Linux 6.5-rc3
[linux-block.git] / net / tls / tls_sw.c
CommitLineData
3c4d7559
DW
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
d3b18ad3 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
3c4d7559
DW
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
da353fac 38#include <linux/bug.h>
c46234eb 39#include <linux/sched/signal.h>
3c4d7559 40#include <linux/module.h>
8d338c76 41#include <linux/kernel.h>
974271e5 42#include <linux/splice.h>
3c4d7559
DW
43#include <crypto/aead.h>
44
c46234eb 45#include <net/strparser.h>
3c4d7559 46#include <net/tls.h>
40e0b090 47#include <trace/events/sock.h>
3c4d7559 48
58790314
JK
49#include "tls.h"
50
4175eac3 51struct tls_decrypt_arg {
6bd116c8 52 struct_group(inargs,
4175eac3
JK
53 bool zc;
54 bool async;
ce61327c 55 u8 tail;
6bd116c8
JK
56 );
57
58 struct sk_buff *skb;
4175eac3
JK
59};
60
b89fec54 61struct tls_decrypt_ctx {
8d338c76 62 struct sock *sk;
b89fec54
JK
63 u8 iv[MAX_IV_SIZE];
64 u8 aad[TLS_MAX_AAD_SIZE];
65 u8 tail;
66 struct scatterlist sg[];
67};
68
da353fac
DJ
69noinline void tls_err_abort(struct sock *sk, int err)
70{
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
8a0d57df
JK
73 WRITE_ONCE(sk->sk_err, -err);
74 /* Paired with smp_rmb() in tcp_poll() */
75 smp_wmb();
da353fac
DJ
76 sk_error_report(sk);
77}
78
0927f71d
DRK
79static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80 unsigned int recursion_level)
81{
82 int start = skb_headlen(skb);
83 int i, chunk = start - offset;
84 struct sk_buff *frag_iter;
85 int elt = 0;
86
87 if (unlikely(recursion_level >= 24))
88 return -EMSGSIZE;
89
90 if (chunk > 0) {
91 if (chunk > len)
92 chunk = len;
93 elt++;
94 len -= chunk;
95 if (len == 0)
96 return elt;
97 offset += chunk;
98 }
99
100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101 int end;
102
103 WARN_ON(start > offset + len);
104
105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106 chunk = end - offset;
107 if (chunk > 0) {
108 if (chunk > len)
109 chunk = len;
110 elt++;
111 len -= chunk;
112 if (len == 0)
113 return elt;
114 offset += chunk;
115 }
116 start = end;
117 }
118
119 if (unlikely(skb_has_frag_list(skb))) {
120 skb_walk_frags(skb, frag_iter) {
121 int end, ret;
122
123 WARN_ON(start > offset + len);
124
125 end = start + frag_iter->len;
126 chunk = end - offset;
127 if (chunk > 0) {
128 if (chunk > len)
129 chunk = len;
130 ret = __skb_nsg(frag_iter, offset - start, chunk,
131 recursion_level + 1);
132 if (unlikely(ret < 0))
133 return ret;
134 elt += ret;
135 len -= chunk;
136 if (len == 0)
137 return elt;
138 offset += chunk;
139 }
140 start = end;
141 }
142 }
143 BUG_ON(len);
144 return elt;
145}
146
147/* Return the number of scatterlist elements required to completely map the
148 * skb, or -EMSGSIZE if the recursion depth is exceeded.
149 */
150static int skb_nsg(struct sk_buff *skb, int offset, int len)
151{
152 return __skb_nsg(skb, offset, len, 0);
153}
154
ce61327c
JK
155static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 struct tls_decrypt_arg *darg)
130b392c
DW
157{
158 struct strp_msg *rxm = strp_msg(skb);
c3f6bb74 159 struct tls_msg *tlm = tls_msg(skb);
130b392c
DW
160 int sub = 0;
161
162 /* Determine zero-padding length */
b53f4976 163 if (prot->version == TLS_1_3_VERSION) {
5deee41b 164 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
ce61327c 165 char content_type = darg->zc ? darg->tail : 0;
130b392c 166 int err;
130b392c
DW
167
168 while (content_type == 0) {
5deee41b 169 if (offset < prot->prepend_size)
130b392c 170 return -EBADMSG;
5deee41b 171 err = skb_copy_bits(skb, rxm->offset + offset,
130b392c 172 &content_type, 1);
b53f4976
JK
173 if (err)
174 return err;
130b392c
DW
175 if (content_type)
176 break;
177 sub++;
5deee41b 178 offset--;
130b392c 179 }
c3f6bb74 180 tlm->control = content_type;
130b392c
DW
181 }
182 return sub;
183}
184
8580e55a 185static void tls_decrypt_done(void *data, int err)
94524d8f 186{
8580e55a 187 struct aead_request *aead_req = data;
8d338c76 188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
94524d8f 189 struct scatterlist *sgout = aead_req->dst;
692d7b5d 190 struct scatterlist *sgin = aead_req->src;
7a3dd8c8 191 struct tls_sw_context_rx *ctx;
8d338c76 192 struct tls_decrypt_ctx *dctx;
7a3dd8c8 193 struct tls_context *tls_ctx;
94524d8f
VG
194 struct scatterlist *sg;
195 unsigned int pages;
6ececdc5 196 struct sock *sk;
8d338c76
HX
197 int aead_size;
198
199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 dctx = (void *)((u8 *)aead_req + aead_size);
7a3dd8c8 202
8d338c76 203 sk = dctx->sk;
6ececdc5 204 tls_ctx = tls_get_ctx(sk);
7a3dd8c8 205 ctx = tls_sw_ctx_rx(tls_ctx);
94524d8f
VG
206
207 /* Propagate if there was an err */
208 if (err) {
5c5ec668 209 if (err == -EBADMSG)
6ececdc5 210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
94524d8f 211 ctx->async_wait.err = err;
6ececdc5 212 tls_err_abort(sk, err);
94524d8f
VG
213 }
214
692d7b5d
VG
215 /* Free the destination pages if skb was not decrypted inplace */
216 if (sgout != sgin) {
217 /* Skip the first S/G entry as it points to AAD */
218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219 if (!sg)
220 break;
221 put_page(sg_page(sg));
222 }
94524d8f
VG
223 }
224
225 kfree(aead_req);
226
0cada332 227 spin_lock_bh(&ctx->decrypt_compl_lock);
37943f04 228 if (!atomic_dec_return(&ctx->decrypt_pending))
94524d8f 229 complete(&ctx->async_wait.completion);
0cada332 230 spin_unlock_bh(&ctx->decrypt_compl_lock);
94524d8f
VG
231}
232
c46234eb
DW
233static int tls_do_decryption(struct sock *sk,
234 struct scatterlist *sgin,
235 struct scatterlist *sgout,
236 char *iv_recv,
237 size_t data_len,
94524d8f 238 struct aead_request *aead_req,
3547a1f9 239 struct tls_decrypt_arg *darg)
c46234eb
DW
240{
241 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 242 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 244 int ret;
c46234eb 245
0b243d00 246 aead_request_set_tfm(aead_req, ctx->aead_recv);
4509de14 247 aead_request_set_ad(aead_req, prot->aad_size);
c46234eb 248 aead_request_set_crypt(aead_req, sgin, sgout,
4509de14 249 data_len + prot->tag_size,
c46234eb 250 (u8 *)iv_recv);
c46234eb 251
3547a1f9 252 if (darg->async) {
94524d8f
VG
253 aead_request_set_callback(aead_req,
254 CRYPTO_TFM_REQ_MAY_BACKLOG,
8d338c76 255 tls_decrypt_done, aead_req);
94524d8f
VG
256 atomic_inc(&ctx->decrypt_pending);
257 } else {
258 aead_request_set_callback(aead_req,
259 CRYPTO_TFM_REQ_MAY_BACKLOG,
260 crypto_req_done, &ctx->async_wait);
261 }
262
263 ret = crypto_aead_decrypt(aead_req);
264 if (ret == -EINPROGRESS) {
3547a1f9
JK
265 if (darg->async)
266 return 0;
94524d8f
VG
267
268 ret = crypto_wait_req(ret, &ctx->async_wait);
269 }
3547a1f9
JK
270 darg->async = false;
271
c46234eb
DW
272 return ret;
273}
274
d829e9c4 275static void tls_trim_both_msgs(struct sock *sk, int target_size)
3c4d7559
DW
276{
277 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 278 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 280 struct tls_rec *rec = ctx->open_rec;
3c4d7559 281
d829e9c4 282 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
3c4d7559 283 if (target_size > 0)
4509de14 284 target_size += prot->overhead_size;
d829e9c4 285 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
3c4d7559
DW
286}
287
d829e9c4 288static int tls_alloc_encrypted_msg(struct sock *sk, int len)
3c4d7559
DW
289{
290 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 292 struct tls_rec *rec = ctx->open_rec;
d829e9c4 293 struct sk_msg *msg_en = &rec->msg_encrypted;
3c4d7559 294
d829e9c4 295 return sk_msg_alloc(sk, msg_en, len, 0);
3c4d7559
DW
296}
297
d829e9c4 298static int tls_clone_plaintext_msg(struct sock *sk, int required)
3c4d7559
DW
299{
300 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 301 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 303 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
304 struct sk_msg *msg_pl = &rec->msg_plaintext;
305 struct sk_msg *msg_en = &rec->msg_encrypted;
4e6d4720 306 int skip, len;
3c4d7559 307
d829e9c4
DB
308 /* We add page references worth len bytes from encrypted sg
309 * at the end of plaintext sg. It is guaranteed that msg_en
4e6d4720
VG
310 * has enough required room (ensured by caller).
311 */
d829e9c4 312 len = required - msg_pl->sg.size;
52ea992c 313
d829e9c4
DB
314 /* Skip initial bytes in msg_en's data to be able to use
315 * same offset of both plain and encrypted data.
4e6d4720 316 */
4509de14 317 skip = prot->prepend_size + msg_pl->sg.size;
4e6d4720 318
d829e9c4 319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
3c4d7559
DW
320}
321
d3b18ad3 322static struct tls_rec *tls_get_rec(struct sock *sk)
3c4d7559
DW
323{
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 325 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
327 struct sk_msg *msg_pl, *msg_en;
328 struct tls_rec *rec;
329 int mem_size;
3c4d7559 330
d3b18ad3
JF
331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332
333 rec = kzalloc(mem_size, sk->sk_allocation);
a42055e8 334 if (!rec)
d3b18ad3
JF
335 return NULL;
336
337 msg_pl = &rec->msg_plaintext;
338 msg_en = &rec->msg_encrypted;
339
340 sk_msg_init(msg_pl);
341 sk_msg_init(msg_en);
342
343 sg_init_table(rec->sg_aead_in, 2);
4509de14 344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
345 sg_unmark_end(&rec->sg_aead_in[1]);
346
347 sg_init_table(rec->sg_aead_out, 2);
4509de14 348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
349 sg_unmark_end(&rec->sg_aead_out[1]);
350
8d338c76
HX
351 rec->sk = sk;
352
d3b18ad3
JF
353 return rec;
354}
a42055e8 355
d3b18ad3
JF
356static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357{
d829e9c4
DB
358 sk_msg_free(sk, &rec->msg_encrypted);
359 sk_msg_free(sk, &rec->msg_plaintext);
c774973e 360 kfree(rec);
a42055e8
VG
361}
362
d3b18ad3
JF
363static void tls_free_open_rec(struct sock *sk)
364{
365 struct tls_context *tls_ctx = tls_get_ctx(sk);
366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 struct tls_rec *rec = ctx->open_rec;
368
369 if (rec) {
370 tls_free_rec(sk, rec);
371 ctx->open_rec = NULL;
372 }
373}
374
a42055e8
VG
375int tls_tx_records(struct sock *sk, int flags)
376{
377 struct tls_context *tls_ctx = tls_get_ctx(sk);
378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 struct tls_rec *rec, *tmp;
d829e9c4 380 struct sk_msg *msg_en;
a42055e8
VG
381 int tx_flags, rc = 0;
382
383 if (tls_is_partially_sent_record(tls_ctx)) {
9932a29a 384 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
385 struct tls_rec, list);
386
387 if (flags == -1)
388 tx_flags = rec->tx_flags;
389 else
390 tx_flags = flags;
391
392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393 if (rc)
394 goto tx_err;
395
396 /* Full record has been transmitted.
