SELinux: standardize return code handling in selinuxfs.c
[linux-2.6-block.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5d55a345 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
5d55a345 14 * Added conditional policy language extensions
1da177e4 15 *
7420ed23
VY
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 * Added support for NetLabel
3bb56b25 19 * Added support for the policy capability bitmap
7420ed23 20 *
b94c7e67
CS
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
44c2d9bd
KK
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
0719aaf5
GT
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
44c2d9bd 33 * Copyright (C) 2008, 2009 NEC Corporation
3bb56b25 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
376bd9cb 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
b94c7e67 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
1da177e4
LT
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
5d55a345 39 * it under the terms of the GNU General Public License as published by
1da177e4
LT
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
9f2ad665 46#include <linux/rcupdate.h>
1da177e4
LT
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
bb003079 51#include <linux/mutex.h>
0e55a004 52#include <linux/selinux.h>
6371dcd3 53#include <linux/flex_array.h>
f0d3d989 54#include <linux/vmalloc.h>
7420ed23 55#include <net/netlabel.h>
bb003079 56
1da177e4
LT
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
7420ed23 67#include "objsec.h"
c60475bf 68#include "netlabel.h"
3de4bab5 69#include "xfrm.h"
02752760 70#include "ebitmap.h"
9d57a7f9 71#include "audit.h"
1da177e4
LT
72
73extern void selnl_notify_policyload(u32 seqno);
1da177e4 74
3bb56b25 75int selinux_policycap_netpeer;
b0c636b9 76int selinux_policycap_openperm;
3bb56b25 77
1da177e4 78static DEFINE_RWLOCK(policy_rwlock);
1da177e4
LT
79
80static struct sidtab sidtab;
81struct policydb policydb;
5d55a345 82int ss_initialized;
1da177e4
LT
83
84/*
85 * The largest sequence number that has been used when
86 * providing an access decision to the access vector cache.
87 * The sequence number only changes when a policy change
88 * occurs.
89 */
5d55a345 90static u32 latest_granting;
1da177e4
LT
91
92/* Forward declaration. */
93static int context_struct_to_string(struct context *context, char **scontext,
94 u32 *scontext_len);
95
19439d05
SS
96static void context_struct_compute_av(struct context *scontext,
97 struct context *tcontext,
98 u16 tclass,
99 struct av_decision *avd);
c6d3aaa4
SS
100
101struct selinux_mapping {
102 u16 value; /* policy value */
103 unsigned num_perms;
104 u32 perms[sizeof(u32) * 8];
105};
106
107static struct selinux_mapping *current_mapping;
108static u16 current_mapping_size;
109
110static int selinux_set_mapping(struct policydb *pol,
111 struct security_class_mapping *map,
112 struct selinux_mapping **out_map_p,
113 u16 *out_map_size)
114{
115 struct selinux_mapping *out_map = NULL;
116 size_t size = sizeof(struct selinux_mapping);
117 u16 i, j;
118 unsigned k;
119 bool print_unknown_handle = false;
120
121 /* Find number of classes in the input mapping */
122 if (!map)
123 return -EINVAL;
124 i = 0;
125 while (map[i].name)
126 i++;
127
128 /* Allocate space for the class records, plus one for class zero */
129 out_map = kcalloc(++i, size, GFP_ATOMIC);
130 if (!out_map)
131 return -ENOMEM;
132
133 /* Store the raw class and permission values */
134 j = 0;
135 while (map[j].name) {
136 struct security_class_mapping *p_in = map + (j++);
137 struct selinux_mapping *p_out = out_map + j;
138
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in->name, "")) {
141 p_out->num_perms = 0;
142 continue;
143 }
144
145 p_out->value = string_to_security_class(pol, p_in->name);
146 if (!p_out->value) {
147 printk(KERN_INFO
148 "SELinux: Class %s not defined in policy.\n",
149 p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 p_out->num_perms = 0;
153 print_unknown_handle = true;
154 continue;
155 }
156
157 k = 0;
158 while (p_in->perms && p_in->perms[k]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in->perms[k]) {
161 k++;
162 continue;
163 }
164 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 p_in->perms[k]);
166 if (!p_out->perms[k]) {
167 printk(KERN_INFO
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in->perms[k], p_in->name);
170 if (pol->reject_unknown)
171 goto err;
172 print_unknown_handle = true;
173 }
174
175 k++;
176 }
177 p_out->num_perms = k;
178 }
179
180 if (print_unknown_handle)
181 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 pol->allow_unknown ? "allowed" : "denied");
183
184 *out_map_p = out_map;
185 *out_map_size = i;
186 return 0;
187err:
188 kfree(out_map);
189 return -EINVAL;
190}
191
192/*
193 * Get real, policy values from mapped values
194 */
195
196static u16 unmap_class(u16 tclass)
197{
198 if (tclass < current_mapping_size)
199 return current_mapping[tclass].value;
200
201 return tclass;
202}
203
c6d3aaa4
SS
204static void map_decision(u16 tclass, struct av_decision *avd,
205 int allow_unknown)
206{
207 if (tclass < current_mapping_size) {
208 unsigned i, n = current_mapping[tclass].num_perms;
209 u32 result;
210
211 for (i = 0, result = 0; i < n; i++) {
212 if (avd->allowed & current_mapping[tclass].perms[i])
213 result |= 1<<i;
214 if (allow_unknown && !current_mapping[tclass].perms[i])
215 result |= 1<<i;
216 }
217 avd->allowed = result;
218
219 for (i = 0, result = 0; i < n; i++)
220 if (avd->auditallow & current_mapping[tclass].perms[i])
221 result |= 1<<i;
222 avd->auditallow = result;
223
224 for (i = 0, result = 0; i < n; i++) {
225 if (avd->auditdeny & current_mapping[tclass].perms[i])
226 result |= 1<<i;
227 if (!allow_unknown && !current_mapping[tclass].perms[i])
228 result |= 1<<i;
229 }
0bce9527
EP
230 /*
231 * In case the kernel has a bug and requests a permission
232 * between num_perms and the maximum permission number, we
233 * should audit that denial
234 */
235 for (; i < (sizeof(u32)*8); i++)
236 result |= 1<<i;
c6d3aaa4
SS
237 avd->auditdeny = result;
238 }
239}
240
0719aaf5
GT
241int security_mls_enabled(void)
242{
243 return policydb.mls_enabled;
244}
c6d3aaa4 245
1da177e4
LT
246/*
247 * Return the boolean value of a constraint expression
248 * when it is applied to the specified source and target
249 * security contexts.
250 *
251 * xcontext is a special beast... It is used by the validatetrans rules
252 * only. For these rules, scontext is the context before the transition,
253 * tcontext is the context after the transition, and xcontext is the context
254 * of the process performing the transition. All other callers of
255 * constraint_expr_eval should pass in NULL for xcontext.
256 */
257static int constraint_expr_eval(struct context *scontext,
258 struct context *tcontext,
259 struct context *xcontext,
260 struct constraint_expr *cexpr)
261{
262 u32 val1, val2;
263 struct context *c;
264 struct role_datum *r1, *r2;
265 struct mls_level *l1, *l2;
266 struct constraint_expr *e;
267 int s[CEXPR_MAXDEPTH];
268 int sp = -1;
269
270 for (e = cexpr; e; e = e->next) {
271 switch (e->expr_type) {
272 case CEXPR_NOT:
273 BUG_ON(sp < 0);
274 s[sp] = !s[sp];
275 break;
276 case CEXPR_AND:
277 BUG_ON(sp < 1);
278 sp--;
c1a7368a 279 s[sp] &= s[sp + 1];
1da177e4
LT
280 break;
281 case CEXPR_OR:
282 BUG_ON(sp < 1);
283 sp--;
c1a7368a 284 s[sp] |= s[sp + 1];
1da177e4
LT
285 break;
286 case CEXPR_ATTR:
c1a7368a 287 if (sp == (CEXPR_MAXDEPTH - 1))
1da177e4
LT
288 return 0;
289 switch (e->attr) {
290 case CEXPR_USER:
291 val1 = scontext->user;
292 val2 = tcontext->user;
293 break;
294 case CEXPR_TYPE:
295 val1 = scontext->type;
296 val2 = tcontext->type;
297 break;
298 case CEXPR_ROLE:
299 val1 = scontext->role;
300 val2 = tcontext->role;
301 r1 = policydb.role_val_to_struct[val1 - 1];
302 r2 = policydb.role_val_to_struct[val2 - 1];
303 switch (e->op) {
304 case CEXPR_DOM:
305 s[++sp] = ebitmap_get_bit(&r1->dominates,
306 val2 - 1);
307 continue;
308 case CEXPR_DOMBY:
309 s[++sp] = ebitmap_get_bit(&r2->dominates,
310 val1 - 1);
311 continue;
312 case CEXPR_INCOMP:
5d55a345
EP
313 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
314 val2 - 1) &&
315 !ebitmap_get_bit(&r2->dominates,
316 val1 - 1));
1da177e4
LT
317 continue;
318 default:
319 break;
320 }
321 break;
322 case CEXPR_L1L2:
323 l1 = &(scontext->range.level[0]);
324 l2 = &(tcontext->range.level[0]);
325 goto mls_ops;
326 case CEXPR_L1H2:
327 l1 = &(scontext->range.level[0]);
328 l2 = &(tcontext->range.level[1]);
329 goto mls_ops;
330 case CEXPR_H1L2:
331 l1 = &(scontext->range.level[1]);
332 l2 = &(tcontext->range.level[0]);
333 goto mls_ops;
334 case CEXPR_H1H2:
335 l1 = &(scontext->range.level[1]);
336 l2 = &(tcontext->range.level[1]);
337 goto mls_ops;
338 case CEXPR_L1H1:
339 l1 = &(scontext->range.level[0]);
340 l2 = &(scontext->range.level[1]);
341 goto mls_ops;
342 case CEXPR_L2H2:
343 l1 = &(tcontext->range.level[0]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346mls_ops:
347 switch (e->op) {
348 case CEXPR_EQ:
349 s[++sp] = mls_level_eq(l1, l2);
350 continue;
351 case CEXPR_NEQ:
352 s[++sp] = !mls_level_eq(l1, l2);
353 continue;
354 case CEXPR_DOM:
355 s[++sp] = mls_level_dom(l1, l2);
356 continue;
357 case CEXPR_DOMBY:
358 s[++sp] = mls_level_dom(l2, l1);
359 continue;
360 case CEXPR_INCOMP:
361 s[++sp] = mls_level_incomp(l2, l1);
362 continue;
363 default:
364 BUG();
365 return 0;
366 }
367 break;
368 default:
369 BUG();
370 return 0;
371 }
372
373 switch (e->op) {
374 case CEXPR_EQ:
375 s[++sp] = (val1 == val2);
376 break;
377 case CEXPR_NEQ:
378 s[++sp] = (val1 != val2);
379 break;
380 default:
381 BUG();
382 return 0;
383 }
384 break;
385 case CEXPR_NAMES:
386 if (sp == (CEXPR_MAXDEPTH-1))
387 return 0;
388 c = scontext;
389 if (e->attr & CEXPR_TARGET)
390 c = tcontext;
391 else if (e->attr & CEXPR_XTARGET) {
392 c = xcontext;
393 if (!c) {
394 BUG();
395 return 0;
396 }
397 }
398 if (e->attr & CEXPR_USER)
399 val1 = c->user;
400 else if (e->attr & CEXPR_ROLE)
401 val1 = c->role;
402 else if (e->attr & CEXPR_TYPE)
403 val1 = c->type;
404 else {
405 BUG();
406 return 0;
407 }
408
409 switch (e->op) {
410 case CEXPR_EQ:
411 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
412 break;
413 case CEXPR_NEQ:
414 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
415 break;
416 default:
417 BUG();
418 return 0;
419 }
420 break;
421 default:
422 BUG();
423 return 0;
424 }
425 }
426
427 BUG_ON(sp != 0);
428 return s[0];
429}
430
44c2d9bd
KK
431/*
432 * security_dump_masked_av - dumps masked permissions during
433 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
434 */
435static int dump_masked_av_helper(void *k, void *d, void *args)
436{
437 struct perm_datum *pdatum = d;
438 char **permission_names = args;
439
440 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
441
442 permission_names[pdatum->value - 1] = (char *)k;
443
444 return 0;
445}
446
447static void security_dump_masked_av(struct context *scontext,
448 struct context *tcontext,
449 u16 tclass,
450 u32 permissions,
451 const char *reason)
452{
453 struct common_datum *common_dat;
454 struct class_datum *tclass_dat;
455 struct audit_buffer *ab;
456 char *tclass_name;
457 char *scontext_name = NULL;
458 char *tcontext_name = NULL;
459 char *permission_names[32];
2da5d31b
JM
460 int index;
461 u32 length;
44c2d9bd
KK
462 bool need_comma = false;
463
464 if (!permissions)
465 return;
466
467 tclass_name = policydb.p_class_val_to_name[tclass - 1];
468 tclass_dat = policydb.class_val_to_struct[tclass - 1];
469 common_dat = tclass_dat->comdatum;
470
471 /* init permission_names */
472 if (common_dat &&
473 hashtab_map(common_dat->permissions.table,
474 dump_masked_av_helper, permission_names) < 0)
475 goto out;
476
477 if (hashtab_map(tclass_dat->permissions.table,
478 dump_masked_av_helper, permission_names) < 0)
479 goto out;
480
481 /* get scontext/tcontext in text form */
482 if (context_struct_to_string(scontext,
483 &scontext_name, &length) < 0)
484 goto out;
485
486 if (context_struct_to_string(tcontext,
487 &tcontext_name, &length) < 0)
488 goto out;
489
490 /* audit a message */
491 ab = audit_log_start(current->audit_context,
492 GFP_ATOMIC, AUDIT_SELINUX_ERR);
493 if (!ab)
494 goto out;
495
496 audit_log_format(ab, "op=security_compute_av reason=%s "
497 "scontext=%s tcontext=%s tclass=%s perms=",
498 reason, scontext_name, tcontext_name, tclass_name);
499
500 for (index = 0; index < 32; index++) {
501 u32 mask = (1 << index);
502
503 if ((mask & permissions) == 0)
504 continue;
505
506 audit_log_format(ab, "%s%s",
507 need_comma ? "," : "",
508 permission_names[index]
509 ? permission_names[index] : "????");
510 need_comma = true;
511 }
512 audit_log_end(ab);
513out:
514 /* release scontext/tcontext */
515 kfree(tcontext_name);
516 kfree(scontext_name);
517
518 return;
519}
520
d9250dea
KK
521/*
522 * security_boundary_permission - drops violated permissions
523 * on boundary constraint.
