capabilities: factor out cap_bprm_set_creds privileged root
[linux-2.6-block.git] / security / commoncap.c
CommitLineData
3e1c2515 1/* Common capabilities, needed by capability.o.
1da177e4
LT
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
c59ede7b 10#include <linux/capability.h>
3fc689e9 11#include <linux/audit.h>
1da177e4
LT
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
b1d9e6b0 15#include <linux/lsm_hooks.h>
1da177e4
LT
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
1da177e4
LT
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
b5376771 26#include <linux/mount.h>
b460cbc5 27#include <linux/sched.h>
3898b1b4
AM
28#include <linux/prctl.h>
29#include <linux/securebits.h>
3486740a 30#include <linux/user_namespace.h>
40401530 31#include <linux/binfmts.h>
51b79bee 32#include <linux/personality.h>
72c2d582 33
b5f22a59
SH
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
d7627467 45static void warn_setuid_and_fcaps_mixed(const char *fname)
b5f22a59
SH
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
1d045980
DH
56/**
57 * cap_capable - Determine whether a task has a particular effective capability
3699c53c 58 * @cred: The credentials to use
3486740a 59 * @ns: The user namespace in which we need the capability
1d045980
DH
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
62 *
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
65 *
3699c53c
DH
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
a6dbb1ef 70 */
6a9de491
EP
71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 int cap, int audit)
1da177e4 73{
520d9eab 74 struct user_namespace *ns = targ_ns;
3486740a 75
520d9eab
EB
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
79 */
80 for (;;) {
3486740a 81 /* Do we have the necessary capabilities? */
520d9eab 82 if (ns == cred->user_ns)
3486740a
SH
83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84
64db4c7f
KT
85 /*
86 * If we're already at a lower level than we're looking for,
87 * we're done searching.
88 */
89 if (ns->level <= cred->user_ns->level)
3486740a
SH
90 return -EPERM;
91
520d9eab
EB
92 /*
93 * The owner of the user namespace in the parent of the
94 * user namespace has all caps.
95 */
96 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
97 return 0;
98
3486740a 99 /*
520d9eab 100 * If you have a capability in a parent user ns, then you have
3486740a
SH
101 * it over all children user namespaces as well.
102 */
520d9eab 103 ns = ns->parent;
3486740a
SH
104 }
105
106 /* We never get here */
1da177e4
LT
107}
108
1d045980
DH
109/**
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
113 *
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
116 */
457db29b 117int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
1da177e4
LT
118{
119 if (!capable(CAP_SYS_TIME))
120 return -EPERM;
121 return 0;
122}
123
1d045980 124/**
9e48858f 125 * cap_ptrace_access_check - Determine whether the current process may access
1d045980
DH
126 * another
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
129 *
8409cca7
SH
130 * If we are in the same or an ancestor user_ns and have all the target
131 * task's capabilities, then ptrace access is allowed.
132 * If we have the ptrace capability to the target user_ns, then ptrace
133 * access is allowed.
134 * Else denied.
135 *
1d045980
DH
136 * Determine whether a process may access another, returning 0 if permission
137 * granted, -ve if denied.
138 */
9e48858f 139int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
1da177e4 140{
c69e8d9c 141 int ret = 0;
8409cca7 142 const struct cred *cred, *child_cred;
caaee623 143 const kernel_cap_t *caller_caps;
c69e8d9c
DH
144
145 rcu_read_lock();
8409cca7
SH
146 cred = current_cred();
147 child_cred = __task_cred(child);
caaee623
JH
148 if (mode & PTRACE_MODE_FSCREDS)
149 caller_caps = &cred->cap_effective;
150 else
151 caller_caps = &cred->cap_permitted;
c4a4d603 152 if (cred->user_ns == child_cred->user_ns &&
caaee623 153 cap_issubset(child_cred->cap_permitted, *caller_caps))
8409cca7 154 goto out;
c4a4d603 155 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
8409cca7
SH
156 goto out;
157 ret = -EPERM;
158out:
c69e8d9c
DH
159 rcu_read_unlock();
160 return ret;
5cd9c58f
DH
161}
162
1d045980
DH
163/**
164 * cap_ptrace_traceme - Determine whether another process may trace the current
165 * @parent: The task proposed to be the tracer
166 *
8409cca7
SH
167 * If parent is in the same or an ancestor user_ns and has all current's
168 * capabilities, then ptrace access is allowed.
169 * If parent has the ptrace capability to current's user_ns, then ptrace
170 * access is allowed.
171 * Else denied.
172 *
1d045980
DH
173 * Determine whether the nominated task is permitted to trace the current
174 * process, returning 0 if permission is granted, -ve if denied.
175 */
5cd9c58f
DH
176int cap_ptrace_traceme(struct task_struct *parent)
177{
c69e8d9c 178 int ret = 0;
8409cca7 179 const struct cred *cred, *child_cred;
c69e8d9c
DH
180
181 rcu_read_lock();
8409cca7
SH
182 cred = __task_cred(parent);
183 child_cred = current_cred();
c4a4d603 184 if (cred->user_ns == child_cred->user_ns &&
8409cca7
SH
185 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
186 goto out;
c4a4d603 187 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
8409cca7
SH
188 goto out;
189 ret = -EPERM;
190out:
c69e8d9c
DH
191 rcu_read_unlock();
192 return ret;
1da177e4
LT
193}
194
1d045980
DH
195/**
196 * cap_capget - Retrieve a task's capability sets
197 * @target: The task from which to retrieve the capability sets
198 * @effective: The place to record the effective set
199 * @inheritable: The place to record the inheritable set
200 * @permitted: The place to record the permitted set
201 *
202 * This function retrieves the capabilities of the nominated task and returns
203 * them to the caller.
