKS_PER_CYCLE, the difference between successive
400 * elements is about 1386.23. Rounding the results of this
401 * formula to the SYT precision results in a sequence of
402 * differences that begins with:
403 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
404 * This code generates _exactly_ the same sequence.
405 */
816d8482
TS
406 unsigned int phase = *syt_offset_state;
407 unsigned int index = phase % 13;
408
409 syt_offset = *last_syt_offset;
31ef9134
CL
410 syt_offset += 1386 + ((index && !(index & 3)) ||
411 phase == 146);
412 if (++phase >= 147)
413 phase = 0;
816d8482 414 *syt_offset_state = phase;
31ef9134
CL
415 }
416 } else
816d8482
TS
417 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
418 *last_syt_offset = syt_offset;
31ef9134 419
83cfb5c5
TS
420 if (syt_offset >= TICKS_PER_CYCLE)
421 syt_offset = CIP_SYT_NO_INFO;
31ef9134 422
83cfb5c5 423 return syt_offset;
31ef9134
CL
424}
425
4b7da117
TS
426static void update_pcm_pointers(struct amdtp_stream *s,
427 struct snd_pcm_substream *pcm,
428 unsigned int frames)
65845f29
TS
429{
430 unsigned int ptr;
431
4b7da117
TS
432 ptr = s->pcm_buffer_pointer + frames;
433 if (ptr >= pcm->runtime->buffer_size)
434 ptr -= pcm->runtime->buffer_size;
6aa7de05 435 WRITE_ONCE(s->pcm_buffer_pointer, ptr);
4b7da117
TS
436
437 s->pcm_period_pointer += frames;
438 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
439 s->pcm_period_pointer -= pcm->runtime->period_size;
2b3d2987 440 queue_work(system_highpri_wq, &s->period_work);
4b7da117
TS
441 }
442}
443
2b3d2987 444static void pcm_period_work(struct work_struct *work)
4b7da117 445{
2b3d2987
TI
446 struct amdtp_stream *s = container_of(work, struct amdtp_stream,
447 period_work);
6aa7de05 448 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
4b7da117
TS
449
450 if (pcm)
451 snd_pcm_period_elapsed(pcm);
452}
453
e229853d
TS
454static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
455 bool sched_irq)
4b7da117 456{
6007bf54 457 int err;
df9160b9 458
e229853d 459 params->interrupt = sched_irq;
6007bf54
TS
460 params->tag = s->tag;
461 params->sy = 0;
df9160b9 462
6007bf54 463 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
4b7da117
TS
464 s->buffer.packets[s->packet_index].offset);
465 if (err < 0) {
466 dev_err(&s->unit->device, "queueing error: %d\n", err);
467 goto end;
468 }
469
a0e02331 470 if (++s->packet_index >= s->queue_size)
4b7da117
TS
471 s->packet_index = 0;
472end:
473 return err;
474}
475
476static inline int queue_out_packet(struct amdtp_stream *s,
e229853d 477 struct fw_iso_packet *params, bool sched_irq)
4b7da117 478{
b18f0cfa
TS
479 params->skip =
480 !!(params->header_length == 0 && params->payload_length == 0);
e229853d 481 return queue_packet(s, params, sched_irq);
4b7da117
TS
482}
483
6007bf54 484static inline int queue_in_packet(struct amdtp_stream *s,
60dd4929 485 struct fw_iso_packet *params)
2b3fc456 486{
6007bf54
TS
487 // Queue one packet for IR context.
488 params->header_length = s->ctx_data.tx.ctx_header_size;
489 params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
490 params->skip = false;
60dd4929 491 return queue_packet(s, params, false);
2b3fc456
TS
492}
493
252219c7 494static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
860d798c 495 unsigned int data_block_counter, unsigned int syt)
252219c7
TS
496{
497 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
498 (s->data_block_quadlets << CIP_DBS_SHIFT) |
499 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
860d798c 500 data_block_counter);
252219c7
TS
501 cip_header[1] = cpu_to_be32(CIP_EOH |
502 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
503 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
504 (syt & CIP_SYT_MASK));
505}
506
6bc1a269
TS
507static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
508 struct fw_iso_packet *params,
860d798c
TS
509 unsigned int data_blocks,
510 unsigned int data_block_counter,
511 unsigned int syt, unsigned int index)
31ef9134 512{
0ebf3ceb 513 unsigned int payload_length;
16be4589 514 __be32 *cip_header;
20e44577 515
0ebf3ceb
TS
516 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
517 params->payload_length = payload_length;
518
b18f0cfa 519 if (!(s->flags & CIP_NO_HEADER)) {
6bc1a269 520 cip_header = (__be32 *)params->header;
860d798c 521 generate_cip_header(s, cip_header, data_block_counter, syt);
6bc1a269 522 params->header_length = 2 * sizeof(__be32);
0ebf3ceb 523 payload_length += params->header_length;
b18f0cfa
TS
524 } else {
525 cip_header = NULL;
526 }
31ef9134 527
213fa989 528 trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
814b4312 529 data_block_counter, s->packet_index, index);
3b196c39
TS
530}
531
e335425b
TS
532static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
533 unsigned int payload_length,
a35463d1
TS
534 unsigned int *data_blocks,
535 unsigned int *data_block_counter, unsigned int *syt)
2b3fc456
TS
536{
537 u32 cip_header[2];
e335425b
TS
538 unsigned int sph;
539 unsigned int fmt;
540 unsigned int fdf;
a35463d1 541 unsigned int dbc;
c8bdf49b 542 bool lost;
2b3fc456 543
e335425b
TS
544 cip_header[0] = be32_to_cpu(buf[0]);
545 cip_header[1] = be32_to_cpu(buf[1]);
2b3fc456
TS
546
547 /*
548 * This module supports 'Two-quadlet CIP header with SYT field'.
