personality handling: fix PER_CLEAR_ON_SETID for security reasons
[linux-2.6-block.git] / security / selinux / avc.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
95fff33b 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
95fff33b 8 * Replaced the avc_lock spinlock by RCU.
1da177e4
LT
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
95fff33b 14 * as published by the Free Software Foundation.
1da177e4
LT
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34
5c458998 35static const struct av_perm_to_string av_perm_to_string[] = {
1da177e4
LT
36#define S_(c, v, s) { c, v, s },
37#include "av_perm_to_string.h"
38#undef S_
39};
40
1da177e4
LT
41static const char *class_to_string[] = {
42#define S_(s) s,
43#include "class_to_string.h"
44#undef S_
45};
1da177e4 46
95fff33b 47#define TB_(s) static const char *s[] = {
1da177e4
LT
48#define TE_(s) };
49#define S_(s) s,
50#include "common_perm_to_string.h"
51#undef TB_
52#undef TE_
53#undef S_
54
5c458998 55static const struct av_inherit av_inherit[] = {
76f7ba35
EP
56#define S_(c, i, b) { .tclass = c,\
57 .common_pts = common_##i##_perm_to_string,\
58 .common_base = b },
1da177e4
LT
59#include "av_inherit.h"
60#undef S_
61};
62
5c458998 63const struct selinux_class_perm selinux_class_perm = {
76f7ba35
EP
64 .av_perm_to_string = av_perm_to_string,
65 .av_pts_len = ARRAY_SIZE(av_perm_to_string),
66 .class_to_string = class_to_string,
67 .cts_len = ARRAY_SIZE(class_to_string),
68 .av_inherit = av_inherit,
69 .av_inherit_len = ARRAY_SIZE(av_inherit)
5c458998
CS
70};
71
1da177e4
LT
72#define AVC_CACHE_SLOTS 512
73#define AVC_DEF_CACHE_THRESHOLD 512
74#define AVC_CACHE_RECLAIM 16
75
76#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
95fff33b 77#define avc_cache_stats_incr(field) \
1da177e4
LT
78do { \
79 per_cpu(avc_cache_stats, get_cpu()).field++; \
80 put_cpu(); \
81} while (0)
82#else
83#define avc_cache_stats_incr(field) do {} while (0)
84#endif
85
86struct avc_entry {
87 u32 ssid;
88 u32 tsid;
89 u16 tclass;
90 struct av_decision avd;
1da177e4
LT
91};
92
93struct avc_node {
94 struct avc_entry ae;
26036651 95 struct hlist_node list; /* anchored in avc_cache->slots[i] */
95fff33b 96 struct rcu_head rhead;
1da177e4
LT
97};
98
99struct avc_cache {
26036651 100 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
1da177e4
LT
101 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
102 atomic_t lru_hint; /* LRU hint for reclaim scan */
103 atomic_t active_nodes;
104 u32 latest_notif; /* latest revocation notification */
105};
106
107struct avc_callback_node {
108 int (*callback) (u32 event, u32 ssid, u32 tsid,
95fff33b
EP
109 u16 tclass, u32 perms,
110 u32 *out_retained);
1da177e4
LT
111 u32 events;
112 u32 ssid;
113 u32 tsid;
114 u16 tclass;
115 u32 perms;
116 struct avc_callback_node *next;
117};
118
119/* Exported via selinufs */
120unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
121
122#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
123DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
124#endif
125
126static struct avc_cache avc_cache;
127static struct avc_callback_node *avc_callbacks;
e18b890b 128static struct kmem_cache *avc_node_cachep;
1da177e4
LT
129
130static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
131{
132 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
133}
134
135/**
136 * avc_dump_av - Display an access vector in human-readable form.