9932a29a 397 * Remove the head of tx_list
a42055e8 398 */
a42055e8 399 list_del(&rec->list);
d829e9c4 400 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
401 kfree(rec);
402 }
403
9932a29a
VG
404 /* Tx all ready records */
405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 if (READ_ONCE(rec->tx_ready)) {
a42055e8
VG
407 if (flags == -1)
408 tx_flags = rec->tx_flags;
409 else
410 tx_flags = flags;
411
d829e9c4 412 msg_en = &rec->msg_encrypted;
a42055e8 413 rc = tls_push_sg(sk, tls_ctx,
d829e9c4 414 &msg_en->sg.data[msg_en->sg.curr],
a42055e8
VG
415 0, tx_flags);
416 if (rc)
417 goto tx_err;
418
a42055e8 419 list_del(&rec->list);
d829e9c4 420 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
421 kfree(rec);
422 } else {
423 break;
424 }
425 }
426
427tx_err:
428 if (rc < 0 && rc != -EAGAIN)
da353fac 429 tls_err_abort(sk, -EBADMSG);
a42055e8
VG
430
431 return rc;
432}
433
8580e55a 434static void tls_encrypt_done(void *data, int err)
a42055e8 435{
8d338c76
HX
436 struct tls_sw_context_tx *ctx;
437 struct tls_context *tls_ctx;
438 struct tls_prot_info *prot;
d3777cea 439 struct tls_rec *rec = data;
d829e9c4
DB
440 struct scatterlist *sge;
441 struct sk_msg *msg_en;
a42055e8 442 bool ready = false;
8d338c76 443 struct sock *sk;
a42055e8
VG
444 int pending;
445
d829e9c4 446 msg_en = &rec->msg_encrypted;
a42055e8 447
8d338c76
HX
448 sk = rec->sk;
449 tls_ctx = tls_get_ctx(sk);
450 prot = &tls_ctx->prot_info;
451 ctx = tls_sw_ctx_tx(tls_ctx);
452
d829e9c4 453 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
4509de14
VG
454 sge->offset -= prot->prepend_size;
455 sge->length += prot->prepend_size;
a42055e8 456
80ece6a0 457 /* Check if error is previously set on socket */
a42055e8 458 if (err || sk->sk_err) {
a42055e8
VG
459 rec = NULL;
460
461 /* If err is already set on socket, return the same code */
462 if (sk->sk_err) {
1d9d6fd2 463 ctx->async_wait.err = -sk->sk_err;
a42055e8
VG
464 } else {
465 ctx->async_wait.err = err;
466 tls_err_abort(sk, err);
467 }
468 }
469
9932a29a
VG
470 if (rec) {
471 struct tls_rec *first_rec;
472
473 /* Mark the record as ready for transmission */
474 smp_store_mb(rec->tx_ready, true);
475
476 /* If received record is at head of tx_list, schedule tx */
477 first_rec = list_first_entry(&ctx->tx_list,
478 struct tls_rec, list);
479 if (rec == first_rec)
480 ready = true;
481 }
a42055e8 482
0cada332 483 spin_lock_bh(&ctx->encrypt_compl_lock);
a42055e8
VG
484 pending = atomic_dec_return(&ctx->encrypt_pending);
485
0cada332 486 if (!pending && ctx->async_notify)
a42055e8 487 complete(&ctx->async_wait.completion);
0cada332 488 spin_unlock_bh(&ctx->encrypt_compl_lock);
a42055e8
VG
489
490 if (!ready)
491 return;
492
493 /* Schedule the transmission */
494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
d829e9c4 495 schedule_delayed_work(&ctx->tx_work.work, 1);
3c4d7559
DW
496}
497
a42055e8
VG
498static int tls_do_encryption(struct sock *sk,
499 struct tls_context *tls_ctx,
a447da7d
DB
500 struct tls_sw_context_tx *ctx,
501 struct aead_request *aead_req,
d829e9c4 502 size_t data_len, u32 start)
3c4d7559 503{
4509de14 504 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 505 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
506 struct sk_msg *msg_en = &rec->msg_encrypted;
507 struct scatterlist *sge = sk_msg_elem(msg_en, start);
f295b3ae
VG
508 int rc, iv_offset = 0;
509
510 /* For CCM based ciphers, first byte of IV is a constant */
128cfb88
TZ
511 switch (prot->cipher_type) {
512 case TLS_CIPHER_AES_CCM_128:
f295b3ae
VG
513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514 iv_offset = 1;
128cfb88
TZ
515 break;
516 case TLS_CIPHER_SM4_CCM:
517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518 iv_offset = 1;
519 break;
f295b3ae
VG
520 }
521
522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 prot->iv_size + prot->salt_size);
3c4d7559 524
58790314
JK
525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 tls_ctx->tx.rec_seq);
32eb67b9 527
4509de14
VG
528 sge->offset += prot->prepend_size;
529 sge->length -= prot->prepend_size;
3c4d7559 530
d829e9c4 531 msg_en->sg.curr = start;
4e6d4720 532
3c4d7559 533 aead_request_set_tfm(aead_req, ctx->aead_send);
4509de14 534 aead_request_set_ad(aead_req, prot->aad_size);
d829e9c4
DB
535 aead_request_set_crypt(aead_req, rec->sg_aead_in,
536 rec->sg_aead_out,
32eb67b9 537 data_len, rec->iv_data);
a54667f6
VG
538
539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
d3777cea 540 tls_encrypt_done, rec);
a42055e8 541
9932a29a
VG
542 /* Add the record in tx_list */
543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
a42055e8 544 atomic_inc(&ctx->encrypt_pending);
a54667f6 545
a42055e8
VG
546 rc = crypto_aead_encrypt(aead_req);
547 if (!rc || rc != -EINPROGRESS) {
548 atomic_dec(&ctx->encrypt_pending);
4509de14
VG
549 sge->offset -= prot->prepend_size;
550 sge->length += prot->prepend_size;
a42055e8 551 }
3c4d7559 552
9932a29a
VG
553 if (!rc) {
554 WRITE_ONCE(rec->tx_ready, true);
555 } else if (rc != -EINPROGRESS) {
556 list_del(&rec->list);
a42055e8 557 return rc;
9932a29a 558 }
3c4d7559 559
a42055e8
VG
560 /* Unhook the record from context if encryption is not failure */
561 ctx->open_rec = NULL;
fb0f886f 562 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
3c4d7559
DW
563 return rc;
564}
565
d3b18ad3
JF
566static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 struct tls_rec **to, struct sk_msg *msg_opl,
568 struct sk_msg *msg_oen, u32 split_point,
569 u32 tx_overhead_size, u32 *orig_end)
570{
571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 struct scatterlist *sge, *osge, *nsge;
573 u32 orig_size = msg_opl->sg.size;
574 struct scatterlist tmp = { };
575 struct sk_msg *msg_npl;
576 struct tls_rec *new;
577 int ret;
578
579 new = tls_get_rec(sk);
580 if (!new)
581 return -ENOMEM;
582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 tx_overhead_size, 0);
584 if (ret < 0) {
585 tls_free_rec(sk, new);
586 return ret;
587 }
588
589 *orig_end = msg_opl->sg.end;
590 i = msg_opl->sg.start;
591 sge = sk_msg_elem(msg_opl, i);
592 while (apply && sge->length) {
593 if (sge->length > apply) {
594 u32 len = sge->length - apply;
595
596 get_page(sg_page(sge));
597 sg_set_page(&tmp, sg_page(sge), len,
598 sge->offset + apply);
599 sge->length = apply;
600 bytes += apply;
601 apply = 0;
602 } else {
603 apply -= sge->length;
604 bytes += sge->length;
605 }
606
607 sk_msg_iter_var_next(i);
608 if (i == msg_opl->sg.end)
609 break;
610 sge = sk_msg_elem(msg_opl, i);
611 }
612
613 msg_opl->sg.end = i;
614 msg_opl->sg.curr = i;
615 msg_opl->sg.copybreak = 0;
616 msg_opl->apply_bytes = 0;
617 msg_opl->sg.size = bytes;
618
619 msg_npl = &new->msg_plaintext;
620 msg_npl->apply_bytes = apply;
621 msg_npl->sg.size = orig_size - bytes;
622
623 j = msg_npl->sg.start;
624 nsge = sk_msg_elem(msg_npl, j);
625 if (tmp.length) {
626 memcpy(nsge, &tmp, sizeof(*nsge));
627 sk_msg_iter_var_next(j);
628 nsge = sk_msg_elem(msg_npl, j);
629 }
630
631 osge = sk_msg_elem(msg_opl, i);
632 while (osge->length) {
633 memcpy(nsge, osge, sizeof(*nsge));
634 sg_unmark_end(nsge);
635 sk_msg_iter_var_next(i);
636 sk_msg_iter_var_next(j);
637 if (i == *orig_end)
638 break;
639 osge = sk_msg_elem(msg_opl, i);
640 nsge = sk_msg_elem(msg_npl, j);
641 }
642
643 msg_npl->sg.end = j;
644 msg_npl->sg.curr = j;
645 msg_npl->sg.copybreak = 0;
646
647 *to = new;
648 return 0;
649}
650
651static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 struct tls_rec *from, u32 orig_end)
653{
654 struct sk_msg *msg_npl = &from->msg_plaintext;
655 struct sk_msg *msg_opl = &to->msg_plaintext;
656 struct scatterlist *osge, *nsge;
657 u32 i, j;
658
659 i = msg_opl->sg.end;
660 sk_msg_iter_var_prev(i);
661 j = msg_npl->sg.start;
662
663 osge = sk_msg_elem(msg_opl, i);
664 nsge = sk_msg_elem(msg_npl, j);
665
666 if (sg_page(osge) == sg_page(nsge) &&
667 osge->offset + osge->length == nsge->offset) {
668 osge->length += nsge->length;
669 put_page(sg_page(nsge));
670 }
671
672 msg_opl->sg.end = orig_end;
673 msg_opl->sg.curr = orig_end;
674 msg_opl->sg.copybreak = 0;
675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 msg_opl->sg.size += msg_npl->sg.size;
677
678 sk_msg_free(sk, &to->msg_encrypted);
679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680
681 kfree(from);
682}
683
3c4d7559
DW
684static int tls_push_record(struct sock *sk, int flags,
685 unsigned char record_type)
686{
687 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 688 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3 690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
3f649ab7 691 u32 i, split_point, orig_end;
d829e9c4 692 struct sk_msg *msg_pl, *msg_en;
a447da7d 693 struct aead_request *req;
d3b18ad3 694 bool split;
3c4d7559
DW
695 int rc;
696
a42055e8
VG
697 if (!rec)
698 return 0;
a447da7d 699
d829e9c4
DB
700 msg_pl = &rec->msg_plaintext;
701 msg_en = &rec->msg_encrypted;
702
d3b18ad3
JF
703 split_point = msg_pl->apply_bytes;
704 split = split_point && split_point < msg_pl->sg.size;
d468e477
JF
705 if (unlikely((!split &&
706 msg_pl->sg.size +
707 prot->overhead_size > msg_en->sg.size) ||
708 (split &&
709 split_point +
710 prot->overhead_size > msg_en->sg.size))) {
711 split = true;
712 split_point = msg_en->sg.size;
713 }
d3b18ad3
JF
714 if (split) {
715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
4509de14 716 split_point, prot->overhead_size,
d3b18ad3
JF
717 &orig_end);
718 if (rc < 0)
719 return rc;
d468e477
JF
720 /* This can happen if above tls_split_open_record allocates
721 * a single large encryption buffer instead of two smaller
722 * ones. In this case adjust pointers and continue without
723 * split.