77d2a8a4 549 * For convenience, also check FMT field is AM824 or not.
2b3fc456 550 */
2128f78f
TS
551 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
552 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
553 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
2b3fc456
TS
554 dev_info_ratelimited(&s->unit->device,
555 "Invalid CIP header for AMDTP: %08X:%08X\n",
556 cip_header[0], cip_header[1]);
e335425b 557 return -EAGAIN;
2b3fc456
TS
558 }
559
414ba022 560 /* Check valid protocol or not. */
9863874f 561 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
414ba022 562 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
9863874f 563 if (sph != s->sph || fmt != s->fmt) {
2a7e1713
TS
564 dev_info_ratelimited(&s->unit->device,
565 "Detect unexpected protocol: %08x %08x\n",
566 cip_header[0], cip_header[1]);
e335425b 567 return -EAGAIN;
414ba022
TS
568 }
569
2b3fc456 570 /* Calculate data blocks */
414ba022 571 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
e335425b 572 if (payload_length < sizeof(__be32) * 2 ||
414ba022 573 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
e335425b 574 *data_blocks = 0;
2b3fc456 575 } else {
e335425b
TS
576 unsigned int data_block_quadlets =
577 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
2b3fc456
TS
578 /* avoid division by zero */
579 if (data_block_quadlets == 0) {
12e0f438 580 dev_err(&s->unit->device,
2b3fc456
TS
581 "Detect invalid value in dbs field: %08X\n",
582 cip_header[0]);
a9007054 583 return -EPROTO;
2b3fc456 584 }
69702239
TS
585 if (s->flags & CIP_WRONG_DBS)
586 data_block_quadlets = s->data_block_quadlets;
2b3fc456 587
e335425b 588 *data_blocks = (payload_length / sizeof(__be32) - 2) /
ff0fb5aa 589 data_block_quadlets;
2b3fc456
TS
590 }
591
592 /* Check data block counter continuity */
a35463d1 593 dbc = cip_header[0] & CIP_DBC_MASK;
e335425b 594 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
a35463d1
TS
595 *data_block_counter != UINT_MAX)
596 dbc = *data_block_counter;
9d59124c 597
a35463d1
TS
598 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
599 *data_block_counter == UINT_MAX) {
b84b1a27
TS
600 lost = false;
601 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
a35463d1 602 lost = dbc != *data_block_counter;
d9cd0065 603 } else {
e335425b
TS
604 unsigned int dbc_interval;
605
606 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
d3d10a4a 607 dbc_interval = s->ctx_data.tx.dbc_interval;
d9cd0065 608 else
e335425b 609 dbc_interval = *data_blocks;
d9cd0065 610
a35463d1 611 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
d9cd0065 612 }
c8bdf49b
TS
613
614 if (lost) {
12e0f438
TS
615 dev_err(&s->unit->device,
616 "Detect discontinuity of CIP: %02X %02X\n",
a35463d1 617 *data_block_counter, dbc);
6fc6b9ce 618 return -EIO;
2b3fc456
TS
619 }
620
753e7179
TS
621 *data_block_counter = dbc;
622
e335425b 623 *syt = cip_header[1] & CIP_SYT_MASK;
2b3fc456 624
e335425b
TS
625 return 0;
626}
627
98e3e43b
TS
628static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
629 const __be32 *ctx_header,
630 unsigned int *payload_length,
a35463d1
TS
631 unsigned int *data_blocks,
632 unsigned int *data_block_counter,
814b4312 633 unsigned int *syt, unsigned int packet_index, unsigned int index)
e335425b 634{
f11453c7 635 const __be32 *cip_header;
395f41e2 636 unsigned int cip_header_size;
e335425b
TS
637 int err;
638
98e3e43b 639 *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
395f41e2
TS
640
641 if (!(s->flags & CIP_NO_HEADER))
642 cip_header_size = 8;
643 else
644 cip_header_size = 0;
645
646 if (*payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
e335425b
TS
647 dev_err(&s->unit->device,
648 "Detect jumbo payload: %04x %04x\n",
395f41e2 649 *payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
e335425b
TS
650 return -EIO;
651 }
652
395f41e2 653 if (cip_header_size > 0) {
98e3e43b
TS
654 cip_header = ctx_header + 2;
655 err = check_cip_header(s, cip_header, *payload_length,
a35463d1 656 data_blocks, data_block_counter, syt);
b8b0e24c
TS
657 if (err < 0)
658 return err;
947b437e
TS
659 } else {
660 cip_header = NULL;
76864868 661 err = 0;
98e3e43b
TS
662 *data_blocks = *payload_length / sizeof(__be32) /
663 s->data_block_quadlets;
664 *syt = 0;
7fbf9096 665
a35463d1
TS
666 if (*data_block_counter == UINT_MAX)
667 *data_block_counter = 0;
e335425b
TS
668 }
669
98e3e43b 670 trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
814b4312 671 *data_block_counter, packet_index, index);
e335425b 672
76864868 673 return err;
2b3fc456
TS
674}
675
26cd1e58
TS
676// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
677// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
678// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
679static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
73fc7f08 680{
26cd1e58 681 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
73fc7f08
TS
682 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
683}
684
685static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
686{
687 cycle += addend;
10aa8e4a
TS
688 if (cycle >= OHCI_MAX_SECOND * CYCLES_PER_SECOND)
689 cycle -= OHCI_MAX_SECOND * CYCLES_PER_SECOND;
73fc7f08
TS
690 return cycle;
691}
692
26cd1e58 693// Align to actual cycle count for the packet which is going to be scheduled.
a0e02331
TS
694// This module queued the same number of isochronous cycle as the size of queue
695// to kip isochronous cycle, therefore it's OK to just increment the cycle by
696// the size of queue for scheduled cycle.