524 */
525static void type_attribute_bounds_av(struct context *scontext,
526 struct context *tcontext,
527 u16 tclass,
d9250dea
KK
528 struct av_decision *avd)
529{
2ae3ba39
KK
530 struct context lo_scontext;
531 struct context lo_tcontext;
532 struct av_decision lo_avd;
d9250dea
KK
533 struct type_datum *source
534 = policydb.type_val_to_struct[scontext->type - 1];
2ae3ba39
KK
535 struct type_datum *target
536 = policydb.type_val_to_struct[tcontext->type - 1];
537 u32 masked = 0;
d9250dea
KK
538
539 if (source->bounds) {
540 memset(&lo_avd, 0, sizeof(lo_avd));
541
542 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
543 lo_scontext.type = source->bounds;
544
545 context_struct_compute_av(&lo_scontext,
546 tcontext,
547 tclass,
d9250dea
KK
548 &lo_avd);
549 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
550 return; /* no masked permission */
551 masked = ~lo_avd.allowed & avd->allowed;
2ae3ba39
KK
552 }
553
554 if (target->bounds) {
555 memset(&lo_avd, 0, sizeof(lo_avd));
556
557 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
558 lo_tcontext.type = target->bounds;
559
560 context_struct_compute_av(scontext,
561 &lo_tcontext,
562 tclass,
563 &lo_avd);
564 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
565 return; /* no masked permission */
566 masked = ~lo_avd.allowed & avd->allowed;
567 }
568
569 if (source->bounds && target->bounds) {
570 memset(&lo_avd, 0, sizeof(lo_avd));
571 /*
572 * lo_scontext and lo_tcontext are already
573 * set up.
574 */
575
576 context_struct_compute_av(&lo_scontext,
577 &lo_tcontext,
578 tclass,
579 &lo_avd);
580 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
581 return; /* no masked permission */
582 masked = ~lo_avd.allowed & avd->allowed;
583 }
d9250dea 584
2ae3ba39 585 if (masked) {
d9250dea
KK
586 /* mask violated permissions */
587 avd->allowed &= ~masked;
588
44c2d9bd
KK
589 /* audit masked permissions */
590 security_dump_masked_av(scontext, tcontext,
591 tclass, masked, "bounds");
d9250dea
KK
592 }
593}
594
1da177e4
LT
595/*
596 * Compute access vectors based on a context structure pair for
597 * the permissions in a particular class.
598 */
19439d05
SS
599static void context_struct_compute_av(struct context *scontext,
600 struct context *tcontext,
601 u16 tclass,
602 struct av_decision *avd)
1da177e4
LT
603{
604 struct constraint_node *constraint;
605 struct role_allow *ra;
606 struct avtab_key avkey;
782ebb99 607 struct avtab_node *node;
1da177e4 608 struct class_datum *tclass_datum;
782ebb99
SS
609 struct ebitmap *sattr, *tattr;
610 struct ebitmap_node *snode, *tnode;
611 unsigned int i, j;
1da177e4 612
1da177e4 613 avd->allowed = 0;
1da177e4
LT
614 avd->auditallow = 0;
615 avd->auditdeny = 0xffffffff;
1da177e4 616
c6d3aaa4
SS
617 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
618 if (printk_ratelimit())
619 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
19439d05 620 return;
c6d3aaa4 621 }
3f12070e
EP
622
623 tclass_datum = policydb.class_val_to_struct[tclass - 1];
624
1da177e4
LT
625 /*
626 * If a specific type enforcement rule was defined for
627 * this permission check, then use it.
628 */
1da177e4 629 avkey.target_class = tclass;
782ebb99 630 avkey.specified = AVTAB_AV;
6371dcd3
EP
631 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
632 BUG_ON(!sattr);
633 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
634 BUG_ON(!tattr);
9fe79ad1
KK
635 ebitmap_for_each_positive_bit(sattr, snode, i) {
636 ebitmap_for_each_positive_bit(tattr, tnode, j) {
782ebb99
SS
637 avkey.source_type = i + 1;
638 avkey.target_type = j + 1;
639 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
dbc74c65 640 node;
782ebb99
SS
641 node = avtab_search_node_next(node, avkey.specified)) {
642 if (node->key.specified == AVTAB_ALLOWED)
643 avd->allowed |= node->datum.data;
644 else if (node->key.specified == AVTAB_AUDITALLOW)
645 avd->auditallow |= node->datum.data;
646 else if (node->key.specified == AVTAB_AUDITDENY)
647 avd->auditdeny &= node->datum.data;
648 }
1da177e4 649
782ebb99
SS
650 /* Check conditional av table for additional permissions */
651 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
652
653 }
654 }
1da177e4
LT
655
656 /*
657 * Remove any permissions prohibited by a constraint (this includes
658 * the MLS policy).
659 */
660 constraint = tclass_datum->constraints;
661 while (constraint) {
662 if ((constraint->permissions & (avd->allowed)) &&
663 !constraint_expr_eval(scontext, tcontext, NULL,
664 constraint->expr)) {
caabbdc0 665 avd->allowed &= ~(constraint->permissions);
1da177e4
LT
666 }
667 constraint = constraint->next;
668 }
669
670 /*
671 * If checking process transition permission and the
672 * role is changing, then check the (current_role, new_role)
673 * pair.
674 */
c6d3aaa4
SS
675 if (tclass == policydb.process_class &&
676 (avd->allowed & policydb.process_trans_perms) &&
1da177e4
LT
677 scontext->role != tcontext->role) {
678 for (ra = policydb.role_allow; ra; ra = ra->next) {
679 if (scontext->role == ra->role &&
680 tcontext->role == ra->new_role)
681 break;
682 }
683 if (!ra)
c6d3aaa4 684 avd->allowed &= ~policydb.process_trans_perms;
1da177e4
LT
685 }
686
d9250dea
KK
687 /*
688 * If the given source and target types have boundary
689 * constraint, lazy checks have to mask any violated
690 * permission and notice it to userspace via audit.
691 */
692 type_attribute_bounds_av(scontext, tcontext,
19439d05 693 tclass, avd);
1da177e4
LT
694}
695
696static int security_validtrans_handle_fail(struct context *ocontext,
5d55a345
EP
697 struct context *ncontext,
698 struct context *tcontext,
699 u16 tclass)
1da177e4
LT
700{
701 char *o = NULL, *n = NULL, *t = NULL;
702 u32 olen, nlen, tlen;
703
4b02b524 704 if (context_struct_to_string(ocontext, &o, &olen))
1da177e4 705 goto out;
4b02b524 706 if (context_struct_to_string(ncontext, &n, &nlen))
1da177e4 707 goto out;
4b02b524 708 if (context_struct_to_string(tcontext, &t, &tlen))
1da177e4 709 goto out;
9ad9ad38 710 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
711 "security_validate_transition: denied for"
712 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
713 o, n, t, policydb.p_class_val_to_name[tclass-1]);
1da177e4
LT
714out:
715 kfree(o);
716 kfree(n);
717 kfree(t);
718
719 if (!selinux_enforcing)
720 return 0;
721 return -EPERM;
722}
723
724int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
c6d3aaa4 725 u16 orig_tclass)
1da177e4
LT
726{
727 struct context *ocontext;
728 struct context *ncontext;
729 struct context *tcontext;
730 struct class_datum *tclass_datum;
731 struct constraint_node *constraint;
c6d3aaa4 732 u16 tclass;
1da177e4
LT
733 int rc = 0;
734
735 if (!ss_initialized)
736 return 0;
737
0804d113 738 read_lock(&policy_rwlock);
1da177e4 739
c6d3aaa4
SS
740 tclass = unmap_class(orig_tclass);
741
1da177e4 742 if (!tclass || tclass > policydb.p_classes.nprim) {
744ba35e
EP
743 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
744 __func__, tclass);
1da177e4
LT
745 rc = -EINVAL;
746 goto out;
747 }
748 tclass_datum = policydb.class_val_to_struct[tclass - 1];
749
750 ocontext = sidtab_search(&sidtab, oldsid);
751 if (!ocontext) {
744ba35e
EP
752 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
753 __func__, oldsid);
1da177e4
LT
754 rc = -EINVAL;
755 goto out;
756 }
757
758 ncontext = sidtab_search(&sidtab, newsid);
759 if (!ncontext) {
744ba35e
EP
760 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
761 __func__, newsid);
1da177e4
LT
762 rc = -EINVAL;
763 goto out;
764 }
765
766 tcontext = sidtab_search(&sidtab, tasksid);
767 if (!tcontext) {
744ba35e
EP
768 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
769 __func__, tasksid);
1da177e4
LT
770 rc = -EINVAL;
771 goto out;
772 }
773
774 constraint = tclass_datum->validatetrans;
775 while (constraint) {
776 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
5d55a345 777 constraint->expr)) {
1da177e4 778 rc = security_validtrans_handle_fail(ocontext, ncontext,
5d55a345 779 tcontext, tclass);
1da177e4
LT
780 goto out;
781 }
782 constraint = constraint->next;
783 }
784
785out:
0804d113 786 read_unlock(&policy_rwlock);
1da177e4
LT
787 return rc;
788}
789
d9250dea
KK
790/*
791 * security_bounded_transition - check whether the given
792 * transition is directed to bounded, or not.
793 * It returns 0, if @newsid is bounded by @oldsid.
794 * Otherwise, it returns error code.
795 *
796 * @oldsid : current security identifier
797 * @newsid : destinated security identifier
798 */
799int security_bounded_transition(u32 old_sid, u32 new_sid)
800{
801 struct context *old_context, *new_context;
802 struct type_datum *type;
803 int index;
4b02b524 804 int rc;
d9250dea
KK
805
806 read_lock(&policy_rwlock);
807
4b02b524 808 rc = -EINVAL;
d9250dea
KK
809 old_context = sidtab_search(&sidtab, old_sid);
810 if (!old_context) {
811 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
812 __func__, old_sid);
813 goto out;
814 }
815
4b02b524 816 rc = -EINVAL;
d9250dea
KK
817 new_context = sidtab_search(&sidtab, new_sid);
818 if (!new_context) {
819 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
820 __func__, new_sid);
821 goto out;
822 }
823
4b02b524 824 rc = 0;
af901ca1 825 /* type/domain unchanged */
4b02b524 826 if (old_context->type == new_context->type)
d9250dea 827 goto out;
d9250dea
KK
828
829 index = new_context->type;
830 while (true) {
831 type = policydb.type_val_to_struct[index - 1];
832 BUG_ON(!type);
833
834 /* not bounded anymore */
4b02b524
EP
835 rc = -EPERM;
836 if (!type->bounds)
d9250dea 837 break;
d9250dea
KK
838
839 /* @newsid is bounded by @oldsid */
4b02b524
EP
840 rc = 0;
841 if (type->bounds == old_context->type)
d9250dea 842 break;
4b02b524 843
d9250dea
KK
844 index = type->bounds;
845 }
44c2d9bd
KK
846
847 if (rc) {
848 char *old_name = NULL;
849 char *new_name = NULL;
2da5d31b 850 u32 length;
44c2d9bd
KK
851
852 if (!context_struct_to_string(old_context,
853 &old_name, &length) &&
854 !context_struct_to_string(new_context,
855 &new_name, &length)) {
856 audit_log(current->audit_context,
857 GFP_ATOMIC, AUDIT_SELINUX_ERR,
858 "op=security_bounded_transition "
859 "result=denied "
860 "oldcontext=%s newcontext=%s",
861 old_name, new_name);
862 }
863 kfree(new_name);
864 kfree(old_name);
865 }
d9250dea
KK
866out:
867 read_unlock(&policy_rwlock);
868
869 return rc;
870}
871
19439d05 872static void avd_init(struct av_decision *avd)
c6d3aaa4 873{
19439d05
SS
874 avd->allowed = 0;
875 avd->auditallow = 0;
876 avd->auditdeny = 0xffffffff;
877 avd->seqno = latest_granting;
878 avd->flags = 0;
c6d3aaa4
SS
879}
880
19439d05 881
1da177e4
LT
882/**
883 * security_compute_av - Compute access vector decisions.