724 */
725 if (!msg_pl->sg.size) {
726 tls_merge_open_record(sk, rec, tmp, orig_end);
727 msg_pl = &rec->msg_plaintext;
728 msg_en = &rec->msg_encrypted;
729 split = false;
730 }
d3b18ad3 731 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
4509de14 732 prot->overhead_size);
d3b18ad3
JF
733 }
734
a42055e8
VG
735 rec->tx_flags = flags;
736 req = &rec->aead_req;
3c4d7559 737
d829e9c4
DB
738 i = msg_pl->sg.end;
739 sk_msg_iter_var_prev(i);
130b392c
DW
740
741 rec->content_type = record_type;
4509de14 742 if (prot->version == TLS_1_3_VERSION) {
130b392c
DW
743 /* Add content type to end of message. No padding added */
744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 sg_mark_end(&rec->sg_content_type);
746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 &rec->sg_content_type);
748 } else {
749 sg_mark_end(sk_msg_elem(msg_pl, i));
750 }
a42055e8 751
9aaaa568
JF
752 if (msg_pl->sg.end < msg_pl->sg.start) {
753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755 msg_pl->sg.data);
756 }
757
d829e9c4 758 i = msg_pl->sg.start;
9e5ffed3 759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
d829e9c4
DB
760
761 i = msg_en->sg.end;
762 sk_msg_iter_var_prev(i);
763 sg_mark_end(sk_msg_elem(msg_en, i));
764
765 i = msg_en->sg.start;
766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767
4509de14 768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
6942a284 769 tls_ctx->tx.rec_seq, record_type, prot);
3c4d7559
DW
770
771 tls_fill_prepend(tls_ctx,
d829e9c4 772 page_address(sg_page(&msg_en->sg.data[i])) +
130b392c 773 msg_en->sg.data[i].offset,
4509de14 774 msg_pl->sg.size + prot->tail_size,
6942a284 775 record_type);
3c4d7559 776
d829e9c4 777 tls_ctx->pending_open_record_frags = false;
3c4d7559 778
130b392c 779 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
4509de14 780 msg_pl->sg.size + prot->tail_size, i);
a42055e8 781 if (rc < 0) {
d3b18ad3 782 if (rc != -EINPROGRESS) {
da353fac 783 tls_err_abort(sk, -EBADMSG);
d3b18ad3
JF
784 if (split) {
785 tls_ctx->pending_open_record_frags = true;
786 tls_merge_open_record(sk, rec, tmp, orig_end);
787 }
788 }
5b053e12 789 ctx->async_capable = 1;
a42055e8 790 return rc;
d3b18ad3
JF
791 } else if (split) {
792 msg_pl = &tmp->msg_plaintext;
793 msg_en = &tmp->msg_encrypted;
4509de14 794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
d3b18ad3
JF
795 tls_ctx->pending_open_record_frags = true;
796 ctx->open_rec = tmp;
a42055e8 797 }
3c4d7559 798
9932a29a 799 return tls_tx_records(sk, flags);
3c4d7559
DW
800}
801
d3b18ad3
JF
802static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 bool full_record, u8 record_type,
a7bff11f 804 ssize_t *copied, int flags)
3c4d7559
DW
805{
806 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
808 struct sk_msg msg_redir = { };
809 struct sk_psock *psock;
810 struct sock *sk_redir;
a42055e8 811 struct tls_rec *rec;
a351d608 812 bool enospc, policy, redir_ingress;
d3b18ad3 813 int err = 0, send;
7246d8ed 814 u32 delta = 0;
d3b18ad3 815
0608c69c 816 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
d3b18ad3 817 psock = sk_psock_get(sk);
d10523d0
JK
818 if (!psock || !policy) {
819 err = tls_push_record(sk, flags, record_type);
635d9398 820 if (err && sk->sk_err == EBADMSG) {
d10523d0
JK
821 *copied -= sk_msg_free(sk, msg);
822 tls_free_open_rec(sk);
635d9398 823 err = -sk->sk_err;
d10523d0 824 }
095f5614
XY
825 if (psock)
826 sk_psock_put(sk, psock);
d10523d0
JK
827 return err;
828 }
d3b18ad3
JF
829more_data:
830 enospc = sk_msg_full(msg);
7246d8ed
JF
831 if (psock->eval == __SK_NONE) {
832 delta = msg->sg.size;
d3b18ad3 833 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
7361d448 834 delta -= msg->sg.size;
7246d8ed 835 }
d3b18ad3
JF
836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 !enospc && !full_record) {
838 err = -ENOSPC;
839 goto out_err;
840 }
841 msg->cork_bytes = 0;
842 send = msg->sg.size;
843 if (msg->apply_bytes && msg->apply_bytes < send)
844 send = msg->apply_bytes;
845
846 switch (psock->eval) {
847 case __SK_PASS:
848 err = tls_push_record(sk, flags, record_type);
635d9398 849 if (err && sk->sk_err == EBADMSG) {
d3b18ad3
JF
850 *copied -= sk_msg_free(sk, msg);
851 tls_free_open_rec(sk);
635d9398 852 err = -sk->sk_err;
d3b18ad3
JF
853 goto out_err;
854 }
855 break;
856 case __SK_REDIRECT:
a351d608 857 redir_ingress = psock->redir_ingress;
d3b18ad3
JF
858 sk_redir = psock->sk_redir;
859 memcpy(&msg_redir, msg, sizeof(*msg));
860 if (msg->apply_bytes < send)
861 msg->apply_bytes = 0;
862 else
863 msg->apply_bytes -= send;
864 sk_msg_return_zero(sk, msg, send);
865 msg->sg.size -= send;
866 release_sock(sk);
a351d608
PY
867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 &msg_redir, send, flags);
d3b18ad3
JF
869 lock_sock(sk);
870 if (err < 0) {
871 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
872 msg->sg.size = 0;
873 }
874 if (msg->sg.size == 0)
875 tls_free_open_rec(sk);
876 break;
877 case __SK_DROP:
878 default:
879 sk_msg_free_partial(sk, msg, send);
880 if (msg->apply_bytes < send)
881 msg->apply_bytes = 0;
882 else
883 msg->apply_bytes -= send;
884 if (msg->sg.size == 0)
885 tls_free_open_rec(sk);
7246d8ed 886 *copied -= (send + delta);
d3b18ad3
JF
887 err = -EACCES;
888 }
a42055e8 889
d3b18ad3
JF
890 if (likely(!err)) {
891 bool reset_eval = !ctx->open_rec;
a42055e8 892
d3b18ad3
JF
893 rec = ctx->open_rec;
894 if (rec) {
895 msg = &rec->msg_plaintext;
896 if (!msg->apply_bytes)
897 reset_eval = true;
898 }
899 if (reset_eval) {
900 psock->eval = __SK_NONE;
901 if (psock->sk_redir) {
902 sock_put(psock->sk_redir);
903 psock->sk_redir = NULL;
904 }
905 }
906 if (rec)
907 goto more_data;
908 }
909 out_err:
910 sk_psock_put(sk, psock);
911 return err;
912}
913
914static int tls_sw_push_pending_record(struct sock *sk, int flags)
915{
916 struct tls_context *tls_ctx = tls_get_ctx(sk);
917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 struct tls_rec *rec = ctx->open_rec;
919 struct sk_msg *msg_pl;
920 size_t copied;
a42055e8 921
a42055e8 922 if (!rec)
d3b18ad3 923 return 0;
a42055e8 924
d829e9c4 925 msg_pl = &rec->msg_plaintext;
d3b18ad3
JF
926 copied = msg_pl->sg.size;
927 if (!copied)
928 return 0;
a42055e8 929
d3b18ad3
JF
930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931 &copied, flags);
a42055e8
VG
932}
933
fe1e81d4
DH
934static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935 struct sk_msg *msg_pl, size_t try_to_copy,
936 ssize_t *copied)
937{
938 struct page *page = NULL, **pages = &page;
939
940 do {
941 ssize_t part;
942 size_t off;
943
944 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945 try_to_copy, 1, 0, &off);
946 if (part <= 0)
947 return part ?: -EIO;
948
949 if (WARN_ON_ONCE(!sendpage_ok(page))) {
950 iov_iter_revert(&msg->msg_iter, part);
951 return -EIO;
952 }
953
954 sk_msg_page_add(msg_pl, page, part, off);
955 sk_mem_charge(sk, part);
956 *copied += part;
957 try_to_copy -= part;
958 } while (try_to_copy && !sk_msg_full(msg_pl));
959
960 return 0;
961}
962
45e5be84
DH
963static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
964 size_t size)
a42055e8 965{
3c4d7559 966 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
a42055e8 967 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 968 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 969 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
5b053e12 970 bool async_capable = ctx->async_capable;
a42055e8 971 unsigned char record_type = TLS_RECORD_TYPE_DATA;
00e23707 972 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
3c4d7559 973 bool eor = !(msg->msg_flags & MSG_MORE);
a7bff11f
VF
974 size_t try_to_copy;
975 ssize_t copied = 0;
d829e9c4 976 struct sk_msg *msg_pl, *msg_en;
a42055e8
VG
977 struct tls_rec *rec;
978 int required_size;
979 int num_async = 0;
3c4d7559 980 bool full_record;
a42055e8
VG
981 int record_room;
982 int num_zc = 0;
3c4d7559 983 int orig_size;
4128c0cf 984 int ret = 0;
0cada332 985 int pending;
3c4d7559 986
3c4d7559 987 if (unlikely(msg->msg_controllen)) {
58790314 988 ret = tls_process_cmsg(sk, msg, &record_type);
a42055e8
VG
989 if (ret) {
990 if (ret == -EINPROGRESS)
991 num_async++;
992 else if (ret != -EAGAIN)
993 goto send_end;
994 }
3c4d7559
DW
995 }
996
997 while (msg_data_left(msg)) {
998 if (sk->sk_err) {
30be8f8d 999 ret = -sk->sk_err;
3c4d7559
DW
1000 goto send_end;
1001 }
1002
d3b18ad3
JF
1003 if (ctx->open_rec)
1004 rec = ctx->open_rec;
1005 else
1006 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
1007 if (!rec) {
1008 ret = -ENOMEM;
1009 goto send_end;
1010 }
1011
d829e9c4
DB
1012 msg_pl = &rec->msg_plaintext;
1013 msg_en = &rec->msg_encrypted;
1014
1015 orig_size = msg_pl->sg.size;
3c4d7559
DW
1016 full_record = false;
1017 try_to_copy = msg_data_left(msg);
d829e9c4 1018 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
1019 if (try_to_copy >= record_room) {
1020 try_to_copy = record_room;
1021 full_record = true;
1022 }
1023
d829e9c4 1024 required_size = msg_pl->sg.size + try_to_copy +
4509de14 1025 prot->overhead_size;
3c4d7559
DW
1026
1027 if (!sk_stream_memory_free(sk))
1028 goto wait_for_sndbuf;
a42055e8 1029
3c4d7559 1030alloc_encrypted:
d829e9c4 1031 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1032 if (ret) {
1033 if (ret != -ENOSPC)
1034 goto wait_for_memory;
1035
1036 /* Adjust try_to_copy according to the amount that was
1037 * actually allocated. The difference is due
1038 * to max sg elements limit
1039 */
d829e9c4 1040 try_to_copy -= required_size - msg_en->sg.size;
3c4d7559
DW
1041 full_record = true;
1042 }
a42055e8 1043
fe1e81d4
DH
1044 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1045 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1046 try_to_copy, &copied);
1047 if (ret < 0)
1048 goto send_end;
1049 tls_ctx->pending_open_record_frags = true;
1050 if (full_record || eor || sk_msg_full(msg_pl))
1051 goto copied;
1052 continue;
1053 }
1054
a42055e8 1055 if (!is_kvec && (full_record || eor) && !async_capable) {
d3b18ad3
JF
1056 u32 first = msg_pl->sg.end;
1057
d829e9c4
DB
1058 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1059 msg_pl, try_to_copy);
3c4d7559
DW
1060 if (ret)
1061 goto fallback_to_reg_send;
1062
a42055e8 1063 num_zc++;
3c4d7559 1064 copied += try_to_copy;
d3b18ad3
JF
1065
1066 sk_msg_sg_copy_set(msg_pl, first);
1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068 record_type, &copied,
1069 msg->msg_flags);
a42055e8
VG
1070 if (ret) {
1071 if (ret == -EINPROGRESS)
1072 num_async++;
d3b18ad3
JF
1073 else if (ret == -ENOMEM)
1074 goto wait_for_memory;
c329ef96 1075 else if (ctx->open_rec && ret == -ENOSPC)
d3b18ad3 1076 goto rollback_iter;
a42055e8
VG
1077 else if (ret != -EAGAIN)
1078 goto send_end;
1079 }
5a3611ef 1080 continue;
d3b18ad3
JF
1081rollback_iter:
1082 copied -= try_to_copy;
1083 sk_msg_sg_copy_clear(msg_pl, first);
1084 iov_iter_revert(&msg->msg_iter,
1085 msg_pl->sg.size - orig_size);
3c4d7559 1086fallback_to_reg_send:
d829e9c4 1087 sk_msg_trim(sk, msg_pl, orig_size);
3c4d7559
DW
1088 }
1089
d829e9c4 1090 required_size = msg_pl->sg.size + try_to_copy;
4e6d4720 1091
d829e9c4 1092 ret = tls_clone_plaintext_msg(sk, required_size);
3c4d7559
DW
1093 if (ret) {
1094 if (ret != -ENOSPC)
4e6d4720 1095 goto send_end;
3c4d7559
DW
1096
1097 /* Adjust try_to_copy according to the amount that was
1098 * actually allocated. The difference is due
1099 * to max sg elements limit
1100 */
d829e9c4 1101 try_to_copy -= required_size - msg_pl->sg.size;
3c4d7559 1102 full_record = true;
4509de14
VG
1103 sk_msg_trim(sk, msg_en,
1104 msg_pl->sg.size + prot->overhead_size);
3c4d7559
DW
1105 }
1106
65a10e28
VG
1107 if (try_to_copy) {
1108 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1109 msg_pl, try_to_copy);
1110 if (ret < 0)
1111 goto trim_sgl;
1112 }
3c4d7559 1113
d829e9c4
DB
1114 /* Open records defined only if successfully copied, otherwise
1115 * we would trim the sg but not reset the open record frags.