204 */
205int cap_capget(struct task_struct *target, kernel_cap_t *effective,
206 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1da177e4 207{
c69e8d9c 208 const struct cred *cred;
b6dff3ec 209
1da177e4 210 /* Derived from kernel/capability.c:sys_capget. */
c69e8d9c
DH
211 rcu_read_lock();
212 cred = __task_cred(target);
b6dff3ec
DH
213 *effective = cred->cap_effective;
214 *inheritable = cred->cap_inheritable;
215 *permitted = cred->cap_permitted;
c69e8d9c 216 rcu_read_unlock();
1da177e4
LT
217 return 0;
218}
219
1d045980
DH
220/*
221 * Determine whether the inheritable capabilities are limited to the old
222 * permitted set. Returns 1 if they are limited, 0 if they are not.
223 */
72c2d582
AM
224static inline int cap_inh_is_capped(void)
225{
72c2d582 226
1d045980
DH
227 /* they are so limited unless the current task has the CAP_SETPCAP
228 * capability
229 */
c4a4d603 230 if (cap_capable(current_cred(), current_cred()->user_ns,
6a9de491 231 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
1d045980 232 return 0;
1d045980 233 return 1;
1209726c 234}
72c2d582 235
1d045980
DH
236/**
237 * cap_capset - Validate and apply proposed changes to current's capabilities
238 * @new: The proposed new credentials; alterations should be made here
239 * @old: The current task's current credentials
240 * @effective: A pointer to the proposed new effective capabilities set
241 * @inheritable: A pointer to the proposed new inheritable capabilities set
242 * @permitted: A pointer to the proposed new permitted capabilities set
243 *
244 * This function validates and applies a proposed mass change to the current
245 * process's capability sets. The changes are made to the proposed new
246 * credentials, and assuming no error, will be committed by the caller of LSM.
247 */
d84f4f99
DH
248int cap_capset(struct cred *new,
249 const struct cred *old,
250 const kernel_cap_t *effective,
251 const kernel_cap_t *inheritable,
252 const kernel_cap_t *permitted)
1da177e4 253{
d84f4f99
DH
254 if (cap_inh_is_capped() &&
255 !cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
257 old->cap_permitted)))
72c2d582 258 /* incapable of using this inheritable set */
1da177e4 259 return -EPERM;
d84f4f99 260
3b7391de 261 if (!cap_issubset(*inheritable,
d84f4f99
DH
262 cap_combine(old->cap_inheritable,
263 old->cap_bset)))
3b7391de
SH
264 /* no new pI capabilities outside bounding set */
265 return -EPERM;
1da177e4
LT
266
267 /* verify restrictions on target's new Permitted set */
d84f4f99 268 if (!cap_issubset(*permitted, old->cap_permitted))
1da177e4 269 return -EPERM;
1da177e4
LT
270
271 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
d84f4f99 272 if (!cap_issubset(*effective, *permitted))
1da177e4 273 return -EPERM;
1da177e4 274
d84f4f99
DH
275 new->cap_effective = *effective;
276 new->cap_inheritable = *inheritable;
277 new->cap_permitted = *permitted;
58319057
AL
278
279 /*
280 * Mask off ambient bits that are no longer both permitted and
281 * inheritable.
282 */
283 new->cap_ambient = cap_intersect(new->cap_ambient,
284 cap_intersect(*permitted,
285 *inheritable));
286 if (WARN_ON(!cap_ambient_invariant_ok(new)))
287 return -EINVAL;
1da177e4
LT
288 return 0;
289}
290
1d045980
DH
291/**
292 * cap_inode_need_killpriv - Determine if inode change affects privileges
293 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
294 *
295 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
296 * affects the security markings on that inode, and if it is, should
ab5348c9 297 * inode_killpriv() be invoked or the change rejected.
1d045980 298 *
ab5348c9
SB
299 * Returns 1 if security.capability has a value, meaning inode_killpriv()
300 * is required, 0 otherwise, meaning inode_killpriv() is not required.
1d045980 301 */
b5376771
SH
302int cap_inode_need_killpriv(struct dentry *dentry)
303{
c6f493d6 304 struct inode *inode = d_backing_inode(dentry);
b5376771
SH
305 int error;
306
5d6c3191
AG
307 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
308 return error > 0;
b5376771
SH
309}
310
1d045980
DH
311/**
312 * cap_inode_killpriv - Erase the security markings on an inode
313 * @dentry: The inode/dentry to alter
314 *
315 * Erase the privilege-enhancing security markings on an inode.
316 *
317 * Returns 0 if successful, -ve on error.
318 */
b5376771
SH
319int cap_inode_killpriv(struct dentry *dentry)
320{
5d6c3191 321 int error;
b5376771 322
5d6c3191
AG
323 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
324 if (error == -EOPNOTSUPP)
325 error = 0;
326 return error;
b5376771
SH
327}
328
8db6c34f
SH
329static bool rootid_owns_currentns(kuid_t kroot)
330{
331 struct user_namespace *ns;
332
333 if (!uid_valid(kroot))
334 return false;
335
336 for (ns = current_user_ns(); ; ns = ns->parent) {
337 if (from_kuid(ns, kroot) == 0)
338 return true;
339 if (ns == &init_user_ns)
340 break;
341 }
342
343 return false;
344}
345
346static __u32 sansflags(__u32 m)
347{
348 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
349}
350
351static bool is_v2header(size_t size, __le32 magic)
352{
353 __u32 m = le32_to_cpu(magic);
354 if (size != XATTR_CAPS_SZ_2)
355 return false;
356 return sansflags(m) == VFS_CAP_REVISION_2;
357}
358
359static bool is_v3header(size_t size, __le32 magic)
360{
361 __u32 m = le32_to_cpu(magic);
362
363 if (size != XATTR_CAPS_SZ_3)
364 return false;
365 return sansflags(m) == VFS_CAP_REVISION_3;
366}
367
368/*
369 * getsecurity: We are called for security.* before any attempt to read the
370 * xattr from the inode itself.