697static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp,
698 unsigned int queue_size)
26cd1e58
TS
699{
700 u32 cycle = compute_cycle_count(ctx_header_tstamp);
a0e02331 701 return increment_cycle_count(cycle, queue_size);
26cd1e58
TS
702}
703
753e7179
TS
704static int generate_device_pkt_descs(struct amdtp_stream *s,
705 struct pkt_desc *descs,
706 const __be32 *ctx_header,
707 unsigned int packets)
708{
709 unsigned int dbc = s->data_block_counter;
814b4312
TS
710 unsigned int packet_index = s->packet_index;
711 unsigned int queue_size = s->queue_size;
753e7179
TS
712 int i;
713 int err;
714
715 for (i = 0; i < packets; ++i) {
716 struct pkt_desc *desc = descs + i;
753e7179
TS
717 unsigned int cycle;
718 unsigned int payload_length;
719 unsigned int data_blocks;
720 unsigned int syt;
721
722 cycle = compute_cycle_count(ctx_header[1]);
723
724 err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
814b4312 725 &data_blocks, &dbc, &syt, packet_index, i);
753e7179
TS
726 if (err < 0)
727 return err;
728
729 desc->cycle = cycle;
730 desc->syt = syt;
731 desc->data_blocks = data_blocks;
732 desc->data_block_counter = dbc;
814b4312 733 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
753e7179
TS
734
735 if (!(s->flags & CIP_DBC_IS_END_EVENT))
736 dbc = (dbc + desc->data_blocks) & 0xff;
737
738 ctx_header +=
739 s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
814b4312
TS
740
741 packet_index = (packet_index + 1) % queue_size;
753e7179
TS
742 }
743
744 s->data_block_counter = dbc;
745
746 return 0;
747}
748
83cfb5c5
TS
749static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
750 unsigned int transfer_delay)
751{
752 unsigned int syt;
753
754 syt_offset += transfer_delay;
755 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
756 (syt_offset % TICKS_PER_CYCLE);
757 return syt & CIP_SYT_MASK;
758}
759
69efd5c4
TS
760static void generate_pkt_descs(struct amdtp_stream *s, struct pkt_desc *descs,
761 const __be32 *ctx_header, unsigned int packets,
762 const struct seq_desc *seq_descs,
763 unsigned int seq_size)
f4f6ae7b
TS
764{
765 unsigned int dbc = s->data_block_counter;
69efd5c4 766 unsigned int seq_index = s->ctx_data.rx.seq_index;
f4f6ae7b
TS
767 int i;
768
769 for (i = 0; i < packets; ++i) {
770 struct pkt_desc *desc = descs + i;
a0e02331 771 unsigned int index = (s->packet_index + i) % s->queue_size;
69efd5c4
TS
772 const struct seq_desc *seq = seq_descs + seq_index;
773 unsigned int syt;
f4f6ae7b 774
a0e02331 775 desc->cycle = compute_it_cycle(*ctx_header, s->queue_size);
69efd5c4
TS
776
777 syt = seq->syt_offset;
778 if (syt != CIP_SYT_NO_INFO) {
779 syt = compute_syt(syt, desc->cycle,
780 s->ctx_data.rx.transfer_delay);
83cfb5c5 781 }
69efd5c4
TS
782 desc->syt = syt;
783 desc->data_blocks = seq->data_blocks;
f4f6ae7b
TS
784
785 if (s->flags & CIP_DBC_IS_END_EVENT)
786 dbc = (dbc + desc->data_blocks) & 0xff;
787
788 desc->data_block_counter = dbc;
789
790 if (!(s->flags & CIP_DBC_IS_END_EVENT))
791 dbc = (dbc + desc->data_blocks) & 0xff;
792
793 desc->ctx_payload = s->buffer.packets[index].buffer;
794
69efd5c4
TS
795 seq_index = (seq_index + 1) % seq_size;
796
f4f6ae7b
TS
797 ++ctx_header;
798 }
799
800 s->data_block_counter = dbc;
69efd5c4 801 s->ctx_data.rx.seq_index = seq_index;
f4f6ae7b
TS
802}
803
fce9b013
TS
804static inline void cancel_stream(struct amdtp_stream *s)
805{
806 s->packet_index = -1;
2b3d2987 807 if (current_work() == &s->period_work)
fce9b013
TS
808 amdtp_stream_pcm_abort(s);
809 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
810}
811
0f5cfcb2
TS
812static void process_ctx_payloads(struct amdtp_stream *s,
813 const struct pkt_desc *descs,
814 unsigned int packets)
31ef9134 815{
9a738ad1
TS
816 struct snd_pcm_substream *pcm;
817 unsigned int pcm_frames;
5e2ece0f 818
9a738ad1
TS
819 pcm = READ_ONCE(s->pcm);
820 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
821 if (pcm)
822 update_pcm_pointers(s, pcm, pcm_frames);
0f5cfcb2
TS
823}
824
825static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
826 size_t header_length, void *header,
827 void *private_data)
828{
829 struct amdtp_stream *s = private_data;
69efd5c4 830 const struct amdtp_domain *d = s->domain;
0f5cfcb2 831 const __be32 *ctx_header = header;
60dd4929
TS
832 unsigned int events_per_period = s->ctx_data.rx.events_per_period;
833 unsigned int event_count = s->ctx_data.rx.event_count;
a0e02331 834 unsigned int packets;
0f5cfcb2
TS
835 int i;
836
837 if (s->packet_index < 0)
838 return;
839
a0e02331
TS
840 // Calculate the number of packets in buffer and check XRUN.
