Merge tag 'pidfd-updates-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/braun...
[linux-2.6-block.git] / net / vmw_vsock / af_vsock.c
CommitLineData
685a6bf8 1// SPDX-License-Identifier: GPL-2.0-only
d021c344
AK
2/*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
d021c344
AK
6 */
7
8/* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
3b4477d2 31 * implementation because they are in the TCP_LISTEN state. When a
ea3803c1
SH
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
d021c344
AK
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
4192f672
SH
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
d021c344
AK
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
3b4477d2
SH
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
d021c344
AK
86 */
87
88#include <linux/types.h>
d021c344
AK
89#include <linux/bitops.h>
90#include <linux/cred.h>
91#include <linux/init.h>
92#include <linux/io.h>
93#include <linux/kernel.h>
174cd4b1 94#include <linux/sched/signal.h>
d021c344
AK
95#include <linux/kmod.h>
96#include <linux/list.h>
97#include <linux/miscdevice.h>
98#include <linux/module.h>
99#include <linux/mutex.h>
100#include <linux/net.h>
101#include <linux/poll.h>
8236b08c 102#include <linux/random.h>
d021c344
AK
103#include <linux/skbuff.h>
104#include <linux/smp.h>
105#include <linux/socket.h>
106#include <linux/stddef.h>
107#include <linux/unistd.h>
108#include <linux/wait.h>
109#include <linux/workqueue.h>
110#include <net/sock.h>
82a54d0e 111#include <net/af_vsock.h>
d021c344
AK
112
113static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114static void vsock_sk_destruct(struct sock *sk);
115static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117/* Protocol family. */
118static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
122};
123
124/* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
126 */
127#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
d021c344
AK
129static const struct vsock_transport *transport;
130static DEFINE_MUTEX(vsock_register_mutex);
131
132/**** EXPORTS ****/
133
134/* Get the ID of the local context. This is transport dependent. */
135
136int vm_sockets_get_local_cid(void)
137{
138 return transport->get_local_cid();
139}
140EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
141
142/**** UTILS ****/
143
144/* Each bound VSocket is stored in the bind hash table and each connected
145 * VSocket is stored in the connected hash table.
146 *
147 * Unbound sockets are all put on the same list attached to the end of the hash
148 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
149 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
150 * represents the list that addr hashes to).
151 *
152 * Specifically, we initialize the vsock_bind_table array to a size of
153 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
154 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
155 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
a49dd9dc 156 * mods with VSOCK_HASH_SIZE to ensure this.
d021c344 157 */
d021c344
AK
158#define MAX_PORT_RETRIES 24
159
a49dd9dc 160#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
d021c344
AK
161#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
162#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
163
164/* XXX This can probably be implemented in a better way. */
165#define VSOCK_CONN_HASH(src, dst) \
a49dd9dc 166 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
d021c344
AK
167#define vsock_connected_sockets(src, dst) \
168 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
169#define vsock_connected_sockets_vsk(vsk) \
170 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
171
44f20980
SH
172struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
173EXPORT_SYMBOL_GPL(vsock_bind_table);
174struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
175EXPORT_SYMBOL_GPL(vsock_connected_table);
176DEFINE_SPINLOCK(vsock_table_lock);
177EXPORT_SYMBOL_GPL(vsock_table_lock);
d021c344 178
b3a6dfe8
AH
179/* Autobind this socket to the local address if necessary. */
180static int vsock_auto_bind(struct vsock_sock *vsk)
181{
182 struct sock *sk = sk_vsock(vsk);
183 struct sockaddr_vm local_addr;
184
185 if (vsock_addr_bound(&vsk->local_addr))
186 return 0;
187 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
188 return __vsock_bind(sk, &local_addr);
189}
190
c1eef220 191static int __init vsock_init_tables(void)
d021c344
AK
192{
193 int i;
194
195 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
196 INIT_LIST_HEAD(&vsock_bind_table[i]);
197
198 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
199 INIT_LIST_HEAD(&vsock_connected_table[i]);
c1eef220 200 return 0;
d021c344
AK
201}
202
203static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
205{
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
208}
209
210static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
212{
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
215}
216
217static void __vsock_remove_bound(struct vsock_sock *vsk)
218{
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
221}
222
223static void __vsock_remove_connected(struct vsock_sock *vsk)
224{
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
227}
228
229static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230{
231 struct vsock_sock *vsk;
232
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
990454b5 234 if (addr->svm_port == vsk->local_addr.svm_port)
d021c344
AK
235 return sk_vsock(vsk);
236
237 return NULL;
238}
239
240static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
241 struct sockaddr_vm *dst)
242{
243 struct vsock_sock *vsk;
244
245 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
246 connected_table) {
990454b5
RG
247 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
248 dst->svm_port == vsk->local_addr.svm_port) {
d021c344
AK
249 return sk_vsock(vsk);
250 }
251 }
252
253 return NULL;
254}
255
d021c344
AK
256static void vsock_insert_unbound(struct vsock_sock *vsk)
257{
258 spin_lock_bh(&vsock_table_lock);
259 __vsock_insert_bound(vsock_unbound_sockets, vsk);
260 spin_unlock_bh(&vsock_table_lock);
261}
262
263void vsock_insert_connected(struct vsock_sock *vsk)
264{
265 struct list_head *list = vsock_connected_sockets(
266 &vsk->remote_addr, &vsk->local_addr);
267
268 spin_lock_bh(&vsock_table_lock);
269 __vsock_insert_connected(list, vsk);
270 spin_unlock_bh(&vsock_table_lock);
271}
272EXPORT_SYMBOL_GPL(vsock_insert_connected);
273
274void vsock_remove_bound(struct vsock_sock *vsk)
275{
276 spin_lock_bh(&vsock_table_lock);
277 __vsock_remove_bound(vsk);
278 spin_unlock_bh(&vsock_table_lock);
279}
280EXPORT_SYMBOL_GPL(vsock_remove_bound);
281
282void vsock_remove_connected(struct vsock_sock *vsk)
283{
284 spin_lock_bh(&vsock_table_lock);
285 __vsock_remove_connected(vsk);
286 spin_unlock_bh(&vsock_table_lock);
287}
288EXPORT_SYMBOL_GPL(vsock_remove_connected);
289
290struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
291{
292 struct sock *sk;
293
294 spin_lock_bh(&vsock_table_lock);
295 sk = __vsock_find_bound_socket(addr);
296 if (sk)
297 sock_hold(sk);
298
299 spin_unlock_bh(&vsock_table_lock);
300
301 return sk;
302}
303EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
304
305struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
306 struct sockaddr_vm *dst)
307{
308 struct sock *sk;
309
310 spin_lock_bh(&vsock_table_lock);
311 sk = __vsock_find_connected_socket(src, dst);
312 if (sk)
313 sock_hold(sk);
314
315 spin_unlock_bh(&vsock_table_lock);
316
317 return sk;
318}
319EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
320
321static bool vsock_in_bound_table(struct vsock_sock *vsk)
322{
323 bool ret;
324
325 spin_lock_bh(&vsock_table_lock);
326 ret = __vsock_in_bound_table(vsk);
327 spin_unlock_bh(&vsock_table_lock);
328
329 return ret;
330}
331
332static bool vsock_in_connected_table(struct vsock_sock *vsk)
333{
334 bool ret;
335
336 spin_lock_bh(&vsock_table_lock);
337 ret = __vsock_in_connected_table(vsk);
338 spin_unlock_bh(&vsock_table_lock);
339
340 return ret;
341}
342
6773b7dc
SH
343void vsock_remove_sock(struct vsock_sock *vsk)
344{
345 if (vsock_in_bound_table(vsk))
346 vsock_remove_bound(vsk);
347
348 if (vsock_in_connected_table(vsk))
349 vsock_remove_connected(vsk);
350}
351EXPORT_SYMBOL_GPL(vsock_remove_sock);
352
d021c344
AK
353void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
354{
355 int i;
356
357 spin_lock_bh(&vsock_table_lock);
358
359 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
360 struct vsock_sock *vsk;
361 list_for_each_entry(vsk, &vsock_connected_table[i],
d9af2d67 362 connected_table)
d021c344
AK
363 fn(sk_vsock(vsk));
364 }
365
366 spin_unlock_bh(&vsock_table_lock);
367}
368EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369
370void vsock_add_pending(struct sock *listener, struct sock *pending)
371{
372 struct vsock_sock *vlistener;
373 struct vsock_sock *vpending;
374
375 vlistener = vsock_sk(listener);
376 vpending = vsock_sk(pending);
377
378 sock_hold(pending);
379 sock_hold(listener);
380 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381}
382EXPORT_SYMBOL_GPL(vsock_add_pending);
383
384void vsock_remove_pending(struct sock *listener, struct sock *pending)
385{
386 struct vsock_sock *vpending = vsock_sk(pending);
387
388 list_del_init(&vpending->pending_links);
389 sock_put(listener);
390 sock_put(pending);
391}
392EXPORT_SYMBOL_GPL(vsock_remove_pending);
393
394void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395{
396 struct vsock_sock *vlistener;
397 struct vsock_sock *vconnected;
398
399 vlistener = vsock_sk(listener);
400 vconnected = vsock_sk(connected);
401
402 sock_hold(connected);
403 sock_hold(listener);
404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405}
406EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407
408static struct sock *vsock_dequeue_accept(struct sock *listener)
409{
410 struct vsock_sock *vlistener;
411 struct vsock_sock *vconnected;
412
413 vlistener = vsock_sk(listener);
414
415 if (list_empty(&vlistener->accept_queue))
416 return NULL;
417
418 vconnected = list_entry(vlistener->accept_queue.next,
419 struct vsock_sock, accept_queue);
420
421 list_del_init(&vconnected->accept_queue);
422 sock_put(listener);
423 /* The caller will need a reference on the connected socket so we let
424 * it call sock_put().
425 */
426
427 return sk_vsock(vconnected);
428}
429
430static bool vsock_is_accept_queue_empty(struct sock *sk)
431{
432 struct vsock_sock *vsk = vsock_sk(sk);
433 return list_empty(&vsk->accept_queue);
434}
435
436static bool vsock_is_pending(struct sock *sk)
437{
438 struct vsock_sock *vsk = vsock_sk(sk);
439 return !list_empty(&vsk->pending_links);
440}
441
442static int vsock_send_shutdown(struct sock *sk, int mode)
443{
444 return transport->shutdown(vsock_sk(sk), mode);
445}
446
455f05ec 447static void vsock_pending_work(struct work_struct *work)
d021c344
AK
448{
449 struct sock *sk;
450 struct sock *listener;
451 struct vsock_sock *vsk;
452 bool cleanup;
453
455f05ec 454 vsk = container_of(work, struct vsock_sock, pending_work.work);
d021c344
AK
455 sk = sk_vsock(vsk);
456 listener = vsk->listener;
457 cleanup = true;
458
459 lock_sock(listener);
4192f672 460 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
d021c344
AK
461
462 if (vsock_is_pending(sk)) {
463 vsock_remove_pending(listener, sk);
1190cfdb
JH
464
465 listener->sk_ack_backlog--;
d021c344
AK
466 } else if (!vsk->rejected) {
467 /* We are not on the pending list and accept() did not reject
468 * us, so we must have been accepted by our user process. We
469 * just need to drop our references to the sockets and be on
470 * our way.
471 */
472 cleanup = false;
473 goto out;
474 }
475
d021c344
AK
476 /* We need to remove ourself from the global connected sockets list so
477 * incoming packets can't find this socket, and to reduce the reference
478 * count.
479 */
480 if (vsock_in_connected_table(vsk))
481 vsock_remove_connected(vsk);
482
3b4477d2 483 sk->sk_state = TCP_CLOSE;
d021c344
AK
484
485out:
486 release_sock(sk);
487 release_sock(listener);
488 if (cleanup)
489 sock_put(sk);
490
491 sock_put(sk);
492 sock_put(listener);
493}
d021c344
AK
494
495/**** SOCKET OPERATIONS ****/
496
497static int __vsock_bind_stream(struct vsock_sock *vsk,
498 struct sockaddr_vm *addr)
499{
a22d3251 500 static u32 port;
d021c344
AK
501 struct sockaddr_vm new_addr;
502
8236b08c
LW
503 if (!port)
504 port = LAST_RESERVED_PORT + 1 +
505 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
506
d021c344
AK
507 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
508
509 if (addr->svm_port == VMADDR_PORT_ANY) {
510 bool found = false;
511 unsigned int i;
512
513 for (i = 0; i < MAX_PORT_RETRIES; i++) {
514 if (port <= LAST_RESERVED_PORT)
515 port = LAST_RESERVED_PORT + 1;
516
517 new_addr.svm_port = port++;
518
519 if (!__vsock_find_bound_socket(&new_addr)) {
520 found = true;
521 break;
522 }
523 }
524
525 if (!found)
526 return -EADDRNOTAVAIL;
527 } else {
528 /* If port is in reserved range, ensure caller
529 * has necessary privileges.
530 */
531 if (addr->svm_port <= LAST_RESERVED_PORT &&
532 !capable(CAP_NET_BIND_SERVICE)) {
533 return -EACCES;
534 }
535
536 if (__vsock_find_bound_socket(&new_addr))
537 return -EADDRINUSE;
538 }
539
540 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
541
542 /* Remove stream sockets from the unbound list and add them to the hash
543 * table for easy lookup by its address. The unbound list is simply an
544 * extra entry at the end of the hash table, a trick used by AF_UNIX.
545 */
546 __vsock_remove_bound(vsk);
547 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
548
549 return 0;
550}
551
552static int __vsock_bind_dgram(struct vsock_sock *vsk,
553 struct sockaddr_vm *addr)
554{
555 return transport->dgram_bind(vsk, addr);
556}
557
558static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
559{
560 struct vsock_sock *vsk = vsock_sk(sk);
561 u32 cid;
562 int retval;
563
564 /* First ensure this socket isn't already bound. */
565 if (vsock_addr_bound(&vsk->local_addr))
566 return -EINVAL;
567
568 /* Now bind to the provided address or select appropriate values if
569 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
570 * like AF_INET prevents binding to a non-local IP address (in most
571 * cases), we only allow binding to the local CID.
