Merge remote-tracking branch 'asoc/topic/tas5270' into asoc-next
[linux-2.6-block.git] / net / vmw_vsock / af_vsock.c
CommitLineData
d021c344
AK
1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16/* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
ea3803c1
SH
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
d021c344
AK
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 */
78
79#include <linux/types.h>
d021c344
AK
80#include <linux/bitops.h>
81#include <linux/cred.h>
82#include <linux/init.h>
83#include <linux/io.h>
84#include <linux/kernel.h>
85#include <linux/kmod.h>
86#include <linux/list.h>
87#include <linux/miscdevice.h>
88#include <linux/module.h>
89#include <linux/mutex.h>
90#include <linux/net.h>
91#include <linux/poll.h>
92#include <linux/skbuff.h>
93#include <linux/smp.h>
94#include <linux/socket.h>
95#include <linux/stddef.h>
96#include <linux/unistd.h>
97#include <linux/wait.h>
98#include <linux/workqueue.h>
99#include <net/sock.h>
82a54d0e 100#include <net/af_vsock.h>
d021c344
AK
101
102static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
103static void vsock_sk_destruct(struct sock *sk);
104static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
105
106/* Protocol family. */
107static struct proto vsock_proto = {
108 .name = "AF_VSOCK",
109 .owner = THIS_MODULE,
110 .obj_size = sizeof(struct vsock_sock),
111};
112
113/* The default peer timeout indicates how long we will wait for a peer response
114 * to a control message.
115 */
116#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
117
d021c344
AK
118static const struct vsock_transport *transport;
119static DEFINE_MUTEX(vsock_register_mutex);
120
121/**** EXPORTS ****/
122
123/* Get the ID of the local context. This is transport dependent. */
124
125int vm_sockets_get_local_cid(void)
126{
127 return transport->get_local_cid();
128}
129EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
130
131/**** UTILS ****/
132
133/* Each bound VSocket is stored in the bind hash table and each connected
134 * VSocket is stored in the connected hash table.
135 *
136 * Unbound sockets are all put on the same list attached to the end of the hash
137 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
138 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
139 * represents the list that addr hashes to).
140 *
141 * Specifically, we initialize the vsock_bind_table array to a size of
142 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
143 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
144 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
a49dd9dc 145 * mods with VSOCK_HASH_SIZE to ensure this.
d021c344
AK
146 */
147#define VSOCK_HASH_SIZE 251
148#define MAX_PORT_RETRIES 24
149
a49dd9dc 150#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
d021c344
AK
151#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
152#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
153
154/* XXX This can probably be implemented in a better way. */
155#define VSOCK_CONN_HASH(src, dst) \
a49dd9dc 156 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
d021c344
AK
157#define vsock_connected_sockets(src, dst) \
158 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
159#define vsock_connected_sockets_vsk(vsk) \
160 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
161
162static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
163static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
164static DEFINE_SPINLOCK(vsock_table_lock);
165
b3a6dfe8
AH
166/* Autobind this socket to the local address if necessary. */
167static int vsock_auto_bind(struct vsock_sock *vsk)
168{
169 struct sock *sk = sk_vsock(vsk);
170 struct sockaddr_vm local_addr;
171
172 if (vsock_addr_bound(&vsk->local_addr))
173 return 0;
174 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
175 return __vsock_bind(sk, &local_addr);
176}
177
22ee3b57 178static void vsock_init_tables(void)
d021c344
AK
179{
180 int i;
181
182 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
183 INIT_LIST_HEAD(&vsock_bind_table[i]);
184
185 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
186 INIT_LIST_HEAD(&vsock_connected_table[i]);
187}
188
189static void __vsock_insert_bound(struct list_head *list,
190 struct vsock_sock *vsk)
191{
192 sock_hold(&vsk->sk);
193 list_add(&vsk->bound_table, list);
194}
195
196static void __vsock_insert_connected(struct list_head *list,
197 struct vsock_sock *vsk)
198{
199 sock_hold(&vsk->sk);
200 list_add(&vsk->connected_table, list);
201}
202
203static void __vsock_remove_bound(struct vsock_sock *vsk)
204{
205 list_del_init(&vsk->bound_table);
206 sock_put(&vsk->sk);
207}
208
209static void __vsock_remove_connected(struct vsock_sock *vsk)
210{
211 list_del_init(&vsk->connected_table);
212 sock_put(&vsk->sk);
213}
214
215static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
216{
217 struct vsock_sock *vsk;
218
219 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
990454b5 220 if (addr->svm_port == vsk->local_addr.svm_port)
d021c344
AK
221 return sk_vsock(vsk);
222
223 return NULL;
224}
225
226static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
227 struct sockaddr_vm *dst)
228{
229 struct vsock_sock *vsk;
230
231 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
232 connected_table) {
990454b5
RG
233 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
234 dst->svm_port == vsk->local_addr.svm_port) {
d021c344
AK
235 return sk_vsock(vsk);
236 }
237 }
238
239 return NULL;
240}
241
242static bool __vsock_in_bound_table(struct vsock_sock *vsk)
243{
244 return !list_empty(&vsk->bound_table);
245}
246
247static bool __vsock_in_connected_table(struct vsock_sock *vsk)
248{
249 return !list_empty(&vsk->connected_table);
250}
251
252static void vsock_insert_unbound(struct vsock_sock *vsk)
253{
254 spin_lock_bh(&vsock_table_lock);
255 __vsock_insert_bound(vsock_unbound_sockets, vsk);
256 spin_unlock_bh(&vsock_table_lock);
257}
258
259void vsock_insert_connected(struct vsock_sock *vsk)
260{
261 struct list_head *list = vsock_connected_sockets(
262 &vsk->remote_addr, &vsk->local_addr);
263
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_connected(list, vsk);
266 spin_unlock_bh(&vsock_table_lock);
267}
268EXPORT_SYMBOL_GPL(vsock_insert_connected);
269
270void vsock_remove_bound(struct vsock_sock *vsk)
271{
272 spin_lock_bh(&vsock_table_lock);
273 __vsock_remove_bound(vsk);
274 spin_unlock_bh(&vsock_table_lock);
275}
276EXPORT_SYMBOL_GPL(vsock_remove_bound);
277
278void vsock_remove_connected(struct vsock_sock *vsk)
279{
280 spin_lock_bh(&vsock_table_lock);
281 __vsock_remove_connected(vsk);
282 spin_unlock_bh(&vsock_table_lock);
283}
284EXPORT_SYMBOL_GPL(vsock_remove_connected);
285
286struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
287{
288 struct sock *sk;
289