841 packets = header_length / sizeof(*ctx_header);
842
69efd5c4
TS
843 generate_pkt_descs(s, s->pkt_descs, ctx_header, packets, d->seq_descs,
844 d->seq_size);
0f5cfcb2
TS
845
846 process_ctx_payloads(s, s->pkt_descs, packets);
5e2ece0f
TS
847
848 for (i = 0; i < packets; ++i) {
849 const struct pkt_desc *desc = s->pkt_descs + i;
f4f6ae7b 850 unsigned int syt;
6bc1a269
TS
851 struct {
852 struct fw_iso_packet params;
853 __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
854 } template = { {0}, {0} };
e229853d 855 bool sched_irq = false;
31ef9134 856
f4f6ae7b
TS
857 if (s->ctx_data.rx.syt_override < 0)
858 syt = desc->syt;
859 else
3baf3053
TS
860 syt = s->ctx_data.rx.syt_override;
861
f4f6ae7b
TS
862 build_it_pkt_header(s, desc->cycle, &template.params,
863 desc->data_blocks, desc->data_block_counter,
864 syt, i);
6bc1a269 865
2472cfb3 866 if (s == s->domain->irq_target) {
60dd4929
TS
867 event_count += desc->data_blocks;
868 if (event_count >= events_per_period) {
869 event_count -= events_per_period;
870 sched_irq = true;
871 }
e229853d
TS
872 }
873
874 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
fce9b013 875 cancel_stream(s);
a4103bd7
TS
876 return;
877 }
ccccad86 878 }
a4103bd7 879
60dd4929 880 s->ctx_data.rx.event_count = event_count;
31ef9134
CL
881}
882
73fc7f08 883static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
2b3fc456
TS
884 size_t header_length, void *header,
885 void *private_data)
886{
887 struct amdtp_stream *s = private_data;
cc4f8e91 888 __be32 *ctx_header = header;
e229853d 889 unsigned int packets;
753e7179
TS
890 int i;
891 int err;
2b3fc456 892
a4103bd7
TS
893 if (s->packet_index < 0)
894 return;
895
a0e02331 896 // Calculate the number of packets in buffer and check XRUN.
d3d10a4a 897 packets = header_length / s->ctx_data.tx.ctx_header_size;
f90e2ded 898
753e7179
TS
899 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
900 if (err < 0) {
901 if (err != -EAGAIN) {
902 cancel_stream(s);
903 return;
904 }
5e2ece0f 905 } else {
0f5cfcb2 906 process_ctx_payloads(s, s->pkt_descs, packets);
5e2ece0f
TS
907 }
908
909 for (i = 0; i < packets; ++i) {
910 struct fw_iso_packet params = {0};
2b3fc456 911
60dd4929 912 if (queue_in_packet(s, &params) < 0) {
753e7179
TS
913 cancel_stream(s);
914 return;
915 }
7b3b0d85 916 }
60dd4929
TS
917}
918
1a4be183
TS
919static void pool_ideal_seq_descs(struct amdtp_domain *d, unsigned int packets)
920{
921 struct amdtp_stream *irq_target = d->irq_target;
922 unsigned int seq_tail = d->seq_tail;
923 unsigned int seq_size = d->seq_size;
924 unsigned int min_avail;
925 struct amdtp_stream *s;
926
927 min_avail = d->seq_size;
928 list_for_each_entry(s, &d->streams, list) {
929 unsigned int seq_index;
930 unsigned int avail;
931
932 if (s->direction == AMDTP_IN_STREAM)
933 continue;
934
935 seq_index = s->ctx_data.rx.seq_index;
936 avail = d->seq_tail;
937 if (seq_index > avail)
938 avail += d->seq_size;
939 avail -= seq_index;
940
941 if (avail < min_avail)
942 min_avail = avail;
943 }
944
945 while (min_avail < packets) {
946 struct seq_desc *desc = d->seq_descs + seq_tail;
947
948 desc->syt_offset = calculate_syt_offset(&d->last_syt_offset,
949 &d->syt_offset_state, irq_target->sfc);
950 desc->data_blocks = calculate_data_blocks(&d->data_block_state,
951 !!(irq_target->flags & CIP_BLOCKING),
952 desc->syt_offset == CIP_SYT_NO_INFO,
953 irq_target->syt_interval, irq_target->sfc);
954
955 ++seq_tail;
956 seq_tail %= seq_size;
957
958 ++min_avail;
959 }
960
961 d->seq_tail = seq_tail;
962}
963
2472cfb3
TS
964static void irq_target_callback(struct fw_iso_context *context, u32 tstamp,
965 size_t header_length, void *header,
966 void *private_data)
60dd4929 967{
2472cfb3
TS
968 struct amdtp_stream *irq_target = private_data;
969 struct amdtp_domain *d = irq_target->domain;
1a4be183 970 unsigned int packets = header_length / sizeof(__be32);
60dd4929
TS
971 struct amdtp_stream *s;
972
1a4be183
TS
973 // Record enough entries with extra 3 cycles at least.
