tls: rx: read the input skb from ctx->recv_pkt
[linux-2.6-block.git] / net / tls / tls_sw.c
CommitLineData
3c4d7559
DW
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
d3b18ad3 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
3c4d7559
DW
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
da353fac 38#include <linux/bug.h>
c46234eb 39#include <linux/sched/signal.h>
3c4d7559 40#include <linux/module.h>
974271e5 41#include <linux/splice.h>
3c4d7559
DW
42#include <crypto/aead.h>
43
c46234eb 44#include <net/strparser.h>
3c4d7559
DW
45#include <net/tls.h>
46
58790314
JK
47#include "tls.h"
48
4175eac3
JK
49struct tls_decrypt_arg {
50 bool zc;
51 bool async;
ce61327c 52 u8 tail;
4175eac3
JK
53};
54
b89fec54
JK
55struct tls_decrypt_ctx {
56 u8 iv[MAX_IV_SIZE];
57 u8 aad[TLS_MAX_AAD_SIZE];
58 u8 tail;
59 struct scatterlist sg[];
60};
61
da353fac
DJ
62noinline void tls_err_abort(struct sock *sk, int err)
63{
64 WARN_ON_ONCE(err >= 0);
65 /* sk->sk_err should contain a positive error code. */
66 sk->sk_err = -err;
67 sk_error_report(sk);
68}
69
0927f71d
DRK
70static int __skb_nsg(struct sk_buff *skb, int offset, int len,
71 unsigned int recursion_level)
72{
73 int start = skb_headlen(skb);
74 int i, chunk = start - offset;
75 struct sk_buff *frag_iter;
76 int elt = 0;
77
78 if (unlikely(recursion_level >= 24))
79 return -EMSGSIZE;
80
81 if (chunk > 0) {
82 if (chunk > len)
83 chunk = len;
84 elt++;
85 len -= chunk;
86 if (len == 0)
87 return elt;
88 offset += chunk;
89 }
90
91 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
92 int end;
93
94 WARN_ON(start > offset + len);
95
96 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
97 chunk = end - offset;
98 if (chunk > 0) {
99 if (chunk > len)
100 chunk = len;
101 elt++;
102 len -= chunk;
103 if (len == 0)
104 return elt;
105 offset += chunk;
106 }
107 start = end;
108 }
109
110 if (unlikely(skb_has_frag_list(skb))) {
111 skb_walk_frags(skb, frag_iter) {
112 int end, ret;
113
114 WARN_ON(start > offset + len);
115
116 end = start + frag_iter->len;
117 chunk = end - offset;
118 if (chunk > 0) {
119 if (chunk > len)
120 chunk = len;
121 ret = __skb_nsg(frag_iter, offset - start, chunk,
122 recursion_level + 1);
123 if (unlikely(ret < 0))
124 return ret;
125 elt += ret;
126 len -= chunk;
127 if (len == 0)
128 return elt;
129 offset += chunk;
130 }
131 start = end;
132 }
133 }
134 BUG_ON(len);
135 return elt;
136}
137
138/* Return the number of scatterlist elements required to completely map the
139 * skb, or -EMSGSIZE if the recursion depth is exceeded.
140 */
141static int skb_nsg(struct sk_buff *skb, int offset, int len)
142{
143 return __skb_nsg(skb, offset, len, 0);
144}
145
ce61327c
JK
146static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
147 struct tls_decrypt_arg *darg)
130b392c
DW
148{
149 struct strp_msg *rxm = strp_msg(skb);
c3f6bb74 150 struct tls_msg *tlm = tls_msg(skb);
130b392c
DW
151 int sub = 0;
152
153 /* Determine zero-padding length */
b53f4976 154 if (prot->version == TLS_1_3_VERSION) {
5deee41b 155 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
ce61327c 156 char content_type = darg->zc ? darg->tail : 0;
130b392c 157 int err;
130b392c
DW
158
159 while (content_type == 0) {
5deee41b 160 if (offset < prot->prepend_size)
130b392c 161 return -EBADMSG;
5deee41b 162 err = skb_copy_bits(skb, rxm->offset + offset,
130b392c 163 &content_type, 1);
b53f4976
JK
164 if (err)
165 return err;
130b392c
DW
166 if (content_type)
167 break;
168 sub++;
5deee41b 169 offset--;
130b392c 170 }
c3f6bb74 171 tlm->control = content_type;
130b392c
DW
172 }
173 return sub;
174}
175
94524d8f
VG
176static void tls_decrypt_done(struct crypto_async_request *req, int err)
177{
178 struct aead_request *aead_req = (struct aead_request *)req;
94524d8f 179 struct scatterlist *sgout = aead_req->dst;
692d7b5d 180 struct scatterlist *sgin = aead_req->src;
7a3dd8c8
JF
181 struct tls_sw_context_rx *ctx;
182 struct tls_context *tls_ctx;
4509de14 183 struct tls_prot_info *prot;
94524d8f 184 struct scatterlist *sg;
7a3dd8c8 185 struct sk_buff *skb;
94524d8f 186 unsigned int pages;
7a3dd8c8
JF
187
188 skb = (struct sk_buff *)req->data;
189 tls_ctx = tls_get_ctx(skb->sk);
190 ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 191 prot = &tls_ctx->prot_info;
94524d8f
VG
192
193 /* Propagate if there was an err */
194 if (err) {
5c5ec668
JK
195 if (err == -EBADMSG)
196 TLS_INC_STATS(sock_net(skb->sk),
197 LINUX_MIB_TLSDECRYPTERROR);
94524d8f 198 ctx->async_wait.err = err;
7a3dd8c8 199 tls_err_abort(skb->sk, err);
692d7b5d
VG
200 } else {
201 struct strp_msg *rxm = strp_msg(skb);
72f3ad73
JK
202
203 /* No TLS 1.3 support with async crypto */
204 WARN_ON(prot->tail_size);
205
206 rxm->offset += prot->prepend_size;
207 rxm->full_len -= prot->overhead_size;
94524d8f
VG
208 }
209
7a3dd8c8
JF
210 /* After using skb->sk to propagate sk through crypto async callback
211 * we need to NULL it again.
212 */
213 skb->sk = NULL;
214
94524d8f 215
692d7b5d
VG
216 /* Free the destination pages if skb was not decrypted inplace */
217 if (sgout != sgin) {
218 /* Skip the first S/G entry as it points to AAD */
219 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
220 if (!sg)
221 break;
222 put_page(sg_page(sg));
223 }
94524d8f
VG
224 }
225
226 kfree(aead_req);
227
0cada332 228 spin_lock_bh(&ctx->decrypt_compl_lock);
37943f04 229 if (!atomic_dec_return(&ctx->decrypt_pending))
94524d8f 230 complete(&ctx->async_wait.completion);
0cada332 231 spin_unlock_bh(&ctx->decrypt_compl_lock);
94524d8f
VG
232}
233
c46234eb 234static int tls_do_decryption(struct sock *sk,
94524d8f 235 struct sk_buff *skb,
c46234eb
DW
236 struct scatterlist *sgin,
237 struct scatterlist *sgout,
238 char *iv_recv,
239 size_t data_len,
94524d8f 240 struct aead_request *aead_req,
3547a1f9 241 struct tls_decrypt_arg *darg)
c46234eb
DW
242{
243 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 244 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 245 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 246 int ret;
c46234eb 247
0b243d00 248 aead_request_set_tfm(aead_req, ctx->aead_recv);
4509de14 249 aead_request_set_ad(aead_req, prot->aad_size);
c46234eb 250 aead_request_set_crypt(aead_req, sgin, sgout,
4509de14 251 data_len + prot->tag_size,
c46234eb 252 (u8 *)iv_recv);
c46234eb 253
3547a1f9 254 if (darg->async) {
7a3dd8c8
JF
255 /* Using skb->sk to push sk through to crypto async callback
256 * handler. This allows propagating errors up to the socket
257 * if needed. It _must_ be cleared in the async handler
a88c26f6 258 * before consume_skb is called. We _know_ skb->sk is NULL
7a3dd8c8
JF
259 * because it is a clone from strparser.