290 spin_lock_bh(&vsock_table_lock);
291 sk = __vsock_find_bound_socket(addr);
292 if (sk)
293 sock_hold(sk);
294
295 spin_unlock_bh(&vsock_table_lock);
296
297 return sk;
298}
299EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
300
301struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
302 struct sockaddr_vm *dst)
303{
304 struct sock *sk;
305
306 spin_lock_bh(&vsock_table_lock);
307 sk = __vsock_find_connected_socket(src, dst);
308 if (sk)
309 sock_hold(sk);
310
311 spin_unlock_bh(&vsock_table_lock);
312
313 return sk;
314}
315EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
316
317static bool vsock_in_bound_table(struct vsock_sock *vsk)
318{
319 bool ret;
320
321 spin_lock_bh(&vsock_table_lock);
322 ret = __vsock_in_bound_table(vsk);
323 spin_unlock_bh(&vsock_table_lock);
324
325 return ret;
326}
327
328static bool vsock_in_connected_table(struct vsock_sock *vsk)
329{
330 bool ret;
331
332 spin_lock_bh(&vsock_table_lock);
333 ret = __vsock_in_connected_table(vsk);
334 spin_unlock_bh(&vsock_table_lock);
335
336 return ret;
337}
338
339void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
340{
341 int i;
342
343 spin_lock_bh(&vsock_table_lock);
344
345 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
346 struct vsock_sock *vsk;
347 list_for_each_entry(vsk, &vsock_connected_table[i],
d9af2d67 348 connected_table)
d021c344
AK
349 fn(sk_vsock(vsk));
350 }
351
352 spin_unlock_bh(&vsock_table_lock);
353}
354EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
355
356void vsock_add_pending(struct sock *listener, struct sock *pending)
357{
358 struct vsock_sock *vlistener;
359 struct vsock_sock *vpending;
360
361 vlistener = vsock_sk(listener);
362 vpending = vsock_sk(pending);
363
364 sock_hold(pending);
365 sock_hold(listener);
366 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
367}
368EXPORT_SYMBOL_GPL(vsock_add_pending);
369
370void vsock_remove_pending(struct sock *listener, struct sock *pending)
371{
372 struct vsock_sock *vpending = vsock_sk(pending);
373
374 list_del_init(&vpending->pending_links);
375 sock_put(listener);
376 sock_put(pending);
377}
378EXPORT_SYMBOL_GPL(vsock_remove_pending);
379
380void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
381{
382 struct vsock_sock *vlistener;
383 struct vsock_sock *vconnected;
384
385 vlistener = vsock_sk(listener);
386 vconnected = vsock_sk(connected);
387
388 sock_hold(connected);
389 sock_hold(listener);
390 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
391}
392EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
393
394static struct sock *vsock_dequeue_accept(struct sock *listener)
395{
396 struct vsock_sock *vlistener;
397 struct vsock_sock *vconnected;
398
399 vlistener = vsock_sk(listener);
400
401 if (list_empty(&vlistener->accept_queue))
402 return NULL;
403
404 vconnected = list_entry(vlistener->accept_queue.next,
405 struct vsock_sock, accept_queue);
406
407 list_del_init(&vconnected->accept_queue);
408 sock_put(listener);
409 /* The caller will need a reference on the connected socket so we let
410 * it call sock_put().
411 */
412
413 return sk_vsock(vconnected);
414}
415
416static bool vsock_is_accept_queue_empty(struct sock *sk)
417{
418 struct vsock_sock *vsk = vsock_sk(sk);
419 return list_empty(&vsk->accept_queue);
420}
421
422static bool vsock_is_pending(struct sock *sk)
423{
424 struct vsock_sock *vsk = vsock_sk(sk);
425 return !list_empty(&vsk->pending_links);
426}
427
428static int vsock_send_shutdown(struct sock *sk, int mode)
429{
430 return transport->shutdown(vsock_sk(sk), mode);
431}
432
433void vsock_pending_work(struct work_struct *work)
434{
435 struct sock *sk;
436 struct sock *listener;
437 struct vsock_sock *vsk;
438 bool cleanup;
439
440 vsk = container_of(work, struct vsock_sock, dwork.work);
441 sk = sk_vsock(vsk);
442 listener = vsk->listener;
443 cleanup = true;
444
445 lock_sock(listener);
446 lock_sock(sk);
447
448 if (vsock_is_pending(sk)) {
449 vsock_remove_pending(listener, sk);
450 } else if (!vsk->rejected) {
451 /* We are not on the pending list and accept() did not reject
452 * us, so we must have been accepted by our user process. We
453 * just need to drop our references to the sockets and be on
454 * our way.
455 */
456 cleanup = false;
457 goto out;
458 }
459
460 listener->sk_ack_backlog--;
461
462 /* We need to remove ourself from the global connected sockets list so
463 * incoming packets can't find this socket, and to reduce the reference
464 * count.
465 */
466 if (vsock_in_connected_table(vsk))
467 vsock_remove_connected(vsk);
468
469 sk->sk_state = SS_FREE;
470
471out:
472 release_sock(sk);
473 release_sock(listener);
474 if (cleanup)
475 sock_put(sk);
476
477 sock_put(sk);
478 sock_put(listener);
479}
480EXPORT_SYMBOL_GPL(vsock_pending_work);
481
482/**** SOCKET OPERATIONS ****/
483
484static int __vsock_bind_stream(struct vsock_sock *vsk,
485 struct sockaddr_vm *addr)
486{
487 static u32 port = LAST_RESERVED_PORT + 1;
488 struct sockaddr_vm new_addr;
489
490 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
491
492 if (addr->svm_port == VMADDR_PORT_ANY) {
493 bool found = false;
494 unsigned int i;
495
496 for (i = 0; i < MAX_PORT_RETRIES; i++) {
497 if (port <= LAST_RESERVED_PORT)
498 port = LAST_RESERVED_PORT + 1;
499
500 new_addr.svm_port = port++;
501
502 if (!__vsock_find_bound_socket(&new_addr)) {
503 found = true;
504 break;
505 }
506 }
507
508 if (!found)
509 return -EADDRNOTAVAIL;
510 } else {
511 /* If port is in reserved range, ensure caller
512 * has necessary privileges.
513 */
514 if (addr->svm_port <= LAST_RESERVED_PORT &&
515 !capable(CAP_NET_BIND_SERVICE)) {
516 return -EACCES;
517 }
518
519 if (__vsock_find_bound_socket(&new_addr))
520 return -EADDRINUSE;
521 }
522
523 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
524
525 /* Remove stream sockets from the unbound list and add them to the hash
526 * table for easy lookup by its address. The unbound list is simply an
527 * extra entry at the end of the hash table, a trick used by AF_UNIX.
528 */
529 __vsock_remove_bound(vsk);
530 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
531
532 return 0;
533}
534
535static int __vsock_bind_dgram(struct vsock_sock *vsk,
536 struct sockaddr_vm *addr)
537{
538 return transport->dgram_bind(vsk, addr);
539}
540
541static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
542{
543 struct vsock_sock *vsk = vsock_sk(sk);
544 u32 cid;
545 int retval;
546
547 /* First ensure this socket isn't already bound. */
548 if (vsock_addr_bound(&vsk->local_addr))
549 return -EINVAL;
550
551 /* Now bind to the provided address or select appropriate values if
552 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
553 * like AF_INET prevents binding to a non-local IP address (in most
554 * cases), we only allow binding to the local CID.