1116 */
1117 tls_ctx->pending_open_record_frags = true;
3c4d7559 1118 copied += try_to_copy;
fe1e81d4 1119copied:
3c4d7559 1120 if (full_record || eor) {
d3b18ad3
JF
1121 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1122 record_type, &copied,
1123 msg->msg_flags);
3c4d7559 1124 if (ret) {
a42055e8
VG
1125 if (ret == -EINPROGRESS)
1126 num_async++;
d3b18ad3
JF
1127 else if (ret == -ENOMEM)
1128 goto wait_for_memory;
1129 else if (ret != -EAGAIN) {
1130 if (ret == -ENOSPC)
1131 ret = 0;
a42055e8 1132 goto send_end;
d3b18ad3 1133 }
3c4d7559
DW
1134 }
1135 }
1136
1137 continue;
1138
1139wait_for_sndbuf:
1140 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1141wait_for_memory:
1142 ret = sk_stream_wait_memory(sk, &timeo);
1143 if (ret) {
1144trim_sgl:
c329ef96
JK
1145 if (ctx->open_rec)
1146 tls_trim_both_msgs(sk, orig_size);
3c4d7559
DW
1147 goto send_end;
1148 }
1149
c329ef96 1150 if (ctx->open_rec && msg_en->sg.size < required_size)
3c4d7559 1151 goto alloc_encrypted;
3c4d7559
DW
1152 }
1153
a42055e8
VG
1154 if (!num_async) {
1155 goto send_end;
1156 } else if (num_zc) {
1157 /* Wait for pending encryptions to get completed */
0cada332
VKY
1158 spin_lock_bh(&ctx->encrypt_compl_lock);
1159 ctx->async_notify = true;
a42055e8 1160
0cada332
VKY
1161 pending = atomic_read(&ctx->encrypt_pending);
1162 spin_unlock_bh(&ctx->encrypt_compl_lock);
1163 if (pending)
a42055e8
VG
1164 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1165 else
1166 reinit_completion(&ctx->async_wait.completion);
1167
0cada332
VKY
1168 /* There can be no concurrent accesses, since we have no
1169 * pending encrypt operations
1170 */
a42055e8
VG
1171 WRITE_ONCE(ctx->async_notify, false);
1172
1173 if (ctx->async_wait.err) {
1174 ret = ctx->async_wait.err;
1175 copied = 0;
1176 }
1177 }
1178
1179 /* Transmit if any encryptions have completed */
1180 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1181 cancel_delayed_work(&ctx->tx_work.work);
1182 tls_tx_records(sk, msg->msg_flags);
1183 }
1184
3c4d7559
DW
1185send_end:
1186 ret = sk_stream_error(sk, msg->msg_flags, ret);
45e5be84
DH
1187 return copied > 0 ? copied : ret;
1188}
3c4d7559 1189
45e5be84
DH
1190int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1191{
1192 struct tls_context *tls_ctx = tls_get_ctx(sk);
1193 int ret;
1194
1195 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1196 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES |
b848b26c 1197 MSG_SENDPAGE_NOPOLICY))
45e5be84
DH
1198 return -EOPNOTSUPP;
1199
1200 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1201 if (ret)
1202 return ret;
1203 lock_sock(sk);
1204 ret = tls_sw_sendmsg_locked(sk, msg, size);
3c4d7559 1205 release_sock(sk);
79ffe608 1206 mutex_unlock(&tls_ctx->tx_lock);
45e5be84 1207 return ret;
3c4d7559
DW
1208}
1209
df720d28
DH
1210/*
1211 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1212 */
1213void tls_sw_splice_eof(struct socket *sock)
1214{
1215 struct sock *sk = sock->sk;
1216 struct tls_context *tls_ctx = tls_get_ctx(sk);
1217 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1218 struct tls_rec *rec;
1219 struct sk_msg *msg_pl;
1220 ssize_t copied = 0;
1221 bool retrying = false;
1222 int ret = 0;
1223 int pending;
1224
1225 if (!ctx->open_rec)
1226 return;
1227
1228 mutex_lock(&tls_ctx->tx_lock);
1229 lock_sock(sk);
1230
1231retry:
1232 rec = ctx->open_rec;
1233 if (!rec)
1234 goto unlock;
1235
1236 msg_pl = &rec->msg_plaintext;
1237
1238 /* Check the BPF advisor and perform transmission. */
1239 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1240 &copied, 0);
1241 switch (ret) {
1242 case 0:
1243 case -EAGAIN:
1244 if (retrying)
1245 goto unlock;
1246 retrying = true;
1247 goto retry;
1248 case -EINPROGRESS:
1249 break;
1250 default:
1251 goto unlock;
1252 }
1253
1254 /* Wait for pending encryptions to get completed */
1255 spin_lock_bh(&ctx->encrypt_compl_lock);
1256 ctx->async_notify = true;
1257
1258 pending = atomic_read(&ctx->encrypt_pending);
1259 spin_unlock_bh(&ctx->encrypt_compl_lock);
1260 if (pending)
1261 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1262 else
1263 reinit_completion(&ctx->async_wait.completion);
1264
1265 /* There can be no concurrent accesses, since we have no pending
1266 * encrypt operations
1267 */
1268 WRITE_ONCE(ctx->async_notify, false);
1269
1270 if (ctx->async_wait.err)
1271 goto unlock;
1272
1273 /* Transmit if any encryptions have completed */
1274 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1275 cancel_delayed_work(&ctx->tx_work.work);
1276 tls_tx_records(sk, 0);
1277 }
1278
1279unlock:
1280 release_sock(sk);
1281 mutex_unlock(&tls_ctx->tx_lock);
1282}
1283
35560b7f
JK
1284static int
1285tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
70f03fc2 1286 bool released)
c46234eb
DW
1287{
1288 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1289 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 1290 DEFINE_WAIT_FUNC(wait, woken_wake_function);
70f03fc2
JK
1291 long timeo;
1292
1293 timeo = sock_rcvtimeo(sk, nonblock);
c46234eb 1294
b92a13d4 1295 while (!tls_strp_msg_ready(ctx)) {
35560b7f
JK
1296 if (!sk_psock_queue_empty(psock))
1297 return 0;
1298
1299 if (sk->sk_err)
1300 return sock_error(sk);
c46234eb 1301
20ffc7ad 1302 if (!skb_queue_empty(&sk->sk_receive_queue)) {
84c61fe1 1303 tls_strp_check_rcv(&ctx->strp);
b92a13d4 1304 if (tls_strp_msg_ready(ctx))
35560b7f 1305 break;
20ffc7ad
VF
1306 }
1307
fcf4793e 1308 if (sk->sk_shutdown & RCV_SHUTDOWN)
35560b7f 1309 return 0;
fcf4793e 1310
c46234eb 1311 if (sock_flag(sk, SOCK_DONE))
35560b7f 1312 return 0;
c46234eb 1313
70f03fc2 1314 if (!timeo)
35560b7f 1315 return -EAGAIN;
c46234eb 1316
84c61fe1 1317 released = true;
c46234eb
DW
1318 add_wait_queue(sk_sleep(sk), &wait);
1319 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
d3b18ad3 1320 sk_wait_event(sk, &timeo,
b92a13d4
JK
1321 tls_strp_msg_ready(ctx) ||
1322 !sk_psock_queue_empty(psock),
d3b18ad3 1323 &wait);
c46234eb
DW
1324 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1325 remove_wait_queue(sk_sleep(sk), &wait);
1326
1327 /* Handle signals */
35560b7f
JK
1328 if (signal_pending(current))
1329 return sock_intr_errno(timeo);
c46234eb
DW
1330 }
1331
84c61fe1
JK
1332 tls_strp_msg_load(&ctx->strp, released);
1333
35560b7f 1334 return 1;
c46234eb
DW
1335}
1336
d4bd88e6 1337static int tls_setup_from_iter(struct iov_iter *from,
d829e9c4 1338 int length, int *pages_used,
d829e9c4
DB
1339 struct scatterlist *to,
1340 int to_max_pages)
1341{
1342 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1343 struct page *pages[MAX_SKB_FRAGS];
d4bd88e6 1344 unsigned int size = 0;
d829e9c4
DB
1345 ssize_t copied, use;
1346 size_t offset;
1347
1348 while (length > 0) {
1349 i = 0;
1350 maxpages = to_max_pages - num_elem;
1351 if (maxpages == 0) {
1352 rc = -EFAULT;
1353 goto out;
1354 }
1ef255e2 1355 copied = iov_iter_get_pages2(from, pages,
d829e9c4
DB
1356 length,
1357 maxpages, &offset);
1358 if (copied <= 0) {
1359 rc = -EFAULT;
1360 goto out;
1361 }
1362
d829e9c4
DB
1363 length -= copied;
1364 size += copied;
1365 while (copied) {
1366 use = min_t(int, copied, PAGE_SIZE - offset);
1367
1368 sg_set_page(&to[num_elem],
1369 pages[i], use, offset);
1370 sg_unmark_end(&to[num_elem]);
1371 /* We do not uncharge memory from this API */
1372
1373 offset = 0;
1374 copied -= use;
1375
1376 i++;
1377 num_elem++;
1378 }
1379 }
1380 /* Mark the end in the last sg entry if newly added */
1381 if (num_elem > *pages_used)
1382 sg_mark_end(&to[num_elem - 1]);
1383out:
1384 if (rc)
d4bd88e6 1385 iov_iter_revert(from, size);
d829e9c4
DB
1386 *pages_used = num_elem;
1387
1388 return rc;
1389}
1390
fd31f399
JK
1391static struct sk_buff *
1392tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1393 unsigned int full_len)
1394{
1395 struct strp_msg *clr_rxm;
1396 struct sk_buff *clr_skb;
1397 int err;
1398
1399 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1400 &err, sk->sk_allocation);
1401 if (!clr_skb)
1402 return NULL;
1403
1404 skb_copy_header(clr_skb, skb);
1405 clr_skb->len = full_len;
1406 clr_skb->data_len = full_len;
1407
1408 clr_rxm = strp_msg(clr_skb);
1409 clr_rxm->offset = 0;
1410
1411 return clr_skb;
1412}
1413
8a958732
JK
1414/* Decrypt handlers
1415 *
dd47ed36 1416 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
8a958732
JK
1417 * They must transform the darg in/out argument are as follows:
1418 * | Input | Output
1419 * -------------------------------------------------------------------
1420 * zc | Zero-copy decrypt allowed | Zero-copy performed
1421 * async | Async decrypt allowed | Async crypto used / in progress
6bd116c8 1422 * skb | * | Output skb
b93f5700
JK
1423 *
1424 * If ZC decryption was performed darg.skb will point to the input skb.
8a958732
JK
1425 */
1426
0b243d00 1427/* This function decrypts the input skb into either out_iov or in out_sg
8a958732 1428 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
0b243d00
VG
1429 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1430 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1431 * NULL, then the decryption happens inside skb buffers itself, i.e.
8a958732 1432 * zero-copy gets disabled and 'darg->zc' is updated.
