net: tls: Refactor tls aad space size calculation
[linux-block.git] / net / tls / tls_sw.c
CommitLineData
3c4d7559
DW
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
d3b18ad3 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
3c4d7559
DW
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
c46234eb 38#include <linux/sched/signal.h>
3c4d7559
DW
39#include <linux/module.h>
40#include <crypto/aead.h>
41
c46234eb 42#include <net/strparser.h>
3c4d7559
DW
43#include <net/tls.h>
44
b16520f7
KC
45#define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
46
0927f71d
DRK
47static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48 unsigned int recursion_level)
49{
50 int start = skb_headlen(skb);
51 int i, chunk = start - offset;
52 struct sk_buff *frag_iter;
53 int elt = 0;
54
55 if (unlikely(recursion_level >= 24))
56 return -EMSGSIZE;
57
58 if (chunk > 0) {
59 if (chunk > len)
60 chunk = len;
61 elt++;
62 len -= chunk;
63 if (len == 0)
64 return elt;
65 offset += chunk;
66 }
67
68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69 int end;
70
71 WARN_ON(start > offset + len);
72
73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74 chunk = end - offset;
75 if (chunk > 0) {
76 if (chunk > len)
77 chunk = len;
78 elt++;
79 len -= chunk;
80 if (len == 0)
81 return elt;
82 offset += chunk;
83 }
84 start = end;
85 }
86
87 if (unlikely(skb_has_frag_list(skb))) {
88 skb_walk_frags(skb, frag_iter) {
89 int end, ret;
90
91 WARN_ON(start > offset + len);
92
93 end = start + frag_iter->len;
94 chunk = end - offset;
95 if (chunk > 0) {
96 if (chunk > len)
97 chunk = len;
98 ret = __skb_nsg(frag_iter, offset - start, chunk,
99 recursion_level + 1);
100 if (unlikely(ret < 0))
101 return ret;
102 elt += ret;
103 len -= chunk;
104 if (len == 0)
105 return elt;
106 offset += chunk;
107 }
108 start = end;
109 }
110 }
111 BUG_ON(len);
112 return elt;
113}
114
115/* Return the number of scatterlist elements required to completely map the
116 * skb, or -EMSGSIZE if the recursion depth is exceeded.
117 */
118static int skb_nsg(struct sk_buff *skb, int offset, int len)
119{
120 return __skb_nsg(skb, offset, len, 0);
121}
122
94524d8f
VG
123static void tls_decrypt_done(struct crypto_async_request *req, int err)
124{
125 struct aead_request *aead_req = (struct aead_request *)req;
94524d8f 126 struct scatterlist *sgout = aead_req->dst;
692d7b5d 127 struct scatterlist *sgin = aead_req->src;
7a3dd8c8
JF
128 struct tls_sw_context_rx *ctx;
129 struct tls_context *tls_ctx;
94524d8f 130 struct scatterlist *sg;
7a3dd8c8 131 struct sk_buff *skb;
94524d8f 132 unsigned int pages;
7a3dd8c8
JF
133 int pending;
134
135 skb = (struct sk_buff *)req->data;
136 tls_ctx = tls_get_ctx(skb->sk);
137 ctx = tls_sw_ctx_rx(tls_ctx);
94524d8f
VG
138
139 /* Propagate if there was an err */
140 if (err) {
141 ctx->async_wait.err = err;
7a3dd8c8 142 tls_err_abort(skb->sk, err);
692d7b5d
VG
143 } else {
144 struct strp_msg *rxm = strp_msg(skb);
145
146 rxm->offset += tls_ctx->rx.prepend_size;
147 rxm->full_len -= tls_ctx->rx.overhead_size;
94524d8f
VG
148 }
149
7a3dd8c8
JF
150 /* After using skb->sk to propagate sk through crypto async callback
151 * we need to NULL it again.
152 */
153 skb->sk = NULL;
154
94524d8f 155
692d7b5d
VG
156 /* Free the destination pages if skb was not decrypted inplace */
157 if (sgout != sgin) {
158 /* Skip the first S/G entry as it points to AAD */
159 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
160 if (!sg)
161 break;
162 put_page(sg_page(sg));
163 }
94524d8f
VG
164 }
165
166 kfree(aead_req);
167
692d7b5d
VG
168 pending = atomic_dec_return(&ctx->decrypt_pending);
169
94524d8f
VG
170 if (!pending && READ_ONCE(ctx->async_notify))
171 complete(&ctx->async_wait.completion);
172}
173
c46234eb 174static int tls_do_decryption(struct sock *sk,
94524d8f 175 struct sk_buff *skb,
c46234eb
DW
176 struct scatterlist *sgin,
177 struct scatterlist *sgout,
178 char *iv_recv,
179 size_t data_len,
94524d8f
VG
180 struct aead_request *aead_req,
181 bool async)
c46234eb
DW
182{
183 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 184 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 185 int ret;
c46234eb 186
0b243d00 187 aead_request_set_tfm(aead_req, ctx->aead_recv);
a2ef9b6a 188 aead_request_set_ad(aead_req, tls_ctx->rx.aad_size);
c46234eb
DW
189 aead_request_set_crypt(aead_req, sgin, sgout,
190 data_len + tls_ctx->rx.tag_size,
191 (u8 *)iv_recv);
c46234eb 192
94524d8f 193 if (async) {
7a3dd8c8
JF
194 /* Using skb->sk to push sk through to crypto async callback
195 * handler. This allows propagating errors up to the socket
196 * if needed. It _must_ be cleared in the async handler
197 * before kfree_skb is called. We _know_ skb->sk is NULL
198 * because it is a clone from strparser.
199 */
200 skb->sk = sk;
94524d8f
VG
201 aead_request_set_callback(aead_req,
202 CRYPTO_TFM_REQ_MAY_BACKLOG,
203 tls_decrypt_done, skb);
204 atomic_inc(&ctx->decrypt_pending);
205 } else {
206 aead_request_set_callback(aead_req,
207 CRYPTO_TFM_REQ_MAY_BACKLOG,
208 crypto_req_done, &ctx->async_wait);
209 }
210
211 ret = crypto_aead_decrypt(aead_req);
212 if (ret == -EINPROGRESS) {
213 if (async)
214 return ret;
215
216 ret = crypto_wait_req(ret, &ctx->async_wait);
217 }
218
219 if (async)
220 atomic_dec(&ctx->decrypt_pending);
221
c46234eb
DW
222 return ret;
223}
224
d829e9c4 225static void tls_trim_both_msgs(struct sock *sk, int target_size)
3c4d7559
DW
226{
227 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 228 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 229 struct tls_rec *rec = ctx->open_rec;
3c4d7559 230
d829e9c4 231 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
3c4d7559 232 if (target_size > 0)
dbe42559 233 target_size += tls_ctx->tx.overhead_size;
d829e9c4 234 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
3c4d7559
DW
235}
236
d829e9c4 237static int tls_alloc_encrypted_msg(struct sock *sk, int len)
3c4d7559
DW
238{
239 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 240 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 241 struct tls_rec *rec = ctx->open_rec;
d829e9c4 242 struct sk_msg *msg_en = &rec->msg_encrypted;
3c4d7559 243
d829e9c4 244 return sk_msg_alloc(sk, msg_en, len, 0);
3c4d7559
DW
245}
246
d829e9c4 247static int tls_clone_plaintext_msg(struct sock *sk, int required)
3c4d7559
DW
248{
249 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 250 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 251 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
252 struct sk_msg *msg_pl = &rec->msg_plaintext;
253 struct sk_msg *msg_en = &rec->msg_encrypted;
4e6d4720 254 int skip, len;
3c4d7559 255
d829e9c4
DB
256 /* We add page references worth len bytes from encrypted sg
257 * at the end of plaintext sg. It is guaranteed that msg_en
4e6d4720
VG
258 * has enough required room (ensured by caller).
259 */
d829e9c4 260 len = required - msg_pl->sg.size;
52ea992c 261
d829e9c4
DB
262 /* Skip initial bytes in msg_en's data to be able to use
263 * same offset of both plain and encrypted data.