555 */
556 cid = transport->get_local_cid();
557 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
558 return -EADDRNOTAVAIL;
559
560 switch (sk->sk_socket->type) {
561 case SOCK_STREAM:
562 spin_lock_bh(&vsock_table_lock);
563 retval = __vsock_bind_stream(vsk, addr);
564 spin_unlock_bh(&vsock_table_lock);
565 break;
566
567 case SOCK_DGRAM:
568 retval = __vsock_bind_dgram(vsk, addr);
569 break;
570
571 default:
572 retval = -EINVAL;
573 break;
574 }
575
576 return retval;
577}
578
579struct sock *__vsock_create(struct net *net,
580 struct socket *sock,
581 struct sock *parent,
582 gfp_t priority,
11aa9c28
EB
583 unsigned short type,
584 int kern)
d021c344
AK
585{
586 struct sock *sk;
587 struct vsock_sock *psk;
588 struct vsock_sock *vsk;
589
11aa9c28 590 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
d021c344
AK
591 if (!sk)
592 return NULL;
593
594 sock_init_data(sock, sk);
595
596 /* sk->sk_type is normally set in sock_init_data, but only if sock is
597 * non-NULL. We make sure that our sockets always have a type by
598 * setting it here if needed.
599 */
600 if (!sock)
601 sk->sk_type = type;
602
603 vsk = vsock_sk(sk);
604 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
605 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
606
607 sk->sk_destruct = vsock_sk_destruct;
608 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
609 sk->sk_state = 0;
610 sock_reset_flag(sk, SOCK_DONE);
611
612 INIT_LIST_HEAD(&vsk->bound_table);
613 INIT_LIST_HEAD(&vsk->connected_table);
614 vsk->listener = NULL;
615 INIT_LIST_HEAD(&vsk->pending_links);
616 INIT_LIST_HEAD(&vsk->accept_queue);
617 vsk->rejected = false;
618 vsk->sent_request = false;
619 vsk->ignore_connecting_rst = false;
620 vsk->peer_shutdown = 0;
621
622 psk = parent ? vsock_sk(parent) : NULL;
623 if (parent) {
624 vsk->trusted = psk->trusted;
625 vsk->owner = get_cred(psk->owner);
626 vsk->connect_timeout = psk->connect_timeout;
627 } else {
628 vsk->trusted = capable(CAP_NET_ADMIN);
629 vsk->owner = get_current_cred();
630 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
631 }
632
633 if (transport->init(vsk, psk) < 0) {
634 sk_free(sk);
635 return NULL;
636 }
637
638 if (sock)
639 vsock_insert_unbound(vsk);
640
641 return sk;
642}
643EXPORT_SYMBOL_GPL(__vsock_create);
644
645static void __vsock_release(struct sock *sk)
646{
647 if (sk) {
648 struct sk_buff *skb;
649 struct sock *pending;
650 struct vsock_sock *vsk;
651
652 vsk = vsock_sk(sk);
653 pending = NULL; /* Compiler warning. */
654
655 if (vsock_in_bound_table(vsk))
656 vsock_remove_bound(vsk);
657
658 if (vsock_in_connected_table(vsk))
659 vsock_remove_connected(vsk);
660
661 transport->release(vsk);
662
663 lock_sock(sk);
664 sock_orphan(sk);
665 sk->sk_shutdown = SHUTDOWN_MASK;
666
667 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
668 kfree_skb(skb);
669
670 /* Clean up any sockets that never were accepted. */
671 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
672 __vsock_release(pending);
673 sock_put(pending);
674 }
675
676 release_sock(sk);
677 sock_put(sk);
678 }
679}
680
681static void vsock_sk_destruct(struct sock *sk)
682{
683 struct vsock_sock *vsk = vsock_sk(sk);
684
685 transport->destruct(vsk);
686
687 /* When clearing these addresses, there's no need to set the family and
688 * possibly register the address family with the kernel.
689 */
690 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
691 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
692
693 put_cred(vsk->owner);
694}
695
696static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
697{
698 int err;
699
700 err = sock_queue_rcv_skb(sk, skb);
701 if (err)
702 kfree_skb(skb);
703
704 return err;
705}
706
707s64 vsock_stream_has_data(struct vsock_sock *vsk)
708{
709 return transport->stream_has_data(vsk);
710}
711EXPORT_SYMBOL_GPL(vsock_stream_has_data);
712
713s64 vsock_stream_has_space(struct vsock_sock *vsk)
714{
715 return transport->stream_has_space(vsk);
716}
717EXPORT_SYMBOL_GPL(vsock_stream_has_space);
718
719static int vsock_release(struct socket *sock)
720{
721 __vsock_release(sock->sk);
722 sock->sk = NULL;
723 sock->state = SS_FREE;
724
725 return 0;
726}
727
728static int
729vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
730{
731 int err;
732 struct sock *sk;
733 struct sockaddr_vm *vm_addr;
734
735 sk = sock->sk;
736
737 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
738 return -EINVAL;
739
740 lock_sock(sk);
741 err = __vsock_bind(sk, vm_addr);
742 release_sock(sk);
743
744 return err;
745}
746
747static int vsock_getname(struct socket *sock,
748 struct sockaddr *addr, int *addr_len, int peer)
749{
750 int err;
751 struct sock *sk;
752 struct vsock_sock *vsk;
753 struct sockaddr_vm *vm_addr;
754
755 sk = sock->sk;
756 vsk = vsock_sk(sk);
757 err = 0;
758
759 lock_sock(sk);
760
761 if (peer) {
762 if (sock->state != SS_CONNECTED) {
763 err = -ENOTCONN;
764 goto out;
765 }
766 vm_addr = &vsk->remote_addr;
767 } else {
768 vm_addr = &vsk->local_addr;
769 }
770
771 if (!vm_addr) {
772 err = -EINVAL;
773 goto out;
774 }
775
776 /* sys_getsockname() and sys_getpeername() pass us a
777 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
778 * that macro is defined in socket.c instead of .h, so we hardcode its
779 * value here.
780 */
781 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
782 memcpy(addr, vm_addr, sizeof(*vm_addr));
783 *addr_len = sizeof(*vm_addr);
784
785out:
786 release_sock(sk);
787 return err;
788}
789
790static int vsock_shutdown(struct socket *sock, int mode)
791{
792 int err;
793 struct sock *sk;
794
795 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
796 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
797 * here like the other address families do. Note also that the
798 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
799 * which is what we want.
800 */
801 mode++;
802
803 if ((mode & ~SHUTDOWN_MASK) || !mode)
804 return -EINVAL;
805
806 /* If this is a STREAM socket and it is not connected then bail out
807 * immediately. If it is a DGRAM socket then we must first kick the
808 * socket so that it wakes up from any sleeping calls, for example
809 * recv(), and then afterwards return the error.