572 */
573 cid = transport->get_local_cid();
574 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
575 return -EADDRNOTAVAIL;
576
577 switch (sk->sk_socket->type) {
578 case SOCK_STREAM:
579 spin_lock_bh(&vsock_table_lock);
580 retval = __vsock_bind_stream(vsk, addr);
581 spin_unlock_bh(&vsock_table_lock);
582 break;
583
584 case SOCK_DGRAM:
585 retval = __vsock_bind_dgram(vsk, addr);
586 break;
587
588 default:
589 retval = -EINVAL;
590 break;
591 }
592
593 return retval;
594}
595
455f05ec
CW
596static void vsock_connect_timeout(struct work_struct *work);
597
d021c344
AK
598struct sock *__vsock_create(struct net *net,
599 struct socket *sock,
600 struct sock *parent,
601 gfp_t priority,
11aa9c28
EB
602 unsigned short type,
603 int kern)
d021c344
AK
604{
605 struct sock *sk;
606 struct vsock_sock *psk;
607 struct vsock_sock *vsk;
608
11aa9c28 609 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
d021c344
AK
610 if (!sk)
611 return NULL;
612
613 sock_init_data(sock, sk);
614
615 /* sk->sk_type is normally set in sock_init_data, but only if sock is
616 * non-NULL. We make sure that our sockets always have a type by
617 * setting it here if needed.
618 */
619 if (!sock)
620 sk->sk_type = type;
621
622 vsk = vsock_sk(sk);
623 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
625
626 sk->sk_destruct = vsock_sk_destruct;
627 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
d021c344
AK
628 sock_reset_flag(sk, SOCK_DONE);
629
630 INIT_LIST_HEAD(&vsk->bound_table);
631 INIT_LIST_HEAD(&vsk->connected_table);
632 vsk->listener = NULL;
633 INIT_LIST_HEAD(&vsk->pending_links);
634 INIT_LIST_HEAD(&vsk->accept_queue);
635 vsk->rejected = false;
636 vsk->sent_request = false;
637 vsk->ignore_connecting_rst = false;
638 vsk->peer_shutdown = 0;
455f05ec
CW
639 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
640 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
d021c344
AK
641
642 psk = parent ? vsock_sk(parent) : NULL;
643 if (parent) {
644 vsk->trusted = psk->trusted;
645 vsk->owner = get_cred(psk->owner);
646 vsk->connect_timeout = psk->connect_timeout;
647 } else {
648 vsk->trusted = capable(CAP_NET_ADMIN);
649 vsk->owner = get_current_cred();
650 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
651 }
652
653 if (transport->init(vsk, psk) < 0) {
654 sk_free(sk);
655 return NULL;
656 }
657
658 if (sock)
659 vsock_insert_unbound(vsk);
660
661 return sk;
662}
663EXPORT_SYMBOL_GPL(__vsock_create);
664
665static void __vsock_release(struct sock *sk)
666{
667 if (sk) {
668 struct sk_buff *skb;
669 struct sock *pending;
670 struct vsock_sock *vsk;
671
672 vsk = vsock_sk(sk);
673 pending = NULL; /* Compiler warning. */
674
d021c344
AK
675 transport->release(vsk);
676
677 lock_sock(sk);
678 sock_orphan(sk);
679 sk->sk_shutdown = SHUTDOWN_MASK;
680
681 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
682 kfree_skb(skb);
683
684 /* Clean up any sockets that never were accepted. */
685 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
686 __vsock_release(pending);
687 sock_put(pending);
688 }
689
690 release_sock(sk);
691 sock_put(sk);
692 }
693}
694
695static void vsock_sk_destruct(struct sock *sk)
696{
697 struct vsock_sock *vsk = vsock_sk(sk);
698
699 transport->destruct(vsk);
700
701 /* When clearing these addresses, there's no need to set the family and
702 * possibly register the address family with the kernel.
703 */
704 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
706
707 put_cred(vsk->owner);
708}
709
710static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
711{
712 int err;
713
714 err = sock_queue_rcv_skb(sk, skb);
715 if (err)
716 kfree_skb(skb);
717
718 return err;
719}
720
721s64 vsock_stream_has_data(struct vsock_sock *vsk)
722{
723 return transport->stream_has_data(vsk);
724}
725EXPORT_SYMBOL_GPL(vsock_stream_has_data);
726
727s64 vsock_stream_has_space(struct vsock_sock *vsk)
728{
729 return transport->stream_has_space(vsk);
730}
731EXPORT_SYMBOL_GPL(vsock_stream_has_space);
732
733static int vsock_release(struct socket *sock)
734{
735 __vsock_release(sock->sk);
736 sock->sk = NULL;
737 sock->state = SS_FREE;
738
739 return 0;
740}
741
742static int
743vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
744{
745 int err;
746 struct sock *sk;
747 struct sockaddr_vm *vm_addr;
748
749 sk = sock->sk;
750
751 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
752 return -EINVAL;
753
754 lock_sock(sk);
755 err = __vsock_bind(sk, vm_addr);
756 release_sock(sk);
757
758 return err;
759}
760
761static int vsock_getname(struct socket *sock,
9b2c45d4 762 struct sockaddr *addr, int peer)
d021c344
AK
763{
764 int err;
765 struct sock *sk;
766 struct vsock_sock *vsk;
767 struct sockaddr_vm *vm_addr;
768
769 sk = sock->sk;
770 vsk = vsock_sk(sk);
771 err = 0;
772
773 lock_sock(sk);
774
775 if (peer) {
776 if (sock->state != SS_CONNECTED) {
777 err = -ENOTCONN;
778 goto out;
779 }
780 vm_addr = &vsk->remote_addr;
781 } else {
782 vm_addr = &vsk->local_addr;
783 }
784
785 if (!vm_addr) {
786 err = -EINVAL;
787 goto out;
788 }
789
790 /* sys_getsockname() and sys_getpeername() pass us a
791 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
792 * that macro is defined in socket.c instead of .h, so we hardcode its
793 * value here.
794 */
795 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
796 memcpy(addr, vm_addr, sizeof(*vm_addr));
9b2c45d4 797 err = sizeof(*vm_addr);
d021c344
AK
798
799out:
800 release_sock(sk);
801 return err;
802}
803
804static int vsock_shutdown(struct socket *sock, int mode)
805{
806 int err;
807 struct sock *sk;
808
809 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
810 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
811 * here like the other address families do. Note also that the
812 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
813 * which is what we want.
814 */
815 mode++;
816
817 if ((mode & ~SHUTDOWN_MASK) || !mode)
818 return -EINVAL;
819
820 /* If this is a STREAM socket and it is not connected then bail out
821 * immediately. If it is a DGRAM socket then we must first kick the
822 * socket so that it wakes up from any sleeping calls, for example
823 * recv(), and then afterwards return the error.
824 */
825
826 sk = sock->sk;
827 if (sock->state == SS_UNCONNECTED) {
828 err = -ENOTCONN;
829 if (sk->sk_type == SOCK_STREAM)
830 return err;
831 } else {
832 sock->state = SS_DISCONNECTING;
833 err = 0;
834 }
835
836 /* Receive and send shutdowns are treated alike. */
837 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
838 if (mode) {
839 lock_sock(sk);
840 sk->sk_shutdown |= mode;
841 sk->sk_state_change(sk);
842 release_sock(sk);
843
844 if (sk->sk_type == SOCK_STREAM) {
845 sock_reset_flag(sk, SOCK_DONE);
846 vsock_send_shutdown(sk, mode);
847 }
848 }
849
850 return err;
851}
852
a11e1d43
LT
853static __poll_t vsock_poll(struct file *file, struct socket *sock,
854 poll_table *wait)
d021c344 855{
a11e1d43
LT
856 struct sock *sk;
857 __poll_t mask;
858 struct vsock_sock *vsk;
859
860 sk = sock->sk;
861 vsk = vsock_sk(sk);
862
863 poll_wait(file, sk_sleep(sk), wait);
864 mask = 0;
d021c344
AK
865
866 if (sk->sk_err)
867 /* Signify that there has been an error on this socket. */
a9a08845 868 mask |= EPOLLERR;
d021c344
AK
869
870 /* INET sockets treat local write shutdown and peer write shutdown as a
a9a08845 871 * case of EPOLLHUP set.
d021c344
AK
872 */
873 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
874 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
875 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
a9a08845 876 mask |= EPOLLHUP;
d021c344
AK
877 }
878
879 if (sk->sk_shutdown & RCV_SHUTDOWN ||
880 vsk->peer_shutdown & SEND_SHUTDOWN) {
a9a08845 881 mask |= EPOLLRDHUP;
d021c344
AK
882 }
883
884 if (sock->type == SOCK_DGRAM) {
885 /* For datagram sockets we can read if there is something in
886 * the queue and write as long as the socket isn't shutdown for
887 * sending.