137 * @tclass: target security class
138 * @av: access vector
139 */
44c2d9bd 140static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
1da177e4
LT
141{
142 const char **common_pts = NULL;
143 u32 common_base = 0;
144 int i, i2, perm;
145
146 if (av == 0) {
147 audit_log_format(ab, " null");
148 return;
149 }
150
151 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
152 if (av_inherit[i].tclass == tclass) {
153 common_pts = av_inherit[i].common_pts;
154 common_base = av_inherit[i].common_base;
155 break;
156 }
157 }
158
159 audit_log_format(ab, " {");
160 i = 0;
161 perm = 1;
162 while (perm < common_base) {
163 if (perm & av) {
164 audit_log_format(ab, " %s", common_pts[i]);
165 av &= ~perm;
166 }
167 i++;
168 perm <<= 1;
169 }
170
171 while (i < sizeof(av) * 8) {
172 if (perm & av) {
173 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
174 if ((av_perm_to_string[i2].tclass == tclass) &&
175 (av_perm_to_string[i2].value == perm))
176 break;
177 }
178 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
179 audit_log_format(ab, " %s",
180 av_perm_to_string[i2].name);
181 av &= ~perm;
182 }
183 }
184 i++;
185 perm <<= 1;
186 }
187
188 if (av)
189 audit_log_format(ab, " 0x%x", av);
190
191 audit_log_format(ab, " }");
192}
193
194/**
195 * avc_dump_query - Display a SID pair and a class in human-readable form.
196 * @ssid: source security identifier
197 * @tsid: target security identifier
198 * @tclass: target security class
199 */
200static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
201{
202 int rc;
203 char *scontext;
204 u32 scontext_len;
205
95fff33b 206 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
1da177e4
LT
207 if (rc)
208 audit_log_format(ab, "ssid=%d", ssid);
209 else {
210 audit_log_format(ab, "scontext=%s", scontext);
211 kfree(scontext);
212 }
213
214 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
215 if (rc)
216 audit_log_format(ab, " tsid=%d", tsid);
217 else {
218 audit_log_format(ab, " tcontext=%s", scontext);
219 kfree(scontext);
220 }
a764ae4b
SS
221
222 BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
1da177e4
LT
223 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224}
225
226/**
227 * avc_init - Initialize the AVC.
228 *
229 * Initialize the access vector cache.
230 */
231void __init avc_init(void)
232{
233 int i;
234
235 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
26036651 236 INIT_HLIST_HEAD(&avc_cache.slots[i]);
1da177e4
LT
237 spin_lock_init(&avc_cache.slots_lock[i]);
238 }
239 atomic_set(&avc_cache.active_nodes, 0);
240 atomic_set(&avc_cache.lru_hint, 0);
241
242 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
20c2df83 243 0, SLAB_PANIC, NULL);
1da177e4 244
9ad9ad38 245 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
1da177e4
LT
246}
247
248int avc_get_hash_stats(char *page)
249{
250 int i, chain_len, max_chain_len, slots_used;
251 struct avc_node *node;
26036651 252 struct hlist_head *head;
1da177e4
LT
253
254 rcu_read_lock();
255
256 slots_used = 0;
257 max_chain_len = 0;
258 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
edf3d1ae 259 head = &avc_cache.slots[i];
26036651
EP
260 if (!hlist_empty(head)) {
261 struct hlist_node *next;
262
1da177e4
LT
263 slots_used++;
264 chain_len = 0;
26036651 265 hlist_for_each_entry_rcu(node, next, head, list)
1da177e4
LT
266 chain_len++;
267 if (chain_len > max_chain_len)
268 max_chain_len = chain_len;
269 }
270 }
271
272 rcu_read_unlock();
273
274 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
275 "longest chain: %d\n",
276 atomic_read(&avc_cache.active_nodes),
277 slots_used, AVC_CACHE_SLOTS, max_chain_len);