810 */
811
812 sk = sock->sk;
813 if (sock->state == SS_UNCONNECTED) {
814 err = -ENOTCONN;
815 if (sk->sk_type == SOCK_STREAM)
816 return err;
817 } else {
818 sock->state = SS_DISCONNECTING;
819 err = 0;
820 }
821
822 /* Receive and send shutdowns are treated alike. */
823 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
824 if (mode) {
825 lock_sock(sk);
826 sk->sk_shutdown |= mode;
827 sk->sk_state_change(sk);
828 release_sock(sk);
829
830 if (sk->sk_type == SOCK_STREAM) {
831 sock_reset_flag(sk, SOCK_DONE);
832 vsock_send_shutdown(sk, mode);
833 }
834 }
835
836 return err;
837}
838
839static unsigned int vsock_poll(struct file *file, struct socket *sock,
840 poll_table *wait)
841{
842 struct sock *sk;
843 unsigned int mask;
844 struct vsock_sock *vsk;
845
846 sk = sock->sk;
847 vsk = vsock_sk(sk);
848
849 poll_wait(file, sk_sleep(sk), wait);
850 mask = 0;
851
852 if (sk->sk_err)
853 /* Signify that there has been an error on this socket. */
854 mask |= POLLERR;
855
856 /* INET sockets treat local write shutdown and peer write shutdown as a
857 * case of POLLHUP set.
858 */
859 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
860 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
861 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
862 mask |= POLLHUP;
863 }
864
865 if (sk->sk_shutdown & RCV_SHUTDOWN ||
866 vsk->peer_shutdown & SEND_SHUTDOWN) {
867 mask |= POLLRDHUP;
868 }
869
870 if (sock->type == SOCK_DGRAM) {
871 /* For datagram sockets we can read if there is something in
872 * the queue and write as long as the socket isn't shutdown for
873 * sending.
874 */
875 if (!skb_queue_empty(&sk->sk_receive_queue) ||
876 (sk->sk_shutdown & RCV_SHUTDOWN)) {
877 mask |= POLLIN | POLLRDNORM;
878 }
879
880 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
881 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
882
883 } else if (sock->type == SOCK_STREAM) {
884 lock_sock(sk);
885
886 /* Listening sockets that have connections in their accept
887 * queue can be read.
888 */
ea3803c1 889 if (sk->sk_state == VSOCK_SS_LISTEN
d021c344
AK
890 && !vsock_is_accept_queue_empty(sk))
891 mask |= POLLIN | POLLRDNORM;
892
893 /* If there is something in the queue then we can read. */
894 if (transport->stream_is_active(vsk) &&
895 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
896 bool data_ready_now = false;
897 int ret = transport->notify_poll_in(
898 vsk, 1, &data_ready_now);
899 if (ret < 0) {
900 mask |= POLLERR;
901 } else {
902 if (data_ready_now)
903 mask |= POLLIN | POLLRDNORM;
904
905 }
906 }
907
908 /* Sockets whose connections have been closed, reset, or
909 * terminated should also be considered read, and we check the
910 * shutdown flag for that.
911 */
912 if (sk->sk_shutdown & RCV_SHUTDOWN ||
913 vsk->peer_shutdown & SEND_SHUTDOWN) {
914 mask |= POLLIN | POLLRDNORM;
915 }
916
917 /* Connected sockets that can produce data can be written. */
918 if (sk->sk_state == SS_CONNECTED) {
919 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
920 bool space_avail_now = false;
921 int ret = transport->notify_poll_out(
922 vsk, 1, &space_avail_now);
923 if (ret < 0) {
924 mask |= POLLERR;
925 } else {
926 if (space_avail_now)
927 /* Remove POLLWRBAND since INET
928 * sockets are not setting it.
929 */
930 mask |= POLLOUT | POLLWRNORM;
931
932 }
933 }
934 }
935
936 /* Simulate INET socket poll behaviors, which sets
937 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
938 * but local send is not shutdown.
939 */
940 if (sk->sk_state == SS_UNCONNECTED) {
941 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
942 mask |= POLLOUT | POLLWRNORM;
943
944 }
945
946 release_sock(sk);
947 }
948
949 return mask;
950}
951
1b784140
YX
952static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
953 size_t len)
d021c344
AK
954{
955 int err;
956 struct sock *sk;
957 struct vsock_sock *vsk;
958 struct sockaddr_vm *remote_addr;
959
960 if (msg->msg_flags & MSG_OOB)
961 return -EOPNOTSUPP;
962
963 /* For now, MSG_DONTWAIT is always assumed... */
964 err = 0;
965 sk = sock->sk;
966 vsk = vsock_sk(sk);
967
968 lock_sock(sk);
969
b3a6dfe8
AH
970 err = vsock_auto_bind(vsk);
971 if (err)
972 goto out;
d021c344 973
d021c344
AK
974
975 /* If the provided message contains an address, use that. Otherwise
976 * fall back on the socket's remote handle (if it has been connected).
977 */
978 if (msg->msg_name &&
979 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
980 &remote_addr) == 0) {
981 /* Ensure this address is of the right type and is a valid
982 * destination.
983 */
984
985 if (remote_addr->svm_cid == VMADDR_CID_ANY)
986 remote_addr->svm_cid = transport->get_local_cid();
987
988 if (!vsock_addr_bound(remote_addr)) {
989 err = -EINVAL;
990 goto out;
991 }
992 } else if (sock->state == SS_CONNECTED) {
993 remote_addr = &vsk->remote_addr;
994
995 if (remote_addr->svm_cid == VMADDR_CID_ANY)
996 remote_addr->svm_cid = transport->get_local_cid();
997
998 /* XXX Should connect() or this function ensure remote_addr is
999 * bound?