0b243d00 1433 */
541cc48b 1434static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
8a958732
JK
1435 struct scatterlist *out_sg,
1436 struct tls_decrypt_arg *darg)
0b243d00
VG
1437{
1438 struct tls_context *tls_ctx = tls_get_ctx(sk);
1439 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1440 struct tls_prot_info *prot = &tls_ctx->prot_info;
b89fec54 1441 int n_sgin, n_sgout, aead_size, err, pages = 0;
541cc48b 1442 struct sk_buff *skb = tls_strp_msg(ctx);
fd31f399
JK
1443 const struct strp_msg *rxm = strp_msg(skb);
1444 const struct tls_msg *tlm = tls_msg(skb);
0b243d00 1445 struct aead_request *aead_req;
0b243d00
VG
1446 struct scatterlist *sgin = NULL;
1447 struct scatterlist *sgout = NULL;
603380f5 1448 const int data_len = rxm->full_len - prot->overhead_size;
ce61327c 1449 int tail_pages = !!prot->tail_size;
b89fec54 1450 struct tls_decrypt_ctx *dctx;
fd31f399 1451 struct sk_buff *clear_skb;
f295b3ae 1452 int iv_offset = 0;
b89fec54 1453 u8 *mem;
0b243d00 1454
fd31f399
JK
1455 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1456 rxm->full_len - prot->prepend_size);
1457 if (n_sgin < 1)
1458 return n_sgin ?: -EBADMSG;
1459
4175eac3 1460 if (darg->zc && (out_iov || out_sg)) {
fd31f399
JK
1461 clear_skb = NULL;
1462
0b243d00 1463 if (out_iov)
ce61327c 1464 n_sgout = 1 + tail_pages +
b93235e6 1465 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
0b243d00
VG
1466 else
1467 n_sgout = sg_nents(out_sg);
1468 } else {
4175eac3 1469 darg->zc = false;
0b243d00 1470
fd31f399
JK
1471 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1472 if (!clear_skb)
1473 return -ENOMEM;
1474
1475 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1476 }
0b243d00
VG
1477
1478 /* Increment to accommodate AAD */
1479 n_sgin = n_sgin + 1;
1480
0b243d00 1481 /* Allocate a single block of memory which contains
b89fec54
JK
1482 * aead_req || tls_decrypt_ctx.
1483 * Both structs are variable length.
0b243d00 1484 */
b89fec54 1485 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
8d338c76 1486 aead_size = ALIGN(aead_size, __alignof__(*dctx));
b89fec54
JK
1487 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1488 sk->sk_allocation);
fd31f399
JK
1489 if (!mem) {
1490 err = -ENOMEM;
1491 goto exit_free_skb;
1492 }
0b243d00
VG
1493
1494 /* Segment the allocated memory */
1495 aead_req = (struct aead_request *)mem;
b89fec54 1496 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
8d338c76 1497 dctx->sk = sk;
b89fec54
JK
1498 sgin = &dctx->sg[0];
1499 sgout = &dctx->sg[n_sgin];
0b243d00 1500
128cfb88
TZ
1501 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1502 switch (prot->cipher_type) {
1503 case TLS_CIPHER_AES_CCM_128:
b89fec54 1504 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
f295b3ae 1505 iv_offset = 1;
128cfb88
TZ
1506 break;
1507 case TLS_CIPHER_SM4_CCM:
b89fec54 1508 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
128cfb88
TZ
1509 iv_offset = 1;
1510 break;
f295b3ae
VG
1511 }
1512
0b243d00 1513 /* Prepare IV */
a6acbe62 1514 if (prot->version == TLS_1_3_VERSION ||
a4ae58cd 1515 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
b89fec54 1516 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
9381fe8c 1517 prot->iv_size + prot->salt_size);
a4ae58cd
JK
1518 } else {
1519 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
b89fec54 1520 &dctx->iv[iv_offset] + prot->salt_size,
a4ae58cd 1521 prot->iv_size);
03957d84
JK
1522 if (err < 0)
1523 goto exit_free;
b89fec54 1524 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
a4ae58cd 1525 }
58790314 1526 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
0b243d00
VG
1527
1528 /* Prepare AAD */
b89fec54 1529 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
4509de14 1530 prot->tail_size,
c3f6bb74 1531 tls_ctx->rx.rec_seq, tlm->control, prot);
0b243d00
VG
1532
1533 /* Prepare sgin */
1534 sg_init_table(sgin, n_sgin);
b89fec54 1535 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
0b243d00 1536 err = skb_to_sgvec(skb, &sgin[1],
4509de14
VG
1537 rxm->offset + prot->prepend_size,
1538 rxm->full_len - prot->prepend_size);
03957d84
JK
1539 if (err < 0)
1540 goto exit_free;
0b243d00 1541
fd31f399
JK
1542 if (clear_skb) {
1543 sg_init_table(sgout, n_sgout);
1544 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1545
1546 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1547 data_len + prot->tail_size);
1548 if (err < 0)
1549 goto exit_free;
1550 } else if (out_iov) {
1551 sg_init_table(sgout, n_sgout);
1552 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1553
1554 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1555 (n_sgout - 1 - tail_pages));
1556 if (err < 0)
1557 goto exit_free_pages;
1558
1559 if (prot->tail_size) {
1560 sg_unmark_end(&sgout[pages]);
1561 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1562 prot->tail_size);
1563 sg_mark_end(&sgout[pages + 1]);
0b243d00 1564 }
fd31f399
JK
1565 } else if (out_sg) {
1566 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
0b243d00
VG
1567 }
1568
1569 /* Prepare and submit AEAD request */
6ececdc5 1570 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
603380f5 1571 data_len + prot->tail_size, aead_req, darg);
6bd116c8
JK
1572 if (err)
1573 goto exit_free_pages;
1574
fd31f399
JK
1575 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1576 clear_skb = NULL;
c618db2a
JK
1577
1578 if (unlikely(darg->async)) {
84c61fe1 1579 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
c618db2a
JK
1580 if (err)
1581 __skb_queue_tail(&ctx->async_hold, darg->skb);
1582 return err;
1583 }
0b243d00 1584
ce61327c 1585 if (prot->tail_size)
b89fec54 1586 darg->tail = dctx->tail;
ce61327c 1587
6bd116c8 1588exit_free_pages:
0b243d00
VG
1589 /* Release the pages in case iov was mapped to pages */
1590 for (; pages > 0; pages--)
1591 put_page(sg_page(&sgout[pages]));
03957d84 1592exit_free:
0b243d00 1593 kfree(mem);
fd31f399
JK
1594exit_free_skb:
1595 consume_skb(clear_skb);
0b243d00
VG
1596 return err;
1597}
1598
8a958732 1599static int
dd47ed36
JK
1600tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1601 struct msghdr *msg, struct tls_decrypt_arg *darg)
dafb67f3 1602{
541cc48b 1603 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1604 struct tls_prot_info *prot = &tls_ctx->prot_info;
541cc48b 1605 struct strp_msg *rxm;
3764ae5b 1606 int pad, err;
dafb67f3 1607
dd47ed36 1608 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
a069a905
GP
1609 if (err < 0) {
1610 if (err == -EBADMSG)
1611 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
3764ae5b 1612 return err;
a069a905 1613 }
dd47ed36
JK
1614 /* keep going even for ->async, the code below is TLS 1.3 */
1615
ce61327c
JK
1616 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1617 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1618 darg->tail != TLS_RECORD_TYPE_DATA)) {
1619 darg->zc = false;
bb56cea9
JK
1620 if (!darg->tail)
1621 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1090c1ea 1622 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
dd47ed36 1623 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
ce61327c 1624 }
dafb67f3 1625
6bd116c8
JK
1626 pad = tls_padding_length(prot, darg->skb, darg);
1627 if (pad < 0) {
b93f5700
JK
1628 if (darg->skb != tls_strp_msg(ctx))
1629 consume_skb(darg->skb);
3764ae5b 1630 return pad;
6bd116c8 1631 }
3764ae5b 1632
6bd116c8 1633 rxm = strp_msg(darg->skb);
3764ae5b 1634 rxm->full_len -= pad;
dd47ed36
JK
1635
1636 return 0;
1637}
1638
1639static int
d4e5db64
JK
1640tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1641 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
dd47ed36
JK
1642{
1643 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1644 struct tls_prot_info *prot = &tls_ctx->prot_info;
1645 struct strp_msg *rxm;
1646 int pad, err;
1647
1648 if (tls_ctx->rx_conf != TLS_HW)
1649 return 0;
1650
1651 err = tls_device_decrypted(sk, tls_ctx);
1652 if (err <= 0)
1653 return err;
1654
1655 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1656 if (pad < 0)
1657 return pad;
1658
dd47ed36
JK
1659 darg->async = false;
1660 darg->skb = tls_strp_msg(ctx);
d4e5db64
JK
1661 /* ->zc downgrade check, in case TLS 1.3 gets here */
1662 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1663 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
dd47ed36
JK
1664
1665 rxm = strp_msg(darg->skb);
1666 rxm->full_len -= pad;
d4e5db64
JK
1667
1668 if (!darg->zc) {
1669 /* Non-ZC case needs a real skb */
1670 darg->skb = tls_strp_msg_detach(ctx);
1671 if (!darg->skb)
1672 return -ENOMEM;
1673 } else {
1674 unsigned int off, len;
1675
1676 /* In ZC case nobody cares about the output skb.
1677 * Just copy the data here. Note the skb is not fully trimmed.
1678 */
1679 off = rxm->offset + prot->prepend_size;
1680 len = rxm->full_len - prot->overhead_size;
1681
1682 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1683 if (err)
1684 return err;
1685 }
dd47ed36
JK
1686 return 1;
1687}
1688
1689static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1690 struct tls_decrypt_arg *darg)
1691{
1692 struct tls_context *tls_ctx = tls_get_ctx(sk);
1693 struct tls_prot_info *prot = &tls_ctx->prot_info;
1694 struct strp_msg *rxm;
1695 int err;
1696
d4e5db64 1697 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
dd47ed36
JK
1698 if (!err)
1699 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1700 if (err < 0)
1701 return err;
1702
1703 rxm = strp_msg(darg->skb);
3764ae5b
JK
1704 rxm->offset += prot->prepend_size;
1705 rxm->full_len -= prot->overhead_size;
3547a1f9 1706 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
3764ae5b
JK
1707
1708 return 0;
dafb67f3
BP
1709}
1710
541cc48b 1711int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
c46234eb 1712{
4175eac3 1713 struct tls_decrypt_arg darg = { .zc = true, };
c46234eb 1714
541cc48b 1715 return tls_decrypt_sg(sk, NULL, sgout, &darg);
c46234eb
DW
1716}
1717
06554f4f
JK
1718static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1719 u8 *control)
1720{
1721 int err;
1722
1723 if (!*control) {
1724 *control = tlm->control;
1725 if (!*control)
1726 return -EBADMSG;
1727
1728 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1729 sizeof(*control), control);
1730 if (*control != TLS_RECORD_TYPE_DATA) {
1731 if (err || msg->msg_flags & MSG_CTRUNC)
1732 return -EIO;
1733 }
1734 } else if (*control != tlm->control) {
1735 return 0;
1736 }
1737
1738 return 1;
1739}
1740
abb47dc9
JK
1741static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1742{
84c61fe1 1743 tls_strp_msg_done(&ctx->strp);
abb47dc9
JK
1744}
1745
692d7b5d 1746/* This function traverses the rx_list in tls receive context to copies the
2b794c40 1747 * decrypted records into the buffer provided by caller zero copy is not
692d7b5d
VG
1748 * true. Further, the records are removed from the rx_list if it is not a peek
1749 * case and the record has been consumed completely.
1750 */
1751static int process_rx_list(struct tls_sw_context_rx *ctx,
1752 struct msghdr *msg,
2b794c40 1753 u8 *control,
692d7b5d
VG
1754 size_t skip,
1755 size_t len,
692d7b5d
VG
1756 bool is_peek)
1757{
1758 struct sk_buff *skb = skb_peek(&ctx->rx_list);
2b794c40 1759 struct tls_msg *tlm;
692d7b5d 1760 ssize_t copied = 0;
06554f4f 1761 int err;
2b794c40 1762
692d7b5d
VG
1763 while (skip && skb) {
1764 struct strp_msg *rxm = strp_msg(skb);
2b794c40
VG
1765 tlm = tls_msg(skb);
1766
06554f4f
JK
1767 err = tls_record_content_type(msg, tlm, control);
1768 if (err <= 0)
4dcdd971 1769 goto out;
692d7b5d
VG
1770
1771 if (skip < rxm->full_len)
1772 break;
1773
1774 skip = skip - rxm->full_len;
1775 skb = skb_peek_next(skb, &ctx->rx_list);
1776 }
1777
1778 while (len && skb) {
1779 struct sk_buff *next_skb;
1780 struct strp_msg *rxm = strp_msg(skb);
1781 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1782
2b794c40
VG
1783 tlm = tls_msg(skb);
1784
06554f4f
JK
1785 err = tls_record_content_type(msg, tlm, control);
1786 if (err <= 0)
4dcdd971 1787 goto out;
2b794c40 1788
cbbdee99
JK
1789 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1790 msg, chunk);
1791 if (err < 0)
1792 goto out;
692d7b5d
VG
1793
1794 len = len - chunk;
1795 copied = copied + chunk;
1796
1797 /* Consume the data from record if it is non-peek case*/
1798 if (!is_peek) {
1799 rxm->offset = rxm->offset + chunk;
1800 rxm->full_len = rxm->full_len - chunk;
1801
1802 /* Return if there is unconsumed data in the record */
1803 if (rxm->full_len - skip)
1804 break;
1805 }
1806
1807 /* The remaining skip-bytes must lie in 1st record in rx_list.