974 pool_ideal_seq_descs(d, packets + 3);
975
60dd4929
TS
976 out_stream_callback(context, tstamp, header_length, header, irq_target);
977 if (amdtp_streaming_error(irq_target))
978 goto error;
7b3b0d85 979
60dd4929
TS
980 list_for_each_entry(s, &d->streams, list) {
981 if (s != irq_target && amdtp_stream_running(s)) {
982 fw_iso_context_flush_completions(s->context);
983 if (amdtp_streaming_error(s))
984 goto error;
985 }
986 }
987
988 return;
989error:
990 if (amdtp_stream_running(irq_target))
991 cancel_stream(irq_target);
992
993 list_for_each_entry(s, &d->streams, list) {
994 if (amdtp_stream_running(s))
995 cancel_stream(s);
996 }
2b3fc456
TS
997}
998
60dd4929 999// this is executed one time.
7b3b0d85 1000static void amdtp_stream_first_callback(struct fw_iso_context *context,
73fc7f08 1001 u32 tstamp, size_t header_length,
7b3b0d85
TS
1002 void *header, void *private_data)
1003{
1004 struct amdtp_stream *s = private_data;
26cd1e58 1005 const __be32 *ctx_header = header;
a04513f8 1006 u32 cycle;
7b3b0d85
TS
1007
1008 /*
1009 * For in-stream, first packet has come.
1010 * For out-stream, prepared to transmit first packet
1011 */
1012 s->callbacked = true;
1013 wake_up(&s->callback_wait);
1014
a04513f8 1015 if (s->direction == AMDTP_IN_STREAM) {
26cd1e58 1016 cycle = compute_cycle_count(ctx_header[1]);
cc4f8e91 1017
7b3b0d85 1018 context->callback.sc = in_stream_callback;
a04513f8 1019 } else {
a0e02331 1020 cycle = compute_it_cycle(*ctx_header, s->queue_size);
26cd1e58 1021
2472cfb3
TS
1022 if (s == s->domain->irq_target)
1023 context->callback.sc = irq_target_callback;
1024 else
1025 context->callback.sc = out_stream_callback;
a04513f8
TS
1026 }
1027
1028 s->start_cycle = cycle;
7b3b0d85 1029
73fc7f08 1030 context->callback.sc(context, tstamp, header_length, header, s);
7b3b0d85
TS
1031}
1032
31ef9134 1033/**
be4a2894
TS
1034 * amdtp_stream_start - start transferring packets
1035 * @s: the AMDTP stream to start
31ef9134
CL
1036 * @channel: the isochronous channel on the bus
1037 * @speed: firewire speed code
acfedcbe
TS
1038 * @start_cycle: the isochronous cycle to start the context. Start immediately
1039 * if negative value is given.
af86b0b1
TS
1040 * @queue_size: The number of packets in the queue.
1041 * @idle_irq_interval: the interval to queue packet during initial state.
31ef9134
CL
1042 *
1043 * The stream cannot be started until it has been configured with
be4a2894
TS
1044 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1045 * device can be started.
31ef9134 1046 */
a0e02331 1047static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
af86b0b1
TS
1048 int start_cycle, unsigned int queue_size,
1049 unsigned int idle_irq_interval)
31ef9134 1050{
2472cfb3 1051 bool is_irq_target = (s == s->domain->irq_target);
d3d10a4a 1052 unsigned int ctx_header_size;
f11453c7 1053 unsigned int max_ctx_payload_size;
2b3fc456 1054 enum dma_data_direction dir;
7ab56645 1055 int type, tag, err;
31ef9134
CL
1056
1057 mutex_lock(&s->mutex);
1058
be4a2894 1059 if (WARN_ON(amdtp_stream_running(s) ||
4b7da117 1060 (s->data_block_quadlets < 1))) {
31ef9134
CL
1061 err = -EBADFD;
1062 goto err_unlock;
1063 }
1064
d3d10a4a 1065 if (s->direction == AMDTP_IN_STREAM) {
60dd4929
TS
1066 // NOTE: IT context should be used for constant IRQ.
1067 if (is_irq_target) {
1068 err = -EINVAL;
1069 goto err_unlock;
1070 }
1071
b6bc8123 1072 s->data_block_counter = UINT_MAX;
d3d10a4a 1073 } else {
b6bc8123 1074 s->data_block_counter = 0;
d3d10a4a 1075 }
31ef9134 1076
1be4f21d
TS
1077 // initialize packet buffer.
1078 max_ctx_payload_size = amdtp_stream_get_max_payload(s);
2b3fc456
TS
1079 if (s->direction == AMDTP_IN_STREAM) {
1080 dir = DMA_FROM_DEVICE;
1081 type = FW_ISO_CONTEXT_RECEIVE;
1be4f21d
TS
1082 if (!(s->flags & CIP_NO_HEADER)) {
1083 max_ctx_payload_size -= 8;
f11453c7 1084 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1be4f21d 1085 } else {
f11453c7 1086 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1be4f21d 1087 }
2b3fc456
TS
1088 } else {
1089 dir = DMA_TO_DEVICE;
1090 type = FW_ISO_CONTEXT_TRANSMIT;
df9160b9 1091 ctx_header_size = 0; // No effect for IT context.