1000 */
1001 if (!vsock_addr_bound(&vsk->remote_addr)) {
1002 err = -EINVAL;
1003 goto out;
1004 }
1005 } else {
1006 err = -EINVAL;
1007 goto out;
1008 }
1009
1010 if (!transport->dgram_allow(remote_addr->svm_cid,
1011 remote_addr->svm_port)) {
1012 err = -EINVAL;
1013 goto out;
1014 }
1015
0f7db23a 1016 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
d021c344
AK
1017
1018out:
1019 release_sock(sk);
1020 return err;
1021}
1022
1023static int vsock_dgram_connect(struct socket *sock,
1024 struct sockaddr *addr, int addr_len, int flags)
1025{
1026 int err;
1027 struct sock *sk;
1028 struct vsock_sock *vsk;
1029 struct sockaddr_vm *remote_addr;
1030
1031 sk = sock->sk;
1032 vsk = vsock_sk(sk);
1033
1034 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1035 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1036 lock_sock(sk);
1037 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1038 VMADDR_PORT_ANY);
1039 sock->state = SS_UNCONNECTED;
1040 release_sock(sk);
1041 return 0;
1042 } else if (err != 0)
1043 return -EINVAL;
1044
1045 lock_sock(sk);
1046
b3a6dfe8
AH
1047 err = vsock_auto_bind(vsk);
1048 if (err)
1049 goto out;
d021c344
AK
1050
1051 if (!transport->dgram_allow(remote_addr->svm_cid,
1052 remote_addr->svm_port)) {
1053 err = -EINVAL;
1054 goto out;
1055 }
1056
1057 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1058 sock->state = SS_CONNECTED;
1059
1060out:
1061 release_sock(sk);
1062 return err;
1063}
1064
1b784140
YX
1065static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1066 size_t len, int flags)
d021c344 1067{
1b784140 1068 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
d021c344
AK
1069}
1070
1071static const struct proto_ops vsock_dgram_ops = {
1072 .family = PF_VSOCK,
1073 .owner = THIS_MODULE,
1074 .release = vsock_release,
1075 .bind = vsock_bind,
1076 .connect = vsock_dgram_connect,
1077 .socketpair = sock_no_socketpair,
1078 .accept = sock_no_accept,
1079 .getname = vsock_getname,
1080 .poll = vsock_poll,
1081 .ioctl = sock_no_ioctl,
1082 .listen = sock_no_listen,
1083 .shutdown = vsock_shutdown,
1084 .setsockopt = sock_no_setsockopt,
1085 .getsockopt = sock_no_getsockopt,
1086 .sendmsg = vsock_dgram_sendmsg,
1087 .recvmsg = vsock_dgram_recvmsg,
1088 .mmap = sock_no_mmap,
1089 .sendpage = sock_no_sendpage,
1090};
1091
1092static void vsock_connect_timeout(struct work_struct *work)
1093{
1094 struct sock *sk;
1095 struct vsock_sock *vsk;
1096
1097 vsk = container_of(work, struct vsock_sock, dwork.work);
1098 sk = sk_vsock(vsk);
1099
1100 lock_sock(sk);
1101 if (sk->sk_state == SS_CONNECTING &&
1102 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1103 sk->sk_state = SS_UNCONNECTED;
1104 sk->sk_err = ETIMEDOUT;
1105 sk->sk_error_report(sk);
1106 }
1107 release_sock(sk);
1108
1109 sock_put(sk);
1110}
1111
1112static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1113 int addr_len, int flags)
1114{
1115 int err;
1116 struct sock *sk;
1117 struct vsock_sock *vsk;
1118 struct sockaddr_vm *remote_addr;
1119 long timeout;
1120 DEFINE_WAIT(wait);
1121
1122 err = 0;
1123 sk = sock->sk;
1124 vsk = vsock_sk(sk);
1125
1126 lock_sock(sk);
1127
1128 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1129 switch (sock->state) {
1130 case SS_CONNECTED:
1131 err = -EISCONN;
1132 goto out;
1133 case SS_DISCONNECTING:
1134 err = -EINVAL;
1135 goto out;
1136 case SS_CONNECTING:
1137 /* This continues on so we can move sock into the SS_CONNECTED
1138 * state once the connection has completed (at which point err
1139 * will be set to zero also). Otherwise, we will either wait
1140 * for the connection or return -EALREADY should this be a
1141 * non-blocking call.
1142 */
1143 err = -EALREADY;
1144 break;
1145 default:
ea3803c1 1146 if ((sk->sk_state == VSOCK_SS_LISTEN) ||
d021c344
AK
1147 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1148 err = -EINVAL;
1149 goto out;
1150 }
1151
1152 /* The hypervisor and well-known contexts do not have socket
1153 * endpoints.
1154 */
1155 if (!transport->stream_allow(remote_addr->svm_cid,
1156 remote_addr->svm_port)) {
1157 err = -ENETUNREACH;
1158 goto out;
1159 }
1160
1161 /* Set the remote address that we are connecting to. */
1162 memcpy(&vsk->remote_addr, remote_addr,
1163 sizeof(vsk->remote_addr));
1164
b3a6dfe8
AH
1165 err = vsock_auto_bind(vsk);
1166 if (err)
1167 goto out;
d021c344
AK
1168
1169 sk->sk_state = SS_CONNECTING;
1170
1171 err = transport->connect(vsk);
1172 if (err < 0)
1173 goto out;
1174
1175 /* Mark sock as connecting and set the error code to in
1176 * progress in case this is a non-blocking connect.
1177 */
1178 sock->state = SS_CONNECTING;
1179 err = -EINPROGRESS;
1180 }
1181
1182 /* The receive path will handle all communication until we are able to
1183 * enter the connected state. Here we wait for the connection to be
1184 * completed or a notification of an error.
1185 */
1186 timeout = vsk->connect_timeout;
1187 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1188
1189 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1190 if (flags & O_NONBLOCK) {
1191 /* If we're not going to block, we schedule a timeout
1192 * function to generate a timeout on the connection
1193 * attempt, in case the peer doesn't respond in a
1194 * timely manner. We hold on to the socket until the
1195 * timeout fires.
1196 */
1197 sock_hold(sk);
1198 INIT_DELAYED_WORK(&vsk->dwork,
1199 vsock_connect_timeout);
1200 schedule_delayed_work(&vsk->dwork, timeout);
1201
1202 /* Skip ahead to preserve error code set above. */
1203 goto out_wait;
1204 }
1205
1206 release_sock(sk);
1207 timeout = schedule_timeout(timeout);
1208 lock_sock(sk);
1209
1210 if (signal_pending(current)) {
1211 err = sock_intr_errno(timeout);
f7f9b5e7
CI
1212 sk->sk_state = SS_UNCONNECTED;
1213 sock->state = SS_UNCONNECTED;
1214 goto out_wait;
d021c344
AK
1215 } else if (timeout == 0) {
1216 err = -ETIMEDOUT;
f7f9b5e7
CI
1217 sk->sk_state = SS_UNCONNECTED;
1218 sock->state = SS_UNCONNECTED;
1219 goto out_wait;
d021c344
AK
1220 }
1221
1222 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1223 }
1224
1225 if (sk->sk_err) {
1226 err = -sk->sk_err;
f7f9b5e7
CI
1227 sk->sk_state = SS_UNCONNECTED;
1228 sock->state = SS_UNCONNECTED;
1229 } else {
d021c344 1230 err = 0;
f7f9b5e7 1231 }
d021c344
AK
1232
1233out_wait:
1234 finish_wait(sk_sleep(sk), &wait);
1235out:
1236 release_sock(sk);
1237 return err;
d021c344
AK
1238}
1239
1240static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1241{
1242 struct sock *listener;
1243 int err;
1244 struct sock *connected;
1245 struct vsock_sock *vconnected;
1246 long timeout;
1247 DEFINE_WAIT(wait);
1248
1249 err = 0;
1250 listener = sock->sk;
1251
1252 lock_sock(listener);
1253
1254 if (sock->type != SOCK_STREAM) {
1255 err = -EOPNOTSUPP;
1256 goto out;
1257 }
1258
ea3803c1 1259 if (listener->sk_state != VSOCK_SS_LISTEN) {
d021c344
AK
1260 err = -EINVAL;
1261 goto out;
1262 }
1263
1264 /* Wait for children sockets to appear; these are the new sockets
1265 * created upon connection establishment.
1266 */
1267 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1268 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1269
1270 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1271 listener->sk_err == 0) {
1272 release_sock(listener);
1273 timeout = schedule_timeout(timeout);
f7f9b5e7 1274 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1275 lock_sock(listener);
1276
1277 if (signal_pending(current)) {
1278 err = sock_intr_errno(timeout);
f7f9b5e7 1279 goto out;
d021c344
AK
1280 } else if (timeout == 0) {
1281 err = -EAGAIN;
f7f9b5e7 1282 goto out;
d021c344
AK
1283 }
1284
1285 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1286 }
f7f9b5e7 1287 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1288
1289 if (listener->sk_err)
1290 err = -listener->sk_err;
1291
1292 if (connected) {
1293 listener->sk_ack_backlog--;
1294
1295 lock_sock(connected);
1296 vconnected = vsock_sk(connected);
1297
1298 /* If the listener socket has received an error, then we should
1299 * reject this socket and return. Note that we simply mark the
1300 * socket rejected, drop our reference, and let the cleanup
1301 * function handle the cleanup; the fact that we found it in
1302 * the listener's accept queue guarantees that the cleanup
1303 * function hasn't run yet.