260 */
261 skb->sk = sk;
94524d8f
VG
262 aead_request_set_callback(aead_req,
263 CRYPTO_TFM_REQ_MAY_BACKLOG,
264 tls_decrypt_done, skb);
265 atomic_inc(&ctx->decrypt_pending);
266 } else {
267 aead_request_set_callback(aead_req,
268 CRYPTO_TFM_REQ_MAY_BACKLOG,
269 crypto_req_done, &ctx->async_wait);
270 }
271
272 ret = crypto_aead_decrypt(aead_req);
273 if (ret == -EINPROGRESS) {
3547a1f9
JK
274 if (darg->async)
275 return 0;
94524d8f
VG
276
277 ret = crypto_wait_req(ret, &ctx->async_wait);
278 }
3547a1f9
JK
279 darg->async = false;
280
c46234eb
DW
281 return ret;
282}
283
d829e9c4 284static void tls_trim_both_msgs(struct sock *sk, int target_size)
3c4d7559
DW
285{
286 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 287 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 288 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 289 struct tls_rec *rec = ctx->open_rec;
3c4d7559 290
d829e9c4 291 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
3c4d7559 292 if (target_size > 0)
4509de14 293 target_size += prot->overhead_size;
d829e9c4 294 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
3c4d7559
DW
295}
296
d829e9c4 297static int tls_alloc_encrypted_msg(struct sock *sk, int len)
3c4d7559
DW
298{
299 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 300 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 301 struct tls_rec *rec = ctx->open_rec;
d829e9c4 302 struct sk_msg *msg_en = &rec->msg_encrypted;
3c4d7559 303
d829e9c4 304 return sk_msg_alloc(sk, msg_en, len, 0);
3c4d7559
DW
305}
306
d829e9c4 307static int tls_clone_plaintext_msg(struct sock *sk, int required)
3c4d7559
DW
308{
309 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 310 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 312 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
313 struct sk_msg *msg_pl = &rec->msg_plaintext;
314 struct sk_msg *msg_en = &rec->msg_encrypted;
4e6d4720 315 int skip, len;
3c4d7559 316
d829e9c4
DB
317 /* We add page references worth len bytes from encrypted sg
318 * at the end of plaintext sg. It is guaranteed that msg_en
4e6d4720
VG
319 * has enough required room (ensured by caller).
320 */
d829e9c4 321 len = required - msg_pl->sg.size;
52ea992c 322
d829e9c4
DB
323 /* Skip initial bytes in msg_en's data to be able to use
324 * same offset of both plain and encrypted data.
4e6d4720 325 */
4509de14 326 skip = prot->prepend_size + msg_pl->sg.size;
4e6d4720 327
d829e9c4 328 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
3c4d7559
DW
329}
330
d3b18ad3 331static struct tls_rec *tls_get_rec(struct sock *sk)
3c4d7559
DW
332{
333 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 334 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 335 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
336 struct sk_msg *msg_pl, *msg_en;
337 struct tls_rec *rec;
338 int mem_size;
3c4d7559 339
d3b18ad3
JF
340 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
341
342 rec = kzalloc(mem_size, sk->sk_allocation);
a42055e8 343 if (!rec)
d3b18ad3
JF
344 return NULL;
345
346 msg_pl = &rec->msg_plaintext;
347 msg_en = &rec->msg_encrypted;
348
349 sk_msg_init(msg_pl);
350 sk_msg_init(msg_en);
351
352 sg_init_table(rec->sg_aead_in, 2);
4509de14 353 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
354 sg_unmark_end(&rec->sg_aead_in[1]);
355
356 sg_init_table(rec->sg_aead_out, 2);
4509de14 357 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
358 sg_unmark_end(&rec->sg_aead_out[1]);
359
360 return rec;
361}
a42055e8 362
d3b18ad3
JF
363static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
364{
d829e9c4
DB
365 sk_msg_free(sk, &rec->msg_encrypted);
366 sk_msg_free(sk, &rec->msg_plaintext);
c774973e 367 kfree(rec);
a42055e8
VG
368}
369
d3b18ad3
JF
370static void tls_free_open_rec(struct sock *sk)
371{
372 struct tls_context *tls_ctx = tls_get_ctx(sk);
373 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
374 struct tls_rec *rec = ctx->open_rec;
375
376 if (rec) {
377 tls_free_rec(sk, rec);
378 ctx->open_rec = NULL;
379 }
380}
381
a42055e8
VG
382int tls_tx_records(struct sock *sk, int flags)
383{
384 struct tls_context *tls_ctx = tls_get_ctx(sk);
385 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
386 struct tls_rec *rec, *tmp;
d829e9c4 387 struct sk_msg *msg_en;
a42055e8
VG
388 int tx_flags, rc = 0;
389
390 if (tls_is_partially_sent_record(tls_ctx)) {
9932a29a 391 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
392 struct tls_rec, list);
393
394 if (flags == -1)
395 tx_flags = rec->tx_flags;
396 else
397 tx_flags = flags;
398
399 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
400 if (rc)
401 goto tx_err;
402
403 /* Full record has been transmitted.
9932a29a 404 * Remove the head of tx_list
a42055e8 405 */
a42055e8 406 list_del(&rec->list);
d829e9c4 407 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
408 kfree(rec);
409 }
410
9932a29a
VG
411 /* Tx all ready records */
412 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
413 if (READ_ONCE(rec->tx_ready)) {
a42055e8
VG
414 if (flags == -1)
415 tx_flags = rec->tx_flags;
416 else
417 tx_flags = flags;
418
d829e9c4 419 msg_en = &rec->msg_encrypted;
a42055e8 420 rc = tls_push_sg(sk, tls_ctx,
d829e9c4 421 &msg_en->sg.data[msg_en->sg.curr],
a42055e8
VG
422 0, tx_flags);
423 if (rc)
424 goto tx_err;
425
a42055e8 426 list_del(&rec->list);
d829e9c4 427 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
428 kfree(rec);
429 } else {
430 break;
431 }
432 }
433
434tx_err:
435 if (rc < 0 && rc != -EAGAIN)
da353fac 436 tls_err_abort(sk, -EBADMSG);
a42055e8
VG
437
438 return rc;
439}
440
441static void tls_encrypt_done(struct crypto_async_request *req, int err)
442{
443 struct aead_request *aead_req = (struct aead_request *)req;
444 struct sock *sk = req->data;
445 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 446 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 447 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d829e9c4
DB
448 struct scatterlist *sge;
449 struct sk_msg *msg_en;
a42055e8
VG
450 struct tls_rec *rec;
451 bool ready = false;
452 int pending;
453
454 rec = container_of(aead_req, struct tls_rec, aead_req);
d829e9c4 455 msg_en = &rec->msg_encrypted;
a42055e8 456
d829e9c4 457 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
4509de14
VG
458 sge->offset -= prot->prepend_size;
459 sge->length += prot->prepend_size;
a42055e8 460
80ece6a0 461 /* Check if error is previously set on socket */
a42055e8 462 if (err || sk->sk_err) {
a42055e8
VG
463 rec = NULL;
464
465 /* If err is already set on socket, return the same code */
466 if (sk->sk_err) {
1d9d6fd2 467 ctx->async_wait.err = -sk->sk_err;
a42055e8
VG
468 } else {
469 ctx->async_wait.err = err;
470 tls_err_abort(sk, err);
471 }
472 }
473
9932a29a
VG
474 if (rec) {
475 struct tls_rec *first_rec;
476
477 /* Mark the record as ready for transmission */
478 smp_store_mb(rec->tx_ready, true);
479
480 /* If received record is at head of tx_list, schedule tx */
481 first_rec = list_first_entry(&ctx->tx_list,
482 struct tls_rec, list);
483 if (rec == first_rec)
484 ready = true;
485 }
a42055e8 486
0cada332 487 spin_lock_bh(&ctx->encrypt_compl_lock);
a42055e8
VG
488 pending = atomic_dec_return(&ctx->encrypt_pending);
489