884 * @ssid: source security identifier
885 * @tsid: target security identifier
886 * @tclass: target security class
1da177e4
LT
887 * @avd: access vector decisions
888 *
889 * Compute a set of access vector decisions based on the
890 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1da177e4 891 */
19439d05
SS
892void security_compute_av(u32 ssid,
893 u32 tsid,
894 u16 orig_tclass,
895 struct av_decision *avd)
1da177e4 896{
c6d3aaa4 897 u16 tclass;
19439d05 898 struct context *scontext = NULL, *tcontext = NULL;
c6d3aaa4 899
b7f3008a 900 read_lock(&policy_rwlock);
19439d05 901 avd_init(avd);
c6d3aaa4
SS
902 if (!ss_initialized)
903 goto allow;
904
19439d05
SS
905 scontext = sidtab_search(&sidtab, ssid);
906 if (!scontext) {
907 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
908 __func__, ssid);
909 goto out;
910 }
911
912 /* permissive domain? */
913 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
914 avd->flags |= AVD_FLAGS_PERMISSIVE;
915
916 tcontext = sidtab_search(&sidtab, tsid);
917 if (!tcontext) {
918 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
919 __func__, tsid);
920 goto out;
921 }
922
c6d3aaa4
SS
923 tclass = unmap_class(orig_tclass);
924 if (unlikely(orig_tclass && !tclass)) {
925 if (policydb.allow_unknown)
926 goto allow;
b7f3008a 927 goto out;
c6d3aaa4 928 }
19439d05 929 context_struct_compute_av(scontext, tcontext, tclass, avd);
c6d3aaa4 930 map_decision(orig_tclass, avd, policydb.allow_unknown);
b7f3008a 931out:
c6d3aaa4 932 read_unlock(&policy_rwlock);
19439d05 933 return;
c6d3aaa4
SS
934allow:
935 avd->allowed = 0xffffffff;
b7f3008a 936 goto out;
c6d3aaa4
SS
937}
938
19439d05
SS
939void security_compute_av_user(u32 ssid,
940 u32 tsid,
941 u16 tclass,
942 struct av_decision *avd)
c6d3aaa4 943{
19439d05 944 struct context *scontext = NULL, *tcontext = NULL;
1da177e4 945
19439d05
SS
946 read_lock(&policy_rwlock);
947 avd_init(avd);
948 if (!ss_initialized)
949 goto allow;
950
951 scontext = sidtab_search(&sidtab, ssid);
952 if (!scontext) {
953 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
954 __func__, ssid);
955 goto out;
1da177e4
LT
956 }
957
19439d05
SS
958 /* permissive domain? */
959 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
960 avd->flags |= AVD_FLAGS_PERMISSIVE;
961
962 tcontext = sidtab_search(&sidtab, tsid);
963 if (!tcontext) {
964 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
965 __func__, tsid);
966 goto out;
967 }
968
969 if (unlikely(!tclass)) {
970 if (policydb.allow_unknown)
971 goto allow;
972 goto out;
973 }
974
975 context_struct_compute_av(scontext, tcontext, tclass, avd);
976 out:
0804d113 977 read_unlock(&policy_rwlock);
19439d05
SS
978 return;
979allow:
980 avd->allowed = 0xffffffff;
981 goto out;
1da177e4
LT
982}
983
984/*
985 * Write the security context string representation of
986 * the context structure `context' into a dynamically
987 * allocated string of the correct size. Set `*scontext'
988 * to point to this string and set `*scontext_len' to
989 * the length of the string.
990 */
991static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
992{
993 char *scontextp;
994
d5630b9d
EP
995 if (scontext)
996 *scontext = NULL;
1da177e4
LT
997 *scontext_len = 0;
998
12b29f34
SS
999 if (context->len) {
1000 *scontext_len = context->len;
1001 *scontext = kstrdup(context->str, GFP_ATOMIC);
1002 if (!(*scontext))
1003 return -ENOMEM;
1004 return 0;
1005 }
1006
1da177e4
LT
1007 /* Compute the size of the context. */
1008 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1009 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1010 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1011 *scontext_len += mls_compute_context_len(context);
1012
d5630b9d
EP
1013 if (!scontext)
1014 return 0;
1015
1da177e4
LT
1016 /* Allocate space for the context; caller must free this space. */
1017 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
5d55a345 1018 if (!scontextp)
1da177e4 1019 return -ENOMEM;
1da177e4
LT
1020 *scontext = scontextp;
1021
1022 /*
1023 * Copy the user name, role name and type name into the context.
1024 */
1025 sprintf(scontextp, "%s:%s:%s",
1026 policydb.p_user_val_to_name[context->user - 1],
1027 policydb.p_role_val_to_name[context->role - 1],
1028 policydb.p_type_val_to_name[context->type - 1]);
1029 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
5d55a345
EP
1030 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1031 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1da177e4
LT
1032
1033 mls_sid_to_context(context, &scontextp);
1034
1035 *scontextp = 0;
1036
1037 return 0;
1038}
1039
1040#include "initial_sid_to_string.h"
1041
f0ee2e46
JC
1042const char *security_get_initial_sid_context(u32 sid)
1043{
1044 if (unlikely(sid > SECINITSID_NUM))
1045 return NULL;
1046 return initial_sid_to_string[sid];
1047}
1048
12b29f34
SS
1049static int security_sid_to_context_core(u32 sid, char **scontext,
1050 u32 *scontext_len, int force)
1da177e4
LT
1051{
1052 struct context *context;
1053 int rc = 0;
1054
d5630b9d
EP
1055 if (scontext)
1056 *scontext = NULL;
4f4acf3a
SS
1057 *scontext_len = 0;
1058
1da177e4
LT
1059 if (!ss_initialized) {
1060 if (sid <= SECINITSID_NUM) {
1061 char *scontextp;
1062
1063 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
d5630b9d
EP
1064 if (!scontext)
1065 goto out;
5d55a345 1066 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
0cccca06
SH
1067 if (!scontextp) {
1068 rc = -ENOMEM;
1069 goto out;
1070 }
1da177e4
LT
1071 strcpy(scontextp, initial_sid_to_string[sid]);
1072 *scontext = scontextp;
1073 goto out;
1074 }
744ba35e
EP
1075 printk(KERN_ERR "SELinux: %s: called before initial "
1076 "load_policy on unknown SID %d\n", __func__, sid);
1da177e4
LT
1077 rc = -EINVAL;
1078 goto out;
1079 }
0804d113 1080 read_lock(&policy_rwlock);
12b29f34
SS
1081 if (force)
1082 context = sidtab_search_force(&sidtab, sid);
1083 else
1084 context = sidtab_search(&sidtab, sid);
1da177e4 1085 if (!context) {
744ba35e
EP
1086 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1087 __func__, sid);
1da177e4
LT
1088 rc = -EINVAL;
1089 goto out_unlock;
1090 }
1091 rc = context_struct_to_string(context, scontext, scontext_len);
1092out_unlock:
0804d113 1093 read_unlock(&policy_rwlock);
1da177e4
LT
1094out:
1095 return rc;
1096
1097}
1098
12b29f34
SS
1099/**
1100 * security_sid_to_context - Obtain a context for a given SID.
1101 * @sid: security identifier, SID
1102 * @scontext: security context
1103 * @scontext_len: length in bytes
1104 *
1105 * Write the string representation of the context associated with @sid
1106 * into a dynamically allocated string of the correct size. Set @scontext
1107 * to point to this string and set @scontext_len to the length of the string.
1108 */
1109int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1da177e4 1110{
12b29f34
SS
1111 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1112}
1113
1114int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1115{
1116 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1117}
1118
9a59daa0
SS
1119/*
1120 * Caveat: Mutates scontext.
1121 */
12b29f34
SS
1122static int string_to_context_struct(struct policydb *pol,
1123 struct sidtab *sidtabp,
9a59daa0 1124 char *scontext,
12b29f34
SS
1125 u32 scontext_len,
1126 struct context *ctx,
9a59daa0 1127 u32 def_sid)
12b29f34 1128{
1da177e4
LT
1129 struct role_datum *role;
1130 struct type_datum *typdatum;
1131 struct user_datum *usrdatum;
1132 char *scontextp, *p, oldc;
1133 int rc = 0;
1134
12b29f34 1135 context_init(ctx);
1da177e4 1136
1da177e4
LT
1137 /* Parse the security context. */
1138
1139 rc = -EINVAL;
9a59daa0 1140 scontextp = (char *) scontext;
1da177e4
LT
1141
1142 /* Extract the user. */
1143 p = scontextp;
1144 while (*p && *p != ':')
1145 p++;
1146
1147 if (*p == 0)
12b29f34 1148 goto out;
1da177e4
LT
1149
1150 *p++ = 0;
1151
12b29f34 1152 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1da177e4 1153 if (!usrdatum)
12b29f34 1154 goto out;
1da177e4 1155
12b29f34 1156 ctx->user = usrdatum->value;
1da177e4
LT
1157
1158 /* Extract role. */
1159 scontextp = p;
1160 while (*p && *p != ':')
1161 p++;
1162
1163 if (*p == 0)
12b29f34 1164 goto out;
1da177e4
LT
1165
1166 *p++ = 0;
1167
12b29f34 1168 role = hashtab_search(pol->p_roles.table, scontextp);
1da177e4 1169 if (!role)
12b29f34
SS
1170 goto out;
1171 ctx->role = role->value;
1da177e4
LT
1172
1173 /* Extract type. */
1174 scontextp = p;
1175 while (*p && *p != ':')
1176 p++;
1177 oldc = *p;
1178 *p++ = 0;
1179
12b29f34 1180 typdatum = hashtab_search(pol->p_types.table, scontextp);
d9250dea 1181 if (!typdatum || typdatum->attribute)
12b29f34 1182 goto out;
1da177e4 1183
12b29f34 1184 ctx->type = typdatum->value;
1da177e4 1185
12b29f34 1186 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1da177e4 1187 if (rc)
12b29f34 1188 goto out;
1da177e4 1189
4b02b524
EP
1190 rc = -EINVAL;
1191 if ((p - scontext) < scontext_len)
12b29f34 1192 goto out;
1da177e4
LT
1193
1194 /* Check the validity of the new context. */
4b02b524 1195 if (!policydb_context_isvalid(pol, ctx))
12b29f34 1196 goto out;
12b29f34
SS
1197 rc = 0;
1198out:
8e531af9
EP
1199 if (rc)
1200 context_destroy(ctx);
12b29f34
SS
1201 return rc;
1202}
1203
1204static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1205 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1206 int force)
1207{
9a59daa0 1208 char *scontext2, *str = NULL;
12b29f34
SS
1209 struct context context;
1210 int rc = 0;
1211
1212 if (!ss_initialized) {
1213 int i;
1214
1215 for (i = 1; i < SECINITSID_NUM; i++) {
1216 if (!strcmp(initial_sid_to_string[i], scontext)) {
1217 *sid = i;
9a59daa0 1218 return 0;
12b29f34
SS
1219 }
1220 }
1221 *sid = SECINITSID_KERNEL;
9a59daa0 1222 return 0;
12b29f34
SS
1223 }
1224 *sid = SECSID_NULL;
1225
9a59daa0 1226 /* Copy the string so that we can modify the copy as we parse it. */
c1a7368a 1227 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
9a59daa0
SS
1228 if (!scontext2)
1229 return -ENOMEM;
1230 memcpy(scontext2, scontext, scontext_len);
1231 scontext2[scontext_len] = 0;
1232
1233 if (force) {
1234 /* Save another copy for storing in uninterpreted form */
4b02b524 1235 rc = -ENOMEM;
9a59daa0 1236 str = kstrdup(scontext2, gfp_flags);
4b02b524
EP
1237 if (!str)
1238 goto out;
9a59daa0
SS
1239 }
1240
0804d113 1241 read_lock(&policy_rwlock);
4b02b524
EP
1242 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1243 scontext_len, &context, def_sid);
12b29f34 1244 if (rc == -EINVAL && force) {
9a59daa0 1245 context.str = str;
12b29f34 1246 context.len = scontext_len;
9a59daa0 1247 str = NULL;
12b29f34 1248 } else if (rc)
4b02b524 1249 goto out_unlock;
12b29f34 1250 rc = sidtab_context_to_sid(&sidtab, &context, sid);
8e531af9 1251 context_destroy(&context);
4b02b524 1252out_unlock:
0804d113 1253 read_unlock(&policy_rwlock);
4b02b524 1254out:
9a59daa0
SS
1255 kfree(scontext2);
1256 kfree(str);
1da177e4
LT
1257 return rc;
1258}
1259
f5c1d5b2
JM
1260/**
1261 * security_context_to_sid - Obtain a SID for a given security context.
1262 * @scontext: security context
1263 * @scontext_len: length in bytes
1264 * @sid: security identifier, SID
1265 *
1266 * Obtains a SID associated with the security context that
1267 * has the string representation specified by @scontext.
1268 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1269 * memory is available, or 0 on success.