f11453c7 1092
b18f0cfa
TS
1093 if (!(s->flags & CIP_NO_HEADER))
1094 max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
1095 }
f11453c7 1096
af86b0b1 1097 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size,
f11453c7 1098 max_ctx_payload_size, dir);
31ef9134
CL
1099 if (err < 0)
1100 goto err_unlock;
af86b0b1 1101 s->queue_size = queue_size;
60dd4929 1102
31ef9134 1103 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
d3d10a4a 1104 type, channel, speed, ctx_header_size,
2472cfb3 1105 amdtp_stream_first_callback, s);
31ef9134
CL
1106 if (IS_ERR(s->context)) {
1107 err = PTR_ERR(s->context);
1108 if (err == -EBUSY)
1109 dev_err(&s->unit->device,
be4a2894 1110 "no free stream on this controller\n");
31ef9134
CL
1111 goto err_buffer;
1112 }
1113
be4a2894 1114 amdtp_stream_update(s);
31ef9134 1115
d3d10a4a 1116 if (s->direction == AMDTP_IN_STREAM) {
f11453c7 1117 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
d3d10a4a
TS
1118 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1119 }
52759c09 1120
3b196c39
TS
1121 if (s->flags & CIP_NO_HEADER)
1122 s->tag = TAG_NO_CIP_HEADER;
1123 else
1124 s->tag = TAG_CIP;
1125
a0e02331 1126 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
04130cf8
TS
1127 GFP_KERNEL);
1128 if (!s->pkt_descs) {
1129 err = -ENOMEM;
1130 goto err_context;
1131 }
1132
ec00f5e4 1133 s->packet_index = 0;
4b7da117 1134 do {
6007bf54 1135 struct fw_iso_packet params;
e229853d 1136
b18f0cfa 1137 if (s->direction == AMDTP_IN_STREAM) {
60dd4929 1138 err = queue_in_packet(s, &params);
b18f0cfa 1139 } else {
60dd4929
TS
1140 bool sched_irq = false;
1141
b18f0cfa
TS
1142 params.header_length = 0;
1143 params.payload_length = 0;
60dd4929
TS
1144
1145 if (is_irq_target) {
1146 sched_irq = !((s->packet_index + 1) %
1147 idle_irq_interval);
1148 }
1149
e229853d 1150 err = queue_out_packet(s, &params, sched_irq);
b18f0cfa 1151 }
4b7da117 1152 if (err < 0)
04130cf8 1153 goto err_pkt_descs;
4b7da117 1154 } while (s->packet_index > 0);
31ef9134 1155
2b3fc456 1156 /* NOTE: TAG1 matches CIP. This just affects in stream. */
7ab56645 1157 tag = FW_ISO_CONTEXT_MATCH_TAG1;
3b196c39 1158 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
7ab56645
TS
1159 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1160
7b3b0d85 1161 s->callbacked = false;
acfedcbe 1162 err = fw_iso_context_start(s->context, start_cycle, 0, tag);
31ef9134 1163 if (err < 0)
04130cf8 1164 goto err_pkt_descs;
31ef9134
CL
1165
1166 mutex_unlock(&s->mutex);
1167
1168 return 0;
04130cf8
TS
1169err_pkt_descs:
1170 kfree(s->pkt_descs);
31ef9134
CL
1171err_context:
1172 fw_iso_context_destroy(s->context);
1173 s->context = ERR_PTR(-1);
1174err_buffer:
1175 iso_packets_buffer_destroy(&s->buffer, s->unit);
1176err_unlock:
1177 mutex_unlock(&s->mutex);
1178
1179 return err;
1180}
31ef9134 1181
e9148ddd 1182/**
f890f9a0
TS
1183 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1184 * @d: the AMDTP domain.
be4a2894 1185 * @s: the AMDTP stream that transports the PCM data
e9148ddd
CL
1186 *
1187 * Returns the current buffer position, in frames.
1188 */
f890f9a0
TS
1189unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1190 struct amdtp_stream *s)
e9148ddd 1191{
f890f9a0
TS
1192 struct amdtp_stream *irq_target = d->irq_target;
1193
1194 if (irq_target && amdtp_stream_running(irq_target)) {
1195 // This function is called in software IRQ context of
2b3d2987 1196 // period_work or process context.
f890f9a0
TS
1197 //
1198 // When the software IRQ context was scheduled by software IRQ
1199 // context of IT contexts, queued packets were already handled.
1200 // Therefore, no need to flush the queue in buffer furthermore.
1201 //
1202 // When the process context reach here, some packets will be
1203 // already queued in the buffer. These packets should be handled
1204 // immediately to keep better granularity of PCM pointer.
1205 //
1206 // Later, the process context will sometimes schedules software
2b3d2987 1207 // IRQ context of the period_work. Then, no need to flush the
f890f9a0 1208 // queue by the same reason as described in the above
2b3d2987 1209 if (current_work() != &s->period_work) {
f890f9a0
TS
1210 // Queued packet should be processed without any kernel
1211 // preemption to keep latency against bus cycle.
1212 preempt_disable();
1213 fw_iso_context_flush_completions(irq_target->context);
1214 preempt_enable();
1215 }
1216 }
e9148ddd 1217
6aa7de05 1218 return READ_ONCE(s->pcm_buffer_pointer);
e9148ddd 1219}
f890f9a0 1220EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
e9148ddd 1221
875becf8 1222/**
e6dcc92f
TS
1223 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1224 * @d: the AMDTP domain.
875becf8
TS
1225 * @s: the AMDTP stream that transfers the PCM frames
1226 *
1227 * Returns zero always.
1228 */
e6dcc92f 1229int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
875becf8 1230{
e6dcc92f
TS
1231 struct amdtp_stream *irq_target = d->irq_target;
1232
1233 // Process isochronous packets for recent isochronous cycle to handle
1234 // queued PCM frames.
1235 if (irq_target && amdtp_stream_running(irq_target)) {
1236 // Queued packet should be processed without any kernel
1237 // preemption to keep latency against bus cycle.