371 *
372 * This gives us a chance to read the on-disk value and convert it. If we
373 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
374 *
375 * Note we are not called by vfs_getxattr_alloc(), but that is only called
376 * by the integrity subsystem, which really wants the unconverted values -
377 * so that's good.
378 */
379int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
380 bool alloc)
381{
382 int size, ret;
383 kuid_t kroot;
384 uid_t root, mappedroot;
385 char *tmpbuf = NULL;
386 struct vfs_cap_data *cap;
387 struct vfs_ns_cap_data *nscap;
388 struct dentry *dentry;
389 struct user_namespace *fs_ns;
390
391 if (strcmp(name, "capability") != 0)
392 return -EOPNOTSUPP;
393
394 dentry = d_find_alias(inode);
395 if (!dentry)
396 return -EINVAL;
397
398 size = sizeof(struct vfs_ns_cap_data);
399 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
400 &tmpbuf, size, GFP_NOFS);
401 dput(dentry);
402
403 if (ret < 0)
404 return ret;
405
406 fs_ns = inode->i_sb->s_user_ns;
407 cap = (struct vfs_cap_data *) tmpbuf;
408 if (is_v2header((size_t) ret, cap->magic_etc)) {
409 /* If this is sizeof(vfs_cap_data) then we're ok with the
410 * on-disk value, so return that. */
411 if (alloc)
412 *buffer = tmpbuf;
413 else
414 kfree(tmpbuf);
415 return ret;
416 } else if (!is_v3header((size_t) ret, cap->magic_etc)) {
417 kfree(tmpbuf);
418 return -EINVAL;
419 }
420
421 nscap = (struct vfs_ns_cap_data *) tmpbuf;
422 root = le32_to_cpu(nscap->rootid);
423 kroot = make_kuid(fs_ns, root);
424
425 /* If the root kuid maps to a valid uid in current ns, then return
426 * this as a nscap. */
427 mappedroot = from_kuid(current_user_ns(), kroot);
428 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
429 if (alloc) {
430 *buffer = tmpbuf;
431 nscap->rootid = cpu_to_le32(mappedroot);
432 } else
433 kfree(tmpbuf);
434 return size;
435 }
436
437 if (!rootid_owns_currentns(kroot)) {
438 kfree(tmpbuf);
439 return -EOPNOTSUPP;
440 }
441
442 /* This comes from a parent namespace. Return as a v2 capability */
443 size = sizeof(struct vfs_cap_data);
444 if (alloc) {
445 *buffer = kmalloc(size, GFP_ATOMIC);
446 if (*buffer) {
447 struct vfs_cap_data *cap = *buffer;
448 __le32 nsmagic, magic;
449 magic = VFS_CAP_REVISION_2;
450 nsmagic = le32_to_cpu(nscap->magic_etc);
451 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
452 magic |= VFS_CAP_FLAGS_EFFECTIVE;
453 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
454 cap->magic_etc = cpu_to_le32(magic);
455 }
456 }
457 kfree(tmpbuf);
458 return size;
459}
460
461static kuid_t rootid_from_xattr(const void *value, size_t size,
462 struct user_namespace *task_ns)
463{
464 const struct vfs_ns_cap_data *nscap = value;
465 uid_t rootid = 0;
466
467 if (size == XATTR_CAPS_SZ_3)
468 rootid = le32_to_cpu(nscap->rootid);
469
470 return make_kuid(task_ns, rootid);
471}
472
473static bool validheader(size_t size, __le32 magic)
474{
475 return is_v2header(size, magic) || is_v3header(size, magic);
476}
477
478/*
479 * User requested a write of security.capability. If needed, update the
480 * xattr to change from v2 to v3, or to fixup the v3 rootid.
481 *
482 * If all is ok, we return the new size, on error return < 0.
483 */
484int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
485{
486 struct vfs_ns_cap_data *nscap;
487 uid_t nsrootid;
488 const struct vfs_cap_data *cap = *ivalue;
489 __u32 magic, nsmagic;
490 struct inode *inode = d_backing_inode(dentry);
491 struct user_namespace *task_ns = current_user_ns(),
492 *fs_ns = inode->i_sb->s_user_ns;
493 kuid_t rootid;
494 size_t newsize;
495
496 if (!*ivalue)
497 return -EINVAL;
498 if (!validheader(size, cap->magic_etc))
499 return -EINVAL;
500 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
501 return -EPERM;
502 if (size == XATTR_CAPS_SZ_2)
503 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
504 /* user is privileged, just write the v2 */
505 return size;
506
507 rootid = rootid_from_xattr(*ivalue, size, task_ns);
508 if (!uid_valid(rootid))
509 return -EINVAL;
510
511 nsrootid = from_kuid(fs_ns, rootid);
512 if (nsrootid == -1)
513 return -EINVAL;
514
515 newsize = sizeof(struct vfs_ns_cap_data);
516 nscap = kmalloc(newsize, GFP_ATOMIC);
517 if (!nscap)
518 return -ENOMEM;
519 nscap->rootid = cpu_to_le32(nsrootid);
520 nsmagic = VFS_CAP_REVISION_3;
521 magic = le32_to_cpu(cap->magic_etc);
522 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
523 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
524 nscap->magic_etc = cpu_to_le32(nsmagic);
525 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
526
527 kvfree(*ivalue);
528 *ivalue = nscap;
529 return newsize;
530}
531
1d045980
DH
532/*
533 * Calculate the new process capability sets from the capability sets attached
534 * to a file.