1304 */
1305 if (err) {
1306 vconnected->rejected = true;
f7f9b5e7
CI
1307 } else {
1308 newsock->state = SS_CONNECTED;
1309 sock_graft(connected, newsock);
d021c344
AK
1310 }
1311
d021c344
AK
1312 release_sock(connected);
1313 sock_put(connected);
1314 }
1315
d021c344
AK
1316out:
1317 release_sock(listener);
1318 return err;
1319}
1320
1321static int vsock_listen(struct socket *sock, int backlog)
1322{
1323 int err;
1324 struct sock *sk;
1325 struct vsock_sock *vsk;
1326
1327 sk = sock->sk;
1328
1329 lock_sock(sk);
1330
1331 if (sock->type != SOCK_STREAM) {
1332 err = -EOPNOTSUPP;
1333 goto out;
1334 }
1335
1336 if (sock->state != SS_UNCONNECTED) {
1337 err = -EINVAL;
1338 goto out;
1339 }
1340
1341 vsk = vsock_sk(sk);
1342
1343 if (!vsock_addr_bound(&vsk->local_addr)) {
1344 err = -EINVAL;
1345 goto out;
1346 }
1347
1348 sk->sk_max_ack_backlog = backlog;
ea3803c1 1349 sk->sk_state = VSOCK_SS_LISTEN;
d021c344
AK
1350
1351 err = 0;
1352
1353out:
1354 release_sock(sk);
1355 return err;
1356}
1357
1358static int vsock_stream_setsockopt(struct socket *sock,
1359 int level,
1360 int optname,
1361 char __user *optval,
1362 unsigned int optlen)
1363{
1364 int err;
1365 struct sock *sk;
1366 struct vsock_sock *vsk;
1367 u64 val;
1368
1369 if (level != AF_VSOCK)
1370 return -ENOPROTOOPT;
1371
1372#define COPY_IN(_v) \
1373 do { \
1374 if (optlen < sizeof(_v)) { \
1375 err = -EINVAL; \
1376 goto exit; \
1377 } \
1378 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1379 err = -EFAULT; \
1380 goto exit; \
1381 } \
1382 } while (0)
1383
1384 err = 0;
1385 sk = sock->sk;
1386 vsk = vsock_sk(sk);
1387
1388 lock_sock(sk);
1389
1390 switch (optname) {
1391 case SO_VM_SOCKETS_BUFFER_SIZE:
1392 COPY_IN(val);
1393 transport->set_buffer_size(vsk, val);
1394 break;
1395
1396 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1397 COPY_IN(val);
1398 transport->set_max_buffer_size(vsk, val);
1399 break;
1400
1401 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1402 COPY_IN(val);
1403 transport->set_min_buffer_size(vsk, val);
1404 break;
1405
1406 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1407 struct timeval tv;
1408 COPY_IN(tv);
1409 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1410 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1411 vsk->connect_timeout = tv.tv_sec * HZ +
1412 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1413 if (vsk->connect_timeout == 0)
1414 vsk->connect_timeout =
1415 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1416
1417 } else {
1418 err = -ERANGE;
1419 }
1420 break;
1421 }
1422
1423 default:
1424 err = -ENOPROTOOPT;
1425 break;
1426 }
1427
1428#undef COPY_IN
1429
1430exit:
1431 release_sock(sk);
1432 return err;
1433}
1434
1435static int vsock_stream_getsockopt(struct socket *sock,
1436 int level, int optname,
1437 char __user *optval,
1438 int __user *optlen)
1439{
1440 int err;
1441 int len;
1442 struct sock *sk;
1443 struct vsock_sock *vsk;
1444 u64 val;
1445
1446 if (level != AF_VSOCK)
1447 return -ENOPROTOOPT;
1448
1449 err = get_user(len, optlen);
1450 if (err != 0)
1451 return err;
1452
1453#define COPY_OUT(_v) \
1454 do { \
1455 if (len < sizeof(_v)) \
1456 return -EINVAL; \
1457 \
1458 len = sizeof(_v); \
1459 if (copy_to_user(optval, &_v, len) != 0) \
1460 return -EFAULT; \
1461 \
1462 } while (0)
1463
1464 err = 0;
1465 sk = sock->sk;
1466 vsk = vsock_sk(sk);
1467
1468 switch (optname) {
1469 case SO_VM_SOCKETS_BUFFER_SIZE:
1470 val = transport->get_buffer_size(vsk);
1471 COPY_OUT(val);
1472 break;
1473
1474 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1475 val = transport->get_max_buffer_size(vsk);
1476 COPY_OUT(val);
1477 break;
1478
1479 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1480 val = transport->get_min_buffer_size(vsk);
1481 COPY_OUT(val);
1482 break;
1483
1484 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1485 struct timeval tv;
1486 tv.tv_sec = vsk->connect_timeout / HZ;
1487 tv.tv_usec =
1488 (vsk->connect_timeout -
1489 tv.tv_sec * HZ) * (1000000 / HZ);
1490 COPY_OUT(tv);
1491 break;
1492 }
1493 default:
1494 return -ENOPROTOOPT;
1495 }
1496
1497 err = put_user(len, optlen);
1498 if (err != 0)
1499 return -EFAULT;
1500
1501#undef COPY_OUT
1502
1503 return 0;
1504}
1505
1b784140
YX
1506static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1507 size_t len)
d021c344
AK
1508{
1509 struct sock *sk;
1510 struct vsock_sock *vsk;
1511 ssize_t total_written;
1512 long timeout;
1513 int err;
1514 struct vsock_transport_send_notify_data send_data;
1515
1516 DEFINE_WAIT(wait);
1517
1518 sk = sock->sk;
1519 vsk = vsock_sk(sk);
1520 total_written = 0;
1521 err = 0;
1522
1523 if (msg->msg_flags & MSG_OOB)
1524 return -EOPNOTSUPP;
1525
1526 lock_sock(sk);
1527
1528 /* Callers should not provide a destination with stream sockets. */
1529 if (msg->msg_namelen) {
1530 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1531 goto out;
1532 }
1533
1534 /* Send data only if both sides are not shutdown in the direction. */
1535 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1536 vsk->peer_shutdown & RCV_SHUTDOWN) {
1537 err = -EPIPE;
1538 goto out;
1539 }
1540
1541 if (sk->sk_state != SS_CONNECTED ||
1542 !vsock_addr_bound(&vsk->local_addr)) {
1543 err = -ENOTCONN;
1544 goto out;
1545 }
1546
1547 if (!vsock_addr_bound(&vsk->remote_addr)) {
1548 err = -EDESTADDRREQ;
1549 goto out;
1550 }
1551
1552 /* Wait for room in the produce queue to enqueue our user's data. */
1553 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1554
1555 err = transport->notify_send_init(vsk, &send_data);
1556 if (err < 0)
1557 goto out;
1558
6f57e56a 1559
d021c344
AK
1560 while (total_written < len) {
1561 ssize_t written;
1562
f7f9b5e7 1563 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
d021c344
AK
1564 while (vsock_stream_has_space(vsk) == 0 &&
1565 sk->sk_err == 0 &&
1566 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1567 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1568
1569 /* Don't wait for non-blocking sockets. */
1570 if (timeout == 0) {
1571 err = -EAGAIN;
f7f9b5e7
CI
1572 finish_wait(sk_sleep(sk), &wait);
1573 goto out_err;
d021c344
AK
1574 }
1575
1576 err = transport->notify_send_pre_block(vsk, &send_data);
f7f9b5e7
CI
1577 if (err < 0) {
1578 finish_wait(sk_sleep(sk), &wait);
1579 goto out_err;
1580 }
d021c344
AK
1581
1582 release_sock(sk);
1583 timeout = schedule_timeout(timeout);
1584 lock_sock(sk);
1585 if (signal_pending(current)) {
1586 err = sock_intr_errno(timeout);
f7f9b5e7
CI
1587 finish_wait(sk_sleep(sk), &wait);
1588 goto out_err;
d021c344
AK
1589 } else if (timeout == 0) {
1590 err = -EAGAIN;
f7f9b5e7
CI
1591 finish_wait(sk_sleep(sk), &wait);
1592 goto out_err;
d021c344
AK
1593 }
1594
6f57e56a
CI
1595 prepare_to_wait(sk_sleep(sk), &wait,
1596 TASK_INTERRUPTIBLE);
d021c344 1597 }
f7f9b5e7 1598 finish_wait(sk_sleep(sk), &wait);
d021c344
AK
1599
1600 /* These checks occur both as part of and after the loop
1601 * conditional since we need to check before and after
1602 * sleeping.