0cada332 490 if (!pending && ctx->async_notify)
a42055e8 491 complete(&ctx->async_wait.completion);
0cada332 492 spin_unlock_bh(&ctx->encrypt_compl_lock);
a42055e8
VG
493
494 if (!ready)
495 return;
496
497 /* Schedule the transmission */
498 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
d829e9c4 499 schedule_delayed_work(&ctx->tx_work.work, 1);
3c4d7559
DW
500}
501
a42055e8
VG
502static int tls_do_encryption(struct sock *sk,
503 struct tls_context *tls_ctx,
a447da7d
DB
504 struct tls_sw_context_tx *ctx,
505 struct aead_request *aead_req,
d829e9c4 506 size_t data_len, u32 start)
3c4d7559 507{
4509de14 508 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 509 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
510 struct sk_msg *msg_en = &rec->msg_encrypted;
511 struct scatterlist *sge = sk_msg_elem(msg_en, start);
f295b3ae
VG
512 int rc, iv_offset = 0;
513
514 /* For CCM based ciphers, first byte of IV is a constant */
128cfb88
TZ
515 switch (prot->cipher_type) {
516 case TLS_CIPHER_AES_CCM_128:
f295b3ae
VG
517 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
518 iv_offset = 1;
128cfb88
TZ
519 break;
520 case TLS_CIPHER_SM4_CCM:
521 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
522 iv_offset = 1;
523 break;
f295b3ae
VG
524 }
525
526 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
527 prot->iv_size + prot->salt_size);
3c4d7559 528
58790314
JK
529 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
530 tls_ctx->tx.rec_seq);
32eb67b9 531
4509de14
VG
532 sge->offset += prot->prepend_size;
533 sge->length -= prot->prepend_size;
3c4d7559 534
d829e9c4 535 msg_en->sg.curr = start;
4e6d4720 536
3c4d7559 537 aead_request_set_tfm(aead_req, ctx->aead_send);
4509de14 538 aead_request_set_ad(aead_req, prot->aad_size);
d829e9c4
DB
539 aead_request_set_crypt(aead_req, rec->sg_aead_in,
540 rec->sg_aead_out,
32eb67b9 541 data_len, rec->iv_data);
a54667f6
VG
542
543 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
a42055e8
VG
544 tls_encrypt_done, sk);
545
9932a29a
VG
546 /* Add the record in tx_list */
547 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
a42055e8 548 atomic_inc(&ctx->encrypt_pending);
a54667f6 549
a42055e8
VG
550 rc = crypto_aead_encrypt(aead_req);
551 if (!rc || rc != -EINPROGRESS) {
552 atomic_dec(&ctx->encrypt_pending);
4509de14
VG
553 sge->offset -= prot->prepend_size;
554 sge->length += prot->prepend_size;
a42055e8 555 }
3c4d7559 556
9932a29a
VG
557 if (!rc) {
558 WRITE_ONCE(rec->tx_ready, true);
559 } else if (rc != -EINPROGRESS) {
560 list_del(&rec->list);
a42055e8 561 return rc;
9932a29a 562 }
3c4d7559 563
a42055e8
VG
564 /* Unhook the record from context if encryption is not failure */
565 ctx->open_rec = NULL;
fb0f886f 566 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
3c4d7559
DW
567 return rc;
568}
569
d3b18ad3
JF
570static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
571 struct tls_rec **to, struct sk_msg *msg_opl,
572 struct sk_msg *msg_oen, u32 split_point,
573 u32 tx_overhead_size, u32 *orig_end)
574{
575 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
576 struct scatterlist *sge, *osge, *nsge;
577 u32 orig_size = msg_opl->sg.size;
578 struct scatterlist tmp = { };
579 struct sk_msg *msg_npl;
580 struct tls_rec *new;
581 int ret;
582
583 new = tls_get_rec(sk);
584 if (!new)
585 return -ENOMEM;
586 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
587 tx_overhead_size, 0);
588 if (ret < 0) {
589 tls_free_rec(sk, new);
590 return ret;
591 }
592
593 *orig_end = msg_opl->sg.end;
594 i = msg_opl->sg.start;
595 sge = sk_msg_elem(msg_opl, i);
596 while (apply && sge->length) {
597 if (sge->length > apply) {
598 u32 len = sge->length - apply;
599
600 get_page(sg_page(sge));
601 sg_set_page(&tmp, sg_page(sge), len,
602 sge->offset + apply);
603 sge->length = apply;
604 bytes += apply;
605 apply = 0;
606 } else {
607 apply -= sge->length;
608 bytes += sge->length;
609 }
610
611 sk_msg_iter_var_next(i);
612 if (i == msg_opl->sg.end)
613 break;
614 sge = sk_msg_elem(msg_opl, i);
615 }
616
617 msg_opl->sg.end = i;
618 msg_opl->sg.curr = i;
619 msg_opl->sg.copybreak = 0;
620 msg_opl->apply_bytes = 0;
621 msg_opl->sg.size = bytes;
622
623 msg_npl = &new->msg_plaintext;
624 msg_npl->apply_bytes = apply;
625 msg_npl->sg.size = orig_size - bytes;
626
627 j = msg_npl->sg.start;
628 nsge = sk_msg_elem(msg_npl, j);
629 if (tmp.length) {
630 memcpy(nsge, &tmp, sizeof(*nsge));
631 sk_msg_iter_var_next(j);
632 nsge = sk_msg_elem(msg_npl, j);
633 }
634
635 osge = sk_msg_elem(msg_opl, i);
636 while (osge->length) {
637 memcpy(nsge, osge, sizeof(*nsge));
638 sg_unmark_end(nsge);
639 sk_msg_iter_var_next(i);
640 sk_msg_iter_var_next(j);
641 if (i == *orig_end)
642 break;
643 osge = sk_msg_elem(msg_opl, i);
644 nsge = sk_msg_elem(msg_npl, j);
645 }
646
647 msg_npl->sg.end = j;
648 msg_npl->sg.curr = j;
649 msg_npl->sg.copybreak = 0;
650
651 *to = new;
652 return 0;
653}
654
655static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
656 struct tls_rec *from, u32 orig_end)
657{
658 struct sk_msg *msg_npl = &from->msg_plaintext;
659 struct sk_msg *msg_opl = &to->msg_plaintext;
660 struct scatterlist *osge, *nsge;
661 u32 i, j;
662
663 i = msg_opl->sg.end;
664 sk_msg_iter_var_prev(i);
665 j = msg_npl->sg.start;
666
667 osge = sk_msg_elem(msg_opl, i);
668 nsge = sk_msg_elem(msg_npl, j);
669
670 if (sg_page(osge) == sg_page(nsge) &&
671 osge->offset + osge->length == nsge->offset) {
672 osge->length += nsge->length;
673 put_page(sg_page(nsge));
674 }
675
676 msg_opl->sg.end = orig_end;
677 msg_opl->sg.curr = orig_end;
678 msg_opl->sg.copybreak = 0;
679 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
680 msg_opl->sg.size += msg_npl->sg.size;
681
682 sk_msg_free(sk, &to->msg_encrypted);
683 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
684
685 kfree(from);
686}
687
3c4d7559
DW
688static int tls_push_record(struct sock *sk, int flags,
689 unsigned char record_type)
690{
691 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 692 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 693 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3 694 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
3f649ab7 695 u32 i, split_point, orig_end;
d829e9c4 696 struct sk_msg *msg_pl, *msg_en;
a447da7d 697 struct aead_request *req;
d3b18ad3 698 bool split;
3c4d7559
DW
699 int rc;
700
a42055e8
VG
701 if (!rec)
702 return 0;
a447da7d 703
d829e9c4
DB
704 msg_pl = &rec->msg_plaintext;
705 msg_en = &rec->msg_encrypted;
706
d3b18ad3
JF
707 split_point = msg_pl->apply_bytes;
708 split = split_point && split_point < msg_pl->sg.size;
d468e477
JF
709 if (unlikely((!split &&
710 msg_pl->sg.size +
711 prot->overhead_size > msg_en->sg.size) ||
712 (split &&
713 split_point +
714 prot->overhead_size > msg_en->sg.size))) {
715 split = true;
716 split_point = msg_en->sg.size;
717 }
d3b18ad3
JF
718 if (split) {
719 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
4509de14 720 split_point, prot->overhead_size,
d3b18ad3
JF
721 &orig_end);
722 if (rc < 0)
723 return rc;
d468e477
JF
724 /* This can happen if above tls_split_open_record allocates
725 * a single large encryption buffer instead of two smaller
726 * ones. In this case adjust pointers and continue without
727 * split.