1270 */
8f0cfa52 1271int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
f5c1d5b2
JM
1272{
1273 return security_context_to_sid_core(scontext, scontext_len,
12b29f34 1274 sid, SECSID_NULL, GFP_KERNEL, 0);
f5c1d5b2
JM
1275}
1276
1277/**
1278 * security_context_to_sid_default - Obtain a SID for a given security context,
1279 * falling back to specified default if needed.
1280 *
1281 * @scontext: security context
1282 * @scontext_len: length in bytes
1283 * @sid: security identifier, SID
d133a960 1284 * @def_sid: default SID to assign on error
f5c1d5b2
JM
1285 *
1286 * Obtains a SID associated with the security context that
1287 * has the string representation specified by @scontext.
1288 * The default SID is passed to the MLS layer to be used to allow
1289 * kernel labeling of the MLS field if the MLS field is not present
1290 * (for upgrading to MLS without full relabel).
12b29f34 1291 * Implicitly forces adding of the context even if it cannot be mapped yet.
f5c1d5b2
JM
1292 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1293 * memory is available, or 0 on success.
1294 */
7bf570dc
DH
1295int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1296 u32 *sid, u32 def_sid, gfp_t gfp_flags)
f5c1d5b2
JM
1297{
1298 return security_context_to_sid_core(scontext, scontext_len,
12b29f34
SS
1299 sid, def_sid, gfp_flags, 1);
1300}
1301
1302int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1303 u32 *sid)
1304{
1305 return security_context_to_sid_core(scontext, scontext_len,
1306 sid, SECSID_NULL, GFP_KERNEL, 1);
f5c1d5b2
JM
1307}
1308
1da177e4
LT
1309static int compute_sid_handle_invalid_context(
1310 struct context *scontext,
1311 struct context *tcontext,
1312 u16 tclass,
1313 struct context *newcontext)
1314{
1315 char *s = NULL, *t = NULL, *n = NULL;
1316 u32 slen, tlen, nlen;
1317
4b02b524 1318 if (context_struct_to_string(scontext, &s, &slen))
1da177e4 1319 goto out;
4b02b524 1320 if (context_struct_to_string(tcontext, &t, &tlen))
1da177e4 1321 goto out;
4b02b524 1322 if (context_struct_to_string(newcontext, &n, &nlen))
1da177e4 1323 goto out;
9ad9ad38 1324 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
1325 "security_compute_sid: invalid context %s"
1326 " for scontext=%s"
1327 " tcontext=%s"
1328 " tclass=%s",
1329 n, s, t, policydb.p_class_val_to_name[tclass-1]);
1330out:
1331 kfree(s);
1332 kfree(t);
1333 kfree(n);
1334 if (!selinux_enforcing)
1335 return 0;
1336 return -EACCES;
1337}
1338
1339static int security_compute_sid(u32 ssid,
1340 u32 tsid,
c6d3aaa4 1341 u16 orig_tclass,
1da177e4 1342 u32 specified,
c6d3aaa4
SS
1343 u32 *out_sid,
1344 bool kern)
1da177e4
LT
1345{
1346 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1347 struct role_trans *roletr = NULL;
1348 struct avtab_key avkey;
1349 struct avtab_datum *avdatum;
1350 struct avtab_node *node;
c6d3aaa4 1351 u16 tclass;
1da177e4
LT
1352 int rc = 0;
1353
1354 if (!ss_initialized) {
c6d3aaa4
SS
1355 switch (orig_tclass) {
1356 case SECCLASS_PROCESS: /* kernel value */
1da177e4
LT
1357 *out_sid = ssid;
1358 break;
1359 default:
1360 *out_sid = tsid;
1361 break;
1362 }
1363 goto out;
1364 }
1365
851f8a69
VY
1366 context_init(&newcontext);
1367
0804d113 1368 read_lock(&policy_rwlock);
1da177e4 1369
c6d3aaa4
SS
1370 if (kern)
1371 tclass = unmap_class(orig_tclass);
1372 else
1373 tclass = orig_tclass;
1374
1da177e4
LT
1375 scontext = sidtab_search(&sidtab, ssid);
1376 if (!scontext) {
744ba35e
EP
1377 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1378 __func__, ssid);
1da177e4
LT
1379 rc = -EINVAL;
1380 goto out_unlock;
1381 }
1382 tcontext = sidtab_search(&sidtab, tsid);
1383 if (!tcontext) {
744ba35e
EP
1384 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1385 __func__, tsid);
1da177e4
LT
1386 rc = -EINVAL;
1387 goto out_unlock;
1388 }
1389
1da177e4
LT
1390 /* Set the user identity. */
1391 switch (specified) {
1392 case AVTAB_TRANSITION:
1393 case AVTAB_CHANGE:
1394 /* Use the process user identity. */
1395 newcontext.user = scontext->user;
1396 break;
1397 case AVTAB_MEMBER:
1398 /* Use the related object owner. */
1399 newcontext.user = tcontext->user;
1400 break;
1401 }
1402
1403 /* Set the role and type to default values. */
c6d3aaa4 1404 if (tclass == policydb.process_class) {
1da177e4
LT
1405 /* Use the current role and type of process. */
1406 newcontext.role = scontext->role;
1407 newcontext.type = scontext->type;
c6d3aaa4 1408 } else {
1da177e4
LT
1409 /* Use the well-defined object role. */
1410 newcontext.role = OBJECT_R_VAL;
1411 /* Use the type of the related object. */
1412 newcontext.type = tcontext->type;
1413 }
1414
1415 /* Look for a type transition/member/change rule. */
1416 avkey.source_type = scontext->type;
1417 avkey.target_type = tcontext->type;
1418 avkey.target_class = tclass;
782ebb99
SS
1419 avkey.specified = specified;
1420 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
1421
1422 /* If no permanent rule, also check for enabled conditional rules */
5d55a345 1423 if (!avdatum) {
782ebb99 1424 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
dbc74c65 1425 for (; node; node = avtab_search_node_next(node, specified)) {
782ebb99 1426 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
1427 avdatum = &node->datum;
1428 break;
1429 }
1430 }
1431 }
1432
782ebb99 1433 if (avdatum) {
1da177e4 1434 /* Use the type from the type transition/member/change rule. */
782ebb99 1435 newcontext.type = avdatum->data;
1da177e4
LT
1436 }
1437
1438 /* Check for class-specific changes. */
c6d3aaa4 1439 if (tclass == policydb.process_class) {
1da177e4
LT
1440 if (specified & AVTAB_TRANSITION) {
1441 /* Look for a role transition rule. */
1442 for (roletr = policydb.role_tr; roletr;
1443 roletr = roletr->next) {
1444 if (roletr->role == scontext->role &&
1445 roletr->type == tcontext->type) {
1446 /* Use the role transition rule. */
1447 newcontext.role = roletr->new_role;
1448 break;
1449 }
1450 }
1451 }
1da177e4
LT
1452 }
1453
1454 /* Set the MLS attributes.
1455 This is done last because it may allocate memory. */
1456 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1457 if (rc)
1458 goto out_unlock;
1459
1460 /* Check the validity of the context. */
1461 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1462 rc = compute_sid_handle_invalid_context(scontext,
1463 tcontext,
1464 tclass,
1465 &newcontext);
1466 if (rc)
1467 goto out_unlock;
1468 }
1469 /* Obtain the sid for the context. */
1470 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1471out_unlock:
0804d113 1472 read_unlock(&policy_rwlock);
1da177e4
LT
1473 context_destroy(&newcontext);
1474out:
1475 return rc;
1476}
1477
1478/**
1479 * security_transition_sid - Compute the SID for a new subject/object.
1480 * @ssid: source security identifier
1481 * @tsid: target security identifier
1482 * @tclass: target security class
1483 * @out_sid: security identifier for new subject/object
1484 *
1485 * Compute a SID to use for labeling a new subject or object in the
1486 * class @tclass based on a SID pair (@ssid, @tsid).
1487 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1488 * if insufficient memory is available, or %0 if the new SID was
1489 * computed successfully.
1490 */
1491int security_transition_sid(u32 ssid,
1492 u32 tsid,
1493 u16 tclass,
1494 u32 *out_sid)
1495{
c6d3aaa4
SS
1496 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1497 out_sid, true);
1498}
1499
1500int security_transition_sid_user(u32 ssid,
1501 u32 tsid,
1502 u16 tclass,
1503 u32 *out_sid)
1504{
1505 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1506 out_sid, false);
1da177e4
LT
1507}
1508
1509/**
1510 * security_member_sid - Compute the SID for member selection.
1511 * @ssid: source security identifier
1512 * @tsid: target security identifier
1513 * @tclass: target security class
1514 * @out_sid: security identifier for selected member
1515 *
1516 * Compute a SID to use when selecting a member of a polyinstantiated
1517 * object of class @tclass based on a SID pair (@ssid, @tsid).
1518 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1519 * if insufficient memory is available, or %0 if the SID was
1520 * computed successfully.
1521 */
1522int security_member_sid(u32 ssid,
1523 u32 tsid,
1524 u16 tclass,
1525 u32 *out_sid)
1526{
c6d3aaa4
SS
1527 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1528 false);
1da177e4
LT
1529}
1530
1531/**
1532 * security_change_sid - Compute the SID for object relabeling.
1533 * @ssid: source security identifier
1534 * @tsid: target security identifier
1535 * @tclass: target security class
1536 * @out_sid: security identifier for selected member
1537 *
1538 * Compute a SID to use for relabeling an object of class @tclass
1539 * based on a SID pair (@ssid, @tsid).
1540 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1541 * if insufficient memory is available, or %0 if the SID was
1542 * computed successfully.
1543 */
1544int security_change_sid(u32 ssid,
1545 u32 tsid,
1546 u16 tclass,
1547 u32 *out_sid)
1548{
c6d3aaa4
SS
1549 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1550 false);
b94c7e67
CS
1551}
1552
1da177e4
LT
1553/* Clone the SID into the new SID table. */
1554static int clone_sid(u32 sid,
1555 struct context *context,
1556 void *arg)
1557{
1558 struct sidtab *s = arg;
1559
42596eaf
GT
1560 if (sid > SECINITSID_NUM)
1561 return sidtab_insert(s, sid, context);
1562 else
1563 return 0;
1da177e4
LT
1564}
1565
1566static inline int convert_context_handle_invalid_context(struct context *context)
1567{
4b02b524
EP
1568 char *s;
1569 u32 len;
1da177e4 1570
4b02b524
EP
1571 if (selinux_enforcing)
1572 return -EINVAL;
1573
1574 if (!context_struct_to_string(context, &s, &len)) {
1575 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1576 kfree(s);
1da177e4 1577 }
4b02b524 1578 return 0;
1da177e4
LT
1579}
1580
1581struct convert_context_args {
1582 struct policydb *oldp;
1583 struct policydb *newp;
1584};
1585
1586/*
1587 * Convert the values in the security context
1588 * structure `c' from the values specified
1589 * in the policy `p->oldp' to the values specified
1590 * in the policy `p->newp'. Verify that the
1591 * context is valid under the new policy.
1592 */
1593static int convert_context(u32 key,
1594 struct context *c,
1595 void *p)
1596{
1597 struct convert_context_args *args;
1598 struct context oldc;
0719aaf5
GT
1599 struct ocontext *oc;
1600 struct mls_range *range;
1da177e4
LT
1601 struct role_datum *role;
1602 struct type_datum *typdatum;
1603 struct user_datum *usrdatum;
1604 char *s;
1605 u32 len;
42596eaf
GT
1606 int rc = 0;
1607
1608 if (key <= SECINITSID_NUM)
1609 goto out;
1da177e4
LT
1610
1611 args = p;
1612
12b29f34
SS
1613 if (c->str) {
1614 struct context ctx;
4b02b524
EP
1615
1616 rc = -ENOMEM;
9a59daa0 1617 s = kstrdup(c->str, GFP_KERNEL);
4b02b524 1618 if (!s)
9a59daa0 1619 goto out;
4b02b524 1620
9a59daa0
SS
1621 rc = string_to_context_struct(args->newp, NULL, s,
1622 c->len, &ctx, SECSID_NULL);
1623 kfree(s);
12b29f34 1624 if (!rc) {
4b02b524 1625 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
12b29f34
SS
1626 c->str);
1627 /* Replace string with mapped representation. */
1628 kfree(c->str);
1629 memcpy(c, &ctx, sizeof(*c));
1630 goto out;
1631 } else if (rc == -EINVAL) {
1632 /* Retain string representation for later mapping. */
1633 rc = 0;
1634 goto out;
1635 } else {
1636 /* Other error condition, e.g. ENOMEM. */
4b02b524 1637 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
12b29f34
SS
1638 c->str, -rc);
1639 goto out;
1640 }
1641 }
1642
1da177e4
LT
1643 rc = context_cpy(&oldc, c);
1644 if (rc)
1645 goto out;
1646
1da177e4 1647 /* Convert the user. */
4b02b524 1648 rc = -EINVAL;
1da177e4 1649 usrdatum = hashtab_search(args->newp->p_users.table,
5d55a345
EP
1650 args->oldp->p_user_val_to_name[c->user - 1]);
1651 if (!usrdatum)
1da177e4 1652 goto bad;
1da177e4
LT
1653 c->user = usrdatum->value;
1654
1655 /* Convert the role. */
4b02b524 1656 rc = -EINVAL;
1da177e4 1657 role = hashtab_search(args->newp->p_roles.table,
5d55a345
EP
1658 args->oldp->p_role_val_to_name[c->role - 1]);
1659 if (!role)
1da177e4 1660 goto bad;
1da177e4
LT
1661 c->role = role->value;
1662
1663 /* Convert the type. */
4b02b524 1664 rc = -EINVAL;
1da177e4 1665 typdatum = hashtab_search(args->newp->p_types.table,
5d55a345
EP
1666 args->oldp->p_type_val_to_name[c->type - 1]);
1667 if (!typdatum)
1da177e4 1668 goto bad;
1da177e4
LT
1669 c->type = typdatum->value;
1670
0719aaf5
GT
1671 /* Convert the MLS fields if dealing with MLS policies */
1672 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1673 rc = mls_convert_context(args->oldp, args->newp, c);
1674 if (rc)
1675 goto bad;
1676 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1677 /*
1678 * Switching between MLS and non-MLS policy:
1679 * free any storage used by the MLS fields in the
1680 * context for all existing entries in the sidtab.