4e6d4720 264 */
d829e9c4 265 skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
4e6d4720 266
d829e9c4 267 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
3c4d7559
DW
268}
269
d3b18ad3 270static struct tls_rec *tls_get_rec(struct sock *sk)
3c4d7559
DW
271{
272 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
274 struct sk_msg *msg_pl, *msg_en;
275 struct tls_rec *rec;
276 int mem_size;
3c4d7559 277
d3b18ad3
JF
278 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
279
280 rec = kzalloc(mem_size, sk->sk_allocation);
a42055e8 281 if (!rec)
d3b18ad3
JF
282 return NULL;
283
284 msg_pl = &rec->msg_plaintext;
285 msg_en = &rec->msg_encrypted;
286
287 sk_msg_init(msg_pl);
288 sk_msg_init(msg_en);
289
290 sg_init_table(rec->sg_aead_in, 2);
291 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
a2ef9b6a 292 tls_ctx->tx.aad_size);
d3b18ad3
JF
293 sg_unmark_end(&rec->sg_aead_in[1]);
294
295 sg_init_table(rec->sg_aead_out, 2);
296 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
a2ef9b6a 297 tls_ctx->tx.aad_size);
d3b18ad3
JF
298 sg_unmark_end(&rec->sg_aead_out[1]);
299
300 return rec;
301}
a42055e8 302
d3b18ad3
JF
303static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
304{
d829e9c4
DB
305 sk_msg_free(sk, &rec->msg_encrypted);
306 sk_msg_free(sk, &rec->msg_plaintext);
c774973e 307 kfree(rec);
a42055e8
VG
308}
309
d3b18ad3
JF
310static void tls_free_open_rec(struct sock *sk)
311{
312 struct tls_context *tls_ctx = tls_get_ctx(sk);
313 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
314 struct tls_rec *rec = ctx->open_rec;
315
316 if (rec) {
317 tls_free_rec(sk, rec);
318 ctx->open_rec = NULL;
319 }
320}
321
a42055e8
VG
322int tls_tx_records(struct sock *sk, int flags)
323{
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
325 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
326 struct tls_rec *rec, *tmp;
d829e9c4 327 struct sk_msg *msg_en;
a42055e8
VG
328 int tx_flags, rc = 0;
329
330 if (tls_is_partially_sent_record(tls_ctx)) {
9932a29a 331 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
332 struct tls_rec, list);
333
334 if (flags == -1)
335 tx_flags = rec->tx_flags;
336 else
337 tx_flags = flags;
338
339 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
340 if (rc)
341 goto tx_err;
342
343 /* Full record has been transmitted.
9932a29a 344 * Remove the head of tx_list
a42055e8 345 */
a42055e8 346 list_del(&rec->list);
d829e9c4 347 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
348 kfree(rec);
349 }
350
9932a29a
VG
351 /* Tx all ready records */
352 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
353 if (READ_ONCE(rec->tx_ready)) {
a42055e8
VG
354 if (flags == -1)
355 tx_flags = rec->tx_flags;
356 else
357 tx_flags = flags;
358
d829e9c4 359 msg_en = &rec->msg_encrypted;
a42055e8 360 rc = tls_push_sg(sk, tls_ctx,
d829e9c4 361 &msg_en->sg.data[msg_en->sg.curr],
a42055e8
VG
362 0, tx_flags);
363 if (rc)
364 goto tx_err;
365
a42055e8 366 list_del(&rec->list);
d829e9c4 367 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
368 kfree(rec);
369 } else {
370 break;
371 }
372 }
373
374tx_err:
375 if (rc < 0 && rc != -EAGAIN)
376 tls_err_abort(sk, EBADMSG);
377
378 return rc;
379}
380
381static void tls_encrypt_done(struct crypto_async_request *req, int err)
382{
383 struct aead_request *aead_req = (struct aead_request *)req;
384 struct sock *sk = req->data;
385 struct tls_context *tls_ctx = tls_get_ctx(sk);
386 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d829e9c4
DB
387 struct scatterlist *sge;
388 struct sk_msg *msg_en;
a42055e8
VG
389 struct tls_rec *rec;
390 bool ready = false;
391 int pending;
392
393 rec = container_of(aead_req, struct tls_rec, aead_req);
d829e9c4 394 msg_en = &rec->msg_encrypted;
a42055e8 395
d829e9c4
DB
396 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
397 sge->offset -= tls_ctx->tx.prepend_size;
398 sge->length += tls_ctx->tx.prepend_size;
a42055e8 399
80ece6a0 400 /* Check if error is previously set on socket */
a42055e8 401 if (err || sk->sk_err) {
a42055e8
VG
402 rec = NULL;
403
404 /* If err is already set on socket, return the same code */
405 if (sk->sk_err) {
406 ctx->async_wait.err = sk->sk_err;
407 } else {
408 ctx->async_wait.err = err;
409 tls_err_abort(sk, err);
410 }
411 }
412
9932a29a
VG
413 if (rec) {
414 struct tls_rec *first_rec;
415
416 /* Mark the record as ready for transmission */
417 smp_store_mb(rec->tx_ready, true);
418
419 /* If received record is at head of tx_list, schedule tx */
420 first_rec = list_first_entry(&ctx->tx_list,
421 struct tls_rec, list);
422 if (rec == first_rec)
423 ready = true;
424 }
a42055e8
VG
425
426 pending = atomic_dec_return(&ctx->encrypt_pending);
427
428 if (!pending && READ_ONCE(ctx->async_notify))
429 complete(&ctx->async_wait.completion);
430
431 if (!ready)
432 return;
433
434 /* Schedule the transmission */
435 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
d829e9c4 436 schedule_delayed_work(&ctx->tx_work.work, 1);
3c4d7559
DW
437}
438
a42055e8
VG
439static int tls_do_encryption(struct sock *sk,
440 struct tls_context *tls_ctx,
a447da7d
DB
441 struct tls_sw_context_tx *ctx,
442 struct aead_request *aead_req,
d829e9c4 443 size_t data_len, u32 start)
3c4d7559 444{
a42055e8 445 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
446 struct sk_msg *msg_en = &rec->msg_encrypted;
447 struct scatterlist *sge = sk_msg_elem(msg_en, start);
3c4d7559
DW
448 int rc;
449
32eb67b9
DW
450 memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
451
d829e9c4
DB
452 sge->offset += tls_ctx->tx.prepend_size;
453 sge->length -= tls_ctx->tx.prepend_size;
3c4d7559 454
d829e9c4 455 msg_en->sg.curr = start;
4e6d4720 456
3c4d7559 457 aead_request_set_tfm(aead_req, ctx->aead_send);
a2ef9b6a 458 aead_request_set_ad(aead_req, tls_ctx->tx.aad_size);
d829e9c4
DB
459 aead_request_set_crypt(aead_req, rec->sg_aead_in,
460 rec->sg_aead_out,
32eb67b9 461 data_len, rec->iv_data);
a54667f6
VG
462
463 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
a42055e8
VG
464 tls_encrypt_done, sk);
465
9932a29a
VG
466 /* Add the record in tx_list */
467 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
a42055e8 468 atomic_inc(&ctx->encrypt_pending);
a54667f6 469
a42055e8
VG
470 rc = crypto_aead_encrypt(aead_req);
471 if (!rc || rc != -EINPROGRESS) {
472 atomic_dec(&ctx->encrypt_pending);
d829e9c4
DB
473 sge->offset -= tls_ctx->tx.prepend_size;
474 sge->length += tls_ctx->tx.prepend_size;
a42055e8 475 }
3c4d7559 476
9932a29a
VG
477 if (!rc) {
478 WRITE_ONCE(rec->tx_ready, true);
479 } else if (rc != -EINPROGRESS) {
480 list_del(&rec->list);
a42055e8 481 return rc;
9932a29a 482 }
3c4d7559 483
a42055e8
VG
484 /* Unhook the record from context if encryption is not failure */
485 ctx->open_rec = NULL;
486 tls_advance_record_sn(sk, &tls_ctx->tx);
3c4d7559
DW
487 return rc;
488}
489
d3b18ad3
JF
490static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
491 struct tls_rec **to, struct sk_msg *msg_opl,
492 struct sk_msg *msg_oen, u32 split_point,
493 u32 tx_overhead_size, u32 *orig_end)
494{
495 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
496 struct scatterlist *sge, *osge, *nsge;
497 u32 orig_size = msg_opl->sg.size;
498 struct scatterlist tmp = { };
499 struct sk_msg *msg_npl;
500 struct tls_rec *new;
501 int ret;
502
503 new = tls_get_rec(sk);
504 if (!new)
505 return -ENOMEM;
506 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
507 tx_overhead_size, 0);
508 if (ret < 0) {
509 tls_free_rec(sk, new);
510 return ret;
511 }
512
513 *orig_end = msg_opl->sg.end;
514 i = msg_opl->sg.start;
515 sge = sk_msg_elem(msg_opl, i);
516 while (apply && sge->length) {
517 if (sge->length > apply) {
518 u32 len = sge->length - apply;
519
520 get_page(sg_page(sge));
521 sg_set_page(&tmp, sg_page(sge), len,
522 sge->offset + apply);
523 sge->length = apply;