535 */
c0b00441 536static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
a6f76f23 537 struct linux_binprm *bprm,
4d49f671
ZL
538 bool *effective,
539 bool *has_cap)
b5376771 540{
a6f76f23 541 struct cred *new = bprm->cred;
c0b00441
EP
542 unsigned i;
543 int ret = 0;
544
545 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
a6f76f23 546 *effective = true;
c0b00441 547
4d49f671
ZL
548 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
549 *has_cap = true;
550
c0b00441
EP
551 CAP_FOR_EACH_U32(i) {
552 __u32 permitted = caps->permitted.cap[i];
553 __u32 inheritable = caps->inheritable.cap[i];
554
555 /*
556 * pP' = (X & fP) | (pI & fI)
58319057 557 * The addition of pA' is handled later.
c0b00441 558 */
a6f76f23
DH
559 new->cap_permitted.cap[i] =
560 (new->cap_bset.cap[i] & permitted) |
561 (new->cap_inheritable.cap[i] & inheritable);
c0b00441 562
a6f76f23
DH
563 if (permitted & ~new->cap_permitted.cap[i])
564 /* insufficient to execute correctly */
c0b00441 565 ret = -EPERM;
c0b00441
EP
566 }
567
568 /*
569 * For legacy apps, with no internal support for recognizing they
570 * do not have enough capabilities, we return an error if they are
571 * missing some "forced" (aka file-permitted) capabilities.
572 */
a6f76f23 573 return *effective ? ret : 0;
c0b00441
EP
574}
575
1d045980
DH
576/*
577 * Extract the on-exec-apply capability sets for an executable file.
578 */
c0b00441
EP
579int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
580{
c6f493d6 581 struct inode *inode = d_backing_inode(dentry);
b5376771 582 __u32 magic_etc;
e338d263 583 unsigned tocopy, i;
c0b00441 584 int size;
8db6c34f
SH
585 struct vfs_ns_cap_data data, *nscaps = &data;
586 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
587 kuid_t rootkuid;
588 struct user_namespace *fs_ns = inode->i_sb->s_user_ns;
c0b00441
EP
589
590 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
591
5d6c3191 592 if (!inode)
c0b00441
EP
593 return -ENODATA;
594
5d6c3191 595 size = __vfs_getxattr((struct dentry *)dentry, inode,
8db6c34f 596 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
a6f76f23 597 if (size == -ENODATA || size == -EOPNOTSUPP)
c0b00441
EP
598 /* no data, that's ok */
599 return -ENODATA;
8db6c34f 600
c0b00441
EP
601 if (size < 0)
602 return size;
b5376771 603
e338d263 604 if (size < sizeof(magic_etc))
b5376771
SH
605 return -EINVAL;
606
8db6c34f 607 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
b5376771 608
8db6c34f 609 rootkuid = make_kuid(fs_ns, 0);
a6f76f23 610 switch (magic_etc & VFS_CAP_REVISION_MASK) {
e338d263
AM
611 case VFS_CAP_REVISION_1:
612 if (size != XATTR_CAPS_SZ_1)
613 return -EINVAL;
614 tocopy = VFS_CAP_U32_1;
615 break;
616 case VFS_CAP_REVISION_2:
617 if (size != XATTR_CAPS_SZ_2)
618 return -EINVAL;
619 tocopy = VFS_CAP_U32_2;
620 break;
8db6c34f
SH
621 case VFS_CAP_REVISION_3:
622 if (size != XATTR_CAPS_SZ_3)
623 return -EINVAL;
624 tocopy = VFS_CAP_U32_3;
625 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
626 break;
627
b5376771
SH
628 default:
629 return -EINVAL;
630 }
8db6c34f
SH
631 /* Limit the caps to the mounter of the filesystem
632 * or the more limited uid specified in the xattr.
633 */
634 if (!rootid_owns_currentns(rootkuid))
635 return -ENODATA;
e338d263 636
5459c164 637 CAP_FOR_EACH_U32(i) {
c0b00441
EP
638 if (i >= tocopy)
639 break;
8db6c34f
SH
640 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
641 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
e338d263 642 }
a6f76f23 643
7d8b6c63
EP
644 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
645 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
646
c0b00441 647 return 0;
b5376771
SH
648}
649
1d045980
DH
650/*
651 * Attempt to get the on-exec apply capability sets for an executable file from
652 * its xattrs and, if present, apply them to the proposed credentials being
653 * constructed by execve().
654 */
4d49f671 655static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
b5376771 656{
b5376771 657 int rc = 0;
c0b00441 658 struct cpu_vfs_cap_data vcaps;
b5376771 659
ee67ae7e 660 cap_clear(bprm->cred->cap_permitted);
3318a386 661
1f29fae2
SH
662 if (!file_caps_enabled)
663 return 0;
664
380cf5ba 665 if (!mnt_may_suid(bprm->file->f_path.mnt))
b5376771 666 return 0;
380cf5ba
AL
667
668 /*
669 * This check is redundant with mnt_may_suid() but is kept to make
670 * explicit that capability bits are limited to s_user_ns and its
671 * descendants.
672 */
d07b846f
SF
673 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
674 return 0;
b5376771 675
f4a4a8b1 676 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
c0b00441
EP
677 if (rc < 0) {
678 if (rc == -EINVAL)
8db6c34f
SH
679 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
680 bprm->filename);
c0b00441
EP
681 else if (rc == -ENODATA)
682 rc = 0;
b5376771
SH
683 goto out;
684 }
b5376771 685
4d49f671 686 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
a6f76f23
DH
687 if (rc == -EINVAL)
688 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
689 __func__, rc, bprm->filename);
b5376771
SH
690
691out:
b5376771 692 if (rc)
ee67ae7e 693 cap_clear(bprm->cred->cap_permitted);
b5376771
SH
694
695 return rc;
696}
697
db1a8922
RGB
698/*
699 * handle_privileged_root - Handle case of privileged root
700 * @bprm: The execution parameters, including the proposed creds
701 * @has_fcap: Are any file capabilities set?