278}
279
280static void avc_node_free(struct rcu_head *rhead)
281{
282 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
283 kmem_cache_free(avc_node_cachep, node);
284 avc_cache_stats_incr(frees);
285}
286
287static void avc_node_delete(struct avc_node *node)
288{
26036651 289 hlist_del_rcu(&node->list);
1da177e4
LT
290 call_rcu(&node->rhead, avc_node_free);
291 atomic_dec(&avc_cache.active_nodes);
292}
293
294static void avc_node_kill(struct avc_node *node)
295{
296 kmem_cache_free(avc_node_cachep, node);
297 avc_cache_stats_incr(frees);
298 atomic_dec(&avc_cache.active_nodes);
299}
300
301static void avc_node_replace(struct avc_node *new, struct avc_node *old)
302{
26036651 303 hlist_replace_rcu(&old->list, &new->list);
1da177e4
LT
304 call_rcu(&old->rhead, avc_node_free);
305 atomic_dec(&avc_cache.active_nodes);
306}
307
308static inline int avc_reclaim_node(void)
309{
310 struct avc_node *node;
311 int hvalue, try, ecx;
312 unsigned long flags;
26036651
EP
313 struct hlist_head *head;
314 struct hlist_node *next;
edf3d1ae 315 spinlock_t *lock;
1da177e4 316
95fff33b 317 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
1da177e4 318 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
edf3d1ae
EP
319 head = &avc_cache.slots[hvalue];
320 lock = &avc_cache.slots_lock[hvalue];
1da177e4 321
edf3d1ae 322 if (!spin_trylock_irqsave(lock, flags))
1da177e4
LT
323 continue;
324
61844250 325 rcu_read_lock();
26036651 326 hlist_for_each_entry(node, next, head, list) {
906d27d9
EP
327 avc_node_delete(node);
328 avc_cache_stats_incr(reclaims);
329 ecx++;
330 if (ecx >= AVC_CACHE_RECLAIM) {
331 rcu_read_unlock();
edf3d1ae 332 spin_unlock_irqrestore(lock, flags);
906d27d9 333 goto out;
1da177e4
LT
334 }
335 }
61844250 336 rcu_read_unlock();
edf3d1ae 337 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
338 }
339out:
340 return ecx;
341}
342
343static struct avc_node *avc_alloc_node(void)
344{
345 struct avc_node *node;
346
c3762229 347 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
1da177e4
LT
348 if (!node)
349 goto out;
350
1da177e4 351 INIT_RCU_HEAD(&node->rhead);
26036651 352 INIT_HLIST_NODE(&node->list);
1da177e4
LT
353 avc_cache_stats_incr(allocations);
354
355 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
356 avc_reclaim_node();
357
358out:
359 return node;
360}
361
21193dcd 362static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
1da177e4
LT
363{
364 node->ae.ssid = ssid;
365 node->ae.tsid = tsid;
366 node->ae.tclass = tclass;
21193dcd 367 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
1da177e4
LT
368}
369
370static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
371{
372 struct avc_node *node, *ret = NULL;
373 int hvalue;
26036651
EP
374 struct hlist_head *head;
375 struct hlist_node *next;
1da177e4
LT
376
377 hvalue = avc_hash(ssid, tsid, tclass);
edf3d1ae 378 head = &avc_cache.slots[hvalue];
26036651 379 hlist_for_each_entry_rcu(node, next, head, list) {
1da177e4
LT
380 if (ssid == node->ae.ssid &&
381 tclass == node->ae.tclass &&
382 tsid == node->ae.tsid) {
383 ret = node;
384 break;
385 }
386 }
387
1da177e4
LT
388 return ret;
389}
390
391/**
392 * avc_lookup - Look up an AVC entry.
393 * @ssid: source security identifier
394 * @tsid: target security identifier
395 * @tclass: target security class
1da177e4
LT
396 *
397 * Look up an AVC entry that is valid for the
1da177e4
LT
398 * (@ssid, @tsid), interpreting the permissions
399 * based on @tclass. If a valid AVC entry exists,
400 * then this function return the avc_node.
401 * Otherwise, this function returns NULL.
