capabilities: move audit log decision to function
[linux-2.6-block.git] / security / commoncap.c
CommitLineData
3e1c2515 1/* Common capabilities, needed by capability.o.
1da177e4
LT
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
c59ede7b 10#include <linux/capability.h>
3fc689e9 11#include <linux/audit.h>
1da177e4
LT
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
b1d9e6b0 15#include <linux/lsm_hooks.h>
1da177e4
LT
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
1da177e4
LT
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
b5376771 26#include <linux/mount.h>
b460cbc5 27#include <linux/sched.h>
3898b1b4
AM
28#include <linux/prctl.h>
29#include <linux/securebits.h>
3486740a 30#include <linux/user_namespace.h>
40401530 31#include <linux/binfmts.h>
51b79bee 32#include <linux/personality.h>
72c2d582 33
b5f22a59
SH
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
d7627467 45static void warn_setuid_and_fcaps_mixed(const char *fname)
b5f22a59
SH
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
1d045980
DH
56/**
57 * cap_capable - Determine whether a task has a particular effective capability
3699c53c 58 * @cred: The credentials to use
3486740a 59 * @ns: The user namespace in which we need the capability
1d045980
DH
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
62 *
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
65 *
3699c53c
DH
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
a6dbb1ef 70 */
6a9de491
EP
71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 int cap, int audit)
1da177e4 73{
520d9eab 74 struct user_namespace *ns = targ_ns;
3486740a 75
520d9eab
EB
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
79 */
80 for (;;) {
3486740a 81 /* Do we have the necessary capabilities? */
520d9eab 82 if (ns == cred->user_ns)
3486740a
SH
83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84
64db4c7f
KT
85 /*
86 * If we're already at a lower level than we're looking for,
87 * we're done searching.
88 */
89 if (ns->level <= cred->user_ns->level)
3486740a
SH
90 return -EPERM;
91
520d9eab
EB
92 /*
93 * The owner of the user namespace in the parent of the
94 * user namespace has all caps.
95 */
96 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
97 return 0;
98
3486740a 99 /*
520d9eab 100 * If you have a capability in a parent user ns, then you have
3486740a
SH
101 * it over all children user namespaces as well.
102 */
520d9eab 103 ns = ns->parent;
3486740a
SH
104 }
105
106 /* We never get here */
1da177e4
LT
107}
108
1d045980
DH
109/**
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
113 *
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
116 */
457db29b 117int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
1da177e4
LT
118{
119 if (!capable(CAP_SYS_TIME))
120 return -EPERM;
121 return 0;
122}
123
1d045980 124/**
9e48858f 125 * cap_ptrace_access_check - Determine whether the current process may access
1d045980
DH
126 * another
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
129 *
8409cca7
SH
130 * If we are in the same or an ancestor user_ns and have all the target
131 * task's capabilities, then ptrace access is allowed.
132 * If we have the ptrace capability to the target user_ns, then ptrace
133 * access is allowed.
134 * Else denied.
135 *
1d045980
DH
136 * Determine whether a process may access another, returning 0 if permission
137 * granted, -ve if denied.
138 */
9e48858f 139int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
1da177e4 140{
c69e8d9c 141 int ret = 0;
8409cca7 142 const struct cred *cred, *child_cred;
caaee623 143 const kernel_cap_t *caller_caps;
c69e8d9c
DH
144
145 rcu_read_lock();
8409cca7
SH
146 cred = current_cred();
147 child_cred = __task_cred(child);
caaee623
JH
148 if (mode & PTRACE_MODE_FSCREDS)
149 caller_caps = &cred->cap_effective;
150 else
151 caller_caps = &cred->cap_permitted;
c4a4d603 152 if (cred->user_ns == child_cred->user_ns &&
caaee623 153 cap_issubset(child_cred->cap_permitted, *caller_caps))
8409cca7 154 goto out;
c4a4d603 155 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
8409cca7
SH
156 goto out;
157 ret = -EPERM;
158out:
c69e8d9c
DH
159 rcu_read_unlock();
160 return ret;
5cd9c58f
DH
161}
162
1d045980
DH
163/**
164 * cap_ptrace_traceme - Determine whether another process may trace the current
165 * @parent: The task proposed to be the tracer
166 *
8409cca7
SH
167 * If parent is in the same or an ancestor user_ns and has all current's
168 * capabilities, then ptrace access is allowed.
169 * If parent has the ptrace capability to current's user_ns, then ptrace
170 * access is allowed.
171 * Else denied.
172 *
1d045980
DH
173 * Determine whether the nominated task is permitted to trace the current
174 * process, returning 0 if permission is granted, -ve if denied.
175 */
5cd9c58f
DH
176int cap_ptrace_traceme(struct task_struct *parent)
177{
c69e8d9c 178 int ret = 0;
8409cca7 179 const struct cred *cred, *child_cred;
c69e8d9c
DH
180
181 rcu_read_lock();
8409cca7
SH
182 cred = __task_cred(parent);
183 child_cred = current_cred();
c4a4d603 184 if (cred->user_ns == child_cred->user_ns &&
8409cca7
SH
185 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
186 goto out;
c4a4d603 187 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
8409cca7
SH
188 goto out;
189 ret = -EPERM;
190out:
c69e8d9c
DH
191 rcu_read_unlock();
192 return ret;
1da177e4
LT
193}
194
1d045980
DH
195/**
196 * cap_capget - Retrieve a task's capability sets
197 * @target: The task from which to retrieve the capability sets
198 * @effective: The place to record the effective set
199 * @inheritable: The place to record the inheritable set
200 * @permitted: The place to record the permitted set
201 *
202 * This function retrieves the capabilities of the nominated task and returns
203 * them to the caller.