1808 * So from the 2nd record, 'skip' should be 0.
1809 */
1810 skip = 0;
1811
1812 if (msg)
1813 msg->msg_flags |= MSG_EOR;
1814
1815 next_skb = skb_peek_next(skb, &ctx->rx_list);
1816
1817 if (!is_peek) {
a30295c4 1818 __skb_unlink(skb, &ctx->rx_list);
a88c26f6 1819 consume_skb(skb);
692d7b5d
VG
1820 }
1821
1822 skb = next_skb;
1823 }
4dcdd971 1824 err = 0;
692d7b5d 1825
4dcdd971
JK
1826out:
1827 return copied ? : err;
692d7b5d
VG
1828}
1829
84c61fe1 1830static bool
c46b0183
JK
1831tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1832 size_t len_left, size_t decrypted, ssize_t done,
1833 size_t *flushed_at)
1834{
1835 size_t max_rec;
1836
1837 if (len_left <= decrypted)
84c61fe1 1838 return false;
c46b0183
JK
1839
1840 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1841 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
84c61fe1 1842 return false;
c46b0183
JK
1843
1844 *flushed_at = done;
84c61fe1 1845 return sk_flush_backlog(sk);
c46b0183
JK
1846}
1847
70f03fc2
JK
1848static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1849 bool nonblock)
4cbc325e
JK
1850{
1851 long timeo;
dde06aaa 1852 int err;
4cbc325e
JK
1853
1854 lock_sock(sk);
1855
1856 timeo = sock_rcvtimeo(sk, nonblock);
1857
1858 while (unlikely(ctx->reader_present)) {
1859 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1860
1861 ctx->reader_contended = 1;
1862
1863 add_wait_queue(&ctx->wq, &wait);
1864 sk_wait_event(sk, &timeo,
1865 !READ_ONCE(ctx->reader_present), &wait);
1866 remove_wait_queue(&ctx->wq, &wait);
1867
dde06aaa
JK
1868 if (timeo <= 0) {
1869 err = -EAGAIN;
1870 goto err_unlock;
1871 }
1872 if (signal_pending(current)) {
1873 err = sock_intr_errno(timeo);
1874 goto err_unlock;
1875 }
4cbc325e
JK
1876 }
1877
1878 WRITE_ONCE(ctx->reader_present, 1);
1879
70f03fc2 1880 return 0;
dde06aaa
JK
1881
1882err_unlock:
1883 release_sock(sk);
1884 return err;
4cbc325e
JK
1885}
1886
1887static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1888{
1889 if (unlikely(ctx->reader_contended)) {
1890 if (wq_has_sleeper(&ctx->wq))
1891 wake_up(&ctx->wq);
1892 else
1893 ctx->reader_contended = 0;
1894
1895 WARN_ON_ONCE(!ctx->reader_present);
1896 }
1897
1898 WRITE_ONCE(ctx->reader_present, 0);
1899 release_sock(sk);
1900}
1901
c46234eb
DW
1902int tls_sw_recvmsg(struct sock *sk,
1903 struct msghdr *msg,
1904 size_t len,
c46234eb
DW
1905 int flags,
1906 int *addr_len)
1907{
1908 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1909 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1910 struct tls_prot_info *prot = &tls_ctx->prot_info;
cbbdee99 1911 ssize_t decrypted = 0, async_copy_bytes = 0;
d3b18ad3 1912 struct sk_psock *psock;
692d7b5d 1913 unsigned char control = 0;
c46b0183 1914 size_t flushed_at = 0;
c46234eb 1915 struct strp_msg *rxm;
2b794c40 1916 struct tls_msg *tlm;
c46234eb 1917 ssize_t copied = 0;
7da18bcc 1918 bool async = false;
70f03fc2 1919 int target, err;
00e23707 1920 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
692d7b5d 1921 bool is_peek = flags & MSG_PEEK;
84c61fe1 1922 bool released = true;
e91de6af 1923 bool bpf_strp_enabled;
ba13609d 1924 bool zc_capable;
c46234eb 1925
c46234eb
DW
1926 if (unlikely(flags & MSG_ERRQUEUE))
1927 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1928
d3b18ad3 1929 psock = sk_psock_get(sk);
70f03fc2
JK
1930 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1931 if (err < 0)
1932 return err;
e91de6af 1933 bpf_strp_enabled = sk_psock_strp_enabled(psock);
c46234eb 1934
f314bfee
JK
1935 /* If crypto failed the connection is broken */
1936 err = ctx->async_wait.err;
1937 if (err)
1938 goto end;
1939
692d7b5d 1940 /* Process pending decrypted records. It must be non-zero-copy */
cbbdee99 1941 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
4dcdd971 1942 if (err < 0)
692d7b5d 1943 goto end;
692d7b5d 1944
d5123edd 1945 copied = err;
46a16959 1946 if (len <= copied)
bfc06e1a 1947 goto end;
46a16959
JK
1948
1949 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1950 len = len - copied;
692d7b5d 1951
ba13609d 1952 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
88527790 1953 ctx->zc_capable;
bfc06e1a 1954 decrypted = 0;
b92a13d4 1955 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
6bd116c8 1956 struct tls_decrypt_arg darg;
9bdf75cc 1957 int to_decrypt, chunk;
c46234eb 1958
70f03fc2
JK
1959 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1960 released);
35560b7f 1961 if (err <= 0) {
d3b18ad3 1962 if (psock) {
0775639c
JK
1963 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1964 flags);
008141de
JK
1965 if (chunk > 0) {
1966 decrypted += chunk;
1967 len -= chunk;
1968 continue;
1969 }
d3b18ad3 1970 }
c46234eb 1971 goto recv_end;
d3b18ad3 1972 }
c46234eb 1973
6bd116c8
JK
1974 memset(&darg.inargs, 0, sizeof(darg.inargs));
1975
84c61fe1
JK
1976 rxm = strp_msg(tls_strp_msg(ctx));
1977 tlm = tls_msg(tls_strp_msg(ctx));
94524d8f 1978
4509de14 1979 to_decrypt = rxm->full_len - prot->overhead_size;
fedf201e 1980
ba13609d
JK
1981 if (zc_capable && to_decrypt <= len &&
1982 tlm->control == TLS_RECORD_TYPE_DATA)
4175eac3 1983 darg.zc = true;
fedf201e 1984
c0ab4732 1985 /* Do not use async mode if record is non-data */
c3f6bb74 1986 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
4175eac3 1987 darg.async = ctx->async_capable;
c0ab4732 1988 else
4175eac3 1989 darg.async = false;
c0ab4732 1990
dd47ed36 1991 err = tls_rx_one_record(sk, msg, &darg);
3547a1f9 1992 if (err < 0) {
da353fac 1993 tls_err_abort(sk, -EBADMSG);
fedf201e
DW
1994 goto recv_end;
1995 }
1996
3547a1f9 1997 async |= darg.async;
2b794c40
VG
1998
1999 /* If the type of records being processed is not known yet,
2000 * set it to record type just dequeued. If it is already known,
2001 * but does not match the record type just dequeued, go to end.
2002 * We always get record type here since for tls1.2, record type
2003 * is known just after record is dequeued from stream parser.
2004 * For tls1.3, we disable async.
2005 */
b93f5700 2006 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
abb47dc9 2007 if (err <= 0) {
b93f5700 2008 DEBUG_NET_WARN_ON_ONCE(darg.zc);
abb47dc9
JK
2009 tls_rx_rec_done(ctx);
2010put_on_rx_list_err:
b93f5700 2011 __skb_queue_tail(&ctx->rx_list, darg.skb);
2b794c40 2012 goto recv_end;
abb47dc9 2013 }
fedf201e 2014
c46b0183 2015 /* periodically flush backlog, and feed strparser */
84c61fe1
JK
2016 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2017 decrypted + copied,
2018 &flushed_at);
c46b0183 2019
abb47dc9 2020 /* TLS 1.3 may have updated the length by more than overhead */
b93f5700 2021 rxm = strp_msg(darg.skb);
abb47dc9
JK
2022 chunk = rxm->full_len;
2023 tls_rx_rec_done(ctx);
b1a2c178 2024
4175eac3 2025 if (!darg.zc) {
f940b6ef 2026 bool partially_consumed = chunk > len;
b93f5700
JK
2027 struct sk_buff *skb = darg.skb;
2028
e20691fa 2029 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
f940b6ef 2030
cbbdee99
JK
2031 if (async) {
2032 /* TLS 1.2-only, to_decrypt must be text len */
2033 chunk = min_t(int, to_decrypt, len);
2034 async_copy_bytes += chunk;
2035put_on_rx_list:
2036 decrypted += chunk;
2037 len -= chunk;
2038 __skb_queue_tail(&ctx->rx_list, skb);
2039 continue;
2040 }
2041
e91de6af 2042 if (bpf_strp_enabled) {
84c61fe1 2043 released = true;
e91de6af
JF
2044 err = sk_psock_tls_strp_read(psock, skb);
2045 if (err != __SK_PASS) {
2046 rxm->offset = rxm->offset + rxm->full_len;
2047 rxm->full_len = 0;
2048 if (err == __SK_DROP)
2049 consume_skb(skb);
e91de6af
JF
2050 continue;
2051 }
2052 }
2053
f940b6ef 2054 if (partially_consumed)
fedf201e 2055 chunk = len;
692d7b5d 2056
fedf201e
DW
2057 err = skb_copy_datagram_msg(skb, rxm->offset,
2058 msg, chunk);
abb47dc9
JK
2059 if (err < 0)
2060 goto put_on_rx_list_err;
94524d8f 2061
f940b6ef 2062 if (is_peek)
008141de 2063 goto put_on_rx_list;
f940b6ef
JK
2064
2065 if (partially_consumed) {
2066 rxm->offset += chunk;
2067 rxm->full_len -= chunk;
008141de 2068 goto put_on_rx_list;
692d7b5d 2069 }
b93f5700
JK
2070
2071 consume_skb(skb);
c46234eb
DW
2072 }
2073
692d7b5d 2074 decrypted += chunk;
c46234eb 2075 len -= chunk;
692d7b5d 2076
f940b6ef
JK
2077 /* Return full control message to userspace before trying
2078 * to parse another message type
2079 */
2080 msg->msg_flags |= MSG_EOR;
2081 if (control != TLS_RECORD_TYPE_DATA)
2082 break;
04b25a54 2083 }
c46234eb
DW
2084
2085recv_end:
7da18bcc 2086 if (async) {
f314bfee 2087 int ret, pending;
7da18bcc 2088
94524d8f 2089 /* Wait for all previously submitted records to be decrypted */
0cada332 2090 spin_lock_bh(&ctx->decrypt_compl_lock);
37943f04 2091 reinit_completion(&ctx->async_wait.completion);
0cada332
VKY
2092 pending = atomic_read(&ctx->decrypt_pending);
2093 spin_unlock_bh(&ctx->decrypt_compl_lock);
c618db2a
JK
2094 ret = 0;
2095 if (pending)
f314bfee 2096 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
c618db2a
JK
2097 __skb_queue_purge(&ctx->async_hold);
2098
2099 if (ret) {
2100 if (err >= 0 || err == -EINPROGRESS)
2101 err = ret;
2102 decrypted = 0;
2103 goto end;
94524d8f 2104 }
0cada332 2105
692d7b5d
VG
2106 /* Drain records from the rx_list & copy if required */
2107 if (is_peek || is_kvec)
06554f4f 2108 err = process_rx_list(ctx, msg, &control, copied,
cbbdee99 2109 decrypted, is_peek);
692d7b5d 2110 else
06554f4f 2111 err = process_rx_list(ctx, msg, &control, 0,
cbbdee99 2112 async_copy_bytes, is_peek);
4d42cd6b 2113 decrypted += max(err, 0);
94524d8f
VG
2114 }
2115
692d7b5d
VG
2116 copied += decrypted;
2117
2118end:
4cbc325e 2119 tls_rx_reader_unlock(sk, ctx);
d3b18ad3
JF
2120 if (psock)
2121 sk_psock_put(sk, psock);
c46234eb
DW
2122 return copied ? : err;
2123}
2124
2125ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2126 struct pipe_inode_info *pipe,
2127 size_t len, unsigned int flags)
2128{
2129 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
f66de3ee 2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
2131 struct strp_msg *rxm = NULL;
2132 struct sock *sk = sock->sk;