524 bytes += apply;
525 apply = 0;
526 } else {
527 apply -= sge->length;
528 bytes += sge->length;
529 }
530
531 sk_msg_iter_var_next(i);
532 if (i == msg_opl->sg.end)
533 break;
534 sge = sk_msg_elem(msg_opl, i);
535 }
536
537 msg_opl->sg.end = i;
538 msg_opl->sg.curr = i;
539 msg_opl->sg.copybreak = 0;
540 msg_opl->apply_bytes = 0;
541 msg_opl->sg.size = bytes;
542
543 msg_npl = &new->msg_plaintext;
544 msg_npl->apply_bytes = apply;
545 msg_npl->sg.size = orig_size - bytes;
546
547 j = msg_npl->sg.start;
548 nsge = sk_msg_elem(msg_npl, j);
549 if (tmp.length) {
550 memcpy(nsge, &tmp, sizeof(*nsge));
551 sk_msg_iter_var_next(j);
552 nsge = sk_msg_elem(msg_npl, j);
553 }
554
555 osge = sk_msg_elem(msg_opl, i);
556 while (osge->length) {
557 memcpy(nsge, osge, sizeof(*nsge));
558 sg_unmark_end(nsge);
559 sk_msg_iter_var_next(i);
560 sk_msg_iter_var_next(j);
561 if (i == *orig_end)
562 break;
563 osge = sk_msg_elem(msg_opl, i);
564 nsge = sk_msg_elem(msg_npl, j);
565 }
566
567 msg_npl->sg.end = j;
568 msg_npl->sg.curr = j;
569 msg_npl->sg.copybreak = 0;
570
571 *to = new;
572 return 0;
573}
574
575static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
576 struct tls_rec *from, u32 orig_end)
577{
578 struct sk_msg *msg_npl = &from->msg_plaintext;
579 struct sk_msg *msg_opl = &to->msg_plaintext;
580 struct scatterlist *osge, *nsge;
581 u32 i, j;
582
583 i = msg_opl->sg.end;
584 sk_msg_iter_var_prev(i);
585 j = msg_npl->sg.start;
586
587 osge = sk_msg_elem(msg_opl, i);
588 nsge = sk_msg_elem(msg_npl, j);
589
590 if (sg_page(osge) == sg_page(nsge) &&
591 osge->offset + osge->length == nsge->offset) {
592 osge->length += nsge->length;
593 put_page(sg_page(nsge));
594 }
595
596 msg_opl->sg.end = orig_end;
597 msg_opl->sg.curr = orig_end;
598 msg_opl->sg.copybreak = 0;
599 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
600 msg_opl->sg.size += msg_npl->sg.size;
601
602 sk_msg_free(sk, &to->msg_encrypted);
603 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
604
605 kfree(from);
606}
607
3c4d7559
DW
608static int tls_push_record(struct sock *sk, int flags,
609 unsigned char record_type)
610{
611 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 612 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
613 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
614 u32 i, split_point, uninitialized_var(orig_end);
d829e9c4 615 struct sk_msg *msg_pl, *msg_en;
a447da7d 616 struct aead_request *req;
d3b18ad3 617 bool split;
3c4d7559
DW
618 int rc;
619
a42055e8
VG
620 if (!rec)
621 return 0;
a447da7d 622
d829e9c4
DB
623 msg_pl = &rec->msg_plaintext;
624 msg_en = &rec->msg_encrypted;
625
d3b18ad3
JF
626 split_point = msg_pl->apply_bytes;
627 split = split_point && split_point < msg_pl->sg.size;
628 if (split) {
629 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
630 split_point, tls_ctx->tx.overhead_size,
631 &orig_end);
632 if (rc < 0)
633 return rc;
634 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
635 tls_ctx->tx.overhead_size);
636 }
637
a42055e8
VG
638 rec->tx_flags = flags;
639 req = &rec->aead_req;
3c4d7559 640
d829e9c4
DB
641 i = msg_pl->sg.end;
642 sk_msg_iter_var_prev(i);
643 sg_mark_end(sk_msg_elem(msg_pl, i));
a42055e8 644
d829e9c4
DB
645 i = msg_pl->sg.start;
646 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
647 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
648
649 i = msg_en->sg.end;
650 sk_msg_iter_var_prev(i);
651 sg_mark_end(sk_msg_elem(msg_en, i));
652
653 i = msg_en->sg.start;
654 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
655
656 tls_make_aad(rec->aad_space, msg_pl->sg.size,
dbe42559 657 tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
3c4d7559
DW
658 record_type);
659
660 tls_fill_prepend(tls_ctx,
d829e9c4
DB
661 page_address(sg_page(&msg_en->sg.data[i])) +
662 msg_en->sg.data[i].offset, msg_pl->sg.size,
663 record_type);
3c4d7559 664
d829e9c4 665 tls_ctx->pending_open_record_frags = false;
3c4d7559 666
d829e9c4 667 rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
a42055e8 668 if (rc < 0) {
d3b18ad3 669 if (rc != -EINPROGRESS) {
d829e9c4 670 tls_err_abort(sk, EBADMSG);
d3b18ad3
JF
671 if (split) {
672 tls_ctx->pending_open_record_frags = true;
673 tls_merge_open_record(sk, rec, tmp, orig_end);
674 }
675 }
a42055e8 676 return rc;
d3b18ad3
JF
677 } else if (split) {
678 msg_pl = &tmp->msg_plaintext;
679 msg_en = &tmp->msg_encrypted;
680 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
681 tls_ctx->tx.overhead_size);
682 tls_ctx->pending_open_record_frags = true;
683 ctx->open_rec = tmp;
a42055e8 684 }
3c4d7559 685
9932a29a 686 return tls_tx_records(sk, flags);
3c4d7559
DW
687}
688
d3b18ad3
JF
689static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
690 bool full_record, u8 record_type,
691 size_t *copied, int flags)
3c4d7559
DW
692{
693 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 694 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
695 struct sk_msg msg_redir = { };
696 struct sk_psock *psock;
697 struct sock *sk_redir;
a42055e8 698 struct tls_rec *rec;
0608c69c 699 bool enospc, policy;
d3b18ad3 700 int err = 0, send;
7246d8ed 701 u32 delta = 0;
d3b18ad3 702
0608c69c 703 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
d3b18ad3 704 psock = sk_psock_get(sk);
0608c69c 705 if (!psock || !policy)
d3b18ad3
JF
706 return tls_push_record(sk, flags, record_type);
707more_data:
708 enospc = sk_msg_full(msg);
7246d8ed
JF
709 if (psock->eval == __SK_NONE) {
710 delta = msg->sg.size;
d3b18ad3 711 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
7246d8ed
JF
712 if (delta < msg->sg.size)
713 delta -= msg->sg.size;
714 else
715 delta = 0;
716 }
d3b18ad3
JF
717 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
718 !enospc && !full_record) {
719 err = -ENOSPC;
720 goto out_err;
721 }
722 msg->cork_bytes = 0;
723 send = msg->sg.size;
724 if (msg->apply_bytes && msg->apply_bytes < send)
725 send = msg->apply_bytes;
726
727 switch (psock->eval) {
728 case __SK_PASS:
729 err = tls_push_record(sk, flags, record_type);
730 if (err < 0) {
731 *copied -= sk_msg_free(sk, msg);
732 tls_free_open_rec(sk);
733 goto out_err;
734 }
735 break;
736 case __SK_REDIRECT:
737 sk_redir = psock->sk_redir;
738 memcpy(&msg_redir, msg, sizeof(*msg));
739 if (msg->apply_bytes < send)
740 msg->apply_bytes = 0;
741 else
742 msg->apply_bytes -= send;
743 sk_msg_return_zero(sk, msg, send);
744 msg->sg.size -= send;
745 release_sock(sk);
746 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
747 lock_sock(sk);
748 if (err < 0) {
749 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
750 msg->sg.size = 0;
751 }
752 if (msg->sg.size == 0)
753 tls_free_open_rec(sk);
754 break;
755 case __SK_DROP:
756 default:
757 sk_msg_free_partial(sk, msg, send);
758 if (msg->apply_bytes < send)
759 msg->apply_bytes = 0;
760 else
761 msg->apply_bytes -= send;
762 if (msg->sg.size == 0)
763 tls_free_open_rec(sk);
7246d8ed 764 *copied -= (send + delta);
d3b18ad3
JF
765 err = -EACCES;
766 }
a42055e8 767
d3b18ad3
JF
768 if (likely(!err)) {
769 bool reset_eval = !ctx->open_rec;
a42055e8 770
d3b18ad3
JF
771 rec = ctx->open_rec;
772 if (rec) {
773 msg = &rec->msg_plaintext;
774 if (!msg->apply_bytes)
775 reset_eval = true;
776 }
777 if (reset_eval) {
778 psock->eval = __SK_NONE;
779 if (psock->sk_redir) {
780 sock_put(psock->sk_redir);
781 psock->sk_redir = NULL;
782 }
783 }
784 if (rec)
785 goto more_data;
786 }
787 out_err:
788 sk_psock_put(sk, psock);
789 return err;
790}
791
792static int tls_sw_push_pending_record(struct sock *sk, int flags)
793{
794 struct tls_context *tls_ctx = tls_get_ctx(sk);
795 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
796 struct tls_rec *rec = ctx->open_rec;
797 struct sk_msg *msg_pl;
798 size_t copied;
a42055e8 799
a42055e8 800 if (!rec)
d3b18ad3 801 return 0;
a42055e8 802