728 */
729 if (!msg_pl->sg.size) {
730 tls_merge_open_record(sk, rec, tmp, orig_end);
731 msg_pl = &rec->msg_plaintext;
732 msg_en = &rec->msg_encrypted;
733 split = false;
734 }
d3b18ad3 735 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
4509de14 736 prot->overhead_size);
d3b18ad3
JF
737 }
738
a42055e8
VG
739 rec->tx_flags = flags;
740 req = &rec->aead_req;
3c4d7559 741
d829e9c4
DB
742 i = msg_pl->sg.end;
743 sk_msg_iter_var_prev(i);
130b392c
DW
744
745 rec->content_type = record_type;
4509de14 746 if (prot->version == TLS_1_3_VERSION) {
130b392c
DW
747 /* Add content type to end of message. No padding added */
748 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
749 sg_mark_end(&rec->sg_content_type);
750 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
751 &rec->sg_content_type);
752 } else {
753 sg_mark_end(sk_msg_elem(msg_pl, i));
754 }
a42055e8 755
9aaaa568
JF
756 if (msg_pl->sg.end < msg_pl->sg.start) {
757 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
758 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
759 msg_pl->sg.data);
760 }
761
d829e9c4 762 i = msg_pl->sg.start;
9e5ffed3 763 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
d829e9c4
DB
764
765 i = msg_en->sg.end;
766 sk_msg_iter_var_prev(i);
767 sg_mark_end(sk_msg_elem(msg_en, i));
768
769 i = msg_en->sg.start;
770 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
771
4509de14 772 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
6942a284 773 tls_ctx->tx.rec_seq, record_type, prot);
3c4d7559
DW
774
775 tls_fill_prepend(tls_ctx,
d829e9c4 776 page_address(sg_page(&msg_en->sg.data[i])) +
130b392c 777 msg_en->sg.data[i].offset,
4509de14 778 msg_pl->sg.size + prot->tail_size,
6942a284 779 record_type);
3c4d7559 780
d829e9c4 781 tls_ctx->pending_open_record_frags = false;
3c4d7559 782
130b392c 783 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
4509de14 784 msg_pl->sg.size + prot->tail_size, i);
a42055e8 785 if (rc < 0) {
d3b18ad3 786 if (rc != -EINPROGRESS) {
da353fac 787 tls_err_abort(sk, -EBADMSG);
d3b18ad3
JF
788 if (split) {
789 tls_ctx->pending_open_record_frags = true;
790 tls_merge_open_record(sk, rec, tmp, orig_end);
791 }
792 }
5b053e12 793 ctx->async_capable = 1;
a42055e8 794 return rc;
d3b18ad3
JF
795 } else if (split) {
796 msg_pl = &tmp->msg_plaintext;
797 msg_en = &tmp->msg_encrypted;
4509de14 798 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
d3b18ad3
JF
799 tls_ctx->pending_open_record_frags = true;
800 ctx->open_rec = tmp;
a42055e8 801 }
3c4d7559 802
9932a29a 803 return tls_tx_records(sk, flags);
3c4d7559
DW
804}
805
d3b18ad3
JF
806static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
807 bool full_record, u8 record_type,
a7bff11f 808 ssize_t *copied, int flags)
3c4d7559
DW
809{
810 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 811 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
812 struct sk_msg msg_redir = { };
813 struct sk_psock *psock;
814 struct sock *sk_redir;
a42055e8 815 struct tls_rec *rec;
0608c69c 816 bool enospc, policy;
d3b18ad3 817 int err = 0, send;
7246d8ed 818 u32 delta = 0;
d3b18ad3 819
0608c69c 820 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
d3b18ad3 821 psock = sk_psock_get(sk);
d10523d0
JK
822 if (!psock || !policy) {
823 err = tls_push_record(sk, flags, record_type);
635d9398 824 if (err && sk->sk_err == EBADMSG) {
d10523d0
JK
825 *copied -= sk_msg_free(sk, msg);
826 tls_free_open_rec(sk);
635d9398 827 err = -sk->sk_err;
d10523d0 828 }
095f5614
XY
829 if (psock)
830 sk_psock_put(sk, psock);
d10523d0
JK
831 return err;
832 }
d3b18ad3
JF
833more_data:
834 enospc = sk_msg_full(msg);
7246d8ed
JF
835 if (psock->eval == __SK_NONE) {
836 delta = msg->sg.size;
d3b18ad3 837 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
7361d448 838 delta -= msg->sg.size;
7246d8ed 839 }
d3b18ad3
JF
840 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
841 !enospc && !full_record) {
842 err = -ENOSPC;
843 goto out_err;
844 }
845 msg->cork_bytes = 0;
846 send = msg->sg.size;
847 if (msg->apply_bytes && msg->apply_bytes < send)
848 send = msg->apply_bytes;
849
850 switch (psock->eval) {
851 case __SK_PASS:
852 err = tls_push_record(sk, flags, record_type);
635d9398 853 if (err && sk->sk_err == EBADMSG) {
d3b18ad3
JF
854 *copied -= sk_msg_free(sk, msg);
855 tls_free_open_rec(sk);
635d9398 856 err = -sk->sk_err;
d3b18ad3
JF
857 goto out_err;
858 }
859 break;
860 case __SK_REDIRECT:
861 sk_redir = psock->sk_redir;
862 memcpy(&msg_redir, msg, sizeof(*msg));
863 if (msg->apply_bytes < send)
864 msg->apply_bytes = 0;
865 else
866 msg->apply_bytes -= send;
867 sk_msg_return_zero(sk, msg, send);
868 msg->sg.size -= send;
869 release_sock(sk);
870 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
871 lock_sock(sk);
872 if (err < 0) {
873 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
874 msg->sg.size = 0;
875 }
876 if (msg->sg.size == 0)
877 tls_free_open_rec(sk);
878 break;
879 case __SK_DROP:
880 default:
881 sk_msg_free_partial(sk, msg, send);
882 if (msg->apply_bytes < send)
883 msg->apply_bytes = 0;
884 else
885 msg->apply_bytes -= send;
886 if (msg->sg.size == 0)
887 tls_free_open_rec(sk);
7246d8ed 888 *copied -= (send + delta);
d3b18ad3
JF
889 err = -EACCES;
890 }
a42055e8 891
d3b18ad3
JF
892 if (likely(!err)) {
893 bool reset_eval = !ctx->open_rec;
a42055e8 894
d3b18ad3
JF
895 rec = ctx->open_rec;
896 if (rec) {
897 msg = &rec->msg_plaintext;
898 if (!msg->apply_bytes)
899 reset_eval = true;
900 }
901 if (reset_eval) {
902 psock->eval = __SK_NONE;
903 if (psock->sk_redir) {
904 sock_put(psock->sk_redir);
905 psock->sk_redir = NULL;
906 }
907 }
908 if (rec)
909 goto more_data;
910 }
911 out_err:
912 sk_psock_put(sk, psock);
913 return err;
914}
915
916static int tls_sw_push_pending_record(struct sock *sk, int flags)
917{
918 struct tls_context *tls_ctx = tls_get_ctx(sk);
919 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
920 struct tls_rec *rec = ctx->open_rec;
921 struct sk_msg *msg_pl;
922 size_t copied;
a42055e8 923
a42055e8 924 if (!rec)
d3b18ad3 925 return 0;
a42055e8 926
d829e9c4 927 msg_pl = &rec->msg_plaintext;
d3b18ad3
JF
928 copied = msg_pl->sg.size;
929 if (!copied)
930 return 0;
a42055e8 931
d3b18ad3
JF
932 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
933 &copied, flags);
a42055e8
VG
934}
935
936int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
937{
3c4d7559 938 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
a42055e8 939 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 940 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 941 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
5b053e12 942 bool async_capable = ctx->async_capable;
a42055e8 943 unsigned char record_type = TLS_RECORD_TYPE_DATA;
00e23707 944 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
3c4d7559 945 bool eor = !(msg->msg_flags & MSG_MORE);
a7bff11f
VF
946 size_t try_to_copy;
947 ssize_t copied = 0;
d829e9c4 948 struct sk_msg *msg_pl, *msg_en;
a42055e8
VG
949 struct tls_rec *rec;
950 int required_size;
951 int num_async = 0;
3c4d7559 952 bool full_record;
a42055e8
VG
953 int record_room;
954 int num_zc = 0;
3c4d7559 955 int orig_size;
4128c0cf 956 int ret = 0;
0cada332 957 int pending;
3c4d7559 958
1c3b63f1
RC
959 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
960 MSG_CMSG_COMPAT))
4a5cdc60 961 return -EOPNOTSUPP;
3c4d7559 962
79ffe608 963 mutex_lock(&tls_ctx->tx_lock);
3c4d7559
DW
964 lock_sock(sk);
965
3c4d7559 966 if (unlikely(msg->msg_controllen)) {
58790314 967 ret = tls_process_cmsg(sk, msg, &record_type);
a42055e8
VG
968 if (ret) {
969 if (ret == -EINPROGRESS)
970 num_async++;
971 else if (ret != -EAGAIN)
972 goto send_end;
973 }
3c4d7559
DW
974 }
975
976 while (msg_data_left(msg)) {
977 if (sk->sk_err) {
30be8f8d 978 ret = -sk->sk_err;
3c4d7559
DW
979 goto send_end;
980 }
981
d3b18ad3
JF
982 if (ctx->open_rec)
983 rec = ctx->open_rec;
984 else
985 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
986 if (!rec) {
987 ret = -ENOMEM;
988 goto send_end;
989 }
990
d829e9c4
DB
991 msg_pl = &rec->msg_plaintext;
992 msg_en = &rec->msg_encrypted;
993
994 orig_size = msg_pl->sg.size;
3c4d7559
DW
995 full_record = false;
996 try_to_copy = msg_data_left(msg);
d829e9c4 997 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
998 if (try_to_copy >= record_room) {
999 try_to_copy = record_room;
1000 full_record = true;
1001 }
1002
d829e9c4 1003 required_size = msg_pl->sg.size + try_to_copy +
4509de14 1004 prot->overhead_size;
3c4d7559
DW
1005
1006 if (!sk_stream_memory_free(sk))
1007 goto wait_for_sndbuf;
a42055e8 1008
3c4d7559 1009alloc_encrypted:
d829e9c4 1010 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1011 if (ret) {
1012 if (ret != -ENOSPC)
1013 goto wait_for_memory;
1014
1015 /* Adjust try_to_copy according to the amount that was
1016 * actually allocated. The difference is due
1017 * to max sg elements limit
1018 */
d829e9c4 1019 try_to_copy -= required_size - msg_en->sg.size;
3c4d7559
DW
1020 full_record = true;
1021 }
a42055e8
VG
1022
1023 if (!is_kvec && (full_record || eor) && !async_capable) {
d3b18ad3
JF
1024 u32 first = msg_pl->sg.end;
1025
d829e9c4
DB
1026 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1027 msg_pl, try_to_copy);
3c4d7559
DW
1028 if (ret)
1029 goto fallback_to_reg_send;
1030
a42055e8 1031 num_zc++;
3c4d7559 1032 copied += try_to_copy;
d3b18ad3
JF
1033
1034 sk_msg_sg_copy_set(msg_pl, first);
1035 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1036 record_type, &copied,
1037 msg->msg_flags);
a42055e8
VG
1038 if (ret) {
1039 if (ret == -EINPROGRESS)
1040 num_async++;
d3b18ad3
JF
1041 else if (ret == -ENOMEM)
1042 goto wait_for_memory;
c329ef96 1043 else if (ctx->open_rec && ret == -ENOSPC)
d3b18ad3 1044 goto rollback_iter;
a42055e8
VG
1045 else if (ret != -EAGAIN)
1046 goto send_end;
1047 }
5a3611ef 1048 continue;
d3b18ad3
JF
1049rollback_iter:
1050 copied -= try_to_copy;
1051 sk_msg_sg_copy_clear(msg_pl, first);
1052 iov_iter_revert(&msg->msg_iter,
1053 msg_pl->sg.size - orig_size);
3c4d7559 1054fallback_to_reg_send:
d829e9c4 1055 sk_msg_trim(sk, msg_pl, orig_size);
3c4d7559
DW
1056 }
1057
d829e9c4 1058 required_size = msg_pl->sg.size + try_to_copy;
4e6d4720 1059
d829e9c4 1060 ret = tls_clone_plaintext_msg(sk, required_size);
3c4d7559
DW
1061 if (ret) {
1062 if (ret != -ENOSPC)
4e6d4720 1063 goto send_end;
3c4d7559
DW
1064
1065 /* Adjust try_to_copy according to the amount that was
1066 * actually allocated. The difference is due
1067 * to max sg elements limit
1068 */
d829e9c4 1069 try_to_copy -= required_size - msg_pl->sg.size;
3c4d7559 1070 full_record = true;
4509de14
VG
1071 sk_msg_trim(sk, msg_en,
1072 msg_pl->sg.size + prot->overhead_size);
3c4d7559
DW
1073 }
1074
65a10e28
VG
1075 if (try_to_copy) {
1076 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1077 msg_pl, try_to_copy);
1078 if (ret < 0)
1079 goto trim_sgl;
1080 }
3c4d7559 1081
d829e9c4
DB
1082 /* Open records defined only if successfully copied, otherwise
1083 * we would trim the sg but not reset the open record frags.