c3f6bb74 2133 struct tls_msg *tlm;
c46234eb
DW
2134 struct sk_buff *skb;
2135 ssize_t copied = 0;
c46234eb 2136 int chunk;
70f03fc2 2137 int err;
c46234eb 2138
70f03fc2
JK
2139 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2140 if (err < 0)
2141 return err;
c46234eb 2142
abb47dc9 2143 if (!skb_queue_empty(&ctx->rx_list)) {
e062fe99
JK
2144 skb = __skb_dequeue(&ctx->rx_list);
2145 } else {
6bd116c8 2146 struct tls_decrypt_arg darg;
4175eac3 2147
35560b7f 2148 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
70f03fc2 2149 true);
35560b7f 2150 if (err <= 0)
e062fe99 2151 goto splice_read_end;
c46234eb 2152
6bd116c8
JK
2153 memset(&darg.inargs, 0, sizeof(darg.inargs));
2154
541cc48b 2155 err = tls_rx_one_record(sk, NULL, &darg);
e062fe99
JK
2156 if (err < 0) {
2157 tls_err_abort(sk, -EBADMSG);
2158 goto splice_read_end;
2159 }
abb47dc9
JK
2160
2161 tls_rx_rec_done(ctx);
6bd116c8 2162 skb = darg.skb;
520493f6 2163 }
fedf201e 2164
c3f6bb74
JK
2165 rxm = strp_msg(skb);
2166 tlm = tls_msg(skb);
2167
520493f6 2168 /* splice does not support reading control messages */
c3f6bb74 2169 if (tlm->control != TLS_RECORD_TYPE_DATA) {
520493f6 2170 err = -EINVAL;
abb47dc9 2171 goto splice_requeue;
c46234eb 2172 }
520493f6 2173
c46234eb
DW
2174 chunk = min_t(unsigned int, rxm->full_len, len);
2175 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2176 if (copied < 0)
abb47dc9 2177 goto splice_requeue;
c46234eb 2178
e062fe99 2179 if (chunk < rxm->full_len) {
e062fe99
JK
2180 rxm->offset += len;
2181 rxm->full_len -= len;
abb47dc9 2182 goto splice_requeue;
e062fe99 2183 }
c46234eb 2184
abb47dc9
JK
2185 consume_skb(skb);
2186
c46234eb 2187splice_read_end:
4cbc325e 2188 tls_rx_reader_unlock(sk, ctx);
c46234eb 2189 return copied ? : err;
abb47dc9
JK
2190
2191splice_requeue:
2192 __skb_queue_head(&ctx->rx_list, skb);
2193 goto splice_read_end;
c46234eb
DW
2194}
2195
7b50ecfc 2196bool tls_sw_sock_is_readable(struct sock *sk)
c46234eb 2197{
c46234eb 2198 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2199 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3
JF
2200 bool ingress_empty = true;
2201 struct sk_psock *psock;
c46234eb 2202
d3b18ad3
JF
2203 rcu_read_lock();
2204 psock = sk_psock(sk);
2205 if (psock)
2206 ingress_empty = list_empty(&psock->ingress_msg);
2207 rcu_read_unlock();
c46234eb 2208
b92a13d4 2209 return !ingress_empty || tls_strp_msg_ready(ctx) ||
13aecb17 2210 !skb_queue_empty(&ctx->rx_list);
c46234eb
DW
2211}
2212
84c61fe1 2213int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
c46234eb
DW
2214{
2215 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
4509de14 2216 struct tls_prot_info *prot = &tls_ctx->prot_info;
3463e51d 2217 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
c46234eb
DW
2218 size_t cipher_overhead;
2219 size_t data_len = 0;
2220 int ret;
2221
2222 /* Verify that we have a full TLS header, or wait for more data */
84c61fe1 2223 if (strp->stm.offset + prot->prepend_size > skb->len)
c46234eb
DW
2224 return 0;
2225
3463e51d 2226 /* Sanity-check size of on-stack buffer. */
4509de14 2227 if (WARN_ON(prot->prepend_size > sizeof(header))) {
3463e51d
KC
2228 ret = -EINVAL;
2229 goto read_failure;
2230 }
2231
c46234eb 2232 /* Linearize header to local buffer */
84c61fe1 2233 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
c46234eb
DW
2234 if (ret < 0)
2235 goto read_failure;
2236
84c61fe1 2237 strp->mark = header[0];
c46234eb
DW
2238
2239 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2240
4509de14 2241 cipher_overhead = prot->tag_size;
a6acbe62
VF
2242 if (prot->version != TLS_1_3_VERSION &&
2243 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
4509de14 2244 cipher_overhead += prot->iv_size;
c46234eb 2245
130b392c 2246 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
4509de14 2247 prot->tail_size) {
c46234eb
DW
2248 ret = -EMSGSIZE;
2249 goto read_failure;
2250 }
2251 if (data_len < cipher_overhead) {
2252 ret = -EBADMSG;
2253 goto read_failure;
2254 }
2255
130b392c
DW
2256 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2257 if (header[1] != TLS_1_2_VERSION_MINOR ||
2258 header[2] != TLS_1_2_VERSION_MAJOR) {
c46234eb
DW
2259 ret = -EINVAL;
2260 goto read_failure;
2261 }
be2fbc15 2262
f953d33b 2263 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
84c61fe1 2264 TCP_SKB_CB(skb)->seq + strp->stm.offset);
c46234eb
DW
2265 return data_len + TLS_HEADER_SIZE;
2266
2267read_failure:
2268 tls_err_abort(strp->sk, ret);
2269
2270 return ret;
2271}
2272
84c61fe1 2273void tls_rx_msg_ready(struct tls_strparser *strp)
c46234eb 2274{
84c61fe1 2275 struct tls_sw_context_rx *ctx;
c46234eb 2276
84c61fe1 2277 ctx = container_of(strp, struct tls_sw_context_rx, strp);
ad13acce 2278 ctx->saved_data_ready(strp->sk);
c46234eb
DW
2279}
2280
2281static void tls_data_ready(struct sock *sk)
2282{
2283 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2284 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3 2285 struct sk_psock *psock;
74836ec8 2286 gfp_t alloc_save;
c46234eb 2287
40e0b090
PY
2288 trace_sk_data_ready(sk);
2289
74836ec8
JK
2290 alloc_save = sk->sk_allocation;
2291 sk->sk_allocation = GFP_ATOMIC;
84c61fe1 2292 tls_strp_data_ready(&ctx->strp);
74836ec8 2293 sk->sk_allocation = alloc_save;
d3b18ad3
JF
2294
2295 psock = sk_psock_get(sk);
62b4011f
XY
2296 if (psock) {
2297 if (!list_empty(&psock->ingress_msg))
2298 ctx->saved_data_ready(sk);
d3b18ad3
JF
2299 sk_psock_put(sk, psock);
2300 }
c46234eb
DW
2301}
2302
f87e62d4
JF
2303void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2304{
2305 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2306
2307 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2308 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2309 cancel_delayed_work_sync(&ctx->tx_work.work);
2310}
2311
313ab004 2312void tls_sw_release_resources_tx(struct sock *sk)
3c4d7559
DW
2313{
2314 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 2316 struct tls_rec *rec, *tmp;
38f7e1c0 2317 int pending;
a42055e8
VG
2318
2319 /* Wait for any pending async encryptions to complete */
38f7e1c0
RM
2320 spin_lock_bh(&ctx->encrypt_compl_lock);
2321 ctx->async_notify = true;
2322 pending = atomic_read(&ctx->encrypt_pending);
2323 spin_unlock_bh(&ctx->encrypt_compl_lock);
2324
2325 if (pending)
a42055e8
VG
2326 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2327
a42055e8
VG
2328 tls_tx_records(sk, -1);
2329
9932a29a 2330 /* Free up un-sent records in tx_list. First, free
a42055e8
VG
2331 * the partially sent record if any at head of tx_list.
2332 */
c5daa6cc
JK
2333 if (tls_ctx->partially_sent_record) {
2334 tls_free_partial_record(sk, tls_ctx);
9932a29a 2335 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
2336 struct tls_rec, list);
2337 list_del(&rec->list);
d829e9c4 2338 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2339 kfree(rec);
2340 }
2341
9932a29a 2342 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
a42055e8 2343 list_del(&rec->list);
d829e9c4
DB
2344 sk_msg_free(sk, &rec->msg_encrypted);
2345 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2346 kfree(rec);
2347 }
3c4d7559 2348
201876b3 2349 crypto_free_aead(ctx->aead_send);
c774973e 2350 tls_free_open_rec(sk);
313ab004
JF
2351}
2352
2353void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2354{
2355 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
f66de3ee
BP
2356
2357 kfree(ctx);
2358}
2359
39f56e1a 2360void tls_sw_release_resources_rx(struct sock *sk)
f66de3ee
BP
2361{
2362 struct tls_context *tls_ctx = tls_get_ctx(sk);
2363 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2364
12c76861
JK
2365 kfree(tls_ctx->rx.rec_seq);
2366 kfree(tls_ctx->rx.iv);
2367
c46234eb 2368 if (ctx->aead_recv) {
a30295c4 2369 __skb_queue_purge(&ctx->rx_list);
c46234eb 2370 crypto_free_aead(ctx->aead_recv);
84c61fe1 2371 tls_strp_stop(&ctx->strp);
313ab004 2372 /* If tls_sw_strparser_arm() was not called (cleanup paths)
84c61fe1 2373 * we still want to tls_strp_stop(), but sk->sk_data_ready was
313ab004
JF
2374 * never swapped.
2375 */
2376 if (ctx->saved_data_ready) {
2377 write_lock_bh(&sk->sk_callback_lock);
2378 sk->sk_data_ready = ctx->saved_data_ready;
2379 write_unlock_bh(&sk->sk_callback_lock);
2380 }
c46234eb 2381 }
39f56e1a
BP
2382}
2383
313ab004 2384void tls_sw_strparser_done(struct tls_context *tls_ctx)
39f56e1a 2385{
39f56e1a
BP
2386 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2387
84c61fe1 2388 tls_strp_done(&ctx->strp);
313ab004
JF
2389}
2390
2391void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2392{
2393 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
3c4d7559 2394
3c4d7559
DW
2395 kfree(ctx);
2396}
2397
313ab004
JF
2398void tls_sw_free_resources_rx(struct sock *sk)
2399{
2400 struct tls_context *tls_ctx = tls_get_ctx(sk);
2401
2402 tls_sw_release_resources_rx(sk);
2403 tls_sw_free_ctx_rx(tls_ctx);
2404}
2405
9932a29a 2406/* The work handler to transmitt the encrypted records in tx_list */
a42055e8
VG
2407static void tx_work_handler(struct work_struct *work)
2408{
2409 struct delayed_work *delayed_work = to_delayed_work(work);
2410 struct tx_work *tx_work = container_of(delayed_work,
2411 struct tx_work, work);
2412 struct sock *sk = tx_work->sk;
2413 struct tls_context *tls_ctx = tls_get_ctx(sk);
f87e62d4 2414 struct tls_sw_context_tx *ctx;
a42055e8 2415
f87e62d4 2416 if (unlikely(!tls_ctx))
a42055e8
VG
2417 return;
2418
f87e62d4
JF
2419 ctx = tls_sw_ctx_tx(tls_ctx);
2420 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2421 return;
2422
2423 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2424 return;
f3221361
JK
2425
2426 if (mutex_trylock(&tls_ctx->tx_lock)) {
2427 lock_sock(sk);
2428 tls_tx_records(sk, -1);
2429 release_sock(sk);
2430 mutex_unlock(&tls_ctx->tx_lock);
2431 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2432 /* Someone is holding the tx_lock, they will likely run Tx
2433 * and cancel the work on their way out of the lock section.