d829e9c4 803 msg_pl = &rec->msg_plaintext;
d3b18ad3
JF
804 copied = msg_pl->sg.size;
805 if (!copied)
806 return 0;
a42055e8 807
d3b18ad3
JF
808 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
809 &copied, flags);
a42055e8
VG
810}
811
812int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
813{
3c4d7559 814 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
a42055e8
VG
815 struct tls_context *tls_ctx = tls_get_ctx(sk);
816 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
817 struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
818 bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
819 unsigned char record_type = TLS_RECORD_TYPE_DATA;
00e23707 820 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
3c4d7559
DW
821 bool eor = !(msg->msg_flags & MSG_MORE);
822 size_t try_to_copy, copied = 0;
d829e9c4 823 struct sk_msg *msg_pl, *msg_en;
a42055e8
VG
824 struct tls_rec *rec;
825 int required_size;
826 int num_async = 0;
3c4d7559 827 bool full_record;
a42055e8
VG
828 int record_room;
829 int num_zc = 0;
3c4d7559 830 int orig_size;
4128c0cf 831 int ret = 0;
3c4d7559
DW
832
833 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
834 return -ENOTSUPP;
835
836 lock_sock(sk);
837
a42055e8
VG
838 /* Wait till there is any pending write on socket */
839 if (unlikely(sk->sk_write_pending)) {
840 ret = wait_on_pending_writer(sk, &timeo);
841 if (unlikely(ret))
842 goto send_end;
843 }
3c4d7559
DW
844
845 if (unlikely(msg->msg_controllen)) {
846 ret = tls_proccess_cmsg(sk, msg, &record_type);
a42055e8
VG
847 if (ret) {
848 if (ret == -EINPROGRESS)
849 num_async++;
850 else if (ret != -EAGAIN)
851 goto send_end;
852 }
3c4d7559
DW
853 }
854
855 while (msg_data_left(msg)) {
856 if (sk->sk_err) {
30be8f8d 857 ret = -sk->sk_err;
3c4d7559
DW
858 goto send_end;
859 }
860
d3b18ad3
JF
861 if (ctx->open_rec)
862 rec = ctx->open_rec;
863 else
864 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
865 if (!rec) {
866 ret = -ENOMEM;
867 goto send_end;
868 }
869
d829e9c4
DB
870 msg_pl = &rec->msg_plaintext;
871 msg_en = &rec->msg_encrypted;
872
873 orig_size = msg_pl->sg.size;
3c4d7559
DW
874 full_record = false;
875 try_to_copy = msg_data_left(msg);
d829e9c4 876 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
877 if (try_to_copy >= record_room) {
878 try_to_copy = record_room;
879 full_record = true;
880 }
881
d829e9c4 882 required_size = msg_pl->sg.size + try_to_copy +
dbe42559 883 tls_ctx->tx.overhead_size;
3c4d7559
DW
884
885 if (!sk_stream_memory_free(sk))
886 goto wait_for_sndbuf;
a42055e8 887
3c4d7559 888alloc_encrypted:
d829e9c4 889 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
890 if (ret) {
891 if (ret != -ENOSPC)
892 goto wait_for_memory;
893
894 /* Adjust try_to_copy according to the amount that was
895 * actually allocated. The difference is due
896 * to max sg elements limit
897 */
d829e9c4 898 try_to_copy -= required_size - msg_en->sg.size;
3c4d7559
DW
899 full_record = true;
900 }
a42055e8
VG
901
902 if (!is_kvec && (full_record || eor) && !async_capable) {
d3b18ad3
JF
903 u32 first = msg_pl->sg.end;
904
d829e9c4
DB
905 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
906 msg_pl, try_to_copy);
3c4d7559
DW
907 if (ret)
908 goto fallback_to_reg_send;
909
4e6d4720
VG
910 rec->inplace_crypto = 0;
911
a42055e8 912 num_zc++;
3c4d7559 913 copied += try_to_copy;
d3b18ad3
JF
914
915 sk_msg_sg_copy_set(msg_pl, first);
916 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
917 record_type, &copied,
918 msg->msg_flags);
a42055e8
VG
919 if (ret) {
920 if (ret == -EINPROGRESS)
921 num_async++;
d3b18ad3
JF
922 else if (ret == -ENOMEM)
923 goto wait_for_memory;
924 else if (ret == -ENOSPC)
925 goto rollback_iter;
a42055e8
VG
926 else if (ret != -EAGAIN)
927 goto send_end;
928 }
5a3611ef 929 continue;
d3b18ad3
JF
930rollback_iter:
931 copied -= try_to_copy;
932 sk_msg_sg_copy_clear(msg_pl, first);
933 iov_iter_revert(&msg->msg_iter,
934 msg_pl->sg.size - orig_size);
3c4d7559 935fallback_to_reg_send:
d829e9c4 936 sk_msg_trim(sk, msg_pl, orig_size);
3c4d7559
DW
937 }
938
d829e9c4 939 required_size = msg_pl->sg.size + try_to_copy;
4e6d4720 940
d829e9c4 941 ret = tls_clone_plaintext_msg(sk, required_size);
3c4d7559
DW
942 if (ret) {
943 if (ret != -ENOSPC)
4e6d4720 944 goto send_end;
3c4d7559
DW
945
946 /* Adjust try_to_copy according to the amount that was
947 * actually allocated. The difference is due
948 * to max sg elements limit
949 */
d829e9c4 950 try_to_copy -= required_size - msg_pl->sg.size;
3c4d7559 951 full_record = true;
d829e9c4
DB
952 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
953 tls_ctx->tx.overhead_size);
3c4d7559
DW
954 }
955
65a10e28
VG
956 if (try_to_copy) {
957 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
958 msg_pl, try_to_copy);
959 if (ret < 0)
960 goto trim_sgl;
961 }
3c4d7559 962
d829e9c4
DB
963 /* Open records defined only if successfully copied, otherwise
964 * we would trim the sg but not reset the open record frags.
965 */
966 tls_ctx->pending_open_record_frags = true;
3c4d7559
DW
967 copied += try_to_copy;
968 if (full_record || eor) {
d3b18ad3
JF
969 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
970 record_type, &copied,
971 msg->msg_flags);
3c4d7559 972 if (ret) {
a42055e8
VG
973 if (ret == -EINPROGRESS)
974 num_async++;
d3b18ad3
JF
975 else if (ret == -ENOMEM)
976 goto wait_for_memory;
977 else if (ret != -EAGAIN) {
978 if (ret == -ENOSPC)
979 ret = 0;
a42055e8 980 goto send_end;
d3b18ad3 981 }
3c4d7559
DW
982 }
983 }
984
985 continue;
986
987wait_for_sndbuf:
988 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
989wait_for_memory:
990 ret = sk_stream_wait_memory(sk, &timeo);
991 if (ret) {
992trim_sgl:
d829e9c4 993 tls_trim_both_msgs(sk, orig_size);
3c4d7559
DW
994 goto send_end;
995 }
996
d829e9c4 997 if (msg_en->sg.size < required_size)
3c4d7559 998 goto alloc_encrypted;
3c4d7559
DW
999 }
1000
a42055e8
VG
1001 if (!num_async) {
1002 goto send_end;
1003 } else if (num_zc) {
1004 /* Wait for pending encryptions to get completed */
1005 smp_store_mb(ctx->async_notify, true);
1006
1007 if (atomic_read(&ctx->encrypt_pending))
1008 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1009 else
1010 reinit_completion(&ctx->async_wait.completion);
1011
1012 WRITE_ONCE(ctx->async_notify, false);
1013
1014 if (ctx->async_wait.err) {
1015 ret = ctx->async_wait.err;
1016 copied = 0;
1017 }
1018 }
1019
1020 /* Transmit if any encryptions have completed */
1021 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1022 cancel_delayed_work(&ctx->tx_work.work);
1023 tls_tx_records(sk, msg->msg_flags);
1024 }
1025
3c4d7559
DW
1026send_end:
1027 ret = sk_stream_error(sk, msg->msg_flags, ret);
1028
1029 release_sock(sk);
1030 return copied ? copied : ret;
1031}
1032
01cb8a1a
Y
1033static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1034 int offset, size_t size, int flags)
3c4d7559 1035{
a42055e8 1036 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
3c4d7559 1037 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1038 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
3c4d7559 1039 unsigned char record_type = TLS_RECORD_TYPE_DATA;
d829e9c4 1040 struct sk_msg *msg_pl;
a42055e8
VG
1041 struct tls_rec *rec;
1042 int num_async = 0;
d3b18ad3 1043 size_t copied = 0;
3c4d7559
DW
1044 bool full_record;
1045 int record_room;
4128c0cf 1046 int ret = 0;
a42055e8 1047 bool eor;
3c4d7559 1048
3c4d7559 1049 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
3c4d7559
DW
1050 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1051
a42055e8
VG
1052 /* Wait till there is any pending write on socket */
1053 if (unlikely(sk->sk_write_pending)) {
1054 ret = wait_on_pending_writer(sk, &timeo);
1055 if (unlikely(ret))
1056 goto sendpage_end;
1057 }
3c4d7559
DW
1058
1059 /* Call the sk_stream functions to manage the sndbuf mem. */