402 */
f1c6381a 403static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
1da177e4
LT
404{
405 struct avc_node *node;
406
407 avc_cache_stats_incr(lookups);
408 node = avc_search_node(ssid, tsid, tclass);
409
f1c6381a 410 if (node)
1da177e4 411 avc_cache_stats_incr(hits);
f1c6381a
EP
412 else
413 avc_cache_stats_incr(misses);
1da177e4 414
1da177e4
LT
415 return node;
416}
417
418static int avc_latest_notif_update(int seqno, int is_insert)
419{
420 int ret = 0;
421 static DEFINE_SPINLOCK(notif_lock);
422 unsigned long flag;
423
424 spin_lock_irqsave(&notif_lock, flag);
425 if (is_insert) {
426 if (seqno < avc_cache.latest_notif) {
744ba35e 427 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
1da177e4
LT
428 seqno, avc_cache.latest_notif);
429 ret = -EAGAIN;
430 }
431 } else {
432 if (seqno > avc_cache.latest_notif)
433 avc_cache.latest_notif = seqno;
434 }
435 spin_unlock_irqrestore(&notif_lock, flag);
436
437 return ret;
438}
439
440/**
441 * avc_insert - Insert an AVC entry.
442 * @ssid: source security identifier
443 * @tsid: target security identifier
444 * @tclass: target security class
21193dcd 445 * @avd: resulting av decision
1da177e4
LT
446 *
447 * Insert an AVC entry for the SID pair
448 * (@ssid, @tsid) and class @tclass.
449 * The access vectors and the sequence number are
450 * normally provided by the security server in
451 * response to a security_compute_av() call. If the
21193dcd 452 * sequence number @avd->seqno is not less than the latest
1da177e4
LT
453 * revocation notification, then the function copies
454 * the access vectors into a cache entry, returns
455 * avc_node inserted. Otherwise, this function returns NULL.
456 */
21193dcd 457static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
1da177e4
LT
458{
459 struct avc_node *pos, *node = NULL;
460 int hvalue;
461 unsigned long flag;
462
21193dcd 463 if (avc_latest_notif_update(avd->seqno, 1))
1da177e4
LT
464 goto out;
465
466 node = avc_alloc_node();
467 if (node) {
26036651
EP
468 struct hlist_head *head;
469 struct hlist_node *next;
edf3d1ae
EP
470 spinlock_t *lock;
471
1da177e4 472 hvalue = avc_hash(ssid, tsid, tclass);
21193dcd 473 avc_node_populate(node, ssid, tsid, tclass, avd);
1da177e4 474
edf3d1ae
EP
475 head = &avc_cache.slots[hvalue];
476 lock = &avc_cache.slots_lock[hvalue];
477
478 spin_lock_irqsave(lock, flag);
26036651 479 hlist_for_each_entry(pos, next, head, list) {
1da177e4
LT
480 if (pos->ae.ssid == ssid &&
481 pos->ae.tsid == tsid &&
482 pos->ae.tclass == tclass) {
95fff33b 483 avc_node_replace(node, pos);
1da177e4
LT
484 goto found;
485 }
486 }
26036651 487 hlist_add_head_rcu(&node->list, head);
1da177e4 488found:
edf3d1ae 489 spin_unlock_irqrestore(lock, flag);
1da177e4
LT
490 }
491out:
492 return node;
493}
494
8113a8d8
TL
495/**
496 * avc_audit_pre_callback - SELinux specific information
497 * will be called by generic audit code
498 * @ab: the audit buffer
499 * @a: audit_data
500 */
501static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
1da177e4 502{
8113a8d8
TL
503 struct common_audit_data *ad = a;
504 struct av_decision *avd = ad->selinux_audit_data.avd;
505 u32 requested = ad->selinux_audit_data.requested;
506 int result = ad->selinux_audit_data.result;
507 u32 denied, audited;
508 denied = requested & ~avd->allowed;
509 if (denied) {
510 audited = denied;
511 if (!(audited & avd->auditdeny))
512 return;
513 } else if (result) {
514 audited = denied = requested;
515 } else {
516 audited = requested;
517 if (!(audited & avd->auditallow))
518 return;
519 }
520 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
521 avc_dump_av(ab, ad->selinux_audit_data.tclass,
522 ad->selinux_audit_data.audited);
523 audit_log_format(ab, " for ");
1da177e4
LT
524}
525
8113a8d8
TL
526/**
527 * avc_audit_post_callback - SELinux specific information
528 * will be called by generic audit code
529 * @ab: the audit buffer
530 * @a: audit_data
531 */
532static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
1da177e4 533{
8113a8d8
TL
534 struct common_audit_data *ad = a;
535 audit_log_format(ab, " ");
536 avc_dump_query(ab, ad->selinux_audit_data.ssid,
537 ad->selinux_audit_data.tsid,
538 ad->selinux_audit_data.tclass);
1da177e4
LT
539}
540
541/**
542 * avc_audit - Audit the granting or denial of permissions.