702 * @effective: Do we have effective root privilege?
703 * @root_uid: This namespace' root UID WRT initial USER namespace
704 *
705 * Handle the case where root is privileged and hasn't been neutered by
706 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
707 * set UID root and nothing is changed. If we are root, cap_permitted is
708 * updated. If we have become set UID root, the effective bit is set.
709 */
710static void handle_privileged_root(struct linux_binprm *bprm, bool has_cap,
711 bool *effective, kuid_t root_uid)
712{
713 const struct cred *old = current_cred();
714 struct cred *new = bprm->cred;
715
716 if (issecure(SECURE_NOROOT))
717 return;
718 /*
719 * If the legacy file capability is set, then don't set privs
720 * for a setuid root binary run by a non-root user. Do set it
721 * for a root user just to cause least surprise to an admin.
722 */
723 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
724 warn_setuid_and_fcaps_mixed(bprm->filename);
725 return;
726 }
727 /*
728 * To support inheritance of root-permissions and suid-root
729 * executables under compatibility mode, we override the
730 * capability sets for the file.
731 */
732 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
733 /* pP' = (cap_bset & ~0) | (pI & ~0) */
734 new->cap_permitted = cap_combine(old->cap_bset,
735 old->cap_inheritable);
736 }
737 /*
738 * If only the real uid is 0, we do not set the effective bit.
739 */
740 if (uid_eq(new->euid, root_uid))
741 *effective = true;
742}
743
1d045980
DH
744/**
745 * cap_bprm_set_creds - Set up the proposed credentials for execve().
746 * @bprm: The execution parameters, including the proposed creds
747 *
748 * Set up the proposed credentials for a new execution context being
749 * constructed by execve(). The proposed creds in @bprm->cred is altered,
750 * which won't take effect immediately. Returns 0 if successful, -ve on error.
a6f76f23
DH
751 */
752int cap_bprm_set_creds(struct linux_binprm *bprm)
1da177e4 753{
a6f76f23
DH
754 const struct cred *old = current_cred();
755 struct cred *new = bprm->cred;
db1a8922 756 bool effective = false, has_cap = false, is_setid;
b5376771 757 int ret;
18815a18 758 kuid_t root_uid;
1da177e4 759
58319057
AL
760 if (WARN_ON(!cap_ambient_invariant_ok(old)))
761 return -EPERM;
762
4d49f671 763 ret = get_file_caps(bprm, &effective, &has_cap);
a6f76f23
DH
764 if (ret < 0)
765 return ret;
1da177e4 766
18815a18
EB
767 root_uid = make_kuid(new->user_ns, 0);
768
db1a8922 769 handle_privileged_root(bprm, has_cap, &effective, root_uid);
b5376771 770
d52fc5dd
EP
771 /* if we have fs caps, clear dangerous personality flags */
772 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
773 bprm->per_clear |= PER_CLEAR_ON_SETID;
774
775
a6f76f23 776 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
259e5e6c
AL
777 * credentials unless they have the appropriate permit.
778 *
779 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
a6f76f23 780 */
58319057
AL
781 is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);
782
783 if ((is_setid ||
a6f76f23 784 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
9227dd2a 785 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
20523132 786 !ptracer_capable(current, new->user_ns))) {
a6f76f23 787 /* downgrade; they get no more than they had, and maybe less */
70169420 788 if (!ns_capable(new->user_ns, CAP_SETUID) ||
259e5e6c 789 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
a6f76f23
DH
790 new->euid = new->uid;
791 new->egid = new->gid;
1da177e4 792 }
b3a222e5
SH
793 new->cap_permitted = cap_intersect(new->cap_permitted,
794 old->cap_permitted);
1da177e4
LT
795 }
796
a6f76f23
DH
797 new->suid = new->fsuid = new->euid;
798 new->sgid = new->fsgid = new->egid;
1da177e4 799
58319057
AL
800 /* File caps or setid cancels ambient. */
801 if (has_cap || is_setid)
802 cap_clear(new->cap_ambient);
803
804 /*
805 * Now that we've computed pA', update pP' to give:
806 * pP' = (X & fP) | (pI & fI) | pA'
807 */
808 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
809
810 /*
811 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
812 * this is the same as pE' = (fE ? pP' : 0) | pA'.
813 */
4bf2ea77
EP
814 if (effective)
815 new->cap_effective = new->cap_permitted;
816 else
58319057
AL
817 new->cap_effective = new->cap_ambient;
818
819 if (WARN_ON(!cap_ambient_invariant_ok(new)))
820 return -EPERM;
821
3fc689e9
EP
822 /*
823 * Audit candidate if current->cap_effective is set
824 *
825 * We do not bother to audit if 3 things are true:
826 * 1) cap_effective has all caps
827 * 2) we are root
828 * 3) root is supposed to have all caps (SECURE_NOROOT)
829 * Since this is just a normal root execing a process.
830 *
831 * Number 1 above might fail if you don't have a full bset, but I think
832 * that is interesting information to audit.
833 */
58319057 834 if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
d84f4f99 835 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
18815a18 836 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
a6f76f23
DH
837 issecure(SECURE_NOROOT)) {
838 ret = audit_log_bprm_fcaps(bprm, new, old);
839 if (ret < 0)
840 return ret;
841 }
3fc689e9 842 }
1da177e4 843
d84f4f99 844 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
58319057
AL
845
846 if (WARN_ON(!cap_ambient_invariant_ok(new)))
847 return -EPERM;
848
46d98eb4 849 /* Check for privilege-elevated exec. */
ee67ae7e
KC
850 bprm->cap_elevated = 0;
851 if (is_setid) {
852 bprm->cap_elevated = 1;
853 } else if (!uid_eq(new->uid, root_uid)) {
854 if (effective ||
855 !cap_issubset(new->cap_permitted, new->cap_ambient))
856 bprm->cap_elevated = 1;
b5376771
SH
857 }
858
ee67ae7e 859 return 0;
1da177e4
LT
860}
861
1d045980
DH
862/**
863 * cap_inode_setxattr - Determine whether an xattr may be altered
864 * @dentry: The inode/dentry being altered
865 * @name: The name of the xattr to be changed
866 * @value: The value that the xattr will be changed to
867 * @size: The size of value
868 * @flags: The replacement flag
869 *
870 * Determine whether an xattr may be altered or set on an inode, returning 0 if
871 * permission is granted, -ve if denied.