1060 while (size > 0) {
1061 size_t copy, required_size;
1062
1063 if (sk->sk_err) {
30be8f8d 1064 ret = -sk->sk_err;
3c4d7559
DW
1065 goto sendpage_end;
1066 }
1067
d3b18ad3
JF
1068 if (ctx->open_rec)
1069 rec = ctx->open_rec;
1070 else
1071 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
1072 if (!rec) {
1073 ret = -ENOMEM;
1074 goto sendpage_end;
1075 }
1076
d829e9c4
DB
1077 msg_pl = &rec->msg_plaintext;
1078
3c4d7559 1079 full_record = false;
d829e9c4 1080 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
d3b18ad3 1081 copied = 0;
3c4d7559
DW
1082 copy = size;
1083 if (copy >= record_room) {
1084 copy = record_room;
1085 full_record = true;
1086 }
d829e9c4
DB
1087
1088 required_size = msg_pl->sg.size + copy +
1089 tls_ctx->tx.overhead_size;
3c4d7559
DW
1090
1091 if (!sk_stream_memory_free(sk))
1092 goto wait_for_sndbuf;
1093alloc_payload:
d829e9c4 1094 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1095 if (ret) {
1096 if (ret != -ENOSPC)
1097 goto wait_for_memory;
1098
1099 /* Adjust copy according to the amount that was
1100 * actually allocated. The difference is due
1101 * to max sg elements limit
1102 */
d829e9c4 1103 copy -= required_size - msg_pl->sg.size;
3c4d7559
DW
1104 full_record = true;
1105 }
1106
d829e9c4 1107 sk_msg_page_add(msg_pl, page, copy, offset);
3c4d7559 1108 sk_mem_charge(sk, copy);
d829e9c4 1109
3c4d7559
DW
1110 offset += copy;
1111 size -= copy;
d3b18ad3 1112 copied += copy;
3c4d7559 1113
d829e9c4
DB
1114 tls_ctx->pending_open_record_frags = true;
1115 if (full_record || eor || sk_msg_full(msg_pl)) {
4e6d4720 1116 rec->inplace_crypto = 0;
d3b18ad3
JF
1117 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1118 record_type, &copied, flags);
3c4d7559 1119 if (ret) {
a42055e8
VG
1120 if (ret == -EINPROGRESS)
1121 num_async++;
d3b18ad3
JF
1122 else if (ret == -ENOMEM)
1123 goto wait_for_memory;
1124 else if (ret != -EAGAIN) {
1125 if (ret == -ENOSPC)
1126 ret = 0;
a42055e8 1127 goto sendpage_end;
d3b18ad3 1128 }
3c4d7559
DW
1129 }
1130 }
1131 continue;
1132wait_for_sndbuf:
1133 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1134wait_for_memory:
1135 ret = sk_stream_wait_memory(sk, &timeo);
1136 if (ret) {
d829e9c4 1137 tls_trim_both_msgs(sk, msg_pl->sg.size);
3c4d7559
DW
1138 goto sendpage_end;
1139 }
1140
3c4d7559
DW
1141 goto alloc_payload;
1142 }
1143
a42055e8
VG
1144 if (num_async) {
1145 /* Transmit if any encryptions have completed */
1146 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1147 cancel_delayed_work(&ctx->tx_work.work);
1148 tls_tx_records(sk, flags);
1149 }
1150 }
3c4d7559 1151sendpage_end:
d3b18ad3 1152 ret = sk_stream_error(sk, flags, ret);
d3b18ad3 1153 return copied ? copied : ret;
3c4d7559
DW
1154}
1155
0608c69c
JF
1156int tls_sw_sendpage(struct sock *sk, struct page *page,
1157 int offset, size_t size, int flags)
1158{
1159 int ret;
1160
1161 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1162 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1163 return -ENOTSUPP;
1164
1165 lock_sock(sk);
1166 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1167 release_sock(sk);
1168 return ret;
1169}
1170
d3b18ad3
JF
1171static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1172 int flags, long timeo, int *err)
c46234eb
DW
1173{
1174 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1175 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1176 struct sk_buff *skb;
1177 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1178
d3b18ad3 1179 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
c46234eb
DW
1180 if (sk->sk_err) {
1181 *err = sock_error(sk);
1182 return NULL;
1183 }
1184
fcf4793e
DRK
1185 if (sk->sk_shutdown & RCV_SHUTDOWN)
1186 return NULL;
1187
c46234eb
DW
1188 if (sock_flag(sk, SOCK_DONE))
1189 return NULL;
1190
1191 if ((flags & MSG_DONTWAIT) || !timeo) {
1192 *err = -EAGAIN;
1193 return NULL;
1194 }
1195
1196 add_wait_queue(sk_sleep(sk), &wait);
1197 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
d3b18ad3
JF
1198 sk_wait_event(sk, &timeo,
1199 ctx->recv_pkt != skb ||
1200 !sk_psock_queue_empty(psock),
1201 &wait);
c46234eb
DW
1202 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1203 remove_wait_queue(sk_sleep(sk), &wait);
1204
1205 /* Handle signals */
1206 if (signal_pending(current)) {
1207 *err = sock_intr_errno(timeo);
1208 return NULL;
1209 }
1210 }
1211
1212 return skb;
1213}
1214
d829e9c4
DB
1215static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1216 int length, int *pages_used,
1217 unsigned int *size_used,
1218 struct scatterlist *to,
1219 int to_max_pages)
1220{
1221 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1222 struct page *pages[MAX_SKB_FRAGS];
1223 unsigned int size = *size_used;
1224 ssize_t copied, use;
1225 size_t offset;
1226
1227 while (length > 0) {
1228 i = 0;
1229 maxpages = to_max_pages - num_elem;
1230 if (maxpages == 0) {
1231 rc = -EFAULT;
1232 goto out;
1233 }
1234 copied = iov_iter_get_pages(from, pages,
1235 length,
1236 maxpages, &offset);
1237 if (copied <= 0) {
1238 rc = -EFAULT;
1239 goto out;
1240 }
1241
1242 iov_iter_advance(from, copied);
1243
1244 length -= copied;
1245 size += copied;
1246 while (copied) {
1247 use = min_t(int, copied, PAGE_SIZE - offset);
1248
1249 sg_set_page(&to[num_elem],
1250 pages[i], use, offset);
1251 sg_unmark_end(&to[num_elem]);
1252 /* We do not uncharge memory from this API */
1253
1254 offset = 0;
1255 copied -= use;
1256
1257 i++;
1258 num_elem++;
1259 }
1260 }
1261 /* Mark the end in the last sg entry if newly added */
1262 if (num_elem > *pages_used)
1263 sg_mark_end(&to[num_elem - 1]);
1264out:
1265 if (rc)
1266 iov_iter_revert(from, size - *size_used);
1267 *size_used = size;
1268 *pages_used = num_elem;
1269
1270 return rc;
1271}
1272
0b243d00
VG
1273/* This function decrypts the input skb into either out_iov or in out_sg
1274 * or in skb buffers itself. The input parameter 'zc' indicates if
1275 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1276 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1277 * NULL, then the decryption happens inside skb buffers itself, i.e.
1278 * zero-copy gets disabled and 'zc' is updated.
1279 */
1280
1281static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1282 struct iov_iter *out_iov,
1283 struct scatterlist *out_sg,
692d7b5d 1284 int *chunk, bool *zc, bool async)
0b243d00
VG
1285{
1286 struct tls_context *tls_ctx = tls_get_ctx(sk);
1287 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1288 struct strp_msg *rxm = strp_msg(skb);
1289 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1290 struct aead_request *aead_req;
1291 struct sk_buff *unused;
1292 u8 *aad, *iv, *mem = NULL;
1293 struct scatterlist *sgin = NULL;
1294 struct scatterlist *sgout = NULL;
1295 const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
1296
1297 if (*zc && (out_iov || out_sg)) {
1298 if (out_iov)
1299 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1300 else
1301 n_sgout = sg_nents(out_sg);
0927f71d
DRK
1302 n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1303 rxm->full_len - tls_ctx->rx.prepend_size);
0b243d00
VG
1304 } else {
1305 n_sgout = 0;
1306 *zc = false;
0927f71d 1307 n_sgin = skb_cow_data(skb, 0, &unused);
0b243d00
VG
1308 }
1309
0b243d00
VG
1310 if (n_sgin < 1)
1311 return -EBADMSG;
1312
1313 /* Increment to accommodate AAD */
1314 n_sgin = n_sgin + 1;
1315
1316 nsg = n_sgin + n_sgout;
1317
1318 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1319 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
a2ef9b6a 1320 mem_size = mem_size + tls_ctx->rx.aad_size;
0b243d00
VG
1321 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1322
1323 /* Allocate a single block of memory which contains
1324 * aead_req || sgin[] || sgout[] || aad || iv.
1325 * This order achieves correct alignment for aead_req, sgin, sgout.