543 * @ssid: source security identifier
544 * @tsid: target security identifier
545 * @tclass: target security class
546 * @requested: requested permissions
547 * @avd: access vector decisions
548 * @result: result from avc_has_perm_noaudit
549 * @a: auxiliary audit data
550 *
551 * Audit the granting or denial of permissions in accordance
552 * with the policy. This function is typically called by
553 * avc_has_perm() after a permission check, but can also be
554 * called directly by callers who use avc_has_perm_noaudit()
555 * in order to separate the permission check from the auditing.
556 * For example, this separation is useful when the permission check must
557 * be performed under a lock, to allow the lock to be released
558 * before calling the auditing code.
559 */
560void avc_audit(u32 ssid, u32 tsid,
95fff33b 561 u16 tclass, u32 requested,
8113a8d8 562 struct av_decision *avd, int result, struct common_audit_data *a)
1da177e4 563{
8113a8d8
TL
564 a->selinux_audit_data.avd = avd;
565 a->selinux_audit_data.tclass = tclass;
566 a->selinux_audit_data.requested = requested;
567 a->lsm_pre_audit = avc_audit_pre_callback;
568 a->lsm_post_audit = avc_audit_post_callback;
569 common_lsm_audit(a);
1da177e4
LT
570}
571
572/**
573 * avc_add_callback - Register a callback for security events.
574 * @callback: callback function
575 * @events: security events
576 * @ssid: source security identifier or %SECSID_WILD
577 * @tsid: target security identifier or %SECSID_WILD
578 * @tclass: target security class
579 * @perms: permissions
580 *
581 * Register a callback function for events in the set @events
582 * related to the SID pair (@ssid, @tsid) and
583 * and the permissions @perms, interpreting
584 * @perms based on @tclass. Returns %0 on success or
585 * -%ENOMEM if insufficient memory exists to add the callback.
586 */
587int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
95fff33b
EP
588 u16 tclass, u32 perms,
589 u32 *out_retained),
590 u32 events, u32 ssid, u32 tsid,
591 u16 tclass, u32 perms)
1da177e4
LT
592{
593 struct avc_callback_node *c;
594 int rc = 0;
595
596 c = kmalloc(sizeof(*c), GFP_ATOMIC);
597 if (!c) {
598 rc = -ENOMEM;
599 goto out;
600 }
601
602 c->callback = callback;
603 c->events = events;
604 c->ssid = ssid;
605 c->tsid = tsid;
606 c->perms = perms;
607 c->next = avc_callbacks;
608 avc_callbacks = c;
609out:
610 return rc;
611}
612
613static inline int avc_sidcmp(u32 x, u32 y)
614{
615 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
616}
617
618/**
619 * avc_update_node Update an AVC entry
620 * @event : Updating event
621 * @perms : Permission mask bits
622 * @ssid,@tsid,@tclass : identifier of an AVC entry
a5dda683 623 * @seqno : sequence number when decision was made
1da177e4
LT
624 *
625 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
626 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
627 * otherwise, this function update the AVC entry. The original AVC-entry object
628 * will release later by RCU.