872 *
873 * This is used to make sure security xattrs don't get updated or set by those
874 * who aren't privileged to do so.
875 */
8f0cfa52
DH
876int cap_inode_setxattr(struct dentry *dentry, const char *name,
877 const void *value, size_t size, int flags)
1da177e4 878{
8db6c34f
SH
879 /* Ignore non-security xattrs */
880 if (strncmp(name, XATTR_SECURITY_PREFIX,
881 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
882 return 0;
883
884 /*
885 * For XATTR_NAME_CAPS the check will be done in
886 * cap_convert_nscap(), called by setxattr()
887 */
888 if (strcmp(name, XATTR_NAME_CAPS) == 0)
b5376771 889 return 0;
1d045980 890
8db6c34f 891 if (!capable(CAP_SYS_ADMIN))
1da177e4
LT
892 return -EPERM;
893 return 0;
894}
895
1d045980
DH
896/**
897 * cap_inode_removexattr - Determine whether an xattr may be removed
898 * @dentry: The inode/dentry being altered
899 * @name: The name of the xattr to be changed
900 *
901 * Determine whether an xattr may be removed from an inode, returning 0 if
902 * permission is granted, -ve if denied.
903 *
904 * This is used to make sure security xattrs don't get removed by those who
905 * aren't privileged to remove them.
906 */
8f0cfa52 907int cap_inode_removexattr(struct dentry *dentry, const char *name)
1da177e4 908{
8db6c34f
SH
909 /* Ignore non-security xattrs */
910 if (strncmp(name, XATTR_SECURITY_PREFIX,
911 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
912 return 0;
913
914 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
915 /* security.capability gets namespaced */
916 struct inode *inode = d_backing_inode(dentry);
917 if (!inode)
918 return -EINVAL;
919 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
b5376771
SH
920 return -EPERM;
921 return 0;
1d045980
DH
922 }
923
8db6c34f 924 if (!capable(CAP_SYS_ADMIN))
1da177e4
LT
925 return -EPERM;
926 return 0;
927}
928
a6f76f23 929/*
1da177e4
LT
930 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
931 * a process after a call to setuid, setreuid, or setresuid.
932 *
933 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
934 * {r,e,s}uid != 0, the permitted and effective capabilities are
935 * cleared.
936 *
937 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
938 * capabilities of the process are cleared.
939 *
940 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
941 * capabilities are set to the permitted capabilities.
942 *
a6f76f23 943 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1da177e4
LT
944 * never happen.
945 *
a6f76f23 946 * -astor
1da177e4
LT
947 *
948 * cevans - New behaviour, Oct '99
949 * A process may, via prctl(), elect to keep its capabilities when it
950 * calls setuid() and switches away from uid==0. Both permitted and
951 * effective sets will be retained.
952 * Without this change, it was impossible for a daemon to drop only some
953 * of its privilege. The call to setuid(!=0) would drop all privileges!
954 * Keeping uid 0 is not an option because uid 0 owns too many vital
955 * files..
956 * Thanks to Olaf Kirch and Peter Benie for spotting this.
957 */
d84f4f99 958static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1da177e4 959{
18815a18
EB
960 kuid_t root_uid = make_kuid(old->user_ns, 0);
961
962 if ((uid_eq(old->uid, root_uid) ||
963 uid_eq(old->euid, root_uid) ||
964 uid_eq(old->suid, root_uid)) &&
965 (!uid_eq(new->uid, root_uid) &&
966 !uid_eq(new->euid, root_uid) &&
58319057
AL
967 !uid_eq(new->suid, root_uid))) {
968 if (!issecure(SECURE_KEEP_CAPS)) {
969 cap_clear(new->cap_permitted);
970 cap_clear(new->cap_effective);
971 }
972
973 /*
974 * Pre-ambient programs expect setresuid to nonroot followed
975 * by exec to drop capabilities. We should make sure that
976 * this remains the case.
977 */
978 cap_clear(new->cap_ambient);
1da177e4 979 }
18815a18 980 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
d84f4f99 981 cap_clear(new->cap_effective);
18815a18 982 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
d84f4f99 983 new->cap_effective = new->cap_permitted;
1da177e4
LT
984}
985
1d045980
DH
986/**
987 * cap_task_fix_setuid - Fix up the results of setuid() call
988 * @new: The proposed credentials
989 * @old: The current task's current credentials
990 * @flags: Indications of what has changed
991 *
992 * Fix up the results of setuid() call before the credential changes are
993 * actually applied, returning 0 to grant the changes, -ve to deny them.
994 */
d84f4f99 995int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1da177e4
LT
996{
997 switch (flags) {
998 case LSM_SETID_RE:
999 case LSM_SETID_ID:
1000 case LSM_SETID_RES:
1d045980
DH
1001 /* juggle the capabilities to follow [RES]UID changes unless
1002 * otherwise suppressed */
d84f4f99
DH
1003 if (!issecure(SECURE_NO_SETUID_FIXUP))
1004 cap_emulate_setxuid(new, old);
1da177e4 1005 break;
1da177e4 1006
1d045980
DH
1007 case LSM_SETID_FS:
1008 /* juggle the capabilties to follow FSUID changes, unless
1009 * otherwise suppressed
1010 *
d84f4f99
DH
1011 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1012 * if not, we might be a bit too harsh here.