1326 */
1327 mem = kmalloc(mem_size, sk->sk_allocation);
1328 if (!mem)
1329 return -ENOMEM;
1330
1331 /* Segment the allocated memory */
1332 aead_req = (struct aead_request *)mem;
1333 sgin = (struct scatterlist *)(mem + aead_size);
1334 sgout = sgin + n_sgin;
1335 aad = (u8 *)(sgout + n_sgout);
a2ef9b6a 1336 iv = aad + tls_ctx->rx.aad_size;
0b243d00
VG
1337
1338 /* Prepare IV */
1339 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1340 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1341 tls_ctx->rx.iv_size);
1342 if (err < 0) {
1343 kfree(mem);
1344 return err;
1345 }
1346 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1347
1348 /* Prepare AAD */
1349 tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
1350 tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1351 ctx->control);
1352
1353 /* Prepare sgin */
1354 sg_init_table(sgin, n_sgin);
a2ef9b6a 1355 sg_set_buf(&sgin[0], aad, tls_ctx->rx.aad_size);
0b243d00
VG
1356 err = skb_to_sgvec(skb, &sgin[1],
1357 rxm->offset + tls_ctx->rx.prepend_size,
1358 rxm->full_len - tls_ctx->rx.prepend_size);
1359 if (err < 0) {
1360 kfree(mem);
1361 return err;
1362 }
1363
1364 if (n_sgout) {
1365 if (out_iov) {
1366 sg_init_table(sgout, n_sgout);
a2ef9b6a 1367 sg_set_buf(&sgout[0], aad, tls_ctx->rx.aad_size);
0b243d00
VG
1368
1369 *chunk = 0;
d829e9c4
DB
1370 err = tls_setup_from_iter(sk, out_iov, data_len,
1371 &pages, chunk, &sgout[1],
1372 (n_sgout - 1));
0b243d00
VG
1373 if (err < 0)
1374 goto fallback_to_reg_recv;
1375 } else if (out_sg) {
1376 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1377 } else {
1378 goto fallback_to_reg_recv;
1379 }
1380 } else {
1381fallback_to_reg_recv:
1382 sgout = sgin;
1383 pages = 0;
692d7b5d 1384 *chunk = data_len;
0b243d00
VG
1385 *zc = false;
1386 }
1387
1388 /* Prepare and submit AEAD request */
94524d8f 1389 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
692d7b5d 1390 data_len, aead_req, async);
94524d8f
VG
1391 if (err == -EINPROGRESS)
1392 return err;
0b243d00
VG
1393
1394 /* Release the pages in case iov was mapped to pages */
1395 for (; pages > 0; pages--)
1396 put_page(sg_page(&sgout[pages]));
1397
1398 kfree(mem);
1399 return err;
1400}
1401
dafb67f3 1402static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
692d7b5d
VG
1403 struct iov_iter *dest, int *chunk, bool *zc,
1404 bool async)
dafb67f3
BP
1405{
1406 struct tls_context *tls_ctx = tls_get_ctx(sk);
1407 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1408 struct strp_msg *rxm = strp_msg(skb);
1409 int err = 0;
1410
4799ac81
BP
1411#ifdef CONFIG_TLS_DEVICE
1412 err = tls_device_decrypted(sk, skb);
dafb67f3
BP
1413 if (err < 0)
1414 return err;
4799ac81
BP
1415#endif
1416 if (!ctx->decrypted) {
692d7b5d 1417 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, async);
94524d8f
VG
1418 if (err < 0) {
1419 if (err == -EINPROGRESS)
1420 tls_advance_record_sn(sk, &tls_ctx->rx);
1421
4799ac81 1422 return err;
94524d8f 1423 }
4799ac81
BP
1424 } else {
1425 *zc = false;
1426 }
dafb67f3
BP
1427
1428 rxm->offset += tls_ctx->rx.prepend_size;
1429 rxm->full_len -= tls_ctx->rx.overhead_size;
1430 tls_advance_record_sn(sk, &tls_ctx->rx);
1431 ctx->decrypted = true;
1432 ctx->saved_data_ready(sk);
1433
1434 return err;
1435}
1436
1437int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1438 struct scatterlist *sgout)
c46234eb 1439{
0b243d00
VG
1440 bool zc = true;
1441 int chunk;
c46234eb 1442
692d7b5d 1443 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
c46234eb
DW
1444}
1445
1446static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1447 unsigned int len)
1448{
1449 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1450 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 1451
94524d8f
VG
1452 if (skb) {
1453 struct strp_msg *rxm = strp_msg(skb);
c46234eb 1454
94524d8f
VG
1455 if (len < rxm->full_len) {
1456 rxm->offset += len;
1457 rxm->full_len -= len;
1458 return false;
1459 }
1460 kfree_skb(skb);
c46234eb
DW
1461 }
1462
1463 /* Finished with message */
1464 ctx->recv_pkt = NULL;
7170e604 1465 __strp_unpause(&ctx->strp);
c46234eb
DW
1466
1467 return true;
1468}
1469
692d7b5d
VG
1470/* This function traverses the rx_list in tls receive context to copies the
1471 * decrypted data records into the buffer provided by caller zero copy is not
1472 * true. Further, the records are removed from the rx_list if it is not a peek
1473 * case and the record has been consumed completely.
1474 */
1475static int process_rx_list(struct tls_sw_context_rx *ctx,
1476 struct msghdr *msg,
1477 size_t skip,
1478 size_t len,
1479 bool zc,
1480 bool is_peek)
1481{
1482 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1483 ssize_t copied = 0;
1484
1485 while (skip && skb) {
1486 struct strp_msg *rxm = strp_msg(skb);
1487
1488 if (skip < rxm->full_len)
1489 break;
1490
1491 skip = skip - rxm->full_len;
1492 skb = skb_peek_next(skb, &ctx->rx_list);
1493 }
1494
1495 while (len && skb) {
1496 struct sk_buff *next_skb;
1497 struct strp_msg *rxm = strp_msg(skb);
1498 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1499
1500 if (!zc || (rxm->full_len - skip) > len) {
1501 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1502 msg, chunk);
1503 if (err < 0)
1504 return err;
1505 }
1506
1507 len = len - chunk;
1508 copied = copied + chunk;
1509
1510 /* Consume the data from record if it is non-peek case*/
1511 if (!is_peek) {
1512 rxm->offset = rxm->offset + chunk;
1513 rxm->full_len = rxm->full_len - chunk;
1514
1515 /* Return if there is unconsumed data in the record */
1516 if (rxm->full_len - skip)
1517 break;
1518 }
1519
1520 /* The remaining skip-bytes must lie in 1st record in rx_list.
1521 * So from the 2nd record, 'skip' should be 0.
1522 */
1523 skip = 0;
1524
1525 if (msg)
1526 msg->msg_flags |= MSG_EOR;
1527
1528 next_skb = skb_peek_next(skb, &ctx->rx_list);
1529
1530 if (!is_peek) {
1531 skb_unlink(skb, &ctx->rx_list);
1532 kfree_skb(skb);
1533 }
1534
1535 skb = next_skb;
1536 }
1537
1538 return copied;
1539}
1540
c46234eb
DW
1541int tls_sw_recvmsg(struct sock *sk,
1542 struct msghdr *msg,
1543 size_t len,
1544 int nonblock,
1545 int flags,
1546 int *addr_len)
1547{
1548 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1549 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3 1550 struct sk_psock *psock;
692d7b5d
VG
1551 unsigned char control = 0;
1552 ssize_t decrypted = 0;
c46234eb
DW
1553 struct strp_msg *rxm;
1554 struct sk_buff *skb;
1555 ssize_t copied = 0;
1556 bool cmsg = false;
06030dba 1557 int target, err = 0;
c46234eb 1558 long timeo;
00e23707 1559 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
692d7b5d 1560 bool is_peek = flags & MSG_PEEK;
94524d8f 1561 int num_async = 0;
c46234eb
DW
1562
1563 flags |= nonblock;
1564
1565 if (unlikely(flags & MSG_ERRQUEUE))
1566 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1567
d3b18ad3 1568 psock = sk_psock_get(sk);
c46234eb
DW
1569 lock_sock(sk);
1570
692d7b5d
VG
1571 /* Process pending decrypted records. It must be non-zero-copy */
1572 err = process_rx_list(ctx, msg, 0, len, false, is_peek);
1573 if (err < 0) {
1574 tls_err_abort(sk, err);
1575 goto end;
1576 } else {
1577 copied = err;
1578 }
1579
1580 len = len - copied;
1581 if (len) {
1582 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1583 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1584 } else {
1585 goto recv_end;
1586 }
1587
c46234eb 1588 do {
692d7b5d 1589 bool retain_skb = false;
94524d8f 1590 bool async = false;
692d7b5d
VG
1591 bool zc = false;
1592 int to_decrypt;
c46234eb
DW
1593 int chunk = 0;
1594
d3b18ad3
JF
1595 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1596 if (!skb) {
1597 if (psock) {
02c558b2
JF
1598 int ret = __tcp_bpf_recvmsg(sk, psock,
1599 msg, len, flags);
d3b18ad3
JF
1600
1601 if (ret > 0) {
692d7b5d 1602 decrypted += ret;
d3b18ad3
JF
1603 len -= ret;
1604 continue;
1605 }
1606 }
c46234eb 1607 goto recv_end;
d3b18ad3 1608 }
c46234eb
DW
1609
1610 rxm = strp_msg(skb);
94524d8f 1611
c46234eb
DW
1612 if (!cmsg) {
1613 int cerr;
1614
1615 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1616 sizeof(ctx->control), &ctx->control);
1617 cmsg = true;
1618 control = ctx->control;
1619 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1620 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1621 err = -EIO;
1622 goto recv_end;
1623 }
1624 }