888 */
889 if (!skb_queue_empty(&sk->sk_receive_queue) ||
890 (sk->sk_shutdown & RCV_SHUTDOWN)) {
a9a08845 891 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
892 }
893
894 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
a9a08845 895 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
d021c344
AK
896
897 } else if (sock->type == SOCK_STREAM) {
898 lock_sock(sk);
899
900 /* Listening sockets that have connections in their accept
901 * queue can be read.
902 */
3b4477d2 903 if (sk->sk_state == TCP_LISTEN
d021c344 904 && !vsock_is_accept_queue_empty(sk))
a9a08845 905 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
906
907 /* If there is something in the queue then we can read. */
908 if (transport->stream_is_active(vsk) &&
909 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
910 bool data_ready_now = false;
911 int ret = transport->notify_poll_in(
912 vsk, 1, &data_ready_now);
913 if (ret < 0) {
a9a08845 914 mask |= EPOLLERR;
d021c344
AK
915 } else {
916 if (data_ready_now)
a9a08845 917 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
918
919 }
920 }
921
922 /* Sockets whose connections have been closed, reset, or
923 * terminated should also be considered read, and we check the
924 * shutdown flag for that.
925 */
926 if (sk->sk_shutdown & RCV_SHUTDOWN ||
927 vsk->peer_shutdown & SEND_SHUTDOWN) {
a9a08845 928 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
929 }
930
931 /* Connected sockets that can produce data can be written. */
3b4477d2 932 if (sk->sk_state == TCP_ESTABLISHED) {
d021c344
AK
933 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
934 bool space_avail_now = false;
935 int ret = transport->notify_poll_out(
936 vsk, 1, &space_avail_now);
937 if (ret < 0) {
a9a08845 938 mask |= EPOLLERR;
d021c344
AK
939 } else {
940 if (space_avail_now)
a9a08845 941 /* Remove EPOLLWRBAND since INET
d021c344
AK
942 * sockets are not setting it.
943 */
a9a08845 944 mask |= EPOLLOUT | EPOLLWRNORM;
d021c344
AK
945
946 }
947 }
948 }
949
950 /* Simulate INET socket poll behaviors, which sets
a9a08845 951 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
d021c344
AK
952 * but local send is not shutdown.
953 */
ba3169fc 954 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
d021c344 955 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
a9a08845 956 mask |= EPOLLOUT | EPOLLWRNORM;
d021c344
AK
957
958 }
959
960 release_sock(sk);
961 }
962
963 return mask;
964}
965
1b784140
YX
966static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
967 size_t len)
d021c344
AK
968{
969 int err;
970 struct sock *sk;
971 struct vsock_sock *vsk;
972 struct sockaddr_vm *remote_addr;
973
974 if (msg->msg_flags & MSG_OOB)
975 return -EOPNOTSUPP;
976
977 /* For now, MSG_DONTWAIT is always assumed... */
978 err = 0;
979 sk = sock->sk;
980 vsk = vsock_sk(sk);
981
982 lock_sock(sk);
983
b3a6dfe8
AH
984 err = vsock_auto_bind(vsk);
985 if (err)
986 goto out;
d021c344 987
d021c344
AK
988
989 /* If the provided message contains an address, use that. Otherwise
990 * fall back on the socket's remote handle (if it has been connected).
991 */
992 if (msg->msg_name &&
993 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
994 &remote_addr) == 0) {
995 /* Ensure this address is of the right type and is a valid
996 * destination.
997 */
998
999 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1000 remote_addr->svm_cid = transport->get_local_cid();
1001
1002 if (!vsock_addr_bound(remote_addr)) {
1003 err = -EINVAL;
1004 goto out;
1005 }
1006 } else if (sock->state == SS_CONNECTED) {
1007 remote_addr = &vsk->remote_addr;
1008
1009 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1010 remote_addr->svm_cid = transport->get_local_cid();
1011
1012 /* XXX Should connect() or this function ensure remote_addr is
1013 * bound?
1014 */
1015 if (!vsock_addr_bound(&vsk->remote_addr)) {
1016 err = -EINVAL;
1017 goto out;
1018 }
1019 } else {
1020 err = -EINVAL;
1021 goto out;
1022 }
1023
1024 if (!transport->dgram_allow(remote_addr->svm_cid,
1025 remote_addr->svm_port)) {
1026 err = -EINVAL;
1027 goto out;
1028 }
1029
0f7db23a 1030 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
d021c344
AK
1031
1032out:
1033 release_sock(sk);
1034 return err;
1035}
1036
1037static int vsock_dgram_connect(struct socket *sock,
1038 struct sockaddr *addr, int addr_len, int flags)
1039{
1040 int err;
1041 struct sock *sk;
1042 struct vsock_sock *vsk;
1043 struct sockaddr_vm *remote_addr;
1044
1045 sk = sock->sk;
1046 vsk = vsock_sk(sk);
1047
1048 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1049 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1050 lock_sock(sk);
1051 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1052 VMADDR_PORT_ANY);
1053 sock->state = SS_UNCONNECTED;
1054 release_sock(sk);
1055 return 0;
1056 } else if (err != 0)
1057 return -EINVAL;
1058
1059 lock_sock(sk);
1060
b3a6dfe8
AH
1061 err = vsock_auto_bind(vsk);
1062 if (err)
1063 goto out;
d021c344
AK
1064
1065 if (!transport->dgram_allow(remote_addr->svm_cid,
1066 remote_addr->svm_port)) {
1067 err = -EINVAL;
1068 goto out;
1069 }
1070
1071 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1072 sock->state = SS_CONNECTED;
1073
1074out:
1075 release_sock(sk);
1076 return err;
1077}
1078
1b784140
YX
1079static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1080 size_t len, int flags)
d021c344 1081{
1b784140 1082 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
d021c344
AK
1083}
1084
1085static const struct proto_ops vsock_dgram_ops = {
1086 .family = PF_VSOCK,
1087 .owner = THIS_MODULE,
1088 .release = vsock_release,
1089 .bind = vsock_bind,
1090 .connect = vsock_dgram_connect,
1091 .socketpair = sock_no_socketpair,