204 */
205int cap_capget(struct task_struct *target, kernel_cap_t *effective,
206 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1da177e4 207{
c69e8d9c 208 const struct cred *cred;
b6dff3ec 209
1da177e4 210 /* Derived from kernel/capability.c:sys_capget. */
c69e8d9c
DH
211 rcu_read_lock();
212 cred = __task_cred(target);
b6dff3ec
DH
213 *effective = cred->cap_effective;
214 *inheritable = cred->cap_inheritable;
215 *permitted = cred->cap_permitted;
c69e8d9c 216 rcu_read_unlock();
1da177e4
LT
217 return 0;
218}
219
1d045980
DH
220/*
221 * Determine whether the inheritable capabilities are limited to the old
222 * permitted set. Returns 1 if they are limited, 0 if they are not.
223 */
72c2d582
AM
224static inline int cap_inh_is_capped(void)
225{
72c2d582 226
1d045980
DH
227 /* they are so limited unless the current task has the CAP_SETPCAP
228 * capability
229 */
c4a4d603 230 if (cap_capable(current_cred(), current_cred()->user_ns,
6a9de491 231 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
1d045980 232 return 0;
1d045980 233 return 1;
1209726c 234}
72c2d582 235
1d045980
DH
236/**
237 * cap_capset - Validate and apply proposed changes to current's capabilities
238 * @new: The proposed new credentials; alterations should be made here
239 * @old: The current task's current credentials
240 * @effective: A pointer to the proposed new effective capabilities set
241 * @inheritable: A pointer to the proposed new inheritable capabilities set
242 * @permitted: A pointer to the proposed new permitted capabilities set
243 *
244 * This function validates and applies a proposed mass change to the current
245 * process's capability sets. The changes are made to the proposed new
246 * credentials, and assuming no error, will be committed by the caller of LSM.
247 */
d84f4f99
DH
248int cap_capset(struct cred *new,
249 const struct cred *old,
250 const kernel_cap_t *effective,
251 const kernel_cap_t *inheritable,
252 const kernel_cap_t *permitted)
1da177e4 253{
d84f4f99
DH
254 if (cap_inh_is_capped() &&
255 !cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
257 old->cap_permitted)))
72c2d582 258 /* incapable of using this inheritable set */
1da177e4 259 return -EPERM;
d84f4f99 260
3b7391de 261 if (!cap_issubset(*inheritable,
d84f4f99
DH
262 cap_combine(old->cap_inheritable,
263 old->cap_bset)))
3b7391de
SH
264 /* no new pI capabilities outside bounding set */
265 return -EPERM;
1da177e4
LT
266
267 /* verify restrictions on target's new Permitted set */
d84f4f99 268 if (!cap_issubset(*permitted, old->cap_permitted))
1da177e4 269 return -EPERM;
1da177e4
LT
270
271 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
d84f4f99 272 if (!cap_issubset(*effective, *permitted))
1da177e4 273 return -EPERM;
1da177e4 274
d84f4f99
DH
275 new->cap_effective = *effective;
276 new->cap_inheritable = *inheritable;
277 new->cap_permitted = *permitted;
58319057
AL
278
279 /*
280 * Mask off ambient bits that are no longer both permitted and
281 * inheritable.
282 */
283 new->cap_ambient = cap_intersect(new->cap_ambient,
284 cap_intersect(*permitted,
285 *inheritable));
286 if (WARN_ON(!cap_ambient_invariant_ok(new)))
287 return -EINVAL;
1da177e4
LT
288 return 0;
289}
290
1d045980
DH
291/**
292 * cap_inode_need_killpriv - Determine if inode change affects privileges
293 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
294 *
295 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
296 * affects the security markings on that inode, and if it is, should
ab5348c9 297 * inode_killpriv() be invoked or the change rejected.
1d045980 298 *
ab5348c9
SB
299 * Returns 1 if security.capability has a value, meaning inode_killpriv()
300 * is required, 0 otherwise, meaning inode_killpriv() is not required.
1d045980 301 */
b5376771
SH
302int cap_inode_need_killpriv(struct dentry *dentry)
303{
c6f493d6 304 struct inode *inode = d_backing_inode(dentry);
b5376771
SH
305 int error;
306
5d6c3191
AG
307 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
308 return error > 0;
b5376771
SH
309}
310
1d045980
DH
311/**
312 * cap_inode_killpriv - Erase the security markings on an inode
313 * @dentry: The inode/dentry to alter
314 *
315 * Erase the privilege-enhancing security markings on an inode.
316 *
317 * Returns 0 if successful, -ve on error.
318 */
b5376771
SH
319int cap_inode_killpriv(struct dentry *dentry)
320{
5d6c3191 321 int error;
b5376771 322
5d6c3191
AG
323 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
324 if (error == -EOPNOTSUPP)
325 error = 0;
326 return error;
b5376771
SH
327}
328
8db6c34f
SH
329static bool rootid_owns_currentns(kuid_t kroot)
330{
331 struct user_namespace *ns;
332
333 if (!uid_valid(kroot))
334 return false;
335
336 for (ns = current_user_ns(); ; ns = ns->parent) {
337 if (from_kuid(ns, kroot) == 0)
338 return true;
339 if (ns == &init_user_ns)
340 break;
341 }
342
343 return false;
344}
345
346static __u32 sansflags(__u32 m)
347{
348 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
349}
350
351static bool is_v2header(size_t size, __le32 magic)
352{
353 __u32 m = le32_to_cpu(magic);
354 if (size != XATTR_CAPS_SZ_2)
355 return false;
356 return sansflags(m) == VFS_CAP_REVISION_2;
357}
358
359static bool is_v3header(size_t size, __le32 magic)
360{
361 __u32 m = le32_to_cpu(magic);
362
363 if (size != XATTR_CAPS_SZ_3)
364 return false;
365 return sansflags(m) == VFS_CAP_REVISION_3;
366}
367
368/*
369 * getsecurity: We are called for security.* before any attempt to read the
370 * xattr from the inode itself.
371 *
372 * This gives us a chance to read the on-disk value and convert it. If we
373 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
374 *
375 * Note we are not called by vfs_getxattr_alloc(), but that is only called
376 * by the integrity subsystem, which really wants the unconverted values -
377 * so that's good.