629 */
a5dda683
EP
630static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
631 u32 seqno)
1da177e4
LT
632{
633 int hvalue, rc = 0;
634 unsigned long flag;
635 struct avc_node *pos, *node, *orig = NULL;
26036651
EP
636 struct hlist_head *head;
637 struct hlist_node *next;
edf3d1ae 638 spinlock_t *lock;
1da177e4
LT
639
640 node = avc_alloc_node();
641 if (!node) {
642 rc = -ENOMEM;
643 goto out;
644 }
645
646 /* Lock the target slot */
647 hvalue = avc_hash(ssid, tsid, tclass);
1da177e4 648
edf3d1ae
EP
649 head = &avc_cache.slots[hvalue];
650 lock = &avc_cache.slots_lock[hvalue];
651
652 spin_lock_irqsave(lock, flag);
653
26036651 654 hlist_for_each_entry(pos, next, head, list) {
95fff33b
EP
655 if (ssid == pos->ae.ssid &&
656 tsid == pos->ae.tsid &&
a5dda683
EP
657 tclass == pos->ae.tclass &&
658 seqno == pos->ae.avd.seqno){
1da177e4
LT
659 orig = pos;
660 break;
661 }
662 }
663
664 if (!orig) {
665 rc = -ENOENT;
666 avc_node_kill(node);
667 goto out_unlock;
668 }
669
670 /*
671 * Copy and replace original node.
672 */
673
21193dcd 674 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
1da177e4
LT
675
676 switch (event) {
677 case AVC_CALLBACK_GRANT:
678 node->ae.avd.allowed |= perms;
679 break;
680 case AVC_CALLBACK_TRY_REVOKE:
681 case AVC_CALLBACK_REVOKE:
682 node->ae.avd.allowed &= ~perms;
683 break;
684 case AVC_CALLBACK_AUDITALLOW_ENABLE:
685 node->ae.avd.auditallow |= perms;
686 break;
687 case AVC_CALLBACK_AUDITALLOW_DISABLE:
688 node->ae.avd.auditallow &= ~perms;
689 break;
690 case AVC_CALLBACK_AUDITDENY_ENABLE:
691 node->ae.avd.auditdeny |= perms;
692 break;
693 case AVC_CALLBACK_AUDITDENY_DISABLE:
694 node->ae.avd.auditdeny &= ~perms;
695 break;
696 }
697 avc_node_replace(node, orig);
698out_unlock:
edf3d1ae 699 spin_unlock_irqrestore(lock, flag);
1da177e4
LT
700out:
701 return rc;
702}
703
704/**
705 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
706 * @seqno: policy sequence number
707 */
708int avc_ss_reset(u32 seqno)
709{
710 struct avc_callback_node *c;
376bd9cb 711 int i, rc = 0, tmprc;
1da177e4
LT
712 unsigned long flag;
713 struct avc_node *node;
26036651
EP
714 struct hlist_head *head;
715 struct hlist_node *next;
edf3d1ae 716 spinlock_t *lock;
1da177e4
LT
717
718 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
edf3d1ae
EP
719 head = &avc_cache.slots[i];
720 lock = &avc_cache.slots_lock[i];
721
722 spin_lock_irqsave(lock, flag);
61844250
PM
723 /*
724 * With preemptable RCU, the outer spinlock does not
725 * prevent RCU grace periods from ending.
726 */
727 rcu_read_lock();
26036651 728 hlist_for_each_entry(node, next, head, list)
1da177e4 729 avc_node_delete(node);
61844250 730 rcu_read_unlock();
edf3d1ae 731 spin_unlock_irqrestore(lock, flag);
1da177e4
LT
732 }
733
734 for (c = avc_callbacks; c; c = c->next) {
735 if (c->events & AVC_CALLBACK_RESET) {
376bd9cb 736 tmprc = c->callback(AVC_CALLBACK_RESET,
95fff33b 737 0, 0, 0, 0, NULL);
376bd9cb
DG
738 /* save the first error encountered for the return
739 value and continue processing the callbacks */
740 if (!rc)
741 rc = tmprc;
1da177e4
LT
742 }
743 }
744
745 avc_latest_notif_update(seqno, 0);
1da177e4
LT
746 return rc;
747}
748
749/**
750 * avc_has_perm_noaudit - Check permissions but perform no auditing.