1092 .accept = sock_no_accept,
1093 .getname = vsock_getname,
a11e1d43 1094 .poll = vsock_poll,
d021c344
AK
1095 .ioctl = sock_no_ioctl,
1096 .listen = sock_no_listen,
1097 .shutdown = vsock_shutdown,
1098 .setsockopt = sock_no_setsockopt,
1099 .getsockopt = sock_no_getsockopt,
1100 .sendmsg = vsock_dgram_sendmsg,
1101 .recvmsg = vsock_dgram_recvmsg,
1102 .mmap = sock_no_mmap,
1103 .sendpage = sock_no_sendpage,
1104};
1105
380feae0
PT
1106static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1107{
1108 if (!transport->cancel_pkt)
1109 return -EOPNOTSUPP;
1110
1111 return transport->cancel_pkt(vsk);
1112}
1113
d021c344
AK
1114static void vsock_connect_timeout(struct work_struct *work)
1115{
1116 struct sock *sk;
1117 struct vsock_sock *vsk;
380feae0 1118 int cancel = 0;
d021c344 1119
455f05ec 1120 vsk = container_of(work, struct vsock_sock, connect_work.work);
d021c344
AK
1121 sk = sk_vsock(vsk);
1122
1123 lock_sock(sk);
3b4477d2 1124 if (sk->sk_state == TCP_SYN_SENT &&
d021c344 1125 (sk->sk_shutdown != SHUTDOWN_MASK)) {
3b4477d2 1126 sk->sk_state = TCP_CLOSE;
d021c344
AK
1127 sk->sk_err = ETIMEDOUT;
1128 sk->sk_error_report(sk);
380feae0 1129 cancel = 1;
d021c344
AK
1130 }
1131 release_sock(sk);
380feae0
PT
1132 if (cancel)
1133 vsock_transport_cancel_pkt(vsk);
d021c344
AK
1134
1135 sock_put(sk);
1136}
1137
1138static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1139 int addr_len, int flags)
1140{
1141 int err;
1142 struct sock *sk;
1143 struct vsock_sock *vsk;
1144 struct sockaddr_vm *remote_addr;
1145 long timeout;
1146 DEFINE_WAIT(wait);
1147
1148 err = 0;
1149 sk = sock->sk;
1150 vsk = vsock_sk(sk);
1151
1152 lock_sock(sk);
1153
1154 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1155 switch (sock->state) {
1156 case SS_CONNECTED:
1157 err = -EISCONN;
1158 goto out;
1159 case SS_DISCONNECTING:
1160 err = -EINVAL;
1161 goto out;
1162 case SS_CONNECTING:
1163 /* This continues on so we can move sock into the SS_CONNECTED
1164 * state once the connection has completed (at which point err
1165 * will be set to zero also). Otherwise, we will either wait
1166 * for the connection or return -EALREADY should this be a
1167 * non-blocking call.
1168 */
1169 err = -EALREADY;
1170 break;
1171 default:
3b4477d2 1172 if ((sk->sk_state == TCP_LISTEN) ||
d021c344
AK
1173 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1174 err = -EINVAL;
1175 goto out;
1176 }
1177
1178 /* The hypervisor and well-known contexts do not have socket
1179 * endpoints.
1180 */
1181 if (!transport->stream_allow(remote_addr->svm_cid,
1182 remote_addr->svm_port)) {
1183 err = -ENETUNREACH;
1184 goto out;
1185 }
1186
1187 /* Set the remote address that we are connecting to. */
1188 memcpy(&vsk->remote_addr, remote_addr,
1189 sizeof(vsk->remote_addr));
1190
b3a6dfe8
AH
1191 err = vsock_auto_bind(vsk);
1192 if (err)
1193 goto out;
d021c344 1194
3b4477d2 1195 sk->sk_state = TCP_SYN_SENT;
d021c344
AK
1196
1197 err = transport->connect(vsk);
1198 if (err < 0)
1199 goto out;
1200
1201 /* Mark sock as connecting and set the error code to in
1202 * progress in case this is a non-blocking connect.
1203 */
1204 sock->state = SS_CONNECTING;
1205 err = -EINPROGRESS;
1206 }
1207
1208 /* The receive path will handle all communication until we are able to
1209 * enter the connected state. Here we wait for the connection to be
1210 * completed or a notification of an error.
1211 */
1212 timeout = vsk->connect_timeout;
1213 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1214
3b4477d2 1215 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
d021c344
AK
1216 if (flags & O_NONBLOCK) {
1217 /* If we're not going to block, we schedule a timeout
1218 * function to generate a timeout on the connection
1219 * attempt, in case the peer doesn't respond in a
1220 * timely manner. We hold on to the socket until the
1221 * timeout fires.
1222 */
1223 sock_hold(sk);
455f05ec 1224 schedule_delayed_work(&vsk->connect_work, timeout);
d021c344
AK
1225
1226 /* Skip ahead to preserve error code set above. */
1227 goto out_wait;
1228 }
1229
1230 release_sock(sk);
1231 timeout = schedule_timeout(timeout);
1232 lock_sock(sk);
1233
1234 if (signal_pending(current)) {
1235 err = sock_intr_errno(timeout);
3b4477d2 1236 sk->sk_state = TCP_CLOSE;
f7f9b5e7 1237 sock->state = SS_UNCONNECTED;
380feae0 1238 vsock_transport_cancel_pkt(vsk);
f7f9b5e7 1239 goto out_wait;
d021c344
AK
1240 } else if (timeout == 0) {
1241 err = -ETIMEDOUT;
3b4477d2 1242 sk->sk_state = TCP_CLOSE;
f7f9b5e7 1243 sock->state = SS_UNCONNECTED;
380feae0 1244 vsock_transport_cancel_pkt(vsk);
f7f9b5e7 1245 goto out_wait;
d021c344
AK
1246 }
1247
1248 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1249 }
1250
1251 if (sk->sk_err) {
1252 err = -sk->sk_err;
3b4477d2 1253 sk->sk_state = TCP_CLOSE;
f7f9b5e7
CI
1254 sock->state = SS_UNCONNECTED;
1255 } else {
d021c344 1256 err = 0;
f7f9b5e7 1257 }
d021c344
AK
1258
1259out_wait:
1260 finish_wait(sk_sleep(sk), &wait);
1261out:
1262 release_sock(sk);
1263 return err;
d021c344
AK
1264}
1265
cdfbabfb
DH
1266static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1267 bool kern)
d021c344
AK
1268{
1269 struct sock *listener;
1270 int err;
1271 struct sock *connected;
1272 struct vsock_sock *vconnected;
1273 long timeout;
1274 DEFINE_WAIT(wait);
1275
1276 err = 0;
1277 listener = sock->sk;
1278
1279 lock_sock(listener);
1280
1281 if (sock->type != SOCK_STREAM) {
1282 err = -EOPNOTSUPP;
1283 goto out;
1284 }
1285
3b4477d2 1286 if (listener->sk_state != TCP_LISTEN) {
d021c344
AK
1287 err = -EINVAL;
1288 goto out;
1289 }
1290
1291 /* Wait for children sockets to appear; these are the new sockets
1292 * created upon connection establishment.