378 */
379int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
380 bool alloc)
381{
382 int size, ret;
383 kuid_t kroot;
384 uid_t root, mappedroot;
385 char *tmpbuf = NULL;
386 struct vfs_cap_data *cap;
387 struct vfs_ns_cap_data *nscap;
388 struct dentry *dentry;
389 struct user_namespace *fs_ns;
390
391 if (strcmp(name, "capability") != 0)
392 return -EOPNOTSUPP;
393
394 dentry = d_find_alias(inode);
395 if (!dentry)
396 return -EINVAL;
397
398 size = sizeof(struct vfs_ns_cap_data);
399 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
400 &tmpbuf, size, GFP_NOFS);
401 dput(dentry);
402
403 if (ret < 0)
404 return ret;
405
406 fs_ns = inode->i_sb->s_user_ns;
407 cap = (struct vfs_cap_data *) tmpbuf;
408 if (is_v2header((size_t) ret, cap->magic_etc)) {
409 /* If this is sizeof(vfs_cap_data) then we're ok with the
410 * on-disk value, so return that. */
411 if (alloc)
412 *buffer = tmpbuf;
413 else
414 kfree(tmpbuf);
415 return ret;
416 } else if (!is_v3header((size_t) ret, cap->magic_etc)) {
417 kfree(tmpbuf);
418 return -EINVAL;
419 }
420
421 nscap = (struct vfs_ns_cap_data *) tmpbuf;
422 root = le32_to_cpu(nscap->rootid);
423 kroot = make_kuid(fs_ns, root);
424
425 /* If the root kuid maps to a valid uid in current ns, then return
426 * this as a nscap. */
427 mappedroot = from_kuid(current_user_ns(), kroot);
428 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
429 if (alloc) {
430 *buffer = tmpbuf;
431 nscap->rootid = cpu_to_le32(mappedroot);
432 } else
433 kfree(tmpbuf);
434 return size;
435 }
436
437 if (!rootid_owns_currentns(kroot)) {
438 kfree(tmpbuf);
439 return -EOPNOTSUPP;
440 }
441
442 /* This comes from a parent namespace. Return as a v2 capability */
443 size = sizeof(struct vfs_cap_data);
444 if (alloc) {
445 *buffer = kmalloc(size, GFP_ATOMIC);
446 if (*buffer) {
447 struct vfs_cap_data *cap = *buffer;
448 __le32 nsmagic, magic;
449 magic = VFS_CAP_REVISION_2;
450 nsmagic = le32_to_cpu(nscap->magic_etc);
451 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
452 magic |= VFS_CAP_FLAGS_EFFECTIVE;
453 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
454 cap->magic_etc = cpu_to_le32(magic);
455 }
456 }
457 kfree(tmpbuf);
458 return size;
459}
460
461static kuid_t rootid_from_xattr(const void *value, size_t size,
462 struct user_namespace *task_ns)
463{
464 const struct vfs_ns_cap_data *nscap = value;
465 uid_t rootid = 0;
466
467 if (size == XATTR_CAPS_SZ_3)
468 rootid = le32_to_cpu(nscap->rootid);
469
470 return make_kuid(task_ns, rootid);
471}
472
473static bool validheader(size_t size, __le32 magic)
474{
475 return is_v2header(size, magic) || is_v3header(size, magic);
476}
477
478/*
479 * User requested a write of security.capability. If needed, update the
480 * xattr to change from v2 to v3, or to fixup the v3 rootid.
481 *
482 * If all is ok, we return the new size, on error return < 0.
483 */
484int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
485{
486 struct vfs_ns_cap_data *nscap;
487 uid_t nsrootid;
488 const struct vfs_cap_data *cap = *ivalue;
489 __u32 magic, nsmagic;
490 struct inode *inode = d_backing_inode(dentry);
491 struct user_namespace *task_ns = current_user_ns(),
492 *fs_ns = inode->i_sb->s_user_ns;
493 kuid_t rootid;
494 size_t newsize;
495
496 if (!*ivalue)
497 return -EINVAL;
498 if (!validheader(size, cap->magic_etc))
499 return -EINVAL;
500 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
501 return -EPERM;
502 if (size == XATTR_CAPS_SZ_2)
503 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
504 /* user is privileged, just write the v2 */
505 return size;
506
507 rootid = rootid_from_xattr(*ivalue, size, task_ns);
508 if (!uid_valid(rootid))
509 return -EINVAL;
510
511 nsrootid = from_kuid(fs_ns, rootid);
512 if (nsrootid == -1)
513 return -EINVAL;
514
515 newsize = sizeof(struct vfs_ns_cap_data);
516 nscap = kmalloc(newsize, GFP_ATOMIC);
517 if (!nscap)
518 return -ENOMEM;
519 nscap->rootid = cpu_to_le32(nsrootid);
520 nsmagic = VFS_CAP_REVISION_3;
521 magic = le32_to_cpu(cap->magic_etc);
522 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
523 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
524 nscap->magic_etc = cpu_to_le32(nsmagic);
525 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
526
527 kvfree(*ivalue);
528 *ivalue = nscap;
529 return newsize;
530}
531
1d045980
DH
532/*
533 * Calculate the new process capability sets from the capability sets attached
534 * to a file.
535 */
c0b00441 536static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
a6f76f23 537 struct linux_binprm *bprm,
4d49f671 538 bool *effective,
fc7eadf7 539 bool *has_fcap)
b5376771 540{
a6f76f23 541 struct cred *new = bprm->cred;
c0b00441
EP
542 unsigned i;
543 int ret = 0;
544
545 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
a6f76f23 546 *effective = true;
c0b00441 547
4d49f671 548 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
fc7eadf7 549 *has_fcap = true;
4d49f671 550
c0b00441
EP
551 CAP_FOR_EACH_U32(i) {
552 __u32 permitted = caps->permitted.cap[i];
553 __u32 inheritable = caps->inheritable.cap[i];
554
555 /*
556 * pP' = (X & fP) | (pI & fI)
58319057 557 * The addition of pA' is handled later.
c0b00441 558 */
a6f76f23
DH
559 new->cap_permitted.cap[i] =
560 (new->cap_bset.cap[i] & permitted) |
561 (new->cap_inheritable.cap[i] & inheritable);
c0b00441 562
a6f76f23
DH
563 if (permitted & ~new->cap_permitted.cap[i])
564 /* insufficient to execute correctly */
c0b00441 565 ret = -EPERM;
c0b00441
EP
566 }
567
568 /*
569 * For legacy apps, with no internal support for recognizing they
570 * do not have enough capabilities, we return an error if they are
571 * missing some "forced" (aka file-permitted) capabilities.