751 * @ssid: source security identifier
752 * @tsid: target security identifier
753 * @tclass: target security class
754 * @requested: requested permissions, interpreted based on @tclass
2c3c05db 755 * @flags: AVC_STRICT or 0
1da177e4
LT
756 * @avd: access vector decisions
757 *
758 * Check the AVC to determine whether the @requested permissions are granted
759 * for the SID pair (@ssid, @tsid), interpreting the permissions
760 * based on @tclass, and call the security server on a cache miss to obtain
761 * a new decision and add it to the cache. Return a copy of the decisions
762 * in @avd. Return %0 if all @requested permissions are granted,
763 * -%EACCES if any permissions are denied, or another -errno upon
764 * other errors. This function is typically called by avc_has_perm(),
765 * but may also be called directly to separate permission checking from
766 * auditing, e.g. in cases where a lock must be held for the check but
767 * should be released for the auditing.
768 */
769int avc_has_perm_noaudit(u32 ssid, u32 tsid,
2c3c05db
SS
770 u16 tclass, u32 requested,
771 unsigned flags,
21193dcd 772 struct av_decision *in_avd)
1da177e4
LT
773{
774 struct avc_node *node;
21193dcd 775 struct av_decision avd_entry, *avd;
1da177e4
LT
776 int rc = 0;
777 u32 denied;
778
eda4f69c
EP
779 BUG_ON(!requested);
780
1da177e4
LT
781 rcu_read_lock();
782
f1c6381a 783 node = avc_lookup(ssid, tsid, tclass);
1da177e4
LT
784 if (!node) {
785 rcu_read_unlock();
21193dcd
EP
786
787 if (in_avd)
788 avd = in_avd;
789 else
790 avd = &avd_entry;
791
792 rc = security_compute_av(ssid, tsid, tclass, requested, avd);
1da177e4
LT
793 if (rc)
794 goto out;
795 rcu_read_lock();
21193dcd
EP
796 node = avc_insert(ssid, tsid, tclass, avd);
797 } else {
798 if (in_avd)
799 memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
800 avd = &node->ae.avd;
1da177e4
LT
801 }
802
21193dcd 803 denied = requested & ~(avd->allowed);
1da177e4 804
eda4f69c 805 if (denied) {
64dbf074 806 if (flags & AVC_STRICT)
1da177e4 807 rc = -EACCES;
8a6f83af 808 else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
64dbf074 809 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
21193dcd 810 tsid, tclass, avd->seqno);
1da177e4 811 else
64dbf074 812 rc = -EACCES;
1da177e4
LT
813 }
814
815 rcu_read_unlock();
816out:
817 return rc;
818}
819
820/**
821 * avc_has_perm - Check permissions and perform any appropriate auditing.
822 * @ssid: source security identifier
823 * @tsid: target security identifier
824 * @tclass: target security class
825 * @requested: requested permissions, interpreted based on @tclass
826 * @auditdata: auxiliary audit data
827 *
828 * Check the AVC to determine whether the @requested permissions are granted
829 * for the SID pair (@ssid, @tsid), interpreting the permissions
830 * based on @tclass, and call the security server on a cache miss to obtain
831 * a new decision and add it to the cache. Audit the granting or denial of
832 * permissions in accordance with the policy. Return %0 if all @requested
833 * permissions are granted, -%EACCES if any permissions are denied, or
834 * another -errno upon other errors.
835 */
836int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
8113a8d8 837 u32 requested, struct common_audit_data *auditdata)
1da177e4
LT
838{
839 struct av_decision avd;
840 int rc;
841
2c3c05db 842 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1da177e4
LT
843 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
844 return rc;
845}
788e7dd4
YN
846
847u32 avc_policy_seqno(void)
848{
849 return avc_cache.latest_notif;
850}
89c86576
TL
851
852void avc_disable(void)
853{
854 if (avc_node_cachep)
855 kmem_cache_destroy(avc_node_cachep);
856}