1681 */
1682 mls_context_destroy(c);
1683 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1684 /*
1685 * Switching between non-MLS and MLS policy:
1686 * ensure that the MLS fields of the context for all
1687 * existing entries in the sidtab are filled in with a
1688 * suitable default value, likely taken from one of the
1689 * initial SIDs.
1690 */
1691 oc = args->newp->ocontexts[OCON_ISID];
1692 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1693 oc = oc->next;
4b02b524 1694 rc = -EINVAL;
0719aaf5
GT
1695 if (!oc) {
1696 printk(KERN_ERR "SELinux: unable to look up"
1697 " the initial SIDs list\n");
1698 goto bad;
1699 }
1700 range = &oc->context[0].range;
1701 rc = mls_range_set(c, range);
1702 if (rc)
1703 goto bad;
1704 }
1da177e4
LT
1705
1706 /* Check the validity of the new context. */
1707 if (!policydb_context_isvalid(args->newp, c)) {
1708 rc = convert_context_handle_invalid_context(&oldc);
1709 if (rc)
1710 goto bad;
1711 }
1712
1713 context_destroy(&oldc);
4b02b524 1714
12b29f34 1715 rc = 0;
1da177e4
LT
1716out:
1717 return rc;
1718bad:
12b29f34 1719 /* Map old representation to string and save it. */
4b02b524
EP
1720 rc = context_struct_to_string(&oldc, &s, &len);
1721 if (rc)
1722 return rc;
1da177e4 1723 context_destroy(&oldc);
12b29f34
SS
1724 context_destroy(c);
1725 c->str = s;
1726 c->len = len;
4b02b524 1727 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
12b29f34
SS
1728 c->str);
1729 rc = 0;
1da177e4
LT
1730 goto out;
1731}
1732
3bb56b25
PM
1733static void security_load_policycaps(void)
1734{
1735 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1736 POLICYDB_CAPABILITY_NETPEER);
b0c636b9
EP
1737 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1738 POLICYDB_CAPABILITY_OPENPERM);
3bb56b25
PM
1739}
1740
1da177e4 1741extern void selinux_complete_init(void);
e900a7d9 1742static int security_preserve_bools(struct policydb *p);
1da177e4
LT
1743
1744/**
1745 * security_load_policy - Load a security policy configuration.
1746 * @data: binary policy data
1747 * @len: length of data in bytes
1748 *
1749 * Load a new set of security policy configuration data,
1750 * validate it and convert the SID table as necessary.
1751 * This function will flush the access vector cache after
1752 * loading the new policy.
1753 */
1754int security_load_policy(void *data, size_t len)
1755{
1756 struct policydb oldpolicydb, newpolicydb;
1757 struct sidtab oldsidtab, newsidtab;
c6d3aaa4 1758 struct selinux_mapping *oldmap, *map = NULL;
1da177e4
LT
1759 struct convert_context_args args;
1760 u32 seqno;
c6d3aaa4 1761 u16 map_size;
1da177e4
LT
1762 int rc = 0;
1763 struct policy_file file = { data, len }, *fp = &file;
1764
1da177e4
LT
1765 if (!ss_initialized) {
1766 avtab_cache_init();
a2000050
EP
1767 rc = policydb_read(&policydb, fp);
1768 if (rc) {
1da177e4 1769 avtab_cache_destroy();
a2000050 1770 return rc;
1da177e4 1771 }
a2000050 1772
cee74f47 1773 policydb.len = len;
a2000050
EP
1774 rc = selinux_set_mapping(&policydb, secclass_map,
1775 &current_mapping,
1776 &current_mapping_size);
1777 if (rc) {
1da177e4
LT
1778 policydb_destroy(&policydb);
1779 avtab_cache_destroy();
a2000050 1780 return rc;
1da177e4 1781 }
a2000050
EP
1782
1783 rc = policydb_load_isids(&policydb, &sidtab);
1784 if (rc) {
b94c7e67
CS
1785 policydb_destroy(&policydb);
1786 avtab_cache_destroy();
a2000050 1787 return rc;
b94c7e67 1788 }
a2000050 1789
3bb56b25 1790 security_load_policycaps();
1da177e4 1791 ss_initialized = 1;
4c443d1b 1792 seqno = ++latest_granting;
1da177e4 1793 selinux_complete_init();
4c443d1b
SS
1794 avc_ss_reset(seqno);
1795 selnl_notify_policyload(seqno);
11904167 1796 selinux_status_update_policyload(seqno);
7420ed23 1797 selinux_netlbl_cache_invalidate();
342a0cff 1798 selinux_xfrm_notify_policyload();
1da177e4
LT
1799 return 0;
1800 }
1801
1802#if 0
1803 sidtab_hash_eval(&sidtab, "sids");
1804#endif
1805
a2000050
EP
1806 rc = policydb_read(&newpolicydb, fp);
1807 if (rc)
1808 return rc;
1da177e4 1809
cee74f47 1810 newpolicydb.len = len;
0719aaf5
GT
1811 /* If switching between different policy types, log MLS status */
1812 if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1813 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1814 else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1815 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1816
42596eaf
GT
1817 rc = policydb_load_isids(&newpolicydb, &newsidtab);
1818 if (rc) {
1819 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
12b29f34 1820 policydb_destroy(&newpolicydb);
42596eaf 1821 return rc;
12b29f34 1822 }
1da177e4 1823
a2000050
EP
1824 rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1825 if (rc)
b94c7e67 1826 goto err;
b94c7e67 1827
e900a7d9
SS
1828 rc = security_preserve_bools(&newpolicydb);
1829 if (rc) {
454d972c 1830 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
e900a7d9
SS
1831 goto err;
1832 }
1833
1da177e4
LT
1834 /* Clone the SID table. */
1835 sidtab_shutdown(&sidtab);
a2000050
EP
1836
1837 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1838 if (rc)
1da177e4 1839 goto err;
1da177e4 1840
12b29f34
SS
1841 /*
1842 * Convert the internal representations of contexts
1843 * in the new SID table.
1844 */
1da177e4
LT
1845 args.oldp = &policydb;
1846 args.newp = &newpolicydb;
12b29f34 1847 rc = sidtab_map(&newsidtab, convert_context, &args);
0719aaf5
GT
1848 if (rc) {
1849 printk(KERN_ERR "SELinux: unable to convert the internal"
1850 " representation of contexts in the new SID"
1851 " table\n");
12b29f34 1852 goto err;
0719aaf5 1853 }
1da177e4
LT
1854
1855 /* Save the old policydb and SID table to free later. */
1856 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1857 sidtab_set(&oldsidtab, &sidtab);
1858
1859 /* Install the new policydb and SID table. */
0804d113 1860 write_lock_irq(&policy_rwlock);
1da177e4
LT
1861 memcpy(&policydb, &newpolicydb, sizeof policydb);
1862 sidtab_set(&sidtab, &newsidtab);
3bb56b25 1863 security_load_policycaps();
c6d3aaa4
SS
1864 oldmap = current_mapping;
1865 current_mapping = map;
1866 current_mapping_size = map_size;
1da177e4 1867 seqno = ++latest_granting;
0804d113 1868 write_unlock_irq(&policy_rwlock);
1da177e4
LT
1869
1870 /* Free the old policydb and SID table. */
1871 policydb_destroy(&oldpolicydb);
1872 sidtab_destroy(&oldsidtab);
c6d3aaa4 1873 kfree(oldmap);
1da177e4
LT
1874
1875 avc_ss_reset(seqno);
1876 selnl_notify_policyload(seqno);
11904167 1877 selinux_status_update_policyload(seqno);
7420ed23 1878 selinux_netlbl_cache_invalidate();
342a0cff 1879 selinux_xfrm_notify_policyload();
1da177e4
LT
1880
1881 return 0;
1882
1883err:
c6d3aaa4 1884 kfree(map);
1da177e4
LT
1885 sidtab_destroy(&newsidtab);
1886 policydb_destroy(&newpolicydb);
1887 return rc;
1888
1889}
1890
cee74f47
EP
1891size_t security_policydb_len(void)
1892{
1893 size_t len;
1894
1895 read_lock(&policy_rwlock);
1896 len = policydb.len;
1897 read_unlock(&policy_rwlock);
1898
1899 return len;
1900}
1901
1da177e4
LT
1902/**
1903 * security_port_sid - Obtain the SID for a port.
1da177e4
LT
1904 * @protocol: protocol number
1905 * @port: port number
1906 * @out_sid: security identifier
1907 */
3e112172 1908int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1da177e4
LT
1909{
1910 struct ocontext *c;
1911 int rc = 0;
1912
0804d113 1913 read_lock(&policy_rwlock);
1da177e4
LT
1914
1915 c = policydb.ocontexts[OCON_PORT];
1916 while (c) {
1917 if (c->u.port.protocol == protocol &&
1918 c->u.port.low_port <= port &&
1919 c->u.port.high_port >= port)
1920 break;
1921 c = c->next;
1922 }
1923
1924 if (c) {
1925 if (!c->sid[0]) {
1926 rc = sidtab_context_to_sid(&sidtab,
1927 &c->context[0],
1928 &c->sid[0]);
1929 if (rc)
1930 goto out;
1931 }
1932 *out_sid = c->sid[0];
1933 } else {
1934 *out_sid = SECINITSID_PORT;
1935 }
1936
1937out:
0804d113 1938 read_unlock(&policy_rwlock);
1da177e4
LT
1939 return rc;
1940}
1941
1942/**
1943 * security_netif_sid - Obtain the SID for a network interface.
1944 * @name: interface name
1945 * @if_sid: interface SID
1da177e4 1946 */
e8bfdb9d 1947int security_netif_sid(char *name, u32 *if_sid)
1da177e4
LT
1948{
1949 int rc = 0;
1950 struct ocontext *c;
1951
0804d113 1952 read_lock(&policy_rwlock);
1da177e4
LT
1953
1954 c = policydb.ocontexts[OCON_NETIF];
1955 while (c) {
1956 if (strcmp(name, c->u.name) == 0)
1957 break;
1958 c = c->next;
1959 }
1960
1961 if (c) {
1962 if (!c->sid[0] || !c->sid[1]) {
1963 rc = sidtab_context_to_sid(&sidtab,
1964 &c->context[0],
1965 &c->sid[0]);
1966 if (rc)
1967 goto out;
1968 rc = sidtab_context_to_sid(&sidtab,
1969 &c->context[1],
1970 &c->sid[1]);
1971 if (rc)
1972 goto out;
1973 }
1974 *if_sid = c->sid[0];
e8bfdb9d 1975 } else
1da177e4 1976 *if_sid = SECINITSID_NETIF;
1da177e4
LT
1977
1978out:
0804d113 1979 read_unlock(&policy_rwlock);
1da177e4
LT
1980 return rc;
1981}
1982
1983static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1984{
1985 int i, fail = 0;
1986
5d55a345
EP
1987 for (i = 0; i < 4; i++)
1988 if (addr[i] != (input[i] & mask[i])) {
1da177e4
LT
1989 fail = 1;
1990 break;
1991 }
1992
1993 return !fail;
1994}
1995
1996/**
1997 * security_node_sid - Obtain the SID for a node (host).
1998 * @domain: communication domain aka address family
1999 * @addrp: address
2000 * @addrlen: address length in bytes
2001 * @out_sid: security identifier
2002 */
2003int security_node_sid(u16 domain,
2004 void *addrp,
2005 u32 addrlen,
2006 u32 *out_sid)
2007{
4b02b524 2008 int rc;
1da177e4
LT
2009 struct ocontext *c;
2010
0804d113 2011 read_lock(&policy_rwlock);
1da177e4
LT
2012
2013 switch (domain) {
2014 case AF_INET: {
2015 u32 addr;
2016
4b02b524
EP
2017 rc = -EINVAL;
2018 if (addrlen != sizeof(u32))
1da177e4 2019 goto out;
1da177e4
LT
2020
2021 addr = *((u32 *)addrp);
2022
2023 c = policydb.ocontexts[OCON_NODE];
2024 while (c) {
2025 if (c->u.node.addr == (addr & c->u.node.mask))
2026 break;
2027 c = c->next;
2028 }
2029 break;
2030 }
2031
2032 case AF_INET6:
4b02b524
EP
2033 rc = -EINVAL;
2034 if (addrlen != sizeof(u64) * 2)
1da177e4 2035 goto out;
1da177e4
LT
2036 c = policydb.ocontexts[OCON_NODE6];
2037 while (c) {
2038 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2039 c->u.node6.mask))
2040 break;
2041 c = c->next;
2042 }
2043 break;
2044
2045 default:
4b02b524 2046 rc = 0;
1da177e4
LT
2047 *out_sid = SECINITSID_NODE;
2048 goto out;
2049 }
2050
2051 if (c) {
2052 if (!c->sid[0]) {
2053 rc = sidtab_context_to_sid(&sidtab,
2054 &c->context[0],
2055 &c->sid[0]);
2056 if (rc)
2057 goto out;
2058 }
2059 *out_sid = c->sid[0];
2060 } else {
2061 *out_sid = SECINITSID_NODE;
2062 }
2063
4b02b524 2064 rc = 0;
1da177e4 2065out:
0804d113 2066 read_unlock(&policy_rwlock);
1da177e4
LT
2067 return rc;
2068}
2069
2070#define SIDS_NEL 25
2071
2072/**
2073 * security_get_user_sids - Obtain reachable SIDs for a user.