572 */
a6f76f23 573 return *effective ? ret : 0;
c0b00441
EP
574}
575
1d045980
DH
576/*
577 * Extract the on-exec-apply capability sets for an executable file.
578 */
c0b00441
EP
579int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
580{
c6f493d6 581 struct inode *inode = d_backing_inode(dentry);
b5376771 582 __u32 magic_etc;
e338d263 583 unsigned tocopy, i;
c0b00441 584 int size;
8db6c34f
SH
585 struct vfs_ns_cap_data data, *nscaps = &data;
586 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
587 kuid_t rootkuid;
588 struct user_namespace *fs_ns = inode->i_sb->s_user_ns;
c0b00441
EP
589
590 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
591
5d6c3191 592 if (!inode)
c0b00441
EP
593 return -ENODATA;
594
5d6c3191 595 size = __vfs_getxattr((struct dentry *)dentry, inode,
8db6c34f 596 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
a6f76f23 597 if (size == -ENODATA || size == -EOPNOTSUPP)
c0b00441
EP
598 /* no data, that's ok */
599 return -ENODATA;
8db6c34f 600
c0b00441
EP
601 if (size < 0)
602 return size;
b5376771 603
e338d263 604 if (size < sizeof(magic_etc))
b5376771
SH
605 return -EINVAL;
606
8db6c34f 607 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
b5376771 608
8db6c34f 609 rootkuid = make_kuid(fs_ns, 0);
a6f76f23 610 switch (magic_etc & VFS_CAP_REVISION_MASK) {
e338d263
AM
611 case VFS_CAP_REVISION_1:
612 if (size != XATTR_CAPS_SZ_1)
613 return -EINVAL;
614 tocopy = VFS_CAP_U32_1;
615 break;
616 case VFS_CAP_REVISION_2:
617 if (size != XATTR_CAPS_SZ_2)
618 return -EINVAL;
619 tocopy = VFS_CAP_U32_2;
620 break;
8db6c34f
SH
621 case VFS_CAP_REVISION_3:
622 if (size != XATTR_CAPS_SZ_3)
623 return -EINVAL;
624 tocopy = VFS_CAP_U32_3;
625 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
626 break;
627
b5376771
SH
628 default:
629 return -EINVAL;
630 }
8db6c34f
SH
631 /* Limit the caps to the mounter of the filesystem
632 * or the more limited uid specified in the xattr.
633 */
634 if (!rootid_owns_currentns(rootkuid))
635 return -ENODATA;
e338d263 636
5459c164 637 CAP_FOR_EACH_U32(i) {
c0b00441
EP
638 if (i >= tocopy)
639 break;
8db6c34f
SH
640 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
641 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
e338d263 642 }
a6f76f23 643
7d8b6c63
EP
644 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
645 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
646
c0b00441 647 return 0;
b5376771
SH
648}
649
1d045980
DH
650/*
651 * Attempt to get the on-exec apply capability sets for an executable file from
652 * its xattrs and, if present, apply them to the proposed credentials being
653 * constructed by execve().
654 */
fc7eadf7 655static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
b5376771 656{
b5376771 657 int rc = 0;
c0b00441 658 struct cpu_vfs_cap_data vcaps;
b5376771 659
ee67ae7e 660 cap_clear(bprm->cred->cap_permitted);
3318a386 661
1f29fae2
SH
662 if (!file_caps_enabled)
663 return 0;
664
380cf5ba 665 if (!mnt_may_suid(bprm->file->f_path.mnt))
b5376771 666 return 0;
380cf5ba
AL
667
668 /*
669 * This check is redundant with mnt_may_suid() but is kept to make
670 * explicit that capability bits are limited to s_user_ns and its
671 * descendants.
672 */
d07b846f
SF
673 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
674 return 0;
b5376771 675
f4a4a8b1 676 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
c0b00441
EP
677 if (rc < 0) {
678 if (rc == -EINVAL)
8db6c34f
SH
679 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
680 bprm->filename);
c0b00441
EP
681 else if (rc == -ENODATA)
682 rc = 0;
b5376771
SH
683 goto out;
684 }
b5376771 685
fc7eadf7 686 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
a6f76f23
DH
687 if (rc == -EINVAL)
688 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
689 __func__, rc, bprm->filename);
b5376771
SH
690
691out:
b5376771 692 if (rc)
ee67ae7e 693 cap_clear(bprm->cred->cap_permitted);
b5376771
SH
694
695 return rc;
696}
697
9304b46c
RGB
698static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
699
81a6a012
RGB
700static inline bool __is_real(kuid_t uid, struct cred *cred)
701{ return uid_eq(cred->uid, uid); }
702
703static inline bool __is_eff(kuid_t uid, struct cred *cred)
704{ return uid_eq(cred->euid, uid); }
705
706static inline bool __is_suid(kuid_t uid, struct cred *cred)
707{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
708
db1a8922
RGB
709/*
710 * handle_privileged_root - Handle case of privileged root
711 * @bprm: The execution parameters, including the proposed creds
712 * @has_fcap: Are any file capabilities set?
713 * @effective: Do we have effective root privilege?
714 * @root_uid: This namespace' root UID WRT initial USER namespace
715 *
716 * Handle the case where root is privileged and hasn't been neutered by
717 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
718 * set UID root and nothing is changed. If we are root, cap_permitted is
719 * updated. If we have become set UID root, the effective bit is set.