1084 */
1085 tls_ctx->pending_open_record_frags = true;
3c4d7559
DW
1086 copied += try_to_copy;
1087 if (full_record || eor) {
d3b18ad3
JF
1088 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1089 record_type, &copied,
1090 msg->msg_flags);
3c4d7559 1091 if (ret) {
a42055e8
VG
1092 if (ret == -EINPROGRESS)
1093 num_async++;
d3b18ad3
JF
1094 else if (ret == -ENOMEM)
1095 goto wait_for_memory;
1096 else if (ret != -EAGAIN) {
1097 if (ret == -ENOSPC)
1098 ret = 0;
a42055e8 1099 goto send_end;
d3b18ad3 1100 }
3c4d7559
DW
1101 }
1102 }
1103
1104 continue;
1105
1106wait_for_sndbuf:
1107 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1108wait_for_memory:
1109 ret = sk_stream_wait_memory(sk, &timeo);
1110 if (ret) {
1111trim_sgl:
c329ef96
JK
1112 if (ctx->open_rec)
1113 tls_trim_both_msgs(sk, orig_size);
3c4d7559
DW
1114 goto send_end;
1115 }
1116
c329ef96 1117 if (ctx->open_rec && msg_en->sg.size < required_size)
3c4d7559 1118 goto alloc_encrypted;
3c4d7559
DW
1119 }
1120
a42055e8
VG
1121 if (!num_async) {
1122 goto send_end;
1123 } else if (num_zc) {
1124 /* Wait for pending encryptions to get completed */
0cada332
VKY
1125 spin_lock_bh(&ctx->encrypt_compl_lock);
1126 ctx->async_notify = true;
a42055e8 1127
0cada332
VKY
1128 pending = atomic_read(&ctx->encrypt_pending);
1129 spin_unlock_bh(&ctx->encrypt_compl_lock);
1130 if (pending)
a42055e8
VG
1131 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1132 else
1133 reinit_completion(&ctx->async_wait.completion);
1134
0cada332
VKY
1135 /* There can be no concurrent accesses, since we have no
1136 * pending encrypt operations
1137 */
a42055e8
VG
1138 WRITE_ONCE(ctx->async_notify, false);
1139
1140 if (ctx->async_wait.err) {
1141 ret = ctx->async_wait.err;
1142 copied = 0;
1143 }
1144 }
1145
1146 /* Transmit if any encryptions have completed */
1147 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1148 cancel_delayed_work(&ctx->tx_work.work);
1149 tls_tx_records(sk, msg->msg_flags);
1150 }
1151
3c4d7559
DW
1152send_end:
1153 ret = sk_stream_error(sk, msg->msg_flags, ret);
1154
1155 release_sock(sk);
79ffe608 1156 mutex_unlock(&tls_ctx->tx_lock);
a7bff11f 1157 return copied > 0 ? copied : ret;
3c4d7559
DW
1158}
1159
01cb8a1a
Y
1160static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1161 int offset, size_t size, int flags)
3c4d7559 1162{
a42055e8 1163 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
3c4d7559 1164 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1165 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
4509de14 1166 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559 1167 unsigned char record_type = TLS_RECORD_TYPE_DATA;
d829e9c4 1168 struct sk_msg *msg_pl;
a42055e8
VG
1169 struct tls_rec *rec;
1170 int num_async = 0;
a7bff11f 1171 ssize_t copied = 0;
3c4d7559
DW
1172 bool full_record;
1173 int record_room;
4128c0cf 1174 int ret = 0;
a42055e8 1175 bool eor;
3c4d7559 1176
d452d48b 1177 eor = !(flags & MSG_SENDPAGE_NOTLAST);
3c4d7559
DW
1178 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1179
3c4d7559
DW
1180 /* Call the sk_stream functions to manage the sndbuf mem. */
1181 while (size > 0) {
1182 size_t copy, required_size;
1183
1184 if (sk->sk_err) {
30be8f8d 1185 ret = -sk->sk_err;
3c4d7559
DW
1186 goto sendpage_end;
1187 }
1188
d3b18ad3
JF
1189 if (ctx->open_rec)
1190 rec = ctx->open_rec;
1191 else
1192 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
1193 if (!rec) {
1194 ret = -ENOMEM;
1195 goto sendpage_end;
1196 }
1197
d829e9c4
DB
1198 msg_pl = &rec->msg_plaintext;
1199
3c4d7559 1200 full_record = false;
d829e9c4 1201 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
1202 copy = size;
1203 if (copy >= record_room) {
1204 copy = record_room;
1205 full_record = true;
1206 }
d829e9c4 1207
4509de14 1208 required_size = msg_pl->sg.size + copy + prot->overhead_size;
3c4d7559
DW
1209
1210 if (!sk_stream_memory_free(sk))
1211 goto wait_for_sndbuf;
1212alloc_payload:
d829e9c4 1213 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1214 if (ret) {
1215 if (ret != -ENOSPC)
1216 goto wait_for_memory;
1217
1218 /* Adjust copy according to the amount that was
1219 * actually allocated. The difference is due
1220 * to max sg elements limit
1221 */
d829e9c4 1222 copy -= required_size - msg_pl->sg.size;
3c4d7559
DW
1223 full_record = true;
1224 }
1225
d829e9c4 1226 sk_msg_page_add(msg_pl, page, copy, offset);
3c4d7559 1227 sk_mem_charge(sk, copy);
d829e9c4 1228
3c4d7559
DW
1229 offset += copy;
1230 size -= copy;
d3b18ad3 1231 copied += copy;
3c4d7559 1232
d829e9c4
DB
1233 tls_ctx->pending_open_record_frags = true;
1234 if (full_record || eor || sk_msg_full(msg_pl)) {
d3b18ad3
JF
1235 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1236 record_type, &copied, flags);
3c4d7559 1237 if (ret) {
a42055e8
VG
1238 if (ret == -EINPROGRESS)
1239 num_async++;
d3b18ad3
JF
1240 else if (ret == -ENOMEM)
1241 goto wait_for_memory;
1242 else if (ret != -EAGAIN) {
1243 if (ret == -ENOSPC)
1244 ret = 0;
a42055e8 1245 goto sendpage_end;
d3b18ad3 1246 }
3c4d7559
DW
1247 }
1248 }
1249 continue;
1250wait_for_sndbuf:
1251 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1252wait_for_memory:
1253 ret = sk_stream_wait_memory(sk, &timeo);
1254 if (ret) {
c329ef96
JK
1255 if (ctx->open_rec)
1256 tls_trim_both_msgs(sk, msg_pl->sg.size);
3c4d7559
DW
1257 goto sendpage_end;
1258 }
1259
c329ef96
JK
1260 if (ctx->open_rec)
1261 goto alloc_payload;
3c4d7559
DW
1262 }
1263
a42055e8
VG
1264 if (num_async) {
1265 /* Transmit if any encryptions have completed */
1266 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1267 cancel_delayed_work(&ctx->tx_work.work);
1268 tls_tx_records(sk, flags);
1269 }
1270 }
3c4d7559 1271sendpage_end:
d3b18ad3 1272 ret = sk_stream_error(sk, flags, ret);
a7bff11f 1273 return copied > 0 ? copied : ret;
3c4d7559
DW
1274}
1275
d4ffb02d
WB
1276int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1277 int offset, size_t size, int flags)
1278{
1279 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1280 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1281 MSG_NO_SHARED_FRAGS))