2074 * @fromsid: starting SID
2075 * @username: username
2076 * @sids: array of reachable SIDs for user
2077 * @nel: number of elements in @sids
2078 *
2079 * Generate the set of SIDs for legal security contexts
2080 * for a given user that can be reached by @fromsid.
2081 * Set *@sids to point to a dynamically allocated
2082 * array containing the set of SIDs. Set *@nel to the
2083 * number of elements in the array.
2084 */
2085
2086int security_get_user_sids(u32 fromsid,
5d55a345 2087 char *username,
1da177e4
LT
2088 u32 **sids,
2089 u32 *nel)
2090{
2091 struct context *fromcon, usercon;
2c3c05db 2092 u32 *mysids = NULL, *mysids2, sid;
1da177e4
LT
2093 u32 mynel = 0, maxnel = SIDS_NEL;
2094 struct user_datum *user;
2095 struct role_datum *role;
782ebb99 2096 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
2097 int rc = 0, i, j;
2098
2c3c05db
SS
2099 *sids = NULL;
2100 *nel = 0;
2101
2102 if (!ss_initialized)
1da177e4 2103 goto out;
1da177e4 2104
0804d113 2105 read_lock(&policy_rwlock);
1da177e4 2106
12b29f34
SS
2107 context_init(&usercon);
2108
4b02b524 2109 rc = -EINVAL;
1da177e4 2110 fromcon = sidtab_search(&sidtab, fromsid);
4b02b524 2111 if (!fromcon)
1da177e4 2112 goto out_unlock;
1da177e4 2113
4b02b524 2114 rc = -EINVAL;
1da177e4 2115 user = hashtab_search(policydb.p_users.table, username);
4b02b524 2116 if (!user)
1da177e4 2117 goto out_unlock;
4b02b524 2118
1da177e4
LT
2119 usercon.user = user->value;
2120
4b02b524 2121 rc = -ENOMEM;
89d155ef 2122 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
4b02b524 2123 if (!mysids)
1da177e4 2124 goto out_unlock;
1da177e4 2125
9fe79ad1 2126 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1da177e4 2127 role = policydb.role_val_to_struct[i];
c1a7368a 2128 usercon.role = i + 1;
9fe79ad1 2129 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
c1a7368a 2130 usercon.type = j + 1;
1da177e4
LT
2131
2132 if (mls_setup_user_range(fromcon, user, &usercon))
2133 continue;
2134
1da177e4 2135 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2c3c05db 2136 if (rc)
1da177e4 2137 goto out_unlock;
1da177e4
LT
2138 if (mynel < maxnel) {
2139 mysids[mynel++] = sid;
2140 } else {
4b02b524 2141 rc = -ENOMEM;
1da177e4 2142 maxnel += SIDS_NEL;
89d155ef 2143 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
4b02b524 2144 if (!mysids2)
1da177e4 2145 goto out_unlock;
1da177e4
LT
2146 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2147 kfree(mysids);
2148 mysids = mysids2;
2149 mysids[mynel++] = sid;
2150 }
2151 }
2152 }
4b02b524 2153 rc = 0;
1da177e4 2154out_unlock:
0804d113 2155 read_unlock(&policy_rwlock);
2c3c05db
SS
2156 if (rc || !mynel) {
2157 kfree(mysids);
2158 goto out;
2159 }
2160
4b02b524 2161 rc = -ENOMEM;
2c3c05db
SS
2162 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2163 if (!mysids2) {
2c3c05db
SS
2164 kfree(mysids);
2165 goto out;
2166 }
2167 for (i = 0, j = 0; i < mynel; i++) {
2168 rc = avc_has_perm_noaudit(fromsid, mysids[i],
c6d3aaa4 2169 SECCLASS_PROCESS, /* kernel value */
2c3c05db
SS
2170 PROCESS__TRANSITION, AVC_STRICT,
2171 NULL);
2172 if (!rc)
2173 mysids2[j++] = mysids[i];
2174 cond_resched();
2175 }
2176 rc = 0;
2177 kfree(mysids);
2178 *sids = mysids2;
2179 *nel = j;
1da177e4
LT
2180out:
2181 return rc;
2182}
2183
2184/**
2185 * security_genfs_sid - Obtain a SID for a file in a filesystem
2186 * @fstype: filesystem type
2187 * @path: path from root of mount
2188 * @sclass: file security class
2189 * @sid: SID for path
2190 *
2191 * Obtain a SID to use for a file in a filesystem that
2192 * cannot support xattr or use a fixed labeling behavior like
2193 * transition SIDs or task SIDs.
2194 */
2195int security_genfs_sid(const char *fstype,
5d55a345 2196 char *path,
c6d3aaa4 2197 u16 orig_sclass,
1da177e4
LT
2198 u32 *sid)
2199{
2200 int len;
c6d3aaa4 2201 u16 sclass;
1da177e4
LT
2202 struct genfs *genfs;
2203 struct ocontext *c;
4b02b524 2204 int rc, cmp = 0;
1da177e4 2205
b1aa5301
SS
2206 while (path[0] == '/' && path[1] == '/')
2207 path++;
2208
0804d113 2209 read_lock(&policy_rwlock);
1da177e4 2210
c6d3aaa4 2211 sclass = unmap_class(orig_sclass);
4b02b524 2212 *sid = SECINITSID_UNLABELED;
c6d3aaa4 2213
1da177e4
LT
2214 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2215 cmp = strcmp(fstype, genfs->fstype);
2216 if (cmp <= 0)
2217 break;
2218 }
2219
4b02b524
EP
2220 rc = -ENOENT;
2221 if (!genfs || cmp)
1da177e4 2222 goto out;
1da177e4
LT
2223
2224 for (c = genfs->head; c; c = c->next) {
2225 len = strlen(c->u.name);
2226 if ((!c->v.sclass || sclass == c->v.sclass) &&
2227 (strncmp(c->u.name, path, len) == 0))
2228 break;
2229 }
2230
4b02b524
EP
2231 rc = -ENOENT;
2232 if (!c)
1da177e4 2233 goto out;
1da177e4
LT
2234
2235 if (!c->sid[0]) {
4b02b524 2236 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
1da177e4
LT
2237 if (rc)
2238 goto out;
2239 }
2240
2241 *sid = c->sid[0];
4b02b524 2242 rc = 0;
1da177e4 2243out:
0804d113 2244 read_unlock(&policy_rwlock);
1da177e4
LT
2245 return rc;
2246}
2247
2248/**
2249 * security_fs_use - Determine how to handle labeling for a filesystem.
2250 * @fstype: filesystem type
2251 * @behavior: labeling behavior
2252 * @sid: SID for filesystem (superblock)
2253 */
2254int security_fs_use(
2255 const char *fstype,
2256 unsigned int *behavior,
089be43e 2257 u32 *sid)
1da177e4
LT
2258{
2259 int rc = 0;
2260 struct ocontext *c;
2261
0804d113 2262 read_lock(&policy_rwlock);
1da177e4
LT
2263
2264 c = policydb.ocontexts[OCON_FSUSE];
2265 while (c) {
2266 if (strcmp(fstype, c->u.name) == 0)
2267 break;
2268 c = c->next;
2269 }
2270
2271 if (c) {
2272 *behavior = c->v.behavior;
2273 if (!c->sid[0]) {
4b02b524 2274 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
1da177e4
LT
2275 &c->sid[0]);
2276 if (rc)
2277 goto out;
2278 }
2279 *sid = c->sid[0];
2280 } else {
089be43e
JM
2281 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2282 if (rc) {
2283 *behavior = SECURITY_FS_USE_NONE;
2284 rc = 0;
2285 } else {
2286 *behavior = SECURITY_FS_USE_GENFS;
2287 }
1da177e4
LT
2288 }
2289
2290out:
0804d113 2291 read_unlock(&policy_rwlock);
1da177e4
LT
2292 return rc;
2293}
2294
2295int security_get_bools(int *len, char ***names, int **values)
2296{
4b02b524 2297 int i, rc;
1da177e4 2298
0804d113 2299 read_lock(&policy_rwlock);
1da177e4
LT
2300 *names = NULL;
2301 *values = NULL;
2302
4b02b524 2303 rc = 0;
1da177e4 2304 *len = policydb.p_bools.nprim;
4b02b524 2305 if (!*len)
1da177e4 2306 goto out;
1da177e4 2307
4b02b524
EP
2308 rc = -ENOMEM;
2309 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
1da177e4
LT
2310 if (!*names)
2311 goto err;
1da177e4 2312
4b02b524
EP
2313 rc = -ENOMEM;
2314 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
2315 if (!*values)
2316 goto err;
2317
2318 for (i = 0; i < *len; i++) {
2319 size_t name_len;
4b02b524 2320
1da177e4
LT
2321 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2322 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
4b02b524
EP
2323
2324 rc = -ENOMEM;
2325 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1da177e4
LT
2326 if (!(*names)[i])
2327 goto err;
4b02b524 2328
1da177e4
LT
2329 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2330 (*names)[i][name_len - 1] = 0;
2331 }
2332 rc = 0;
2333out:
0804d113 2334 read_unlock(&policy_rwlock);
1da177e4
LT
2335 return rc;
2336err:
2337 if (*names) {
2338 for (i = 0; i < *len; i++)
9a5f04bf 2339 kfree((*names)[i]);
1da177e4 2340 }
9a5f04bf 2341 kfree(*values);
1da177e4
LT
2342 goto out;
2343}
2344
2345
2346int security_set_bools(int len, int *values)
2347{
4b02b524 2348 int i, rc;
1da177e4
LT
2349 int lenp, seqno = 0;
2350 struct cond_node *cur;
2351
0804d113 2352 write_lock_irq(&policy_rwlock);
1da177e4 2353
4b02b524 2354 rc = -EFAULT;
1da177e4 2355 lenp = policydb.p_bools.nprim;
4b02b524 2356 if (len != lenp)
1da177e4 2357 goto out;
1da177e4 2358
1da177e4 2359 for (i = 0; i < len; i++) {
af601e46
SG
2360 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2361 audit_log(current->audit_context, GFP_ATOMIC,
2362 AUDIT_MAC_CONFIG_CHANGE,
4746ec5b 2363 "bool=%s val=%d old_val=%d auid=%u ses=%u",
af601e46
SG
2364 policydb.p_bool_val_to_name[i],
2365 !!values[i],
2366 policydb.bool_val_to_struct[i]->state,
4746ec5b
EP
2367 audit_get_loginuid(current),
2368 audit_get_sessionid(current));
af601e46 2369 }
5d55a345 2370 if (values[i])
1da177e4 2371 policydb.bool_val_to_struct[i]->state = 1;
5d55a345 2372 else
1da177e4 2373 policydb.bool_val_to_struct[i]->state = 0;
1da177e4 2374 }
1da177e4 2375
dbc74c65 2376 for (cur = policydb.cond_list; cur; cur = cur->next) {
1da177e4
LT
2377 rc = evaluate_cond_node(&policydb, cur);
2378 if (rc)
2379 goto out;
2380 }
2381
2382 seqno = ++latest_granting;
4b02b524 2383 rc = 0;
1da177e4 2384out:
0804d113 2385 write_unlock_irq(&policy_rwlock);
1da177e4
LT
2386 if (!rc) {
2387 avc_ss_reset(seqno);
2388 selnl_notify_policyload(seqno);
11904167 2389 selinux_status_update_policyload(seqno);
342a0cff 2390 selinux_xfrm_notify_policyload();
1da177e4
LT
2391 }
2392 return rc;
2393}
2394
2395int security_get_bool_value(int bool)
2396{
4b02b524 2397 int rc;
1da177e4
LT
2398 int len;
2399
0804d113 2400 read_lock(&policy_rwlock);
1da177e4 2401
4b02b524 2402 rc = -EFAULT;
1da177e4 2403 len = policydb.p_bools.nprim;
4b02b524 2404 if (bool >= len)
1da177e4 2405 goto out;
1da177e4
LT
2406
2407 rc = policydb.bool_val_to_struct[bool]->state;
2408out:
0804d113 2409 read_unlock(&policy_rwlock);
1da177e4
LT
2410 return rc;
2411}
376bd9cb 2412
e900a7d9
SS
2413static int security_preserve_bools(struct policydb *p)
2414{
2415 int rc, nbools = 0, *bvalues = NULL, i;
2416 char **bnames = NULL;
2417 struct cond_bool_datum *booldatum;
2418 struct cond_node *cur;
2419
2420 rc = security_get_bools(&nbools, &bnames, &bvalues);
2421 if (rc)
2422 goto out;
2423 for (i = 0; i < nbools; i++) {
2424 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2425 if (booldatum)
2426 booldatum->state = bvalues[i];
2427 }
dbc74c65 2428 for (cur = p->cond_list; cur; cur = cur->next) {
e900a7d9
SS
2429 rc = evaluate_cond_node(p, cur);
2430 if (rc)
2431 goto out;
2432 }
2433
2434out:
2435 if (bnames) {
2436 for (i = 0; i < nbools; i++)
2437 kfree(bnames[i]);
2438 }
2439 kfree(bnames);
2440 kfree(bvalues);
2441 return rc;
2442}
2443
08554d6b
VY
2444/*
2445 * security_sid_mls_copy() - computes a new sid based on the given
2446 * sid and the mls portion of mls_sid.