720 */
fc7eadf7 721static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
db1a8922
RGB
722 bool *effective, kuid_t root_uid)
723{
724 const struct cred *old = current_cred();
725 struct cred *new = bprm->cred;
726
9304b46c 727 if (!root_privileged())
db1a8922
RGB
728 return;
729 /*
730 * If the legacy file capability is set, then don't set privs
731 * for a setuid root binary run by a non-root user. Do set it
732 * for a root user just to cause least surprise to an admin.
733 */
81a6a012 734 if (has_fcap && __is_suid(root_uid, new)) {
db1a8922
RGB
735 warn_setuid_and_fcaps_mixed(bprm->filename);
736 return;
737 }
738 /*
739 * To support inheritance of root-permissions and suid-root
740 * executables under compatibility mode, we override the
741 * capability sets for the file.
742 */
81a6a012 743 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
db1a8922
RGB
744 /* pP' = (cap_bset & ~0) | (pI & ~0) */
745 new->cap_permitted = cap_combine(old->cap_bset,
746 old->cap_inheritable);
747 }
748 /*
749 * If only the real uid is 0, we do not set the effective bit.
750 */
81a6a012 751 if (__is_eff(root_uid, new))
db1a8922
RGB
752 *effective = true;
753}
754
4c7e715f
RGB
755#define __cap_gained(field, target, source) \
756 !cap_issubset(target->cap_##field, source->cap_##field)
757#define __cap_grew(target, source, cred) \
758 !cap_issubset(cred->cap_##target, cred->cap_##source)
759#define __cap_full(field, cred) \
760 cap_issubset(CAP_FULL_SET, cred->cap_##field)
81a6a012
RGB
761
762static inline bool __is_setuid(struct cred *new, const struct cred *old)
763{ return !uid_eq(new->euid, old->uid); }
764
765static inline bool __is_setgid(struct cred *new, const struct cred *old)
766{ return !gid_eq(new->egid, old->gid); }
767
9fbc2c79
RGB
768/*
769 * Audit candidate if current->cap_effective is set
770 *
771 * We do not bother to audit if 3 things are true:
772 * 1) cap_effective has all caps
773 * 2) we are root
774 * 3) root is supposed to have all caps (SECURE_NOROOT)
775 * Since this is just a normal root execing a process.
776 *
777 * Number 1 above might fail if you don't have a full bset, but I think
778 * that is interesting information to audit.
779 */
780static inline bool nonroot_raised_pE(struct cred *cred, kuid_t root)
781{
782 bool ret = false;
783
784 if (__cap_grew(effective, ambient, cred)) {
785 if (!__cap_full(effective, cred) ||
786 !__is_eff(root, cred) || !__is_real(root, cred) ||
787 !root_privileged()) {
788 ret = true;
789 }
790 }
791 return ret;
792}
793
1d045980
DH
794/**
795 * cap_bprm_set_creds - Set up the proposed credentials for execve().
796 * @bprm: The execution parameters, including the proposed creds
797 *
798 * Set up the proposed credentials for a new execution context being
799 * constructed by execve(). The proposed creds in @bprm->cred is altered,
800 * which won't take effect immediately. Returns 0 if successful, -ve on error.
a6f76f23
DH
801 */
802int cap_bprm_set_creds(struct linux_binprm *bprm)
1da177e4 803{
a6f76f23
DH
804 const struct cred *old = current_cred();
805 struct cred *new = bprm->cred;
fc7eadf7 806 bool effective = false, has_fcap = false, is_setid;
b5376771 807 int ret;
18815a18 808 kuid_t root_uid;
1da177e4 809
58319057
AL
810 if (WARN_ON(!cap_ambient_invariant_ok(old)))
811 return -EPERM;
812
fc7eadf7 813 ret = get_file_caps(bprm, &effective, &has_fcap);
a6f76f23
DH
814 if (ret < 0)
815 return ret;
1da177e4 816
18815a18
EB
817 root_uid = make_kuid(new->user_ns, 0);
818
fc7eadf7 819 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
b5376771 820
d52fc5dd 821 /* if we have fs caps, clear dangerous personality flags */
4c7e715f 822 if (__cap_gained(permitted, new, old))
d52fc5dd
EP
823 bprm->per_clear |= PER_CLEAR_ON_SETID;
824
a6f76f23 825 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
259e5e6c
AL
826 * credentials unless they have the appropriate permit.
827 *
828 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
a6f76f23 829 */
81a6a012 830 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
58319057 831
4c7e715f 832 if ((is_setid || __cap_gained(permitted, new, old)) &&
9227dd2a 833 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
20523132 834 !ptracer_capable(current, new->user_ns))) {
a6f76f23 835 /* downgrade; they get no more than they had, and maybe less */
70169420 836 if (!ns_capable(new->user_ns, CAP_SETUID) ||
259e5e6c 837 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
a6f76f23
DH
838 new->euid = new->uid;
839 new->egid = new->gid;
1da177e4 840 }
b3a222e5
SH
841 new->cap_permitted = cap_intersect(new->cap_permitted,
842 old->cap_permitted);
1da177e4
LT
843 }
844
a6f76f23
DH
845 new->suid = new->fsuid = new->euid;
846 new->sgid = new->fsgid = new->egid;
1da177e4 847
58319057 848 /* File caps or setid cancels ambient. */
fc7eadf7 849 if (has_fcap || is_setid)
58319057
AL
850 cap_clear(new->cap_ambient);
851
852 /*
853 * Now that we've computed pA', update pP' to give:
854 * pP' = (X & fP) | (pI & fI) | pA'
855 */
856 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
857
858 /*
859 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
860 * this is the same as pE' = (fE ? pP' : 0) | pA'.