1293 */
1294 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1295 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1296
1297 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1298 listener->sk_err == 0) {
1299 release_sock(listener);
1300 timeout = schedule_timeout(timeout);
f7f9b5e7 1301 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1302 lock_sock(listener);
1303
1304 if (signal_pending(current)) {
1305 err = sock_intr_errno(timeout);
f7f9b5e7 1306 goto out;
d021c344
AK
1307 } else if (timeout == 0) {
1308 err = -EAGAIN;
f7f9b5e7 1309 goto out;
d021c344
AK
1310 }
1311
1312 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1313 }
f7f9b5e7 1314 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1315
1316 if (listener->sk_err)
1317 err = -listener->sk_err;
1318
1319 if (connected) {
1320 listener->sk_ack_backlog--;
1321
4192f672 1322 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
d021c344
AK
1323 vconnected = vsock_sk(connected);
1324
1325 /* If the listener socket has received an error, then we should
1326 * reject this socket and return. Note that we simply mark the
1327 * socket rejected, drop our reference, and let the cleanup
1328 * function handle the cleanup; the fact that we found it in
1329 * the listener's accept queue guarantees that the cleanup
1330 * function hasn't run yet.
1331 */
1332 if (err) {
1333 vconnected->rejected = true;
f7f9b5e7
CI
1334 } else {
1335 newsock->state = SS_CONNECTED;
1336 sock_graft(connected, newsock);
d021c344
AK
1337 }
1338
d021c344
AK
1339 release_sock(connected);
1340 sock_put(connected);
1341 }
1342
d021c344
AK
1343out:
1344 release_sock(listener);
1345 return err;
1346}
1347
1348static int vsock_listen(struct socket *sock, int backlog)
1349{
1350 int err;
1351 struct sock *sk;
1352 struct vsock_sock *vsk;
1353
1354 sk = sock->sk;
1355
1356 lock_sock(sk);
1357
1358 if (sock->type != SOCK_STREAM) {
1359 err = -EOPNOTSUPP;
1360 goto out;
1361 }
1362
1363 if (sock->state != SS_UNCONNECTED) {
1364 err = -EINVAL;
1365 goto out;
1366 }
1367
1368 vsk = vsock_sk(sk);
1369
1370 if (!vsock_addr_bound(&vsk->local_addr)) {
1371 err = -EINVAL;
1372 goto out;
1373 }
1374
1375 sk->sk_max_ack_backlog = backlog;
3b4477d2 1376 sk->sk_state = TCP_LISTEN;
d021c344
AK
1377
1378 err = 0;
1379
1380out:
1381 release_sock(sk);
1382 return err;
1383}
1384
1385static int vsock_stream_setsockopt(struct socket *sock,
1386 int level,
1387 int optname,
1388 char __user *optval,
1389 unsigned int optlen)
1390{
1391 int err;
1392 struct sock *sk;
1393 struct vsock_sock *vsk;
1394 u64 val;
1395
1396 if (level != AF_VSOCK)
1397 return -ENOPROTOOPT;
1398
1399#define COPY_IN(_v) \
1400 do { \
1401 if (optlen < sizeof(_v)) { \
1402 err = -EINVAL; \
1403 goto exit; \
1404 } \
1405 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1406 err = -EFAULT; \
1407 goto exit; \
1408 } \
1409 } while (0)
1410
1411 err = 0;
1412 sk = sock->sk;
1413 vsk = vsock_sk(sk);
1414
1415 lock_sock(sk);
1416
1417 switch (optname) {
1418 case SO_VM_SOCKETS_BUFFER_SIZE:
1419 COPY_IN(val);
1420 transport->set_buffer_size(vsk, val);
1421 break;
1422
1423 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1424 COPY_IN(val);
1425 transport->set_max_buffer_size(vsk, val);
1426 break;
1427
1428 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1429 COPY_IN(val);
1430 transport->set_min_buffer_size(vsk, val);
1431 break;
1432
1433 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
fe0c72f3 1434 struct __kernel_old_timeval tv;
d021c344
AK
1435 COPY_IN(tv);
1436 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1437 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1438 vsk->connect_timeout = tv.tv_sec * HZ +
1439 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1440 if (vsk->connect_timeout == 0)
1441 vsk->connect_timeout =
1442 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1443
1444 } else {
1445 err = -ERANGE;
1446 }
1447 break;
1448 }
1449
1450 default:
1451 err = -ENOPROTOOPT;
1452 break;
1453 }
1454
1455#undef COPY_IN
1456
1457exit:
1458 release_sock(sk);
1459 return err;
1460}
1461
1462static int vsock_stream_getsockopt(struct socket *sock,
1463 int level, int optname,
1464 char __user *optval,
1465 int __user *optlen)
1466{
1467 int err;
1468 int len;
1469 struct sock *sk;
1470 struct vsock_sock *vsk;
1471 u64 val;
1472
1473 if (level != AF_VSOCK)
1474 return -ENOPROTOOPT;
1475
1476 err = get_user(len, optlen);
1477 if (err != 0)
1478 return err;
1479
1480#define COPY_OUT(_v) \
1481 do { \
1482 if (len < sizeof(_v)) \
1483 return -EINVAL; \
1484 \
1485 len = sizeof(_v); \
1486 if (copy_to_user(optval, &_v, len) != 0) \
1487 return -EFAULT; \
1488 \
1489 } while (0)
1490
1491 err = 0;
1492 sk = sock->sk;
1493 vsk = vsock_sk(sk);
1494
1495 switch (optname) {
1496 case SO_VM_SOCKETS_BUFFER_SIZE:
1497 val = transport->get_buffer_size(vsk);
1498 COPY_OUT(val);
1499 break;
1500
1501 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1502 val = transport->get_max_buffer_size(vsk);
1503 COPY_OUT(val);
1504 break;
1505
1506 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1507 val = transport->get_min_buffer_size(vsk);
1508 COPY_OUT(val);
1509 break;
1510
1511 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
fe0c72f3 1512 struct __kernel_old_timeval tv;
d021c344
AK
1513 tv.tv_sec = vsk->connect_timeout / HZ;
1514 tv.tv_usec =
1515 (vsk->connect_timeout -
1516 tv.tv_sec * HZ) * (1000000 / HZ);
1517 COPY_OUT(tv);
1518 break;
1519 }
1520 default:
1521 return -ENOPROTOOPT;
1522 }
1523
1524 err = put_user(len, optlen);
1525 if (err != 0)
1526 return -EFAULT;
1527
1528#undef COPY_OUT
1529
1530 return 0;
1531}
1532
1b784140
YX
1533static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1534 size_t len)
d021c344
AK
1535{
1536 struct sock *sk;
1537 struct vsock_sock *vsk;
1538 ssize_t total_written;
1539 long timeout;
1540 int err;
1541 struct vsock_transport_send_notify_data send_data;
499fde66 1542 DEFINE_WAIT_FUNC(wait, woken_wake_function);
d021c344
AK
1543
1544 sk = sock->sk;
1545 vsk = vsock_sk(sk);
1546 total_written = 0;
1547 err = 0;
1548
1549 if (msg->msg_flags & MSG_OOB)
1550 return -EOPNOTSUPP;
1551
1552 lock_sock(sk);
1553
1554 /* Callers should not provide a destination with stream sockets. */
1555 if (msg->msg_namelen) {
3b4477d2 1556 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
d021c344
AK
1557 goto out;
1558 }
1559
1560 /* Send data only if both sides are not shutdown in the direction. */
1561 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1562 vsk->peer_shutdown & RCV_SHUTDOWN) {
1563 err = -EPIPE;
1564 goto out;
1565 }
1566
3b4477d2 1567 if (sk->sk_state != TCP_ESTABLISHED ||
d021c344
AK
1568 !vsock_addr_bound(&vsk->local_addr)) {
1569 err = -ENOTCONN;
1570 goto out;
1571 }
1572
1573 if (!vsock_addr_bound(&vsk->remote_addr)) {
1574 err = -EDESTADDRREQ;
1575 goto out;
1576 }
1577
1578 /* Wait for room in the produce queue to enqueue our user's data. */
1579 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1580
1581 err = transport->notify_send_init(vsk, &send_data);
1582 if (err < 0)
1583 goto out;
1584
d021c344
AK
1585 while (total_written < len) {
1586 ssize_t written;
1587
499fde66 1588 add_wait_queue(sk_sleep(sk), &wait);
d021c344
AK
1589 while (vsock_stream_has_space(vsk) == 0 &&
1590 sk->sk_err == 0 &&
1591 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1592 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1593
1594 /* Don't wait for non-blocking sockets. */
1595 if (timeout == 0) {
1596 err = -EAGAIN;
499fde66 1597 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1598 goto out_err;
d021c344
AK
1599 }
1600
1601 err = transport->notify_send_pre_block(vsk, &send_data);
f7f9b5e7 1602 if (err < 0) {
499fde66 1603 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7
CI
1604 goto out_err;
1605 }
d021c344
AK
1606
1607 release_sock(sk);
499fde66 1608 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
d021c344
AK
1609 lock_sock(sk);
1610 if (signal_pending(current)) {
1611 err = sock_intr_errno(timeout);
499fde66 1612 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1613 goto out_err;
d021c344
AK
1614 } else if (timeout == 0) {
1615 err = -EAGAIN;
499fde66 1616 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1617 goto out_err;
d021c344 1618 }
d021c344 1619 }
499fde66 1620 remove_wait_queue(sk_sleep(sk), &wait);
d021c344
AK
1621
1622 /* These checks occur both as part of and after the loop
1623 * conditional since we need to check before and after
1624 * sleeping.