2434 * Schedule a long delay just in case.
2435 */
2436 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2437 }
a42055e8
VG
2438}
2439
58790314
JK
2440static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2441{
2442 struct tls_rec *rec;
2443
ffe2a225 2444 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
58790314
JK
2445 if (!rec)
2446 return false;
2447
2448 return READ_ONCE(rec->tx_ready);
2449}
2450
7463d3a2
BP
2451void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2452{
2453 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2454
2455 /* Schedule the transmission if tx list is ready */
58790314 2456 if (tls_is_tx_ready(tx_ctx) &&
02b1fa07
JK
2457 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2458 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
7463d3a2
BP
2459}
2460
318892ac
JK
2461void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2462{
2463 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2464
2465 write_lock_bh(&sk->sk_callback_lock);
2466 rx_ctx->saved_data_ready = sk->sk_data_ready;
2467 sk->sk_data_ready = tls_data_ready;
2468 write_unlock_bh(&sk->sk_callback_lock);
318892ac
JK
2469}
2470
88527790
JK
2471void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2472{
2473 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2474
2475 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2476 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2477}
2478
c46234eb 2479int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
3c4d7559 2480{
4509de14
VG
2481 struct tls_context *tls_ctx = tls_get_ctx(sk);
2482 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559 2483 struct tls_crypto_info *crypto_info;
f66de3ee
BP
2484 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2485 struct tls_sw_context_rx *sw_ctx_rx = NULL;
c46234eb
DW
2486 struct cipher_context *cctx;
2487 struct crypto_aead **aead;
f295b3ae 2488 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
692d7b5d 2489 struct crypto_tfm *tfm;
f295b3ae 2490 char *iv, *rec_seq, *key, *salt, *cipher_name;
fb99bce7 2491 size_t keysize;
3c4d7559
DW
2492 int rc = 0;
2493
2494 if (!ctx) {
2495 rc = -EINVAL;
2496 goto out;
2497 }
2498
f66de3ee 2499 if (tx) {
b190a587
BP
2500 if (!ctx->priv_ctx_tx) {
2501 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2502 if (!sw_ctx_tx) {
2503 rc = -ENOMEM;
2504 goto out;
2505 }
2506 ctx->priv_ctx_tx = sw_ctx_tx;
2507 } else {
2508 sw_ctx_tx =
2509 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
c46234eb 2510 }
c46234eb 2511 } else {
b190a587
BP
2512 if (!ctx->priv_ctx_rx) {
2513 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2514 if (!sw_ctx_rx) {
2515 rc = -ENOMEM;
2516 goto out;
2517 }
2518 ctx->priv_ctx_rx = sw_ctx_rx;
2519 } else {
2520 sw_ctx_rx =
2521 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
f66de3ee 2522 }
3c4d7559
DW
2523 }
2524
c46234eb 2525 if (tx) {
b190a587 2526 crypto_init_wait(&sw_ctx_tx->async_wait);
0cada332 2527 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
86029d10 2528 crypto_info = &ctx->crypto_send.info;
c46234eb 2529 cctx = &ctx->tx;
f66de3ee 2530 aead = &sw_ctx_tx->aead_send;
9932a29a 2531 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
a42055e8
VG
2532 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2533 sw_ctx_tx->tx_work.sk = sk;
c46234eb 2534 } else {
b190a587 2535 crypto_init_wait(&sw_ctx_rx->async_wait);
0cada332 2536 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
4cbc325e 2537 init_waitqueue_head(&sw_ctx_rx->wq);
86029d10 2538 crypto_info = &ctx->crypto_recv.info;
c46234eb 2539 cctx = &ctx->rx;
692d7b5d 2540 skb_queue_head_init(&sw_ctx_rx->rx_list);
c618db2a 2541 skb_queue_head_init(&sw_ctx_rx->async_hold);
f66de3ee 2542 aead = &sw_ctx_rx->aead_recv;
c46234eb
DW
2543 }
2544
3c4d7559
DW
2545 switch (crypto_info->cipher_type) {
2546 case TLS_CIPHER_AES_GCM_128: {
dc2724a6
TZ
2547 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2548
2549 gcm_128_info = (void *)crypto_info;
3c4d7559
DW
2550 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2551 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2552 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
dc2724a6 2553 iv = gcm_128_info->iv;
3c4d7559 2554 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
dc2724a6 2555 rec_seq = gcm_128_info->rec_seq;
fb99bce7
DW
2556 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2557 key = gcm_128_info->key;
2558 salt = gcm_128_info->salt;
f295b3ae
VG
2559 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2560 cipher_name = "gcm(aes)";
fb99bce7
DW
2561 break;
2562 }
2563 case TLS_CIPHER_AES_GCM_256: {
dc2724a6
TZ
2564 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2565
2566 gcm_256_info = (void *)crypto_info;
fb99bce7
DW
2567 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2568 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2569 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
dc2724a6 2570 iv = gcm_256_info->iv;
fb99bce7 2571 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
dc2724a6 2572 rec_seq = gcm_256_info->rec_seq;
fb99bce7
DW
2573 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2574 key = gcm_256_info->key;
2575 salt = gcm_256_info->salt;
f295b3ae
VG
2576 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2577 cipher_name = "gcm(aes)";
2578 break;
2579 }
2580 case TLS_CIPHER_AES_CCM_128: {
dc2724a6
TZ
2581 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2582
2583 ccm_128_info = (void *)crypto_info;
f295b3ae
VG
2584 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2585 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2586 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
dc2724a6 2587 iv = ccm_128_info->iv;
f295b3ae 2588 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
dc2724a6 2589 rec_seq = ccm_128_info->rec_seq;
f295b3ae
VG
2590 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2591 key = ccm_128_info->key;
2592 salt = ccm_128_info->salt;
2593 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2594 cipher_name = "ccm(aes)";
3c4d7559
DW
2595 break;
2596 }
74ea6106 2597 case TLS_CIPHER_CHACHA20_POLY1305: {
dc2724a6
TZ
2598 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2599
74ea6106
VF
2600 chacha20_poly1305_info = (void *)crypto_info;
2601 nonce_size = 0;
2602 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2603 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2604 iv = chacha20_poly1305_info->iv;
2605 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2606 rec_seq = chacha20_poly1305_info->rec_seq;
2607 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2608 key = chacha20_poly1305_info->key;
2609 salt = chacha20_poly1305_info->salt;
2610 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2611 cipher_name = "rfc7539(chacha20,poly1305)";
2612 break;
2613 }
227b9644
TZ
2614 case TLS_CIPHER_SM4_GCM: {
2615 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2616
2617 sm4_gcm_info = (void *)crypto_info;
2618 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2619 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2620 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2621 iv = sm4_gcm_info->iv;
2622 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2623 rec_seq = sm4_gcm_info->rec_seq;
2624 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2625 key = sm4_gcm_info->key;
2626 salt = sm4_gcm_info->salt;
2627 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2628 cipher_name = "gcm(sm4)";
2629 break;
2630 }
2631 case TLS_CIPHER_SM4_CCM: {
2632 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2633
2634 sm4_ccm_info = (void *)crypto_info;
2635 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2636 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2637 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2638 iv = sm4_ccm_info->iv;
2639 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2640 rec_seq = sm4_ccm_info->rec_seq;
2641 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2642 key = sm4_ccm_info->key;
2643 salt = sm4_ccm_info->salt;
2644 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2645 cipher_name = "ccm(sm4)";
2646 break;
2647 }
62e56ef5
TY
2648 case TLS_CIPHER_ARIA_GCM_128: {
2649 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2650
2651 aria_gcm_128_info = (void *)crypto_info;
2652 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2653 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2654 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2655 iv = aria_gcm_128_info->iv;
2656 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2657 rec_seq = aria_gcm_128_info->rec_seq;
2658 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2659 key = aria_gcm_128_info->key;
2660 salt = aria_gcm_128_info->salt;
2661 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2662 cipher_name = "gcm(aria)";
2663 break;
2664 }
2665 case TLS_CIPHER_ARIA_GCM_256: {
2666 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2667
2668 gcm_256_info = (void *)crypto_info;
2669 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2670 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2671 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2672 iv = gcm_256_info->iv;
2673 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2674 rec_seq = gcm_256_info->rec_seq;
2675 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2676 key = gcm_256_info->key;
2677 salt = gcm_256_info->salt;
2678 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2679 cipher_name = "gcm(aria)";
2680 break;
2681 }
3c4d7559
DW
2682 default:
2683 rc = -EINVAL;
cf6d43ef 2684 goto free_priv;
3c4d7559
DW
2685 }
2686
130b392c
DW
2687 if (crypto_info->version == TLS_1_3_VERSION) {
2688 nonce_size = 0;
4509de14
VG
2689 prot->aad_size = TLS_HEADER_SIZE;
2690 prot->tail_size = 1;
130b392c 2691 } else {
4509de14
VG
2692 prot->aad_size = TLS_AAD_SPACE_SIZE;
2693 prot->tail_size = 0;
130b392c
DW
2694 }
2695
50a07aa5
JK
2696 /* Sanity-check the sizes for stack allocations. */
2697 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2698 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2699 prot->aad_size > TLS_MAX_AAD_SIZE) {
2700 rc = -EINVAL;
2701 goto free_priv;
2702 }
2703
4509de14
VG
2704 prot->version = crypto_info->version;
2705 prot->cipher_type = crypto_info->cipher_type;
2706 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2707 prot->tag_size = tag_size;
2708 prot->overhead_size = prot->prepend_size +
2709 prot->tag_size + prot->tail_size;
2710 prot->iv_size = iv_size;
f295b3ae
VG
2711 prot->salt_size = salt_size;
2712 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
c46234eb 2713 if (!cctx->iv) {
3c4d7559 2714 rc = -ENOMEM;
cf6d43ef 2715 goto free_priv;
3c4d7559 2716 }
fb99bce7 2717 /* Note: 128 & 256 bit salt are the same size */
4509de14 2718 prot->rec_seq_size = rec_seq_size;
f295b3ae
VG
2719 memcpy(cctx->iv, salt, salt_size);
2720 memcpy(cctx->iv + salt_size, iv, iv_size);
969d5090 2721 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
c46234eb 2722 if (!cctx->rec_seq) {
3c4d7559
DW
2723 rc = -ENOMEM;
2724 goto free_iv;
2725 }
c46234eb 2726
c46234eb 2727 if (!*aead) {
f295b3ae 2728 *aead = crypto_alloc_aead(cipher_name, 0, 0);
c46234eb
DW
2729 if (IS_ERR(*aead)) {
2730 rc = PTR_ERR(*aead);
2731 *aead = NULL;
3c4d7559
DW
2732 goto free_rec_seq;
2733 }
2734 }
2735
2736 ctx->push_pending_record = tls_sw_push_pending_record;
2737
fb99bce7
DW
2738 rc = crypto_aead_setkey(*aead, key, keysize);
2739
3c4d7559
DW
2740 if (rc)
2741 goto free_aead;
2742
4509de14 2743 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
c46234eb
DW
2744 if (rc)
2745 goto free_aead;
2746
f66de3ee 2747 if (sw_ctx_rx) {
692d7b5d 2748 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
8497ded2 2749
88527790
JK
2750 tls_update_rx_zc_capable(ctx);
2751 sw_ctx_rx->async_capable =
2752 crypto_info->version != TLS_1_3_VERSION &&
2753 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
692d7b5d 2754
849f16bb
JK
2755 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2756 if (rc)
2757 goto free_aead;
c46234eb
DW
2758 }
2759
2760 goto out;
3c4d7559
DW
2761
2762free_aead:
c46234eb
DW
2763 crypto_free_aead(*aead);
2764 *aead = NULL;
3c4d7559 2765free_rec_seq:
c46234eb
DW
2766 kfree(cctx->rec_seq);
2767 cctx->rec_seq = NULL;
3c4d7559 2768free_iv:
f66de3ee
BP
2769 kfree(cctx->iv);
2770 cctx->iv = NULL;
cf6d43ef 2771free_priv:
f66de3ee
BP
2772 if (tx) {
2773 kfree(ctx->priv_ctx_tx);
2774 ctx->priv_ctx_tx = NULL;
2775 } else {
2776 kfree(ctx->priv_ctx_rx);
2777 ctx->priv_ctx_rx = NULL;
2778 }
3c4d7559
DW
2779out:
2780 return rc;
2781}