861 */
4bf2ea77
EP
862 if (effective)
863 new->cap_effective = new->cap_permitted;
864 else
58319057
AL
865 new->cap_effective = new->cap_ambient;
866
867 if (WARN_ON(!cap_ambient_invariant_ok(new)))
868 return -EPERM;
869
9fbc2c79
RGB
870 if (nonroot_raised_pE(new, root_uid)) {
871 ret = audit_log_bprm_fcaps(bprm, new, old);
872 if (ret < 0)
873 return ret;
3fc689e9 874 }
1da177e4 875
d84f4f99 876 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
58319057
AL
877
878 if (WARN_ON(!cap_ambient_invariant_ok(new)))
879 return -EPERM;
880
46d98eb4 881 /* Check for privilege-elevated exec. */
ee67ae7e
KC
882 bprm->cap_elevated = 0;
883 if (is_setid) {
884 bprm->cap_elevated = 1;
81a6a012 885 } else if (!__is_real(root_uid, new)) {
ee67ae7e 886 if (effective ||
4c7e715f 887 __cap_grew(permitted, ambient, new))
ee67ae7e 888 bprm->cap_elevated = 1;
b5376771
SH
889 }
890
ee67ae7e 891 return 0;
1da177e4
LT
892}
893
1d045980
DH
894/**
895 * cap_inode_setxattr - Determine whether an xattr may be altered
896 * @dentry: The inode/dentry being altered
897 * @name: The name of the xattr to be changed
898 * @value: The value that the xattr will be changed to
899 * @size: The size of value
900 * @flags: The replacement flag
901 *
902 * Determine whether an xattr may be altered or set on an inode, returning 0 if
903 * permission is granted, -ve if denied.
904 *
905 * This is used to make sure security xattrs don't get updated or set by those
906 * who aren't privileged to do so.
907 */
8f0cfa52
DH
908int cap_inode_setxattr(struct dentry *dentry, const char *name,
909 const void *value, size_t size, int flags)
1da177e4 910{
8db6c34f
SH
911 /* Ignore non-security xattrs */
912 if (strncmp(name, XATTR_SECURITY_PREFIX,
913 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
914 return 0;
915
916 /*
917 * For XATTR_NAME_CAPS the check will be done in
918 * cap_convert_nscap(), called by setxattr()
919 */
920 if (strcmp(name, XATTR_NAME_CAPS) == 0)
b5376771 921 return 0;
1d045980 922
8db6c34f 923 if (!capable(CAP_SYS_ADMIN))
1da177e4
LT
924 return -EPERM;
925 return 0;
926}
927
1d045980
DH
928/**
929 * cap_inode_removexattr - Determine whether an xattr may be removed
930 * @dentry: The inode/dentry being altered
931 * @name: The name of the xattr to be changed
932 *
933 * Determine whether an xattr may be removed from an inode, returning 0 if
934 * permission is granted, -ve if denied.
935 *
936 * This is used to make sure security xattrs don't get removed by those who
937 * aren't privileged to remove them.
938 */
8f0cfa52 939int cap_inode_removexattr(struct dentry *dentry, const char *name)
1da177e4 940{
8db6c34f
SH
941 /* Ignore non-security xattrs */
942 if (strncmp(name, XATTR_SECURITY_PREFIX,
943 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
944 return 0;
945
946 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
947 /* security.capability gets namespaced */
948 struct inode *inode = d_backing_inode(dentry);
949 if (!inode)
950 return -EINVAL;
951 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
b5376771
SH
952 return -EPERM;
953 return 0;
1d045980
DH
954 }
955
8db6c34f 956 if (!capable(CAP_SYS_ADMIN))
1da177e4
LT
957 return -EPERM;
958 return 0;
959}
960
a6f76f23 961/*
1da177e4
LT
962 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
963 * a process after a call to setuid, setreuid, or setresuid.
964 *
965 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
966 * {r,e,s}uid != 0, the permitted and effective capabilities are
967 * cleared.
968 *
969 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
970 * capabilities of the process are cleared.
971 *
972 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
973 * capabilities are set to the permitted capabilities.
974 *
a6f76f23 975 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1da177e4
LT
976 * never happen.
977 *
a6f76f23 978 * -astor
1da177e4
LT
979 *
980 * cevans - New behaviour, Oct '99
981 * A process may, via prctl(), elect to keep its capabilities when it
982 * calls setuid() and switches away from uid==0. Both permitted and
983 * effective sets will be retained.
984 * Without this change, it was impossible for a daemon to drop only some
985 * of its privilege. The call to setuid(!=0) would drop all privileges!
986 * Keeping uid 0 is not an option because uid 0 owns too many vital
987 * files..
988 * Thanks to Olaf Kirch and Peter Benie for spotting this.
989 */
d84f4f99 990static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1da177e4 991{
18815a18
EB
992 kuid_t root_uid = make_kuid(old->user_ns, 0);
993
994 if ((uid_eq(old->uid, root_uid) ||
995 uid_eq(old->euid, root_uid) ||
996 uid_eq(old->suid, root_uid)) &&
997 (!uid_eq(new->uid, root_uid) &&
998 !uid_eq(new->euid, root_uid) &&
58319057
AL
999 !uid_eq(new->suid, root_uid))) {
1000 if (!issecure(SECURE_KEEP_CAPS)) {
1001 cap_clear(new->cap_permitted);
1002 cap_clear(new->cap_effective);
1003 }
1004
1005 /*
1006 * Pre-ambient programs expect setresuid to nonroot followed
1007 * by exec to drop capabilities. We should make sure that
1008 * this remains the case.
1009 */
1010 cap_clear(new->cap_ambient);
1da177e4 1011 }
18815a18 1012 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
d84f4f99 1013 cap_clear(new->cap_effective);
18815a18 1014 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
d84f4f99 1015 new->cap_effective = new->cap_permitted;
1da177e4
LT
1016}
1017
1d045980
DH
1018/**
1019 * cap_task_fix_setuid - Fix up the results of setuid() call
1020 * @new: The proposed credentials
1021 * @old: The current task's current credentials
1022 * @flags: Indications of what has changed
1023 *
1024 * Fix up the results of setuid() call before the credential changes are
1025 * actually applied, returning 0 to grant the changes, -ve to deny them.