1238 preempt_disable();
1239 fw_iso_context_flush_completions(irq_target->context);
1240 preempt_enable();
1241 }
875becf8
TS
1242
1243 return 0;
1244}
e6dcc92f 1245EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
875becf8 1246
31ef9134 1247/**
be4a2894
TS
1248 * amdtp_stream_update - update the stream after a bus reset
1249 * @s: the AMDTP stream
31ef9134 1250 */
be4a2894 1251void amdtp_stream_update(struct amdtp_stream *s)
31ef9134 1252{
9a2820c1 1253 /* Precomputing. */
6aa7de05
MR
1254 WRITE_ONCE(s->source_node_id_field,
1255 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
31ef9134 1256}
be4a2894 1257EXPORT_SYMBOL(amdtp_stream_update);
31ef9134
CL
1258
1259/**
be4a2894
TS
1260 * amdtp_stream_stop - stop sending packets
1261 * @s: the AMDTP stream to stop
31ef9134
CL
1262 *
1263 * All PCM and MIDI devices of the stream must be stopped before the stream
1264 * itself can be stopped.
1265 */
74f94e41 1266static void amdtp_stream_stop(struct amdtp_stream *s)
31ef9134
CL
1267{
1268 mutex_lock(&s->mutex);
1269
be4a2894 1270 if (!amdtp_stream_running(s)) {
31ef9134
CL
1271 mutex_unlock(&s->mutex);
1272 return;
1273 }
1274
2b3d2987 1275 cancel_work_sync(&s->period_work);
31ef9134
CL
1276 fw_iso_context_stop(s->context);
1277 fw_iso_context_destroy(s->context);
1278 s->context = ERR_PTR(-1);
1279 iso_packets_buffer_destroy(&s->buffer, s->unit);
04130cf8 1280 kfree(s->pkt_descs);
31ef9134 1281
7b3b0d85
TS
1282 s->callbacked = false;
1283
31ef9134
CL
1284 mutex_unlock(&s->mutex);
1285}
31ef9134
CL
1286
1287/**
be4a2894 1288 * amdtp_stream_pcm_abort - abort the running PCM device
31ef9134
CL
1289 * @s: the AMDTP stream about to be stopped
1290 *
1291 * If the isochronous stream needs to be stopped asynchronously, call this
1292 * function first to stop the PCM device.
1293 */
be4a2894 1294void amdtp_stream_pcm_abort(struct amdtp_stream *s)
31ef9134
CL
1295{
1296 struct snd_pcm_substream *pcm;
1297
6aa7de05 1298 pcm = READ_ONCE(s->pcm);
1fb8510c
TI
1299 if (pcm)
1300 snd_pcm_stop_xrun(pcm);
31ef9134 1301}
be4a2894 1302EXPORT_SYMBOL(amdtp_stream_pcm_abort);
3ec3d7a3
TS
1303
1304/**
1305 * amdtp_domain_init - initialize an AMDTP domain structure
1306 * @d: the AMDTP domain to initialize.
1307 */
1308int amdtp_domain_init(struct amdtp_domain *d)
1309{
1310 INIT_LIST_HEAD(&d->streams);
1311
d68c3123
TS
1312 d->events_per_period = 0;
1313
25babf29
TS
1314 d->seq_descs = NULL;
1315
3ec3d7a3
TS
1316 return 0;
1317}
1318EXPORT_SYMBOL_GPL(amdtp_domain_init);
1319
1320/**
1321 * amdtp_domain_destroy - destroy an AMDTP domain structure
1322 * @d: the AMDTP domain to destroy.
1323 */
1324void amdtp_domain_destroy(struct amdtp_domain *d)
1325{
8d0d5c3f
TS
1326 // At present nothing to do.
1327 return;
3ec3d7a3
TS
1328}
1329EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
6261f90b 1330
157a53ee
TS
1331/**
1332 * amdtp_domain_add_stream - register isoc context into the domain.
1333 * @d: the AMDTP domain.
1334 * @s: the AMDTP stream.
1335 * @channel: the isochronous channel on the bus.
1336 * @speed: firewire speed code.
1337 */
1338int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1339 int channel, int speed)
1340{
1341 struct amdtp_stream *tmp;
1342
1343 list_for_each_entry(tmp, &d->streams, list) {
1344 if (s == tmp)
1345 return -EBUSY;
1346 }
1347
1348 list_add(&s->list, &d->streams);
1349
1350 s->channel = channel;
1351 s->speed = speed;
2472cfb3 1352 s->domain = d;
157a53ee
TS
1353
1354 return 0;
1355}
1356EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1357
acfedcbe
TS
1358static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle)
1359{
1360 int generation;
1361 int rcode;
1362 __be32 reg;
1363 u32 data;
1364
1365 // This is a request to local 1394 OHCI controller and expected to
1366 // complete without any event waiting.
1367 generation = fw_card->generation;
1368 smp_rmb(); // node_id vs. generation.
1369 rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST,
1370 fw_card->node_id, generation, SCODE_100,
1371 CSR_REGISTER_BASE + CSR_CYCLE_TIME,
1372 &reg, sizeof(reg));
1373 if (rcode != RCODE_COMPLETE)
1374 return -EIO;
1375
1376 data = be32_to_cpu(reg);
1377 *cur_cycle = data >> 12;
1378
1379 return 0;
1380}
1381
9b4702b0
TS
1382/**
1383 * amdtp_domain_start - start sending packets for isoc context in the domain.
1384 * @d: the AMDTP domain.
acfedcbe 1385 * @ir_delay_cycle: the cycle delay to start all IR contexts.