2447 */
2448int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2449{
2450 struct context *context1;
2451 struct context *context2;
2452 struct context newcon;
2453 char *s;
2454 u32 len;
4b02b524 2455 int rc;
08554d6b 2456
4b02b524 2457 rc = 0;
0719aaf5 2458 if (!ss_initialized || !policydb.mls_enabled) {
08554d6b
VY
2459 *new_sid = sid;
2460 goto out;
2461 }
2462
2463 context_init(&newcon);
2464
0804d113 2465 read_lock(&policy_rwlock);
4b02b524
EP
2466
2467 rc = -EINVAL;
08554d6b
VY
2468 context1 = sidtab_search(&sidtab, sid);
2469 if (!context1) {
744ba35e
EP
2470 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2471 __func__, sid);
08554d6b
VY
2472 goto out_unlock;
2473 }
2474
4b02b524 2475 rc = -EINVAL;
08554d6b
VY
2476 context2 = sidtab_search(&sidtab, mls_sid);
2477 if (!context2) {
744ba35e
EP
2478 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2479 __func__, mls_sid);
08554d6b
VY
2480 goto out_unlock;
2481 }
2482
2483 newcon.user = context1->user;
2484 newcon.role = context1->role;
2485 newcon.type = context1->type;
0efc61ea 2486 rc = mls_context_cpy(&newcon, context2);
08554d6b
VY
2487 if (rc)
2488 goto out_unlock;
2489
08554d6b
VY
2490 /* Check the validity of the new context. */
2491 if (!policydb_context_isvalid(&policydb, &newcon)) {
2492 rc = convert_context_handle_invalid_context(&newcon);
4b02b524
EP
2493 if (rc) {
2494 if (!context_struct_to_string(&newcon, &s, &len)) {
2495 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2496 "security_sid_mls_copy: invalid context %s", s);
2497 kfree(s);
2498 }
2499 goto out_unlock;
2500 }
08554d6b
VY
2501 }
2502
2503 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
08554d6b 2504out_unlock:
0804d113 2505 read_unlock(&policy_rwlock);
08554d6b
VY
2506 context_destroy(&newcon);
2507out:
2508 return rc;
2509}
2510
220deb96
PM
2511/**
2512 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2513 * @nlbl_sid: NetLabel SID
2514 * @nlbl_type: NetLabel labeling protocol type
2515 * @xfrm_sid: XFRM SID
2516 *
2517 * Description:
2518 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2519 * resolved into a single SID it is returned via @peer_sid and the function
2520 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2521 * returns a negative value. A table summarizing the behavior is below:
2522 *
2523 * | function return | @sid
2524 * ------------------------------+-----------------+-----------------
2525 * no peer labels | 0 | SECSID_NULL
2526 * single peer label | 0 | <peer_label>
2527 * multiple, consistent labels | 0 | <peer_label>
2528 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2529 *
2530 */
2531int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2532 u32 xfrm_sid,
2533 u32 *peer_sid)
2534{
2535 int rc;
2536 struct context *nlbl_ctx;
2537 struct context *xfrm_ctx;
2538
4b02b524
EP
2539 *peer_sid = SECSID_NULL;
2540
220deb96
PM
2541 /* handle the common (which also happens to be the set of easy) cases
2542 * right away, these two if statements catch everything involving a
2543 * single or absent peer SID/label */
2544 if (xfrm_sid == SECSID_NULL) {
2545 *peer_sid = nlbl_sid;
2546 return 0;
2547 }
2548 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2549 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2550 * is present */
2551 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2552 *peer_sid = xfrm_sid;
2553 return 0;
2554 }
2555
2556 /* we don't need to check ss_initialized here since the only way both
2557 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2558 * security server was initialized and ss_initialized was true */
4b02b524 2559 if (!policydb.mls_enabled)
220deb96 2560 return 0;
220deb96 2561
0804d113 2562 read_lock(&policy_rwlock);
220deb96 2563
4b02b524 2564 rc = -EINVAL;
220deb96
PM
2565 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2566 if (!nlbl_ctx) {
744ba35e
EP
2567 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2568 __func__, nlbl_sid);
4b02b524 2569 goto out;
220deb96 2570 }
4b02b524 2571 rc = -EINVAL;
220deb96
PM
2572 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2573 if (!xfrm_ctx) {
744ba35e
EP
2574 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2575 __func__, xfrm_sid);
4b02b524 2576 goto out;
220deb96
PM
2577 }
2578 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
4b02b524
EP
2579 if (rc)
2580 goto out;
220deb96 2581
4b02b524
EP
2582 /* at present NetLabel SIDs/labels really only carry MLS
2583 * information so if the MLS portion of the NetLabel SID
2584 * matches the MLS portion of the labeled XFRM SID/label
2585 * then pass along the XFRM SID as it is the most
2586 * expressive */
2587 *peer_sid = xfrm_sid;
2588out:
0804d113 2589 read_unlock(&policy_rwlock);
220deb96
PM
2590 return rc;
2591}
2592
55fcf09b
CP
2593static int get_classes_callback(void *k, void *d, void *args)
2594{
2595 struct class_datum *datum = d;
2596 char *name = k, **classes = args;
2597 int value = datum->value - 1;
2598
2599 classes[value] = kstrdup(name, GFP_ATOMIC);
2600 if (!classes[value])
2601 return -ENOMEM;
2602
2603 return 0;
2604}
2605
2606int security_get_classes(char ***classes, int *nclasses)
2607{
4b02b524 2608 int rc;
55fcf09b 2609
0804d113 2610 read_lock(&policy_rwlock);
55fcf09b 2611
4b02b524 2612 rc = -ENOMEM;
55fcf09b 2613 *nclasses = policydb.p_classes.nprim;
9f59f90b 2614 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
55fcf09b
CP
2615 if (!*classes)
2616 goto out;
2617
2618 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2619 *classes);
4b02b524 2620 if (rc) {
55fcf09b
CP
2621 int i;
2622 for (i = 0; i < *nclasses; i++)
2623 kfree((*classes)[i]);
2624 kfree(*classes);
2625 }
2626
2627out:
0804d113 2628 read_unlock(&policy_rwlock);
55fcf09b
CP
2629 return rc;
2630}
2631
2632static int get_permissions_callback(void *k, void *d, void *args)
2633{
2634 struct perm_datum *datum = d;
2635 char *name = k, **perms = args;
2636 int value = datum->value - 1;
2637
2638 perms[value] = kstrdup(name, GFP_ATOMIC);
2639 if (!perms[value])
2640 return -ENOMEM;
2641
2642 return 0;
2643}
2644
2645int security_get_permissions(char *class, char ***perms, int *nperms)
2646{
4b02b524 2647 int rc, i;
55fcf09b
CP
2648 struct class_datum *match;
2649
0804d113 2650 read_lock(&policy_rwlock);
55fcf09b 2651
4b02b524 2652 rc = -EINVAL;
55fcf09b
CP
2653 match = hashtab_search(policydb.p_classes.table, class);
2654 if (!match) {
744ba35e 2655 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
dd6f953a 2656 __func__, class);
55fcf09b
CP
2657 goto out;
2658 }
2659
4b02b524 2660 rc = -ENOMEM;
55fcf09b 2661 *nperms = match->permissions.nprim;
9f59f90b 2662 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
55fcf09b
CP
2663 if (!*perms)
2664 goto out;
2665
2666 if (match->comdatum) {
2667 rc = hashtab_map(match->comdatum->permissions.table,
2668 get_permissions_callback, *perms);
4b02b524 2669 if (rc)
55fcf09b
CP
2670 goto err;
2671 }
2672
2673 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2674 *perms);
4b02b524 2675 if (rc)
55fcf09b
CP
2676 goto err;
2677
2678out:
0804d113 2679 read_unlock(&policy_rwlock);
55fcf09b
CP
2680 return rc;
2681
2682err:
0804d113 2683 read_unlock(&policy_rwlock);
55fcf09b
CP
2684 for (i = 0; i < *nperms; i++)
2685 kfree((*perms)[i]);
2686 kfree(*perms);
2687 return rc;
2688}
2689
3f12070e
EP
2690int security_get_reject_unknown(void)
2691{
2692 return policydb.reject_unknown;
2693}
2694
2695int security_get_allow_unknown(void)
2696{
2697 return policydb.allow_unknown;
2698}
2699
3bb56b25
PM
2700/**
2701 * security_policycap_supported - Check for a specific policy capability
2702 * @req_cap: capability
2703 *
2704 * Description:
2705 * This function queries the currently loaded policy to see if it supports the
2706 * capability specified by @req_cap. Returns true (1) if the capability is
2707 * supported, false (0) if it isn't supported.