1026 */
d84f4f99 1027int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1da177e4
LT
1028{
1029 switch (flags) {
1030 case LSM_SETID_RE:
1031 case LSM_SETID_ID:
1032 case LSM_SETID_RES:
1d045980
DH
1033 /* juggle the capabilities to follow [RES]UID changes unless
1034 * otherwise suppressed */
d84f4f99
DH
1035 if (!issecure(SECURE_NO_SETUID_FIXUP))
1036 cap_emulate_setxuid(new, old);
1da177e4 1037 break;
1da177e4 1038
1d045980
DH
1039 case LSM_SETID_FS:
1040 /* juggle the capabilties to follow FSUID changes, unless
1041 * otherwise suppressed
1042 *
d84f4f99
DH
1043 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1044 * if not, we might be a bit too harsh here.
1045 */
1046 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
18815a18
EB
1047 kuid_t root_uid = make_kuid(old->user_ns, 0);
1048 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
d84f4f99
DH
1049 new->cap_effective =
1050 cap_drop_fs_set(new->cap_effective);
1d045980 1051
18815a18 1052 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
d84f4f99
DH
1053 new->cap_effective =
1054 cap_raise_fs_set(new->cap_effective,
1055 new->cap_permitted);
1da177e4 1056 }
d84f4f99 1057 break;
1d045980 1058
1da177e4
LT
1059 default:
1060 return -EINVAL;
1061 }
1062
1063 return 0;
1064}
1065
b5376771
SH
1066/*
1067 * Rationale: code calling task_setscheduler, task_setioprio, and
1068 * task_setnice, assumes that
1069 * . if capable(cap_sys_nice), then those actions should be allowed
1070 * . if not capable(cap_sys_nice), but acting on your own processes,
1071 * then those actions should be allowed
1072 * This is insufficient now since you can call code without suid, but
1073 * yet with increased caps.
1074 * So we check for increased caps on the target process.
1075 */
de45e806 1076static int cap_safe_nice(struct task_struct *p)
b5376771 1077{
f54fb863 1078 int is_subset, ret = 0;
c69e8d9c
DH
1079
1080 rcu_read_lock();
1081 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1082 current_cred()->cap_permitted);
f54fb863
SH
1083 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1084 ret = -EPERM;
c69e8d9c
DH
1085 rcu_read_unlock();
1086
f54fb863 1087 return ret;
b5376771
SH
1088}
1089
1d045980
DH
1090/**
1091 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1092 * @p: The task to affect
1d045980
DH
1093 *
1094 * Detemine if the requested scheduler policy change is permitted for the
1095 * specified task, returning 0 if permission is granted, -ve if denied.
1096 */
b0ae1981 1097int cap_task_setscheduler(struct task_struct *p)
b5376771
SH
1098{
1099 return cap_safe_nice(p);
1100}
1101
1d045980
DH
1102/**
1103 * cap_task_ioprio - Detemine if I/O priority change is permitted
1104 * @p: The task to affect
1105 * @ioprio: The I/O priority to set
1106 *
1107 * Detemine if the requested I/O priority change is permitted for the specified
1108 * task, returning 0 if permission is granted, -ve if denied.
1109 */
1110int cap_task_setioprio(struct task_struct *p, int ioprio)
b5376771
SH
1111{
1112 return cap_safe_nice(p);
1113}
1114
1d045980
DH
1115/**
1116 * cap_task_ioprio - Detemine if task priority change is permitted
1117 * @p: The task to affect
1118 * @nice: The nice value to set
1119 *
1120 * Detemine if the requested task priority change is permitted for the
1121 * specified task, returning 0 if permission is granted, -ve if denied.
1122 */
1123int cap_task_setnice(struct task_struct *p, int nice)
b5376771
SH
1124{
1125 return cap_safe_nice(p);
1126}
1127
3b7391de 1128/*
1d045980
DH
1129 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1130 * the current task's bounding set. Returns 0 on success, -ve on error.
3b7391de 1131 */
6d6f3328 1132static int cap_prctl_drop(unsigned long cap)
3b7391de 1133{
6d6f3328
TH
1134 struct cred *new;
1135
160da84d 1136 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
3b7391de
SH
1137 return -EPERM;
1138 if (!cap_valid(cap))
1139 return -EINVAL;
d84f4f99 1140
6d6f3328
TH
1141 new = prepare_creds();
1142 if (!new)
1143 return -ENOMEM;
d84f4f99 1144 cap_lower(new->cap_bset, cap);
6d6f3328 1145 return commit_creds(new);
3b7391de 1146}
3898b1b4 1147
1d045980
DH
1148/**
1149 * cap_task_prctl - Implement process control functions for this security module
1150 * @option: The process control function requested
1151 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1152 *
1153 * Allow process control functions (sys_prctl()) to alter capabilities; may
1154 * also deny access to other functions not otherwise implemented here.
1155 *
1156 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1157 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1158 * modules will consider performing the function.
1159 */
3898b1b4 1160int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
d84f4f99 1161 unsigned long arg4, unsigned long arg5)
3898b1b4 1162{
6d6f3328 1163 const struct cred *old = current_cred();
d84f4f99 1164 struct cred *new;
d84f4f99 1165
3898b1b4
AM
1166 switch (option) {
1167 case PR_CAPBSET_READ:
1168 if (!cap_valid(arg2))
6d6f3328
TH
1169 return -EINVAL;
1170 return !!cap_raised(old->cap_bset, arg2);
d84f4f99 1171
3898b1b4 1172 case PR_CAPBSET_DROP:
6d6f3328 1173 return cap_prctl_drop(arg2);
3898b1b4
AM
1174
1175 /*
1176 * The next four prctl's remain to assist with transitioning a
1177 * system from legacy UID=0 based privilege (when filesystem
1178 * capabilities are not in use) to a system using filesystem
1179 * capabilities only - as the POSIX.1e draft intended.
1180 *
1181 * Note:
1182 *
1183 * PR_SET_SECUREBITS =
1184 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1185 * | issecure_mask(SECURE_NOROOT)
1186 * | issecure_mask(SECURE_NOROOT_LOCKED)
1187 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1188 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1189 *
1190 * will ensure that the current process and all of its
1191 * children will be locked into a pure
1192 * capability-based-privilege environment.