9b4702b0 1386 */
acfedcbe 1387int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle)
9b4702b0 1388{
1a4be183
TS
1389 static const struct {
1390 unsigned int data_block;
1391 unsigned int syt_offset;
1392 } *entry, initial_state[] = {
1393 [CIP_SFC_32000] = { 4, 3072 },
1394 [CIP_SFC_48000] = { 6, 1024 },
1395 [CIP_SFC_96000] = { 12, 1024 },
1396 [CIP_SFC_192000] = { 24, 1024 },
1397 [CIP_SFC_44100] = { 0, 67 },
1398 [CIP_SFC_88200] = { 0, 67 },
1399 [CIP_SFC_176400] = { 0, 67 },
1400 };
af86b0b1
TS
1401 unsigned int events_per_buffer = d->events_per_buffer;
1402 unsigned int events_per_period = d->events_per_period;
1403 unsigned int idle_irq_interval;
1404 unsigned int queue_size;
9b4702b0 1405 struct amdtp_stream *s;
acfedcbe
TS
1406 int cycle;
1407 int err;
9b4702b0 1408
60dd4929 1409 // Select an IT context as IRQ target.
9b4702b0 1410 list_for_each_entry(s, &d->streams, list) {
60dd4929 1411 if (s->direction == AMDTP_OUT_STREAM)
9b4702b0
TS
1412 break;
1413 }
60dd4929
TS
1414 if (!s)
1415 return -ENXIO;
1416 d->irq_target = s;
9b4702b0 1417
af86b0b1
TS
1418 // This is a case that AMDTP streams in domain run just for MIDI
1419 // substream. Use the number of events equivalent to 10 msec as
1420 // interval of hardware IRQ.
1421 if (events_per_period == 0)
1422 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1423 if (events_per_buffer == 0)
1424 events_per_buffer = events_per_period * 3;
1425
1426 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1427 amdtp_rate_table[d->irq_target->sfc]);
1428
25babf29
TS
1429 d->seq_descs = kcalloc(queue_size, sizeof(*d->seq_descs), GFP_KERNEL);
1430 if (!d->seq_descs)
1431 return -ENOMEM;
1432 d->seq_size = queue_size;
1433 d->seq_tail = 0;
1434
1a4be183
TS
1435 entry = &initial_state[s->sfc];
1436 d->data_block_state = entry->data_block;
1437 d->syt_offset_state = entry->syt_offset;
1438 d->last_syt_offset = TICKS_PER_CYCLE;
1439
acfedcbe
TS
1440 if (ir_delay_cycle > 0) {
1441 struct fw_card *fw_card = fw_parent_device(s->unit)->card;
1442
1443 err = get_current_cycle_time(fw_card, &cycle);
1444 if (err < 0)
25babf29 1445 goto error;
acfedcbe
TS
1446
1447 // No need to care overflow in cycle field because of enough
1448 // width.
1449 cycle += ir_delay_cycle;
1450
1451 // Round up to sec field.
1452 if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) {
1453 unsigned int sec;
1454
1455 // The sec field can overflow.
1456 sec = (cycle & 0xffffe000) >> 13;
1457 cycle = (++sec << 13) |
1458 ((cycle & 0x00001fff) / CYCLES_PER_SECOND);
1459 }
1460
1461 // In OHCI 1394 specification, lower 2 bits are available for
1462 // sec field.
1463 cycle &= 0x00007fff;
1464 } else {
1465 cycle = -1;
1466 }
1467
60dd4929 1468 list_for_each_entry(s, &d->streams, list) {
acfedcbe
TS
1469 int cycle_match;
1470
1471 if (s->direction == AMDTP_IN_STREAM) {
1472 cycle_match = cycle;
1473 } else {
1474 // IT context starts immediately.
1475 cycle_match = -1;
1a4be183 1476 s->ctx_data.rx.seq_index = 0;
acfedcbe
TS
1477 }
1478
60dd4929 1479 if (s != d->irq_target) {
2472cfb3 1480 err = amdtp_stream_start(s, s->channel, s->speed,
af86b0b1 1481 cycle_match, queue_size, 0);
60dd4929
TS
1482 if (err < 0)
1483 goto error;
1484 }
9b4702b0
TS
1485 }
1486
60dd4929 1487 s = d->irq_target;
af86b0b1
TS
1488 s->ctx_data.rx.events_per_period = events_per_period;
1489 s->ctx_data.rx.event_count = 0;
1a4be183 1490 s->ctx_data.rx.seq_index = 0;
af86b0b1
TS
1491
1492 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1493 amdtp_rate_table[d->irq_target->sfc]);
1494 err = amdtp_stream_start(s, s->channel, s->speed, -1, queue_size,
1495 idle_irq_interval);
60dd4929
TS
1496 if (err < 0)
1497 goto error;
1498
1499 return 0;
1500error:
1501 list_for_each_entry(s, &d->streams, list)
1502 amdtp_stream_stop(s);
25babf29
TS
1503 kfree(d->seq_descs);
1504 d->seq_descs = NULL;
9b4702b0
TS
1505 return err;
1506}
1507EXPORT_SYMBOL_GPL(amdtp_domain_start);
1508
6261f90b
TS
1509/**
1510 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1511 * @d: the AMDTP domain to which the isoc contexts belong.
1512 */
1513void amdtp_domain_stop(struct amdtp_domain *d)
1514{
1515 struct amdtp_stream *s, *next;
1516
60dd4929
TS
1517 if (d->irq_target)
1518 amdtp_stream_stop(d->irq_target);
1519
6261f90b
TS
1520 list_for_each_entry_safe(s, next, &d->streams, list) {
1521 list_del(&s->list);
1522
60dd4929
TS
1523 if (s != d->irq_target)
1524 amdtp_stream_stop(s);
6261f90b 1525 }
d68c3123
TS
1526
1527 d->events_per_period = 0;
60dd4929 1528 d->irq_target = NULL;
25babf29
TS
1529
1530 kfree(d->seq_descs);
1531 d->seq_descs = NULL;
6261f90b
TS
1532}
1533EXPORT_SYMBOL_GPL(amdtp_domain_stop);