1625 } else if (control != ctx->control) {
1626 goto recv_end;
1627 }
1628
692d7b5d 1629 to_decrypt = rxm->full_len - tls_ctx->rx.overhead_size;
c46234eb 1630
692d7b5d
VG
1631 if (to_decrypt <= len && !is_kvec && !is_peek)
1632 zc = true;
0b243d00 1633
692d7b5d
VG
1634 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1635 &chunk, &zc, ctx->async_capable);
1636 if (err < 0 && err != -EINPROGRESS) {
1637 tls_err_abort(sk, EBADMSG);
1638 goto recv_end;
c46234eb
DW
1639 }
1640
692d7b5d
VG
1641 if (err == -EINPROGRESS) {
1642 async = true;
1643 num_async++;
1644 goto pick_next_record;
1645 } else {
1646 if (!zc) {
1647 if (rxm->full_len > len) {
1648 retain_skb = true;
1649 chunk = len;
1650 } else {
1651 chunk = rxm->full_len;
1652 }
1653
1654 err = skb_copy_datagram_msg(skb, rxm->offset,
1655 msg, chunk);
1656 if (err < 0)
1657 goto recv_end;
94524d8f 1658
692d7b5d
VG
1659 if (!is_peek) {
1660 rxm->offset = rxm->offset + chunk;
1661 rxm->full_len = rxm->full_len - chunk;
1662 }
1663 }
c46234eb
DW
1664 }
1665
94524d8f 1666pick_next_record:
692d7b5d
VG
1667 if (chunk > len)
1668 chunk = len;
1669
1670 decrypted += chunk;
c46234eb 1671 len -= chunk;
692d7b5d
VG
1672
1673 /* For async or peek case, queue the current skb */
1674 if (async || is_peek || retain_skb) {
1675 skb_queue_tail(&ctx->rx_list, skb);
1676 skb = NULL;
1677 }
1678
1679 if (tls_sw_advance_skb(sk, skb, chunk)) {
1680 /* Return full control message to
1681 * userspace before trying to parse
1682 * another message type
50c6b58a 1683 */
692d7b5d
VG
1684 msg->msg_flags |= MSG_EOR;
1685 if (ctx->control != TLS_RECORD_TYPE_DATA)
1686 goto recv_end;
1687 } else {
50c6b58a 1688 break;
c46234eb 1689 }
94524d8f 1690
06030dba 1691 /* If we have a new message from strparser, continue now. */
692d7b5d 1692 if (decrypted >= target && !ctx->recv_pkt)
06030dba 1693 break;
c46234eb
DW
1694 } while (len);
1695
1696recv_end:
94524d8f
VG
1697 if (num_async) {
1698 /* Wait for all previously submitted records to be decrypted */
1699 smp_store_mb(ctx->async_notify, true);
1700 if (atomic_read(&ctx->decrypt_pending)) {
1701 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1702 if (err) {
1703 /* one of async decrypt failed */
1704 tls_err_abort(sk, err);
1705 copied = 0;
692d7b5d
VG
1706 decrypted = 0;
1707 goto end;
94524d8f
VG
1708 }
1709 } else {
1710 reinit_completion(&ctx->async_wait.completion);
1711 }
1712 WRITE_ONCE(ctx->async_notify, false);
692d7b5d
VG
1713
1714 /* Drain records from the rx_list & copy if required */
1715 if (is_peek || is_kvec)
1716 err = process_rx_list(ctx, msg, copied,
1717 decrypted, false, is_peek);
1718 else
1719 err = process_rx_list(ctx, msg, 0,
1720 decrypted, true, is_peek);
1721 if (err < 0) {
1722 tls_err_abort(sk, err);
1723 copied = 0;
1724 goto end;
1725 }
1726
1727 WARN_ON(decrypted != err);
94524d8f
VG
1728 }
1729
692d7b5d
VG
1730 copied += decrypted;
1731
1732end:
c46234eb 1733 release_sock(sk);
d3b18ad3
JF
1734 if (psock)
1735 sk_psock_put(sk, psock);
c46234eb
DW
1736 return copied ? : err;
1737}
1738
1739ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1740 struct pipe_inode_info *pipe,
1741 size_t len, unsigned int flags)
1742{
1743 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
f66de3ee 1744 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1745 struct strp_msg *rxm = NULL;
1746 struct sock *sk = sock->sk;
1747 struct sk_buff *skb;
1748 ssize_t copied = 0;
1749 int err = 0;
1750 long timeo;
1751 int chunk;
0b243d00 1752 bool zc = false;
c46234eb
DW
1753
1754 lock_sock(sk);
1755
1756 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1757
d3b18ad3 1758 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
c46234eb
DW
1759 if (!skb)
1760 goto splice_read_end;
1761
1762 /* splice does not support reading control messages */
1763 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1764 err = -ENOTSUPP;
1765 goto splice_read_end;
1766 }
1767
1768 if (!ctx->decrypted) {
692d7b5d 1769 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
c46234eb
DW
1770
1771 if (err < 0) {
1772 tls_err_abort(sk, EBADMSG);
1773 goto splice_read_end;
1774 }
1775 ctx->decrypted = true;
1776 }
1777 rxm = strp_msg(skb);
1778
1779 chunk = min_t(unsigned int, rxm->full_len, len);
1780 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1781 if (copied < 0)
1782 goto splice_read_end;
1783
1784 if (likely(!(flags & MSG_PEEK)))
1785 tls_sw_advance_skb(sk, skb, copied);
1786
1787splice_read_end:
1788 release_sock(sk);
1789 return copied ? : err;
1790}
1791
924ad65e 1792bool tls_sw_stream_read(const struct sock *sk)
c46234eb 1793{
c46234eb 1794 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1795 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3
JF
1796 bool ingress_empty = true;
1797 struct sk_psock *psock;
c46234eb 1798
d3b18ad3
JF
1799 rcu_read_lock();
1800 psock = sk_psock(sk);
1801 if (psock)
1802 ingress_empty = list_empty(&psock->ingress_msg);
1803 rcu_read_unlock();
c46234eb 1804
d3b18ad3 1805 return !ingress_empty || ctx->recv_pkt;
c46234eb
DW
1806}
1807
1808static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1809{
1810 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 1811 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
3463e51d 1812 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
c46234eb
DW
1813 struct strp_msg *rxm = strp_msg(skb);
1814 size_t cipher_overhead;
1815 size_t data_len = 0;
1816 int ret;
1817
1818 /* Verify that we have a full TLS header, or wait for more data */
1819 if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1820 return 0;
1821
3463e51d
KC
1822 /* Sanity-check size of on-stack buffer. */
1823 if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1824 ret = -EINVAL;
1825 goto read_failure;
1826 }
1827
c46234eb
DW
1828 /* Linearize header to local buffer */
1829 ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1830
1831 if (ret < 0)
1832 goto read_failure;
1833
1834 ctx->control = header[0];
1835
1836 data_len = ((header[4] & 0xFF) | (header[3] << 8));
1837
1838 cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1839
1840 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1841 ret = -EMSGSIZE;
1842 goto read_failure;
1843 }
1844 if (data_len < cipher_overhead) {
1845 ret = -EBADMSG;
1846 goto read_failure;
1847 }
1848
86029d10
SD
1849 if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
1850 header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
c46234eb
DW
1851 ret = -EINVAL;
1852 goto read_failure;
1853 }
1854
4799ac81
BP
1855#ifdef CONFIG_TLS_DEVICE
1856 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1857 *(u64*)tls_ctx->rx.rec_seq);
1858#endif
c46234eb
DW
1859 return data_len + TLS_HEADER_SIZE;
1860
1861read_failure:
1862 tls_err_abort(strp->sk, ret);
1863
1864 return ret;
1865}
1866
1867static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1868{
1869 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 1870 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1871
1872 ctx->decrypted = false;
1873
1874 ctx->recv_pkt = skb;
1875 strp_pause(strp);
1876
ad13acce 1877 ctx->saved_data_ready(strp->sk);
c46234eb
DW
1878}
1879
1880static void tls_data_ready(struct sock *sk)
1881{
1882 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1883 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3 1884 struct sk_psock *psock;
c46234eb
DW
1885
1886 strp_data_ready(&ctx->strp);
d3b18ad3
JF
1887
1888 psock = sk_psock_get(sk);
1889 if (psock && !list_empty(&psock->ingress_msg)) {
1890 ctx->saved_data_ready(sk);
1891 sk_psock_put(sk, psock);
1892 }
c46234eb
DW
1893}
1894
f66de3ee 1895void tls_sw_free_resources_tx(struct sock *sk)
3c4d7559
DW
1896{
1897 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8
VG
1899 struct tls_rec *rec, *tmp;
1900
1901 /* Wait for any pending async encryptions to complete */
1902 smp_store_mb(ctx->async_notify, true);
1903 if (atomic_read(&ctx->encrypt_pending))
1904 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1905
10231213 1906 release_sock(sk);
a42055e8 1907 cancel_delayed_work_sync(&ctx->tx_work.work);
10231213 1908 lock_sock(sk);
a42055e8
VG
1909
1910 /* Tx whatever records we can transmit and abandon the rest */
1911 tls_tx_records(sk, -1);
1912
9932a29a 1913 /* Free up un-sent records in tx_list. First, free
a42055e8
VG
1914 * the partially sent record if any at head of tx_list.