1193 */
1194 case PR_SET_SECUREBITS:
6d6f3328
TH
1195 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1196 & (old->securebits ^ arg2)) /*[1]*/
1197 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
d84f4f99 1198 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
6a9de491 1199 || (cap_capable(current_cred(),
c4a4d603 1200 current_cred()->user_ns, CAP_SETPCAP,
3699c53c 1201 SECURITY_CAP_AUDIT) != 0) /*[4]*/
3898b1b4
AM
1202 /*
1203 * [1] no changing of bits that are locked
1204 * [2] no unlocking of locks
1205 * [3] no setting of unsupported bits
1206 * [4] doing anything requires privilege (go read about
1207 * the "sendmail capabilities bug")
1208 */
d84f4f99
DH
1209 )
1210 /* cannot change a locked bit */
6d6f3328
TH
1211 return -EPERM;
1212
1213 new = prepare_creds();
1214 if (!new)
1215 return -ENOMEM;
d84f4f99 1216 new->securebits = arg2;
6d6f3328 1217 return commit_creds(new);
d84f4f99 1218
3898b1b4 1219 case PR_GET_SECUREBITS:
6d6f3328 1220 return old->securebits;
3898b1b4 1221
3898b1b4 1222 case PR_GET_KEEPCAPS:
6d6f3328 1223 return !!issecure(SECURE_KEEP_CAPS);
d84f4f99 1224
3898b1b4
AM
1225 case PR_SET_KEEPCAPS:
1226 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
6d6f3328 1227 return -EINVAL;
d84f4f99 1228 if (issecure(SECURE_KEEP_CAPS_LOCKED))
6d6f3328
TH
1229 return -EPERM;
1230
1231 new = prepare_creds();
1232 if (!new)
1233 return -ENOMEM;
d84f4f99
DH
1234 if (arg2)
1235 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
3898b1b4 1236 else
d84f4f99 1237 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
6d6f3328 1238 return commit_creds(new);
3898b1b4 1239
58319057
AL
1240 case PR_CAP_AMBIENT:
1241 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1242 if (arg3 | arg4 | arg5)
1243 return -EINVAL;
1244
1245 new = prepare_creds();
1246 if (!new)
1247 return -ENOMEM;
1248 cap_clear(new->cap_ambient);
1249 return commit_creds(new);
1250 }
1251
1252 if (((!cap_valid(arg3)) | arg4 | arg5))
1253 return -EINVAL;
1254
1255 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1256 return !!cap_raised(current_cred()->cap_ambient, arg3);
1257 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1258 arg2 != PR_CAP_AMBIENT_LOWER) {
1259 return -EINVAL;
1260 } else {
1261 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1262 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1263 !cap_raised(current_cred()->cap_inheritable,
746bf6d6
AL
1264 arg3) ||
1265 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
58319057
AL
1266 return -EPERM;
1267
1268 new = prepare_creds();
1269 if (!new)
1270 return -ENOMEM;
1271 if (arg2 == PR_CAP_AMBIENT_RAISE)
1272 cap_raise(new->cap_ambient, arg3);
1273 else
1274 cap_lower(new->cap_ambient, arg3);
1275 return commit_creds(new);
1276 }
1277
3898b1b4
AM
1278 default:
1279 /* No functionality available - continue with default */
6d6f3328 1280 return -ENOSYS;
3898b1b4 1281 }
1da177e4
LT
1282}
1283
1d045980
DH
1284/**
1285 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1286 * @mm: The VM space in which the new mapping is to be made
1287 * @pages: The size of the mapping
1288 *
1289 * Determine whether the allocation of a new virtual mapping by the current
b1d9e6b0 1290 * task is permitted, returning 1 if permission is granted, 0 if not.
1d045980 1291 */
34b4e4aa 1292int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1da177e4
LT
1293{
1294 int cap_sys_admin = 0;
1295
6a9de491 1296 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
3699c53c 1297 SECURITY_CAP_NOAUDIT) == 0)
1da177e4 1298 cap_sys_admin = 1;
b1d9e6b0 1299 return cap_sys_admin;
1da177e4 1300}
7c73875e
EP
1301
1302/*
d007794a 1303 * cap_mmap_addr - check if able to map given addr
7c73875e 1304 * @addr: address attempting to be mapped
7c73875e 1305 *
6f262d8e 1306 * If the process is attempting to map memory below dac_mmap_min_addr they need
7c73875e
EP
1307 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1308 * capability security module. Returns 0 if this mapping should be allowed
1309 * -EPERM if not.
1310 */
d007794a 1311int cap_mmap_addr(unsigned long addr)
7c73875e
EP
1312{
1313 int ret = 0;
1314
a2551df7 1315 if (addr < dac_mmap_min_addr) {
6a9de491 1316 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
7c73875e
EP
1317 SECURITY_CAP_AUDIT);
1318 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1319 if (ret == 0)
1320 current->flags |= PF_SUPERPRIV;
1321 }
1322 return ret;
1323}
d007794a 1324
e5467859
AV
1325int cap_mmap_file(struct file *file, unsigned long reqprot,
1326 unsigned long prot, unsigned long flags)
d007794a 1327{
e5467859 1328 return 0;
d007794a 1329}
b1d9e6b0
CS
1330
1331#ifdef CONFIG_SECURITY
1332
ca97d939 1333struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
b1d9e6b0
CS
1334 LSM_HOOK_INIT(capable, cap_capable),
1335 LSM_HOOK_INIT(settime, cap_settime),
1336 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1337 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1338 LSM_HOOK_INIT(capget, cap_capget),
1339 LSM_HOOK_INIT(capset, cap_capset),
1340 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
b1d9e6b0
CS
1341 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1342 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
8db6c34f 1343 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
b1d9e6b0
CS
1344 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1345 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1346 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1347 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1348 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1349 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1350 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1351 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1352};
1353
1354void __init capability_add_hooks(void)
1355{
d69dece5
CS
1356 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1357 "capability");
b1d9e6b0
CS
1358}
1359
1360#endif /* CONFIG_SECURITY */