1625 */
1626 if (sk->sk_err) {
1627 err = -sk->sk_err;
f7f9b5e7 1628 goto out_err;
d021c344
AK
1629 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1630 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1631 err = -EPIPE;
f7f9b5e7 1632 goto out_err;
d021c344
AK
1633 }
1634
1635 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1636 if (err < 0)
f7f9b5e7 1637 goto out_err;
d021c344
AK
1638
1639 /* Note that enqueue will only write as many bytes as are free
1640 * in the produce queue, so we don't need to ensure len is
1641 * smaller than the queue size. It is the caller's
1642 * responsibility to check how many bytes we were able to send.
1643 */
1644
1645 written = transport->stream_enqueue(
0f7db23a 1646 vsk, msg,
d021c344
AK
1647 len - total_written);
1648 if (written < 0) {
1649 err = -ENOMEM;
f7f9b5e7 1650 goto out_err;
d021c344
AK
1651 }
1652
1653 total_written += written;
1654
1655 err = transport->notify_send_post_enqueue(
1656 vsk, written, &send_data);
1657 if (err < 0)
f7f9b5e7 1658 goto out_err;
d021c344
AK
1659
1660 }
1661
f7f9b5e7 1662out_err:
d021c344
AK
1663 if (total_written > 0)
1664 err = total_written;
d021c344
AK
1665out:
1666 release_sock(sk);
1667 return err;
1668}
1669
1670
1671static int
1b784140
YX
1672vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1673 int flags)
d021c344
AK
1674{
1675 struct sock *sk;
1676 struct vsock_sock *vsk;
1677 int err;
1678 size_t target;
1679 ssize_t copied;
1680 long timeout;
1681 struct vsock_transport_recv_notify_data recv_data;
1682
1683 DEFINE_WAIT(wait);
1684
1685 sk = sock->sk;
1686 vsk = vsock_sk(sk);
1687 err = 0;
1688
1689 lock_sock(sk);
1690
3b4477d2 1691 if (sk->sk_state != TCP_ESTABLISHED) {
d021c344
AK
1692 /* Recvmsg is supposed to return 0 if a peer performs an
1693 * orderly shutdown. Differentiate between that case and when a
1694 * peer has not connected or a local shutdown occured with the
1695 * SOCK_DONE flag.
1696 */
1697 if (sock_flag(sk, SOCK_DONE))
1698 err = 0;
1699 else
1700 err = -ENOTCONN;
1701
1702 goto out;
1703 }
1704
1705 if (flags & MSG_OOB) {
1706 err = -EOPNOTSUPP;
1707 goto out;
1708 }
1709
1710 /* We don't check peer_shutdown flag here since peer may actually shut
1711 * down, but there can be data in the queue that a local socket can
1712 * receive.
1713 */
1714 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1715 err = 0;
1716 goto out;
1717 }
1718
1719 /* It is valid on Linux to pass in a zero-length receive buffer. This
1720 * is not an error. We may as well bail out now.
1721 */
1722 if (!len) {
1723 err = 0;
1724 goto out;
1725 }
1726
1727 /* We must not copy less than target bytes into the user's buffer
1728 * before returning successfully, so we wait for the consume queue to
1729 * have that much data to consume before dequeueing. Note that this
1730 * makes it impossible to handle cases where target is greater than the
1731 * queue size.
1732 */
1733 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1734 if (target >= transport->stream_rcvhiwat(vsk)) {
1735 err = -ENOMEM;
1736 goto out;
1737 }
1738 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1739 copied = 0;
1740
1741 err = transport->notify_recv_init(vsk, target, &recv_data);
1742 if (err < 0)
1743 goto out;
1744
d021c344
AK
1745
1746 while (1) {
f7f9b5e7 1747 s64 ready;
d021c344 1748
f7f9b5e7
CI
1749 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1750 ready = vsock_stream_has_data(vsk);
d021c344 1751
f7f9b5e7
CI
1752 if (ready == 0) {
1753 if (sk->sk_err != 0 ||
1754 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1755 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1756 finish_wait(sk_sleep(sk), &wait);
1757 break;
1758 }
1759 /* Don't wait for non-blocking sockets. */
1760 if (timeout == 0) {
1761 err = -EAGAIN;
1762 finish_wait(sk_sleep(sk), &wait);
1763 break;
1764 }
1765
1766 err = transport->notify_recv_pre_block(
1767 vsk, target, &recv_data);
1768 if (err < 0) {
1769 finish_wait(sk_sleep(sk), &wait);
1770 break;
1771 }
1772 release_sock(sk);
1773 timeout = schedule_timeout(timeout);
1774 lock_sock(sk);
1775
1776 if (signal_pending(current)) {
1777 err = sock_intr_errno(timeout);
1778 finish_wait(sk_sleep(sk), &wait);
1779 break;
1780 } else if (timeout == 0) {
1781 err = -EAGAIN;
1782 finish_wait(sk_sleep(sk), &wait);
1783 break;
1784 }
1785 } else {
d021c344
AK
1786 ssize_t read;
1787
f7f9b5e7
CI
1788 finish_wait(sk_sleep(sk), &wait);
1789
1790 if (ready < 0) {
1791 /* Invalid queue pair content. XXX This should
1792 * be changed to a connection reset in a later
1793 * change.