2708 *
2709 */
2710int security_policycap_supported(unsigned int req_cap)
2711{
2712 int rc;
2713
0804d113 2714 read_lock(&policy_rwlock);
3bb56b25 2715 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
0804d113 2716 read_unlock(&policy_rwlock);
3bb56b25
PM
2717
2718 return rc;
2719}
2720
376bd9cb
DG
2721struct selinux_audit_rule {
2722 u32 au_seqno;
2723 struct context au_ctxt;
2724};
2725
9d57a7f9 2726void selinux_audit_rule_free(void *vrule)
376bd9cb 2727{
9d57a7f9
AD
2728 struct selinux_audit_rule *rule = vrule;
2729
376bd9cb
DG
2730 if (rule) {
2731 context_destroy(&rule->au_ctxt);
2732 kfree(rule);
2733 }
2734}
2735
9d57a7f9 2736int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
376bd9cb
DG
2737{
2738 struct selinux_audit_rule *tmprule;
2739 struct role_datum *roledatum;
2740 struct type_datum *typedatum;
2741 struct user_datum *userdatum;
9d57a7f9 2742 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
376bd9cb
DG
2743 int rc = 0;
2744
2745 *rule = NULL;
2746
2747 if (!ss_initialized)
3ad40d64 2748 return -EOPNOTSUPP;
376bd9cb
DG
2749
2750 switch (field) {
3a6b9f85
DG
2751 case AUDIT_SUBJ_USER:
2752 case AUDIT_SUBJ_ROLE:
2753 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
2754 case AUDIT_OBJ_USER:
2755 case AUDIT_OBJ_ROLE:
2756 case AUDIT_OBJ_TYPE:
376bd9cb 2757 /* only 'equals' and 'not equals' fit user, role, and type */
5af75d8d 2758 if (op != Audit_equal && op != Audit_not_equal)
376bd9cb
DG
2759 return -EINVAL;
2760 break;
3a6b9f85
DG
2761 case AUDIT_SUBJ_SEN:
2762 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2763 case AUDIT_OBJ_LEV_LOW:
2764 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2765 /* we do not allow a range, indicated by the presense of '-' */
2766 if (strchr(rulestr, '-'))
2767 return -EINVAL;
2768 break;
2769 default:
2770 /* only the above fields are valid */
2771 return -EINVAL;
2772 }
2773
2774 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2775 if (!tmprule)
2776 return -ENOMEM;
2777
2778 context_init(&tmprule->au_ctxt);
2779
0804d113 2780 read_lock(&policy_rwlock);
376bd9cb
DG
2781
2782 tmprule->au_seqno = latest_granting;
2783
2784 switch (field) {
3a6b9f85 2785 case AUDIT_SUBJ_USER:
6e5a2d1d 2786 case AUDIT_OBJ_USER:
4b02b524 2787 rc = -EINVAL;
376bd9cb
DG
2788 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2789 if (!userdatum)
4b02b524
EP
2790 goto out;
2791 tmprule->au_ctxt.user = userdatum->value;
376bd9cb 2792 break;
3a6b9f85 2793 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2794 case AUDIT_OBJ_ROLE:
4b02b524 2795 rc = -EINVAL;
376bd9cb
DG
2796 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2797 if (!roledatum)
4b02b524
EP
2798 goto out;
2799 tmprule->au_ctxt.role = roledatum->value;
376bd9cb 2800 break;
3a6b9f85 2801 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2802 case AUDIT_OBJ_TYPE:
4b02b524 2803 rc = -EINVAL;
376bd9cb
DG
2804 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2805 if (!typedatum)
4b02b524
EP
2806 goto out;
2807 tmprule->au_ctxt.type = typedatum->value;
376bd9cb 2808 break;
3a6b9f85
DG
2809 case AUDIT_SUBJ_SEN:
2810 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2811 case AUDIT_OBJ_LEV_LOW:
2812 case AUDIT_OBJ_LEV_HIGH:
376bd9cb 2813 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
4b02b524
EP
2814 if (rc)
2815 goto out;
376bd9cb
DG
2816 break;
2817 }
4b02b524
EP
2818 rc = 0;
2819out:
0804d113 2820 read_unlock(&policy_rwlock);
376bd9cb
DG
2821
2822 if (rc) {
2823 selinux_audit_rule_free(tmprule);
2824 tmprule = NULL;
2825 }
2826
2827 *rule = tmprule;
2828
2829 return rc;
2830}
2831
9d57a7f9
AD
2832/* Check to see if the rule contains any selinux fields */
2833int selinux_audit_rule_known(struct audit_krule *rule)
2834{
2835 int i;
2836
2837 for (i = 0; i < rule->field_count; i++) {
2838 struct audit_field *f = &rule->fields[i];
2839 switch (f->type) {
2840 case AUDIT_SUBJ_USER:
2841 case AUDIT_SUBJ_ROLE:
2842 case AUDIT_SUBJ_TYPE:
2843 case AUDIT_SUBJ_SEN:
2844 case AUDIT_SUBJ_CLR:
2845 case AUDIT_OBJ_USER:
2846 case AUDIT_OBJ_ROLE:
2847 case AUDIT_OBJ_TYPE:
2848 case AUDIT_OBJ_LEV_LOW:
2849 case AUDIT_OBJ_LEV_HIGH:
2850 return 1;
2851 }
2852 }
2853
2854 return 0;
2855}
2856
2857int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
f5269710 2858 struct audit_context *actx)
376bd9cb
DG
2859{
2860 struct context *ctxt;
2861 struct mls_level *level;
9d57a7f9 2862 struct selinux_audit_rule *rule = vrule;
376bd9cb
DG
2863 int match = 0;
2864
2865 if (!rule) {
2866 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2867 "selinux_audit_rule_match: missing rule\n");
376bd9cb
DG
2868 return -ENOENT;
2869 }
2870
0804d113 2871 read_lock(&policy_rwlock);
376bd9cb
DG
2872
2873 if (rule->au_seqno < latest_granting) {
2874 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2875 "selinux_audit_rule_match: stale rule\n");
376bd9cb
DG
2876 match = -ESTALE;
2877 goto out;
2878 }
2879
9a2f44f0 2880 ctxt = sidtab_search(&sidtab, sid);
376bd9cb
DG
2881 if (!ctxt) {
2882 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
2883 "selinux_audit_rule_match: unrecognized SID %d\n",
2884 sid);
376bd9cb
DG
2885 match = -ENOENT;
2886 goto out;
2887 }
2888
2889 /* a field/op pair that is not caught here will simply fall through
2890 without a match */
2891 switch (field) {
3a6b9f85 2892 case AUDIT_SUBJ_USER:
6e5a2d1d 2893 case AUDIT_OBJ_USER:
376bd9cb 2894 switch (op) {
5af75d8d 2895 case Audit_equal:
376bd9cb
DG
2896 match = (ctxt->user == rule->au_ctxt.user);
2897 break;
5af75d8d 2898 case Audit_not_equal:
376bd9cb
DG
2899 match = (ctxt->user != rule->au_ctxt.user);
2900 break;
2901 }
2902 break;
3a6b9f85 2903 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2904 case AUDIT_OBJ_ROLE:
376bd9cb 2905 switch (op) {
5af75d8d 2906 case Audit_equal:
376bd9cb
DG
2907 match = (ctxt->role == rule->au_ctxt.role);
2908 break;
5af75d8d 2909 case Audit_not_equal:
376bd9cb
DG
2910 match = (ctxt->role != rule->au_ctxt.role);
2911 break;
2912 }
2913 break;
3a6b9f85 2914 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2915 case AUDIT_OBJ_TYPE:
376bd9cb 2916 switch (op) {
5af75d8d 2917 case Audit_equal:
376bd9cb
DG
2918 match = (ctxt->type == rule->au_ctxt.type);
2919 break;
5af75d8d 2920 case Audit_not_equal:
376bd9cb
DG
2921 match = (ctxt->type != rule->au_ctxt.type);
2922 break;
2923 }
2924 break;
3a6b9f85
DG
2925 case AUDIT_SUBJ_SEN:
2926 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2927 case AUDIT_OBJ_LEV_LOW:
2928 case AUDIT_OBJ_LEV_HIGH:
2929 level = ((field == AUDIT_SUBJ_SEN ||
5d55a345
EP
2930 field == AUDIT_OBJ_LEV_LOW) ?
2931 &ctxt->range.level[0] : &ctxt->range.level[1]);
376bd9cb 2932 switch (op) {
5af75d8d 2933 case Audit_equal:
376bd9cb 2934 match = mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2935 level);
376bd9cb 2936 break;
5af75d8d 2937 case Audit_not_equal:
376bd9cb 2938 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2939 level);
376bd9cb 2940 break;
5af75d8d 2941 case Audit_lt:
376bd9cb 2942 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345
EP
2943 level) &&
2944 !mls_level_eq(&rule->au_ctxt.range.level[0],
2945 level));
376bd9cb 2946 break;
5af75d8d 2947 case Audit_le:
376bd9cb 2948 match = mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345 2949 level);
376bd9cb 2950 break;
5af75d8d 2951 case Audit_gt:
376bd9cb 2952 match = (mls_level_dom(level,
5d55a345
EP
2953 &rule->au_ctxt.range.level[0]) &&
2954 !mls_level_eq(level,
2955 &rule->au_ctxt.range.level[0]));
376bd9cb 2956 break;
5af75d8d 2957 case Audit_ge:
376bd9cb 2958 match = mls_level_dom(level,
5d55a345 2959 &rule->au_ctxt.range.level[0]);
376bd9cb
DG
2960 break;
2961 }
2962 }
2963
2964out:
0804d113 2965 read_unlock(&policy_rwlock);
376bd9cb
DG
2966 return match;
2967}
2968
9d57a7f9 2969static int (*aurule_callback)(void) = audit_update_lsm_rules;
376bd9cb
DG
2970
2971static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
f5269710 2972 u16 class, u32 perms, u32 *retained)
376bd9cb
DG
2973{
2974 int err = 0;
2975
2976 if (event == AVC_CALLBACK_RESET && aurule_callback)
2977 err = aurule_callback();
2978 return err;
2979}
2980
2981static int __init aurule_init(void)
2982{
2983 int err;
2984
2985 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
5d55a345 2986 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
376bd9cb
DG
2987 if (err)
2988 panic("avc_add_callback() failed, error %d\n", err);
2989
2990 return err;
2991}
2992__initcall(aurule_init);
2993
7420ed23 2994#ifdef CONFIG_NETLABEL
7420ed23 2995/**
5778eabd
PM
2996 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2997 * @secattr: the NetLabel packet security attributes
5dbe1eb0 2998 * @sid: the SELinux SID
7420ed23
VY
2999 *
3000 * Description:
3001 * Attempt to cache the context in @ctx, which was derived from the packet in
5778eabd
PM
3002 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3003 * already been initialized.
7420ed23
VY
3004 *
3005 */
5778eabd 3006static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
5dbe1eb0 3007 u32 sid)
7420ed23 3008{
5dbe1eb0 3009 u32 *sid_cache;
7420ed23 3010
5dbe1eb0
PM
3011 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3012 if (sid_cache == NULL)
5778eabd 3013 return;
5dbe1eb0
PM
3014 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3015 if (secattr->cache == NULL) {
3016 kfree(sid_cache);
5778eabd 3017 return;
0ec8abd7 3018 }
7420ed23 3019
5dbe1eb0
PM
3020 *sid_cache = sid;
3021 secattr->cache->free = kfree;
3022 secattr->cache->data = sid_cache;
5778eabd 3023 secattr->flags |= NETLBL_SECATTR_CACHE;
7420ed23
VY
3024}
3025
3026/**
5778eabd 3027 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
7420ed23 3028 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3029 * @sid: the SELinux SID
3030 *
3031 * Description:
5778eabd 3032 * Convert the given NetLabel security attributes in @secattr into a
7420ed23 3033 * SELinux SID. If the @secattr field does not contain a full SELinux
5dbe1eb0
PM
3034 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
3035 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3036 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3037 * conversion for future lookups. Returns zero on success, negative values on
3038 * failure.
7420ed23
VY
3039 *
3040 */
5778eabd 3041int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
5778eabd 3042 u32 *sid)
7420ed23
VY
3043{
3044 int rc = -EIDRM;
3045 struct context *ctx;
3046 struct context ctx_new;
5778eabd
PM
3047
3048 if (!ss_initialized) {
3049 *sid = SECSID_NULL;
3050 return 0;
3051 }
7420ed23 3052
0804d113 3053 read_lock(&policy_rwlock);
7420ed23 3054
701a90ba 3055 if (secattr->flags & NETLBL_SECATTR_CACHE) {
5dbe1eb0
PM
3056 *sid = *(u32 *)secattr->cache->data;
3057 rc = 0;
16efd454
PM
3058 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
3059 *sid = secattr->attr.secid;
3060 rc = 0;
701a90ba 3061 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
5dbe1eb0 3062 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
7420ed23
VY
3063 if (ctx == NULL)
3064 goto netlbl_secattr_to_sid_return;
3065
81990fbd 3066 context_init(&ctx_new);
7420ed23
VY
3067 ctx_new.user = ctx->user;
3068 ctx_new.role = ctx->role;
3069 ctx_new.type = ctx->type;
02752760 3070 mls_import_netlbl_lvl(&ctx_new, secattr);
701a90ba 3071 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
02752760 3072 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
16efd454 3073 secattr->attr.mls.cat) != 0)
7420ed23 3074 goto netlbl_secattr_to_sid_return;
81990fbd
PM
3075 memcpy(&ctx_new.range.level[1].cat,
3076 &ctx_new.range.level[0].cat,
3077 sizeof(ctx_new.range.level[0].cat));
7420ed23
VY
3078 }
3079 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3080 goto netlbl_secattr_to_sid_return_cleanup;
3081
3082 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3083 if (rc != 0)
3084 goto netlbl_secattr_to_sid_return_cleanup;
3085
5dbe1eb0 3086 security_netlbl_cache_add(secattr, *sid);
5778eabd 3087
7420ed23
VY
3088 ebitmap_destroy(&ctx_new.range.level[0].cat);
3089 } else {
388b2405 3090 *sid = SECSID_NULL;
7420ed23
VY
3091 rc = 0;
3092 }
3093
3094netlbl_secattr_to_sid_return:
0804d113 3095 read_unlock(&policy_rwlock);
7420ed23
VY
3096 return rc;
3097netlbl_secattr_to_sid_return_cleanup:
3098 ebitmap_destroy(&ctx_new.range.level[0].cat);
3099 goto netlbl_secattr_to_sid_return;
3100}
3101
3102/**
5778eabd
PM
3103 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3104 * @sid: the SELinux SID
3105 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3106 *
3107 * Description:
5778eabd
PM
3108 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3109 * Returns zero on success, negative values on failure.
7420ed23
VY
3110 *
3111 */
5778eabd 3112int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
7420ed23 3113{
99d854d2 3114 int rc;
7420ed23
VY
3115 struct context *ctx;
3116
3117 if (!ss_initialized)
3118 return 0;
3119
0804d113 3120 read_lock(&policy_rwlock);
4b02b524
EP
3121
3122 rc = -ENOENT;
7420ed23 3123 ctx = sidtab_search(&sidtab, sid);
4b02b524
EP
3124 if (ctx == NULL)
3125 goto out;
3126
3127 rc = -ENOMEM;
5778eabd
PM
3128 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3129 GFP_ATOMIC);
4b02b524
EP
3130 if (secattr->domain == NULL)
3131 goto out;
3132
8d75899d
PM
3133 secattr->attr.secid = sid;
3134 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
5778eabd
PM
3135 mls_export_netlbl_lvl(ctx, secattr);
3136 rc = mls_export_netlbl_cat(ctx, secattr);
4b02b524 3137out:
0804d113 3138 read_unlock(&policy_rwlock);
f8687afe
PM
3139 return rc;
3140}
7420ed23 3141#endif /* CONFIG_NETLABEL */
cee74f47
EP
3142
3143/**
3144 * security_read_policy - read the policy.
3145 * @data: binary policy data
3146 * @len: length of data in bytes
3147 *
3148 */
3149int security_read_policy(void **data, ssize_t *len)
3150{
3151 int rc;
3152 struct policy_file fp;
3153
3154 if (!ss_initialized)
3155 return -EINVAL;
3156
3157 *len = security_policydb_len();
3158
845ca30f 3159 *data = vmalloc_user(*len);
cee74f47
EP
3160 if (!*data)
3161 return -ENOMEM;
3162
3163 fp.data = *data;
3164 fp.len = *len;
3165
3166 read_lock(&policy_rwlock);
3167 rc = policydb_write(&policydb, &fp);
3168 read_unlock(&policy_rwlock);
3169
3170 if (rc)
3171 return rc;
3172
3173 *len = (unsigned long)fp.data - (unsigned long)*data;
3174 return 0;
3175
3176}