4a5cdc60 1282 return -EOPNOTSUPP;
d4ffb02d
WB
1283
1284 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1285}
1286
0608c69c
JF
1287int tls_sw_sendpage(struct sock *sk, struct page *page,
1288 int offset, size_t size, int flags)
1289{
79ffe608 1290 struct tls_context *tls_ctx = tls_get_ctx(sk);
0608c69c
JF
1291 int ret;
1292
1293 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1294 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
4a5cdc60 1295 return -EOPNOTSUPP;
0608c69c 1296
79ffe608 1297 mutex_lock(&tls_ctx->tx_lock);
0608c69c
JF
1298 lock_sock(sk);
1299 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1300 release_sock(sk);
79ffe608 1301 mutex_unlock(&tls_ctx->tx_lock);
0608c69c
JF
1302 return ret;
1303}
1304
35560b7f
JK
1305static int
1306tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1307 long timeo)
c46234eb
DW
1308{
1309 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1310 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1311 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1312
35560b7f
JK
1313 while (!ctx->recv_pkt) {
1314 if (!sk_psock_queue_empty(psock))
1315 return 0;
1316
1317 if (sk->sk_err)
1318 return sock_error(sk);
c46234eb 1319
20ffc7ad
VF
1320 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1321 __strp_unpause(&ctx->strp);
1322 if (ctx->recv_pkt)
35560b7f 1323 break;
20ffc7ad
VF
1324 }
1325
fcf4793e 1326 if (sk->sk_shutdown & RCV_SHUTDOWN)
35560b7f 1327 return 0;
fcf4793e 1328
c46234eb 1329 if (sock_flag(sk, SOCK_DONE))
35560b7f 1330 return 0;
c46234eb 1331
35560b7f
JK
1332 if (nonblock || !timeo)
1333 return -EAGAIN;
c46234eb
DW
1334
1335 add_wait_queue(sk_sleep(sk), &wait);
1336 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
d3b18ad3 1337 sk_wait_event(sk, &timeo,
35560b7f 1338 ctx->recv_pkt || !sk_psock_queue_empty(psock),
d3b18ad3 1339 &wait);
c46234eb
DW
1340 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1341 remove_wait_queue(sk_sleep(sk), &wait);
1342
1343 /* Handle signals */
35560b7f
JK
1344 if (signal_pending(current))
1345 return sock_intr_errno(timeo);
c46234eb
DW
1346 }
1347
35560b7f 1348 return 1;
c46234eb
DW
1349}
1350
d4bd88e6 1351static int tls_setup_from_iter(struct iov_iter *from,
d829e9c4 1352 int length, int *pages_used,
d829e9c4
DB
1353 struct scatterlist *to,
1354 int to_max_pages)
1355{
1356 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1357 struct page *pages[MAX_SKB_FRAGS];
d4bd88e6 1358 unsigned int size = 0;
d829e9c4
DB
1359 ssize_t copied, use;
1360 size_t offset;
1361
1362 while (length > 0) {
1363 i = 0;
1364 maxpages = to_max_pages - num_elem;
1365 if (maxpages == 0) {
1366 rc = -EFAULT;
1367 goto out;
1368 }
1369 copied = iov_iter_get_pages(from, pages,
1370 length,
1371 maxpages, &offset);
1372 if (copied <= 0) {
1373 rc = -EFAULT;
1374 goto out;
1375 }
1376
1377 iov_iter_advance(from, copied);
1378
1379 length -= copied;
1380 size += copied;
1381 while (copied) {
1382 use = min_t(int, copied, PAGE_SIZE - offset);
1383
1384 sg_set_page(&to[num_elem],
1385 pages[i], use, offset);
1386 sg_unmark_end(&to[num_elem]);
1387 /* We do not uncharge memory from this API */
1388
1389 offset = 0;
1390 copied -= use;
1391
1392 i++;
1393 num_elem++;
1394 }
1395 }
1396 /* Mark the end in the last sg entry if newly added */
1397 if (num_elem > *pages_used)
1398 sg_mark_end(&to[num_elem - 1]);
1399out:
1400 if (rc)
d4bd88e6 1401 iov_iter_revert(from, size);
d829e9c4
DB
1402 *pages_used = num_elem;
1403
1404 return rc;
1405}
1406
8a958732
JK
1407/* Decrypt handlers
1408 *
1409 * tls_decrypt_sg() and tls_decrypt_device() are decrypt handlers.
1410 * They must transform the darg in/out argument are as follows:
1411 * | Input | Output
1412 * -------------------------------------------------------------------
1413 * zc | Zero-copy decrypt allowed | Zero-copy performed
1414 * async | Async decrypt allowed | Async crypto used / in progress
1415 */
1416
0b243d00 1417/* This function decrypts the input skb into either out_iov or in out_sg
8a958732 1418 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
0b243d00
VG
1419 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1420 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1421 * NULL, then the decryption happens inside skb buffers itself, i.e.
8a958732 1422 * zero-copy gets disabled and 'darg->zc' is updated.
0b243d00 1423 */
541cc48b 1424static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
8a958732
JK
1425 struct scatterlist *out_sg,
1426 struct tls_decrypt_arg *darg)
0b243d00
VG
1427{
1428 struct tls_context *tls_ctx = tls_get_ctx(sk);
1429 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1430 struct tls_prot_info *prot = &tls_ctx->prot_info;
b89fec54 1431 int n_sgin, n_sgout, aead_size, err, pages = 0;
541cc48b 1432 struct sk_buff *skb = tls_strp_msg(ctx);
0b243d00 1433 struct strp_msg *rxm = strp_msg(skb);
c3f6bb74 1434 struct tls_msg *tlm = tls_msg(skb);
0b243d00
VG
1435 struct aead_request *aead_req;
1436 struct sk_buff *unused;
0b243d00
VG
1437 struct scatterlist *sgin = NULL;
1438 struct scatterlist *sgout = NULL;
603380f5 1439 const int data_len = rxm->full_len - prot->overhead_size;
ce61327c 1440 int tail_pages = !!prot->tail_size;
b89fec54 1441 struct tls_decrypt_ctx *dctx;
f295b3ae 1442 int iv_offset = 0;
b89fec54 1443 u8 *mem;
0b243d00 1444
4175eac3 1445 if (darg->zc && (out_iov || out_sg)) {
0b243d00 1446 if (out_iov)
ce61327c 1447 n_sgout = 1 + tail_pages +
b93235e6 1448 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
0b243d00
VG
1449 else
1450 n_sgout = sg_nents(out_sg);
4509de14
VG
1451 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1452 rxm->full_len - prot->prepend_size);
0b243d00
VG
1453 } else {
1454 n_sgout = 0;
4175eac3 1455 darg->zc = false;
0927f71d 1456 n_sgin = skb_cow_data(skb, 0, &unused);
0b243d00
VG
1457 }
1458
0b243d00
VG
1459 if (n_sgin < 1)
1460 return -EBADMSG;
1461
1462 /* Increment to accommodate AAD */
1463 n_sgin = n_sgin + 1;
1464
0b243d00 1465 /* Allocate a single block of memory which contains
b89fec54
JK
1466 * aead_req || tls_decrypt_ctx.
1467 * Both structs are variable length.