1794 */
1795
1796 err = -ENOMEM;
1797 goto out;
1798 }
1799
d021c344
AK
1800 err = transport->notify_recv_pre_dequeue(
1801 vsk, target, &recv_data);
1802 if (err < 0)
1803 break;
1804
1805 read = transport->stream_dequeue(
0f7db23a 1806 vsk, msg,
d021c344
AK
1807 len - copied, flags);
1808 if (read < 0) {
1809 err = -ENOMEM;
1810 break;
1811 }
1812
1813 copied += read;
1814
1815 err = transport->notify_recv_post_dequeue(
1816 vsk, target, read,
1817 !(flags & MSG_PEEK), &recv_data);
1818 if (err < 0)
f7f9b5e7 1819 goto out;
d021c344
AK
1820
1821 if (read >= target || flags & MSG_PEEK)
1822 break;
1823
1824 target -= read;
d021c344
AK
1825 }
1826 }
1827
1828 if (sk->sk_err)
1829 err = -sk->sk_err;
1830 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1831 err = 0;
1832
dedc58e0 1833 if (copied > 0)
d021c344 1834 err = copied;
d021c344 1835
d021c344
AK
1836out:
1837 release_sock(sk);
1838 return err;
1839}
1840
1841static const struct proto_ops vsock_stream_ops = {
1842 .family = PF_VSOCK,
1843 .owner = THIS_MODULE,
1844 .release = vsock_release,
1845 .bind = vsock_bind,
1846 .connect = vsock_stream_connect,
1847 .socketpair = sock_no_socketpair,
1848 .accept = vsock_accept,
1849 .getname = vsock_getname,
a11e1d43 1850 .poll = vsock_poll,
d021c344
AK
1851 .ioctl = sock_no_ioctl,
1852 .listen = vsock_listen,
1853 .shutdown = vsock_shutdown,
1854 .setsockopt = vsock_stream_setsockopt,
1855 .getsockopt = vsock_stream_getsockopt,
1856 .sendmsg = vsock_stream_sendmsg,
1857 .recvmsg = vsock_stream_recvmsg,
1858 .mmap = sock_no_mmap,
1859 .sendpage = sock_no_sendpage,
1860};
1861
1862static int vsock_create(struct net *net, struct socket *sock,
1863 int protocol, int kern)
1864{
1865 if (!sock)
1866 return -EINVAL;
1867
6cf1c5fc 1868 if (protocol && protocol != PF_VSOCK)
d021c344
AK
1869 return -EPROTONOSUPPORT;
1870
1871 switch (sock->type) {
1872 case SOCK_DGRAM:
1873 sock->ops = &vsock_dgram_ops;
1874 break;
1875 case SOCK_STREAM:
1876 sock->ops = &vsock_stream_ops;
1877 break;
1878 default:
1879 return -ESOCKTNOSUPPORT;
1880 }
1881
1882 sock->state = SS_UNCONNECTED;
1883
11aa9c28 1884 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
d021c344
AK
1885}
1886
1887static const struct net_proto_family vsock_family_ops = {
1888 .family = AF_VSOCK,
1889 .create = vsock_create,
1890 .owner = THIS_MODULE,
1891};
1892
1893static long vsock_dev_do_ioctl(struct file *filp,
1894 unsigned int cmd, void __user *ptr)
1895{
1896 u32 __user *p = ptr;
1897 int retval = 0;
1898
1899 switch (cmd) {
1900 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1901 if (put_user(transport->get_local_cid(), p) != 0)
1902 retval = -EFAULT;
1903 break;
1904
1905 default:
1906 pr_err("Unknown ioctl %d\n", cmd);
1907 retval = -EINVAL;
1908 }
1909
1910 return retval;
1911}
1912
1913static long vsock_dev_ioctl(struct file *filp,
1914 unsigned int cmd, unsigned long arg)
1915{
1916 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1917}
1918
1919#ifdef CONFIG_COMPAT
1920static long vsock_dev_compat_ioctl(struct file *filp,
1921 unsigned int cmd, unsigned long arg)
1922{
1923 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1924}
1925#endif
1926
1927static const struct file_operations vsock_device_ops = {
1928 .owner = THIS_MODULE,
1929 .unlocked_ioctl = vsock_dev_ioctl,
1930#ifdef CONFIG_COMPAT
1931 .compat_ioctl = vsock_dev_compat_ioctl,
1932#endif
1933 .open = nonseekable_open,
1934};
1935
1936static struct miscdevice vsock_device = {
1937 .name = "vsock",
d021c344
AK
1938 .fops = &vsock_device_ops,
1939};
1940
2c4a336e 1941int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
d021c344 1942{
2c4a336e
AK
1943 int err = mutex_lock_interruptible(&vsock_register_mutex);
1944
1945 if (err)
1946 return err;
1947
1948 if (transport) {
1949 err = -EBUSY;
1950 goto err_busy;
1951 }
1952
1953 /* Transport must be the owner of the protocol so that it can't
1954 * unload while there are open sockets.
1955 */
1956 vsock_proto.owner = owner;
1957 transport = t;
d021c344 1958
6ad0b2f7 1959 vsock_device.minor = MISC_DYNAMIC_MINOR;
d021c344
AK
1960 err = misc_register(&vsock_device);
1961 if (err) {
1962 pr_err("Failed to register misc device\n");
f6a835bb 1963 goto err_reset_transport;
d021c344
AK
1964 }
1965
1966 err = proto_register(&vsock_proto, 1); /* we want our slab */
1967 if (err) {
1968 pr_err("Cannot register vsock protocol\n");
f6a835bb 1969 goto err_deregister_misc;
d021c344
AK
1970 }
1971
1972 err = sock_register(&vsock_family_ops);
1973 if (err) {
1974 pr_err("could not register af_vsock (%d) address family: %d\n",
1975 AF_VSOCK, err);
1976 goto err_unregister_proto;
1977 }
1978
2c4a336e 1979 mutex_unlock(&vsock_register_mutex);
d021c344
AK
1980 return 0;
1981
1982err_unregister_proto:
1983 proto_unregister(&vsock_proto);
f6a835bb 1984err_deregister_misc:
d021c344 1985 misc_deregister(&vsock_device);
f6a835bb 1986err_reset_transport:
2c4a336e
AK
1987 transport = NULL;
1988err_busy:
d021c344 1989 mutex_unlock(&vsock_register_mutex);
2c4a336e 1990 return err;
d021c344 1991}
2c4a336e 1992EXPORT_SYMBOL_GPL(__vsock_core_init);
d021c344
AK
1993
1994void vsock_core_exit(void)
1995{
1996 mutex_lock(&vsock_register_mutex);
1997
1998 misc_deregister(&vsock_device);
1999 sock_unregister(AF_VSOCK);
2000 proto_unregister(&vsock_proto);
2001
2002 /* We do not want the assignment below re-ordered. */
2003 mb();
2004 transport = NULL;
2005
2006 mutex_unlock(&vsock_register_mutex);
2007}
2008EXPORT_SYMBOL_GPL(vsock_core_exit);
2009
0b01aeb3
SH
2010const struct vsock_transport *vsock_core_get_transport(void)
2011{
2012 /* vsock_register_mutex not taken since only the transport uses this
2013 * function and only while registered.
2014 */
2015 return transport;
2016}
2017EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2018
05e489b1
SH
2019static void __exit vsock_exit(void)
2020{
2021 /* Do nothing. This function makes this module removable. */
2022}
2023
c1eef220 2024module_init(vsock_init_tables);
05e489b1 2025module_exit(vsock_exit);
c1eef220 2026
d021c344
AK
2027MODULE_AUTHOR("VMware, Inc.");
2028MODULE_DESCRIPTION("VMware Virtual Socket Family");
1190cfdb 2029MODULE_VERSION("1.0.2.0-k");
d021c344 2030MODULE_LICENSE("GPL v2");