1915 */
1916 if (tls_ctx->partially_sent_record) {
1917 struct scatterlist *sg = tls_ctx->partially_sent_record;
1918
1919 while (1) {
1920 put_page(sg_page(sg));
1921 sk_mem_uncharge(sk, sg->length);
1922
1923 if (sg_is_last(sg))
1924 break;
1925 sg++;
1926 }
1927
1928 tls_ctx->partially_sent_record = NULL;
1929
9932a29a 1930 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
1931 struct tls_rec, list);
1932 list_del(&rec->list);
d829e9c4 1933 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
1934 kfree(rec);
1935 }
1936
9932a29a 1937 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
a42055e8 1938 list_del(&rec->list);
d829e9c4
DB
1939 sk_msg_free(sk, &rec->msg_encrypted);
1940 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
1941 kfree(rec);
1942 }
3c4d7559 1943
201876b3 1944 crypto_free_aead(ctx->aead_send);
c774973e 1945 tls_free_open_rec(sk);
f66de3ee
BP
1946
1947 kfree(ctx);
1948}
1949
39f56e1a 1950void tls_sw_release_resources_rx(struct sock *sk)
f66de3ee
BP
1951{
1952 struct tls_context *tls_ctx = tls_get_ctx(sk);
1953 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1954
c46234eb 1955 if (ctx->aead_recv) {
201876b3
VG
1956 kfree_skb(ctx->recv_pkt);
1957 ctx->recv_pkt = NULL;
692d7b5d 1958 skb_queue_purge(&ctx->rx_list);
c46234eb
DW
1959 crypto_free_aead(ctx->aead_recv);
1960 strp_stop(&ctx->strp);
1961 write_lock_bh(&sk->sk_callback_lock);
1962 sk->sk_data_ready = ctx->saved_data_ready;
1963 write_unlock_bh(&sk->sk_callback_lock);
1964 release_sock(sk);
1965 strp_done(&ctx->strp);
1966 lock_sock(sk);
1967 }
39f56e1a
BP
1968}
1969
1970void tls_sw_free_resources_rx(struct sock *sk)
1971{
1972 struct tls_context *tls_ctx = tls_get_ctx(sk);
1973 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1974
1975 tls_sw_release_resources_rx(sk);
3c4d7559 1976
3c4d7559
DW
1977 kfree(ctx);
1978}
1979
9932a29a 1980/* The work handler to transmitt the encrypted records in tx_list */
a42055e8
VG
1981static void tx_work_handler(struct work_struct *work)
1982{
1983 struct delayed_work *delayed_work = to_delayed_work(work);
1984 struct tx_work *tx_work = container_of(delayed_work,
1985 struct tx_work, work);
1986 struct sock *sk = tx_work->sk;
1987 struct tls_context *tls_ctx = tls_get_ctx(sk);
1988 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1989
1990 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
1991 return;
1992
1993 lock_sock(sk);
1994 tls_tx_records(sk, -1);
1995 release_sock(sk);
1996}
1997
c46234eb 1998int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
3c4d7559 1999{
3c4d7559
DW
2000 struct tls_crypto_info *crypto_info;
2001 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
fb99bce7 2002 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
f66de3ee
BP
2003 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2004 struct tls_sw_context_rx *sw_ctx_rx = NULL;
c46234eb
DW
2005 struct cipher_context *cctx;
2006 struct crypto_aead **aead;
2007 struct strp_callbacks cb;
3c4d7559 2008 u16 nonce_size, tag_size, iv_size, rec_seq_size;
692d7b5d 2009 struct crypto_tfm *tfm;
fb99bce7
DW
2010 char *iv, *rec_seq, *key, *salt;
2011 size_t keysize;
3c4d7559
DW
2012 int rc = 0;
2013
2014 if (!ctx) {
2015 rc = -EINVAL;
2016 goto out;
2017 }
2018
f66de3ee 2019 if (tx) {
b190a587
BP
2020 if (!ctx->priv_ctx_tx) {
2021 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2022 if (!sw_ctx_tx) {
2023 rc = -ENOMEM;
2024 goto out;
2025 }
2026 ctx->priv_ctx_tx = sw_ctx_tx;
2027 } else {
2028 sw_ctx_tx =
2029 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
c46234eb 2030 }
c46234eb 2031 } else {
b190a587
BP
2032 if (!ctx->priv_ctx_rx) {
2033 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2034 if (!sw_ctx_rx) {
2035 rc = -ENOMEM;
2036 goto out;
2037 }
2038 ctx->priv_ctx_rx = sw_ctx_rx;
2039 } else {
2040 sw_ctx_rx =
2041 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
f66de3ee 2042 }
3c4d7559
DW
2043 }
2044
c46234eb 2045 if (tx) {
b190a587 2046 crypto_init_wait(&sw_ctx_tx->async_wait);
86029d10 2047 crypto_info = &ctx->crypto_send.info;
c46234eb 2048 cctx = &ctx->tx;
f66de3ee 2049 aead = &sw_ctx_tx->aead_send;
9932a29a 2050 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
a42055e8
VG
2051 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2052 sw_ctx_tx->tx_work.sk = sk;
c46234eb 2053 } else {
b190a587 2054 crypto_init_wait(&sw_ctx_rx->async_wait);
86029d10 2055 crypto_info = &ctx->crypto_recv.info;
c46234eb 2056 cctx = &ctx->rx;
692d7b5d 2057 skb_queue_head_init(&sw_ctx_rx->rx_list);
f66de3ee 2058 aead = &sw_ctx_rx->aead_recv;
c46234eb
DW
2059 }
2060
3c4d7559
DW
2061 switch (crypto_info->cipher_type) {
2062 case TLS_CIPHER_AES_GCM_128: {
2063 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2064 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2065 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2066 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2067 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2068 rec_seq =
2069 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2070 gcm_128_info =
2071 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
fb99bce7
DW
2072 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2073 key = gcm_128_info->key;
2074 salt = gcm_128_info->salt;
2075 break;
2076 }
2077 case TLS_CIPHER_AES_GCM_256: {
2078 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2079 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2080 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2081 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2082 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2083 rec_seq =
2084 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2085 gcm_256_info =
2086 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2087 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2088 key = gcm_256_info->key;
2089 salt = gcm_256_info->salt;
3c4d7559
DW
2090 break;
2091 }
2092 default:
2093 rc = -EINVAL;
cf6d43ef 2094 goto free_priv;
3c4d7559
DW
2095 }
2096
b16520f7 2097 /* Sanity-check the IV size for stack allocations. */
3463e51d 2098 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
b16520f7
KC
2099 rc = -EINVAL;
2100 goto free_priv;
2101 }
2102
a2ef9b6a 2103 cctx->aad_size = TLS_AAD_SPACE_SIZE;
c46234eb
DW
2104 cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
2105 cctx->tag_size = tag_size;
2106 cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
2107 cctx->iv_size = iv_size;
2108 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
2109 GFP_KERNEL);
2110 if (!cctx->iv) {
3c4d7559 2111 rc = -ENOMEM;
cf6d43ef 2112 goto free_priv;
3c4d7559 2113 }
fb99bce7
DW
2114 /* Note: 128 & 256 bit salt are the same size */
2115 memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
c46234eb
DW
2116 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
2117 cctx->rec_seq_size = rec_seq_size;
969d5090 2118 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
c46234eb 2119 if (!cctx->rec_seq) {
3c4d7559
DW
2120 rc = -ENOMEM;
2121 goto free_iv;
2122 }
c46234eb 2123
c46234eb
DW
2124 if (!*aead) {
2125 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
2126 if (IS_ERR(*aead)) {
2127 rc = PTR_ERR(*aead);
2128 *aead = NULL;
3c4d7559
DW
2129 goto free_rec_seq;
2130 }
2131 }
2132
2133 ctx->push_pending_record = tls_sw_push_pending_record;
2134
fb99bce7
DW
2135 rc = crypto_aead_setkey(*aead, key, keysize);
2136
3c4d7559
DW
2137 if (rc)
2138 goto free_aead;
2139
c46234eb
DW
2140 rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
2141 if (rc)
2142 goto free_aead;
2143
f66de3ee 2144 if (sw_ctx_rx) {
692d7b5d
VG
2145 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2146 sw_ctx_rx->async_capable =
2147 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2148
c46234eb
DW
2149 /* Set up strparser */
2150 memset(&cb, 0, sizeof(cb));
2151 cb.rcv_msg = tls_queue;
2152 cb.parse_msg = tls_read_size;
2153
f66de3ee 2154 strp_init(&sw_ctx_rx->strp, sk, &cb);
c46234eb
DW
2155
2156 write_lock_bh(&sk->sk_callback_lock);
f66de3ee 2157 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
c46234eb
DW
2158 sk->sk_data_ready = tls_data_ready;
2159 write_unlock_bh(&sk->sk_callback_lock);
2160
f66de3ee 2161 strp_check_rcv(&sw_ctx_rx->strp);
c46234eb
DW
2162 }
2163
2164 goto out;
3c4d7559
DW
2165
2166free_aead:
c46234eb
DW
2167 crypto_free_aead(*aead);
2168 *aead = NULL;
3c4d7559 2169free_rec_seq:
c46234eb
DW
2170 kfree(cctx->rec_seq);
2171 cctx->rec_seq = NULL;
3c4d7559 2172free_iv:
f66de3ee
BP
2173 kfree(cctx->iv);
2174 cctx->iv = NULL;
cf6d43ef 2175free_priv:
f66de3ee
BP
2176 if (tx) {
2177 kfree(ctx->priv_ctx_tx);
2178 ctx->priv_ctx_tx = NULL;
2179 } else {
2180 kfree(ctx->priv_ctx_rx);
2181 ctx->priv_ctx_rx = NULL;
2182 }
3c4d7559
DW
2183out:
2184 return rc;
2185}