0b243d00 1468 */
b89fec54
JK
1469 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1470 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1471 sk->sk_allocation);
0b243d00
VG
1472 if (!mem)
1473 return -ENOMEM;
1474
1475 /* Segment the allocated memory */
1476 aead_req = (struct aead_request *)mem;
b89fec54
JK
1477 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1478 sgin = &dctx->sg[0];
1479 sgout = &dctx->sg[n_sgin];
0b243d00 1480
128cfb88
TZ
1481 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1482 switch (prot->cipher_type) {
1483 case TLS_CIPHER_AES_CCM_128:
b89fec54 1484 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
f295b3ae 1485 iv_offset = 1;
128cfb88
TZ
1486 break;
1487 case TLS_CIPHER_SM4_CCM:
b89fec54 1488 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
128cfb88
TZ
1489 iv_offset = 1;
1490 break;
f295b3ae
VG
1491 }
1492
0b243d00 1493 /* Prepare IV */
a6acbe62 1494 if (prot->version == TLS_1_3_VERSION ||
a4ae58cd 1495 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
b89fec54 1496 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
9381fe8c 1497 prot->iv_size + prot->salt_size);
a4ae58cd
JK
1498 } else {
1499 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
b89fec54 1500 &dctx->iv[iv_offset] + prot->salt_size,
a4ae58cd 1501 prot->iv_size);
03957d84
JK
1502 if (err < 0)
1503 goto exit_free;
b89fec54 1504 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
a4ae58cd 1505 }
58790314 1506 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
0b243d00
VG
1507
1508 /* Prepare AAD */
b89fec54 1509 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
4509de14 1510 prot->tail_size,
c3f6bb74 1511 tls_ctx->rx.rec_seq, tlm->control, prot);
0b243d00
VG
1512
1513 /* Prepare sgin */
1514 sg_init_table(sgin, n_sgin);
b89fec54 1515 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
0b243d00 1516 err = skb_to_sgvec(skb, &sgin[1],
4509de14
VG
1517 rxm->offset + prot->prepend_size,
1518 rxm->full_len - prot->prepend_size);
03957d84
JK
1519 if (err < 0)
1520 goto exit_free;
0b243d00
VG
1521
1522 if (n_sgout) {
1523 if (out_iov) {
1524 sg_init_table(sgout, n_sgout);
b89fec54 1525 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
0b243d00 1526
ce61327c 1527 err = tls_setup_from_iter(out_iov, data_len,
d4bd88e6 1528 &pages, &sgout[1],
ce61327c 1529 (n_sgout - 1 - tail_pages));
0b243d00
VG
1530 if (err < 0)
1531 goto fallback_to_reg_recv;
ce61327c
JK
1532
1533 if (prot->tail_size) {
1534 sg_unmark_end(&sgout[pages]);
b89fec54 1535 sg_set_buf(&sgout[pages + 1], &dctx->tail,
ce61327c
JK
1536 prot->tail_size);
1537 sg_mark_end(&sgout[pages + 1]);
1538 }
0b243d00
VG
1539 } else if (out_sg) {
1540 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1541 } else {
1542 goto fallback_to_reg_recv;
1543 }
1544 } else {
1545fallback_to_reg_recv:
1546 sgout = sgin;
1547 pages = 0;
4175eac3 1548 darg->zc = false;
0b243d00
VG
1549 }
1550
1551 /* Prepare and submit AEAD request */
b89fec54 1552 err = tls_do_decryption(sk, skb, sgin, sgout, dctx->iv,
603380f5 1553 data_len + prot->tail_size, aead_req, darg);
3547a1f9
JK
1554 if (darg->async)
1555 return 0;
0b243d00 1556
ce61327c 1557 if (prot->tail_size)
b89fec54 1558 darg->tail = dctx->tail;
ce61327c 1559
0b243d00
VG
1560 /* Release the pages in case iov was mapped to pages */
1561 for (; pages > 0; pages--)
1562 put_page(sg_page(&sgout[pages]));
03957d84 1563exit_free:
0b243d00
VG
1564 kfree(mem);
1565 return err;
1566}
1567
8a958732
JK
1568static int
1569tls_decrypt_device(struct sock *sk, struct tls_context *tls_ctx,
541cc48b 1570 struct tls_decrypt_arg *darg)
8a958732
JK
1571{
1572 int err;
1573
1574 if (tls_ctx->rx_conf != TLS_HW)
1575 return 0;
1576
541cc48b 1577 err = tls_device_decrypted(sk, tls_ctx);
8a958732
JK
1578 if (err <= 0)
1579 return err;
1580
1581 darg->zc = false;
1582 darg->async = false;
1583 return 1;
1584}
1585
541cc48b
JK
1586static int tls_rx_one_record(struct sock *sk, struct iov_iter *dest,
1587 struct tls_decrypt_arg *darg)
dafb67f3
BP
1588{
1589 struct tls_context *tls_ctx = tls_get_ctx(sk);
541cc48b 1590 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1591 struct tls_prot_info *prot = &tls_ctx->prot_info;
541cc48b 1592 struct strp_msg *rxm;
3764ae5b 1593 int pad, err;
dafb67f3 1594
541cc48b 1595 err = tls_decrypt_device(sk, tls_ctx, darg);
8a958732
JK
1596 if (err < 0)
1597 return err;
1598 if (err)
1599 goto decrypt_done;
130b392c 1600
541cc48b 1601 err = tls_decrypt_sg(sk, dest, NULL, darg);
a069a905
GP
1602 if (err < 0) {
1603 if (err == -EBADMSG)
1604 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
3764ae5b 1605 return err;
a069a905 1606 }
3547a1f9
JK
1607 if (darg->async)
1608 goto decrypt_next;
ce61327c
JK
1609 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1610 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1611 darg->tail != TLS_RECORD_TYPE_DATA)) {
1612 darg->zc = false;
bb56cea9
JK
1613 if (!darg->tail)
1614 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1090c1ea 1615 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
541cc48b 1616 return tls_rx_one_record(sk, dest, darg);
ce61327c 1617 }
dafb67f3 1618
3764ae5b 1619decrypt_done:
541cc48b 1620 pad = tls_padding_length(prot, ctx->recv_pkt, darg);
3764ae5b
JK
1621 if (pad < 0)
1622 return pad;
1623
541cc48b 1624 rxm = strp_msg(ctx->recv_pkt);
3764ae5b
JK
1625 rxm->full_len -= pad;
1626 rxm->offset += prot->prepend_size;
1627 rxm->full_len -= prot->overhead_size;
3547a1f9
JK
1628decrypt_next:
1629 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
3764ae5b
JK
1630
1631 return 0;
dafb67f3
BP
1632}
1633
541cc48b 1634int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
c46234eb 1635{
4175eac3 1636 struct tls_decrypt_arg darg = { .zc = true, };
c46234eb 1637
541cc48b 1638 return tls_decrypt_sg(sk, NULL, sgout, &darg);
c46234eb
DW
1639}
1640
06554f4f
JK
1641static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1642 u8 *control)
1643{
1644 int err;
1645
1646 if (!*control) {
1647 *control = tlm->control;
1648 if (!*control)
1649 return -EBADMSG;
1650
1651 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1652 sizeof(*control), control);
1653 if (*control != TLS_RECORD_TYPE_DATA) {
1654 if (err || msg->msg_flags & MSG_CTRUNC)
1655 return -EIO;
1656 }
1657 } else if (*control != tlm->control) {
1658 return 0;
1659 }
1660
1661 return 1;
1662}
1663
abb47dc9
JK
1664static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1665{
1666 ctx->recv_pkt = NULL;
1667 __strp_unpause(&ctx->strp);
1668}
1669
692d7b5d 1670/* This function traverses the rx_list in tls receive context to copies the
2b794c40 1671 * decrypted records into the buffer provided by caller zero copy is not
692d7b5d
VG
1672 * true. Further, the records are removed from the rx_list if it is not a peek
1673 * case and the record has been consumed completely.
1674 */
1675static int process_rx_list(struct tls_sw_context_rx *ctx,
1676 struct msghdr *msg,
2b794c40 1677 u8 *control,
692d7b5d
VG
1678 size_t skip,
1679 size_t len,
1680 bool zc,
1681 bool is_peek)
1682{
1683 struct sk_buff *skb = skb_peek(&ctx->rx_list);
2b794c40 1684 struct tls_msg *tlm;
692d7b5d 1685 ssize_t copied = 0;
06554f4f 1686 int err;
2b794c40 1687
692d7b5d
VG
1688 while (skip && skb) {
1689 struct strp_msg *rxm = strp_msg(skb);
2b794c40
VG
1690 tlm = tls_msg(skb);
1691
06554f4f
JK
1692 err = tls_record_content_type(msg, tlm, control);
1693 if (err <= 0)
4dcdd971 1694 goto out;
692d7b5d
VG
1695
1696 if (skip < rxm->full_len)
1697 break;
1698
1699 skip = skip - rxm->full_len;
1700 skb = skb_peek_next(skb, &ctx->rx_list);
1701 }
1702
1703 while (len && skb) {
1704 struct sk_buff *next_skb;
1705 struct strp_msg *rxm = strp_msg(skb);
1706 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1707
2b794c40
VG
1708 tlm = tls_msg(skb);
1709
06554f4f
JK
1710 err = tls_record_content_type(msg, tlm, control);
1711 if (err <= 0)
4dcdd971 1712 goto out;
2b794c40 1713
692d7b5d 1714 if (!zc || (rxm->full_len - skip) > len) {
06554f4f 1715 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
692d7b5d
VG
1716 msg, chunk);
1717 if (err < 0)
4dcdd971 1718 goto out;
692d7b5d
VG
1719 }
1720
1721 len = len - chunk;
1722 copied = copied + chunk;
1723
1724 /* Consume the data from record if it is non-peek case*/
1725 if (!is_peek) {
1726 rxm->offset = rxm->offset + chunk;
1727 rxm->full_len = rxm->full_len - chunk;
1728
1729 /* Return if there is unconsumed data in the record */
1730 if (rxm->full_len - skip)
1731 break;
1732 }
1733
1734 /* The remaining skip-bytes must lie in 1st record in rx_list.