1013 */
1014 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
18815a18
EB
1015 kuid_t root_uid = make_kuid(old->user_ns, 0);
1016 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
d84f4f99
DH
1017 new->cap_effective =
1018 cap_drop_fs_set(new->cap_effective);
1d045980 1019
18815a18 1020 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
d84f4f99
DH
1021 new->cap_effective =
1022 cap_raise_fs_set(new->cap_effective,
1023 new->cap_permitted);
1da177e4 1024 }
d84f4f99 1025 break;
1d045980 1026
1da177e4
LT
1027 default:
1028 return -EINVAL;
1029 }
1030
1031 return 0;
1032}
1033
b5376771
SH
1034/*
1035 * Rationale: code calling task_setscheduler, task_setioprio, and
1036 * task_setnice, assumes that
1037 * . if capable(cap_sys_nice), then those actions should be allowed
1038 * . if not capable(cap_sys_nice), but acting on your own processes,
1039 * then those actions should be allowed
1040 * This is insufficient now since you can call code without suid, but
1041 * yet with increased caps.
1042 * So we check for increased caps on the target process.
1043 */
de45e806 1044static int cap_safe_nice(struct task_struct *p)
b5376771 1045{
f54fb863 1046 int is_subset, ret = 0;
c69e8d9c
DH
1047
1048 rcu_read_lock();
1049 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1050 current_cred()->cap_permitted);
f54fb863
SH
1051 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1052 ret = -EPERM;
c69e8d9c
DH
1053 rcu_read_unlock();
1054
f54fb863 1055 return ret;
b5376771
SH
1056}
1057
1d045980
DH
1058/**
1059 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1060 * @p: The task to affect
1d045980
DH
1061 *
1062 * Detemine if the requested scheduler policy change is permitted for the
1063 * specified task, returning 0 if permission is granted, -ve if denied.
1064 */
b0ae1981 1065int cap_task_setscheduler(struct task_struct *p)
b5376771
SH
1066{
1067 return cap_safe_nice(p);
1068}
1069
1d045980
DH
1070/**
1071 * cap_task_ioprio - Detemine if I/O priority change is permitted
1072 * @p: The task to affect
1073 * @ioprio: The I/O priority to set
1074 *
1075 * Detemine if the requested I/O priority change is permitted for the specified
1076 * task, returning 0 if permission is granted, -ve if denied.
1077 */
1078int cap_task_setioprio(struct task_struct *p, int ioprio)
b5376771
SH
1079{
1080 return cap_safe_nice(p);
1081}
1082
1d045980
DH
1083/**
1084 * cap_task_ioprio - Detemine if task priority change is permitted
1085 * @p: The task to affect
1086 * @nice: The nice value to set
1087 *
1088 * Detemine if the requested task priority change is permitted for the
1089 * specified task, returning 0 if permission is granted, -ve if denied.
1090 */
1091int cap_task_setnice(struct task_struct *p, int nice)
b5376771
SH
1092{
1093 return cap_safe_nice(p);
1094}
1095
3b7391de 1096/*
1d045980
DH
1097 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1098 * the current task's bounding set. Returns 0 on success, -ve on error.
3b7391de 1099 */
6d6f3328 1100static int cap_prctl_drop(unsigned long cap)
3b7391de 1101{
6d6f3328
TH
1102 struct cred *new;
1103
160da84d 1104 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
3b7391de
SH
1105 return -EPERM;
1106 if (!cap_valid(cap))
1107 return -EINVAL;
d84f4f99 1108
6d6f3328
TH
1109 new = prepare_creds();
1110 if (!new)
1111 return -ENOMEM;
d84f4f99 1112 cap_lower(new->cap_bset, cap);
6d6f3328 1113 return commit_creds(new);
3b7391de 1114}
3898b1b4 1115
1d045980
DH
1116/**
1117 * cap_task_prctl - Implement process control functions for this security module
1118 * @option: The process control function requested
1119 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1120 *
1121 * Allow process control functions (sys_prctl()) to alter capabilities; may
1122 * also deny access to other functions not otherwise implemented here.
1123 *
1124 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1125 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1126 * modules will consider performing the function.
1127 */
3898b1b4 1128int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
d84f4f99 1129 unsigned long arg4, unsigned long arg5)
3898b1b4 1130{
6d6f3328 1131 const struct cred *old = current_cred();
d84f4f99 1132 struct cred *new;
d84f4f99 1133
3898b1b4
AM
1134 switch (option) {
1135 case PR_CAPBSET_READ:
1136 if (!cap_valid(arg2))
6d6f3328
TH
1137 return -EINVAL;
1138 return !!cap_raised(old->cap_bset, arg2);
d84f4f99 1139
3898b1b4 1140 case PR_CAPBSET_DROP:
6d6f3328 1141 return cap_prctl_drop(arg2);
3898b1b4
AM
1142
1143 /*
1144 * The next four prctl's remain to assist with transitioning a
1145 * system from legacy UID=0 based privilege (when filesystem
1146 * capabilities are not in use) to a system using filesystem
1147 * capabilities only - as the POSIX.1e draft intended.
1148 *
1149 * Note:
1150 *
1151 * PR_SET_SECUREBITS =
1152 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1153 * | issecure_mask(SECURE_NOROOT)
1154 * | issecure_mask(SECURE_NOROOT_LOCKED)
1155 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1156 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1157 *
1158 * will ensure that the current process and all of its
1159 * children will be locked into a pure
1160 * capability-based-privilege environment.