1603 */
1604 if (sk->sk_err) {
1605 err = -sk->sk_err;
f7f9b5e7 1606 goto out_err;
d021c344
AK
1607 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1608 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1609 err = -EPIPE;
f7f9b5e7 1610 goto out_err;
d021c344
AK
1611 }
1612
1613 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1614 if (err < 0)
f7f9b5e7 1615 goto out_err;
d021c344
AK
1616
1617 /* Note that enqueue will only write as many bytes as are free
1618 * in the produce queue, so we don't need to ensure len is
1619 * smaller than the queue size. It is the caller's
1620 * responsibility to check how many bytes we were able to send.
1621 */
1622
1623 written = transport->stream_enqueue(
0f7db23a 1624 vsk, msg,
d021c344
AK
1625 len - total_written);
1626 if (written < 0) {
1627 err = -ENOMEM;
f7f9b5e7 1628 goto out_err;
d021c344
AK
1629 }
1630
1631 total_written += written;
1632
1633 err = transport->notify_send_post_enqueue(
1634 vsk, written, &send_data);
1635 if (err < 0)
f7f9b5e7 1636 goto out_err;
d021c344
AK
1637
1638 }
1639
f7f9b5e7 1640out_err:
d021c344
AK
1641 if (total_written > 0)
1642 err = total_written;
d021c344
AK
1643out:
1644 release_sock(sk);
1645 return err;
1646}
1647
1648
1649static int
1b784140
YX
1650vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1651 int flags)
d021c344
AK
1652{
1653 struct sock *sk;
1654 struct vsock_sock *vsk;
1655 int err;
1656 size_t target;
1657 ssize_t copied;
1658 long timeout;
1659 struct vsock_transport_recv_notify_data recv_data;
1660
1661 DEFINE_WAIT(wait);
1662
1663 sk = sock->sk;
1664 vsk = vsock_sk(sk);
1665 err = 0;
1666
1667 lock_sock(sk);
1668
1669 if (sk->sk_state != SS_CONNECTED) {
1670 /* Recvmsg is supposed to return 0 if a peer performs an
1671 * orderly shutdown. Differentiate between that case and when a
1672 * peer has not connected or a local shutdown occured with the
1673 * SOCK_DONE flag.
1674 */
1675 if (sock_flag(sk, SOCK_DONE))
1676 err = 0;
1677 else
1678 err = -ENOTCONN;
1679
1680 goto out;
1681 }
1682
1683 if (flags & MSG_OOB) {
1684 err = -EOPNOTSUPP;
1685 goto out;
1686 }
1687
1688 /* We don't check peer_shutdown flag here since peer may actually shut
1689 * down, but there can be data in the queue that a local socket can
1690 * receive.
1691 */
1692 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1693 err = 0;
1694 goto out;
1695 }
1696
1697 /* It is valid on Linux to pass in a zero-length receive buffer. This
1698 * is not an error. We may as well bail out now.
1699 */
1700 if (!len) {
1701 err = 0;
1702 goto out;
1703 }
1704
1705 /* We must not copy less than target bytes into the user's buffer
1706 * before returning successfully, so we wait for the consume queue to
1707 * have that much data to consume before dequeueing. Note that this
1708 * makes it impossible to handle cases where target is greater than the
1709 * queue size.
1710 */
1711 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1712 if (target >= transport->stream_rcvhiwat(vsk)) {
1713 err = -ENOMEM;
1714 goto out;
1715 }
1716 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1717 copied = 0;
1718
1719 err = transport->notify_recv_init(vsk, target, &recv_data);
1720 if (err < 0)
1721 goto out;
1722
d021c344
AK
1723
1724 while (1) {
f7f9b5e7 1725 s64 ready;
d021c344 1726
f7f9b5e7
CI
1727 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1728 ready = vsock_stream_has_data(vsk);
d021c344 1729
f7f9b5e7
CI
1730 if (ready == 0) {
1731 if (sk->sk_err != 0 ||
1732 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1733 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1734 finish_wait(sk_sleep(sk), &wait);
1735 break;
1736 }
1737 /* Don't wait for non-blocking sockets. */
1738 if (timeout == 0) {
1739 err = -EAGAIN;
1740 finish_wait(sk_sleep(sk), &wait);
1741 break;
1742 }
1743
1744 err = transport->notify_recv_pre_block(
1745 vsk, target, &recv_data);
1746 if (err < 0) {
1747 finish_wait(sk_sleep(sk), &wait);
1748 break;
1749 }
1750 release_sock(sk);
1751 timeout = schedule_timeout(timeout);
1752 lock_sock(sk);
1753
1754 if (signal_pending(current)) {
1755 err = sock_intr_errno(timeout);
1756 finish_wait(sk_sleep(sk), &wait);
1757 break;
1758 } else if (timeout == 0) {
1759 err = -EAGAIN;
1760 finish_wait(sk_sleep(sk), &wait);
1761 break;
1762 }
1763 } else {
d021c344
AK
1764 ssize_t read;
1765
f7f9b5e7
CI
1766 finish_wait(sk_sleep(sk), &wait);
1767
1768 if (ready < 0) {
1769 /* Invalid queue pair content. XXX This should
1770 * be changed to a connection reset in a later
1771 * change.