1161 */
1162 case PR_SET_SECUREBITS:
6d6f3328
TH
1163 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1164 & (old->securebits ^ arg2)) /*[1]*/
1165 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
d84f4f99 1166 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
6a9de491 1167 || (cap_capable(current_cred(),
c4a4d603 1168 current_cred()->user_ns, CAP_SETPCAP,
3699c53c 1169 SECURITY_CAP_AUDIT) != 0) /*[4]*/
3898b1b4
AM
1170 /*
1171 * [1] no changing of bits that are locked
1172 * [2] no unlocking of locks
1173 * [3] no setting of unsupported bits
1174 * [4] doing anything requires privilege (go read about
1175 * the "sendmail capabilities bug")
1176 */
d84f4f99
DH
1177 )
1178 /* cannot change a locked bit */
6d6f3328
TH
1179 return -EPERM;
1180
1181 new = prepare_creds();
1182 if (!new)
1183 return -ENOMEM;
d84f4f99 1184 new->securebits = arg2;
6d6f3328 1185 return commit_creds(new);
d84f4f99 1186
3898b1b4 1187 case PR_GET_SECUREBITS:
6d6f3328 1188 return old->securebits;
3898b1b4 1189
3898b1b4 1190 case PR_GET_KEEPCAPS:
6d6f3328 1191 return !!issecure(SECURE_KEEP_CAPS);
d84f4f99 1192
3898b1b4
AM
1193 case PR_SET_KEEPCAPS:
1194 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
6d6f3328 1195 return -EINVAL;
d84f4f99 1196 if (issecure(SECURE_KEEP_CAPS_LOCKED))
6d6f3328
TH
1197 return -EPERM;
1198
1199 new = prepare_creds();
1200 if (!new)
1201 return -ENOMEM;
d84f4f99
DH
1202 if (arg2)
1203 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
3898b1b4 1204 else
d84f4f99 1205 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
6d6f3328 1206 return commit_creds(new);
3898b1b4 1207
58319057
AL
1208 case PR_CAP_AMBIENT:
1209 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1210 if (arg3 | arg4 | arg5)
1211 return -EINVAL;
1212
1213 new = prepare_creds();
1214 if (!new)
1215 return -ENOMEM;
1216 cap_clear(new->cap_ambient);
1217 return commit_creds(new);
1218 }
1219
1220 if (((!cap_valid(arg3)) | arg4 | arg5))
1221 return -EINVAL;
1222
1223 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1224 return !!cap_raised(current_cred()->cap_ambient, arg3);
1225 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1226 arg2 != PR_CAP_AMBIENT_LOWER) {
1227 return -EINVAL;
1228 } else {
1229 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1230 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1231 !cap_raised(current_cred()->cap_inheritable,
746bf6d6
AL
1232 arg3) ||
1233 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
58319057
AL
1234 return -EPERM;
1235
1236 new = prepare_creds();
1237 if (!new)
1238 return -ENOMEM;
1239 if (arg2 == PR_CAP_AMBIENT_RAISE)
1240 cap_raise(new->cap_ambient, arg3);
1241 else
1242 cap_lower(new->cap_ambient, arg3);
1243 return commit_creds(new);
1244 }
1245
3898b1b4
AM
1246 default:
1247 /* No functionality available - continue with default */
6d6f3328 1248 return -ENOSYS;
3898b1b4 1249 }
1da177e4
LT
1250}
1251
1d045980
DH
1252/**
1253 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1254 * @mm: The VM space in which the new mapping is to be made
1255 * @pages: The size of the mapping
1256 *
1257 * Determine whether the allocation of a new virtual mapping by the current
b1d9e6b0 1258 * task is permitted, returning 1 if permission is granted, 0 if not.
1d045980 1259 */
34b4e4aa 1260int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1da177e4
LT
1261{
1262 int cap_sys_admin = 0;
1263
6a9de491 1264 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
3699c53c 1265 SECURITY_CAP_NOAUDIT) == 0)
1da177e4 1266 cap_sys_admin = 1;
b1d9e6b0 1267 return cap_sys_admin;
1da177e4 1268}
7c73875e
EP
1269
1270/*
d007794a 1271 * cap_mmap_addr - check if able to map given addr
7c73875e 1272 * @addr: address attempting to be mapped
7c73875e 1273 *
6f262d8e 1274 * If the process is attempting to map memory below dac_mmap_min_addr they need
7c73875e
EP
1275 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1276 * capability security module. Returns 0 if this mapping should be allowed
1277 * -EPERM if not.
1278 */
d007794a 1279int cap_mmap_addr(unsigned long addr)
7c73875e
EP
1280{
1281 int ret = 0;
1282
a2551df7 1283 if (addr < dac_mmap_min_addr) {
6a9de491 1284 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
7c73875e
EP
1285 SECURITY_CAP_AUDIT);
1286 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1287 if (ret == 0)
1288 current->flags |= PF_SUPERPRIV;
1289 }
1290 return ret;
1291}
d007794a 1292
e5467859
AV
1293int cap_mmap_file(struct file *file, unsigned long reqprot,
1294 unsigned long prot, unsigned long flags)
d007794a 1295{
e5467859 1296 return 0;
d007794a 1297}
b1d9e6b0
CS
1298
1299#ifdef CONFIG_SECURITY
1300
ca97d939 1301struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
b1d9e6b0
CS
1302 LSM_HOOK_INIT(capable, cap_capable),
1303 LSM_HOOK_INIT(settime, cap_settime),
1304 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1305 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1306 LSM_HOOK_INIT(capget, cap_capget),
1307 LSM_HOOK_INIT(capset, cap_capset),
1308 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
b1d9e6b0
CS
1309 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1310 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
8db6c34f 1311 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
b1d9e6b0
CS
1312 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1313 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1314 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1315 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1316 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1317 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1318 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1319 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1320};
1321
1322void __init capability_add_hooks(void)
1323{
d69dece5
CS
1324 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1325 "capability");
b1d9e6b0
CS
1326}
1327
1328#endif /* CONFIG_SECURITY */