1772 */
1773
1774 err = -ENOMEM;
1775 goto out;
1776 }
1777
d021c344
AK
1778 err = transport->notify_recv_pre_dequeue(
1779 vsk, target, &recv_data);
1780 if (err < 0)
1781 break;
1782
1783 read = transport->stream_dequeue(
0f7db23a 1784 vsk, msg,
d021c344
AK
1785 len - copied, flags);
1786 if (read < 0) {
1787 err = -ENOMEM;
1788 break;
1789 }
1790
1791 copied += read;
1792
1793 err = transport->notify_recv_post_dequeue(
1794 vsk, target, read,
1795 !(flags & MSG_PEEK), &recv_data);
1796 if (err < 0)
f7f9b5e7 1797 goto out;
d021c344
AK
1798
1799 if (read >= target || flags & MSG_PEEK)
1800 break;
1801
1802 target -= read;
d021c344
AK
1803 }
1804 }
1805
1806 if (sk->sk_err)
1807 err = -sk->sk_err;
1808 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1809 err = 0;
1810
dedc58e0 1811 if (copied > 0)
d021c344 1812 err = copied;
d021c344 1813
d021c344
AK
1814out:
1815 release_sock(sk);
1816 return err;
1817}
1818
1819static const struct proto_ops vsock_stream_ops = {
1820 .family = PF_VSOCK,
1821 .owner = THIS_MODULE,
1822 .release = vsock_release,
1823 .bind = vsock_bind,
1824 .connect = vsock_stream_connect,
1825 .socketpair = sock_no_socketpair,
1826 .accept = vsock_accept,
1827 .getname = vsock_getname,
1828 .poll = vsock_poll,
1829 .ioctl = sock_no_ioctl,
1830 .listen = vsock_listen,
1831 .shutdown = vsock_shutdown,
1832 .setsockopt = vsock_stream_setsockopt,
1833 .getsockopt = vsock_stream_getsockopt,
1834 .sendmsg = vsock_stream_sendmsg,
1835 .recvmsg = vsock_stream_recvmsg,
1836 .mmap = sock_no_mmap,
1837 .sendpage = sock_no_sendpage,
1838};
1839
1840static int vsock_create(struct net *net, struct socket *sock,
1841 int protocol, int kern)
1842{
1843 if (!sock)
1844 return -EINVAL;
1845
6cf1c5fc 1846 if (protocol && protocol != PF_VSOCK)
d021c344
AK
1847 return -EPROTONOSUPPORT;
1848
1849 switch (sock->type) {
1850 case SOCK_DGRAM:
1851 sock->ops = &vsock_dgram_ops;
1852 break;
1853 case SOCK_STREAM:
1854 sock->ops = &vsock_stream_ops;
1855 break;
1856 default:
1857 return -ESOCKTNOSUPPORT;
1858 }
1859
1860 sock->state = SS_UNCONNECTED;
1861
11aa9c28 1862 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
d021c344
AK
1863}
1864
1865static const struct net_proto_family vsock_family_ops = {
1866 .family = AF_VSOCK,
1867 .create = vsock_create,
1868 .owner = THIS_MODULE,
1869};
1870
1871static long vsock_dev_do_ioctl(struct file *filp,
1872 unsigned int cmd, void __user *ptr)
1873{
1874 u32 __user *p = ptr;
1875 int retval = 0;
1876
1877 switch (cmd) {
1878 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1879 if (put_user(transport->get_local_cid(), p) != 0)
1880 retval = -EFAULT;
1881 break;
1882
1883 default:
1884 pr_err("Unknown ioctl %d\n", cmd);
1885 retval = -EINVAL;
1886 }
1887
1888 return retval;
1889}
1890
1891static long vsock_dev_ioctl(struct file *filp,
1892 unsigned int cmd, unsigned long arg)
1893{
1894 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1895}
1896
1897#ifdef CONFIG_COMPAT
1898static long vsock_dev_compat_ioctl(struct file *filp,
1899 unsigned int cmd, unsigned long arg)
1900{
1901 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1902}
1903#endif
1904
1905static const struct file_operations vsock_device_ops = {
1906 .owner = THIS_MODULE,
1907 .unlocked_ioctl = vsock_dev_ioctl,
1908#ifdef CONFIG_COMPAT
1909 .compat_ioctl = vsock_dev_compat_ioctl,
1910#endif
1911 .open = nonseekable_open,
1912};
1913
1914static struct miscdevice vsock_device = {
1915 .name = "vsock",
d021c344
AK
1916 .fops = &vsock_device_ops,
1917};
1918
2c4a336e 1919int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
d021c344 1920{
2c4a336e
AK
1921 int err = mutex_lock_interruptible(&vsock_register_mutex);
1922
1923 if (err)
1924 return err;
1925
1926 if (transport) {
1927 err = -EBUSY;
1928 goto err_busy;
1929 }
1930
1931 /* Transport must be the owner of the protocol so that it can't
1932 * unload while there are open sockets.
1933 */
1934 vsock_proto.owner = owner;
1935 transport = t;
d021c344
AK
1936
1937 vsock_init_tables();
1938
6ad0b2f7 1939 vsock_device.minor = MISC_DYNAMIC_MINOR;
d021c344
AK
1940 err = misc_register(&vsock_device);
1941 if (err) {
1942 pr_err("Failed to register misc device\n");
f6a835bb 1943 goto err_reset_transport;
d021c344
AK
1944 }
1945
1946 err = proto_register(&vsock_proto, 1); /* we want our slab */
1947 if (err) {
1948 pr_err("Cannot register vsock protocol\n");
f6a835bb 1949 goto err_deregister_misc;
d021c344
AK
1950 }
1951
1952 err = sock_register(&vsock_family_ops);
1953 if (err) {
1954 pr_err("could not register af_vsock (%d) address family: %d\n",
1955 AF_VSOCK, err);
1956 goto err_unregister_proto;
1957 }
1958
2c4a336e 1959 mutex_unlock(&vsock_register_mutex);
d021c344
AK
1960 return 0;
1961
1962err_unregister_proto:
1963 proto_unregister(&vsock_proto);
f6a835bb 1964err_deregister_misc:
d021c344 1965 misc_deregister(&vsock_device);
f6a835bb 1966err_reset_transport:
2c4a336e
AK
1967 transport = NULL;
1968err_busy:
d021c344 1969 mutex_unlock(&vsock_register_mutex);
2c4a336e 1970 return err;
d021c344 1971}
2c4a336e 1972EXPORT_SYMBOL_GPL(__vsock_core_init);
d021c344
AK
1973
1974void vsock_core_exit(void)
1975{
1976 mutex_lock(&vsock_register_mutex);
1977
1978 misc_deregister(&vsock_device);
1979 sock_unregister(AF_VSOCK);
1980 proto_unregister(&vsock_proto);
1981
1982 /* We do not want the assignment below re-ordered. */
1983 mb();
1984 transport = NULL;
1985
1986 mutex_unlock(&vsock_register_mutex);
1987}
1988EXPORT_SYMBOL_GPL(vsock_core_exit);
1989
1990MODULE_AUTHOR("VMware, Inc.");
1991MODULE_DESCRIPTION("VMware Virtual Socket Family");
2c4a336e 1992MODULE_VERSION("1.0.1.0-k");
d021c344 1993MODULE_LICENSE("GPL v2");