1735 * So from the 2nd record, 'skip' should be 0.
1736 */
1737 skip = 0;
1738
1739 if (msg)
1740 msg->msg_flags |= MSG_EOR;
1741
1742 next_skb = skb_peek_next(skb, &ctx->rx_list);
1743
1744 if (!is_peek) {
a30295c4 1745 __skb_unlink(skb, &ctx->rx_list);
a88c26f6 1746 consume_skb(skb);
692d7b5d
VG
1747 }
1748
1749 skb = next_skb;
1750 }
4dcdd971 1751 err = 0;
692d7b5d 1752
4dcdd971
JK
1753out:
1754 return copied ? : err;
692d7b5d
VG
1755}
1756
c46b0183
JK
1757static void
1758tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1759 size_t len_left, size_t decrypted, ssize_t done,
1760 size_t *flushed_at)
1761{
1762 size_t max_rec;
1763
1764 if (len_left <= decrypted)
1765 return;
1766
1767 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1768 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1769 return;
1770
1771 *flushed_at = done;
1772 sk_flush_backlog(sk);
1773}
1774
4cbc325e
JK
1775static long tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1776 bool nonblock)
1777{
1778 long timeo;
1779
1780 lock_sock(sk);
1781
1782 timeo = sock_rcvtimeo(sk, nonblock);
1783
1784 while (unlikely(ctx->reader_present)) {
1785 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1786
1787 ctx->reader_contended = 1;
1788
1789 add_wait_queue(&ctx->wq, &wait);
1790 sk_wait_event(sk, &timeo,
1791 !READ_ONCE(ctx->reader_present), &wait);
1792 remove_wait_queue(&ctx->wq, &wait);
1793
1794 if (!timeo)
1795 return -EAGAIN;
1796 if (signal_pending(current))
1797 return sock_intr_errno(timeo);
1798 }
1799
1800 WRITE_ONCE(ctx->reader_present, 1);
1801
1802 return timeo;
1803}
1804
1805static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1806{
1807 if (unlikely(ctx->reader_contended)) {
1808 if (wq_has_sleeper(&ctx->wq))
1809 wake_up(&ctx->wq);
1810 else
1811 ctx->reader_contended = 0;
1812
1813 WARN_ON_ONCE(!ctx->reader_present);
1814 }
1815
1816 WRITE_ONCE(ctx->reader_present, 0);
1817 release_sock(sk);
1818}
1819
c46234eb
DW
1820int tls_sw_recvmsg(struct sock *sk,
1821 struct msghdr *msg,
1822 size_t len,
c46234eb
DW
1823 int flags,
1824 int *addr_len)
1825{
1826 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1827 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1828 struct tls_prot_info *prot = &tls_ctx->prot_info;
d3b18ad3 1829 struct sk_psock *psock;
692d7b5d
VG
1830 unsigned char control = 0;
1831 ssize_t decrypted = 0;
c46b0183 1832 size_t flushed_at = 0;
c46234eb 1833 struct strp_msg *rxm;
2b794c40 1834 struct tls_msg *tlm;
c46234eb
DW
1835 struct sk_buff *skb;
1836 ssize_t copied = 0;
7da18bcc 1837 bool async = false;
06030dba 1838 int target, err = 0;
c46234eb 1839 long timeo;
00e23707 1840 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
692d7b5d 1841 bool is_peek = flags & MSG_PEEK;
e91de6af 1842 bool bpf_strp_enabled;
ba13609d 1843 bool zc_capable;
c46234eb 1844
c46234eb
DW
1845 if (unlikely(flags & MSG_ERRQUEUE))
1846 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1847
d3b18ad3 1848 psock = sk_psock_get(sk);
4cbc325e
JK
1849 timeo = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1850 if (timeo < 0)
1851 return timeo;
e91de6af 1852 bpf_strp_enabled = sk_psock_strp_enabled(psock);
c46234eb 1853
f314bfee
JK
1854 /* If crypto failed the connection is broken */
1855 err = ctx->async_wait.err;
1856 if (err)
1857 goto end;
1858
692d7b5d 1859 /* Process pending decrypted records. It must be non-zero-copy */
06554f4f 1860 err = process_rx_list(ctx, msg, &control, 0, len, false, is_peek);
4dcdd971 1861 if (err < 0)
692d7b5d 1862 goto end;
692d7b5d 1863
d5123edd 1864 copied = err;
46a16959 1865 if (len <= copied)
bfc06e1a 1866 goto end;
46a16959
JK
1867
1868 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1869 len = len - copied;
692d7b5d 1870
ba13609d 1871 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
88527790 1872 ctx->zc_capable;
bfc06e1a 1873 decrypted = 0;
04b25a54 1874 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
4175eac3 1875 struct tls_decrypt_arg darg = {};
9bdf75cc 1876 int to_decrypt, chunk;
c46234eb 1877
35560b7f
JK
1878 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, timeo);
1879 if (err <= 0) {
d3b18ad3 1880 if (psock) {
0775639c
JK
1881 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1882 flags);
008141de
JK
1883 if (chunk > 0) {
1884 decrypted += chunk;
1885 len -= chunk;
1886 continue;
1887 }
d3b18ad3 1888 }
c46234eb 1889 goto recv_end;
d3b18ad3 1890 }
c46234eb 1891
35560b7f 1892 skb = ctx->recv_pkt;
c46234eb 1893 rxm = strp_msg(skb);
c3f6bb74 1894 tlm = tls_msg(skb);
94524d8f 1895
4509de14 1896 to_decrypt = rxm->full_len - prot->overhead_size;
fedf201e 1897
ba13609d
JK
1898 if (zc_capable && to_decrypt <= len &&
1899 tlm->control == TLS_RECORD_TYPE_DATA)
4175eac3 1900 darg.zc = true;
fedf201e 1901
c0ab4732 1902 /* Do not use async mode if record is non-data */
c3f6bb74 1903 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
4175eac3 1904 darg.async = ctx->async_capable;
c0ab4732 1905 else
4175eac3 1906 darg.async = false;
c0ab4732 1907
541cc48b 1908 err = tls_rx_one_record(sk, &msg->msg_iter, &darg);
3547a1f9 1909 if (err < 0) {
da353fac 1910 tls_err_abort(sk, -EBADMSG);
fedf201e
DW
1911 goto recv_end;
1912 }
1913
3547a1f9 1914 async |= darg.async;
2b794c40
VG
1915
1916 /* If the type of records being processed is not known yet,
1917 * set it to record type just dequeued. If it is already known,
1918 * but does not match the record type just dequeued, go to end.
1919 * We always get record type here since for tls1.2, record type
1920 * is known just after record is dequeued from stream parser.
1921 * For tls1.3, we disable async.
1922 */
06554f4f 1923 err = tls_record_content_type(msg, tlm, &control);
abb47dc9
JK
1924 if (err <= 0) {
1925 tls_rx_rec_done(ctx);
1926put_on_rx_list_err:
1927 __skb_queue_tail(&ctx->rx_list, skb);
2b794c40 1928 goto recv_end;
abb47dc9 1929 }
fedf201e 1930
c46b0183
JK
1931 /* periodically flush backlog, and feed strparser */
1932 tls_read_flush_backlog(sk, prot, len, to_decrypt,
1933 decrypted + copied, &flushed_at);
1934
abb47dc9
JK
1935 /* TLS 1.3 may have updated the length by more than overhead */
1936 chunk = rxm->full_len;
1937 tls_rx_rec_done(ctx);
b1a2c178 1938
9bdf75cc
JK
1939 if (async) {
1940 /* TLS 1.2-only, to_decrypt must be text length */
1941 chunk = min_t(int, to_decrypt, len);
008141de 1942put_on_rx_list:
f940b6ef
JK
1943 decrypted += chunk;
1944 len -= chunk;
008141de 1945 __skb_queue_tail(&ctx->rx_list, skb);
f940b6ef 1946 continue;
9bdf75cc 1947 }
c0ab4732 1948
4175eac3 1949 if (!darg.zc) {
f940b6ef
JK
1950 bool partially_consumed = chunk > len;
1951
e91de6af
JF
1952 if (bpf_strp_enabled) {
1953 err = sk_psock_tls_strp_read(psock, skb);
1954 if (err != __SK_PASS) {
1955 rxm->offset = rxm->offset + rxm->full_len;
1956 rxm->full_len = 0;
1957 if (err == __SK_DROP)
1958 consume_skb(skb);
e91de6af
JF
1959 continue;
1960 }
1961 }
1962
f940b6ef 1963 if (partially_consumed)
fedf201e 1964 chunk = len;
692d7b5d 1965
fedf201e
DW
1966 err = skb_copy_datagram_msg(skb, rxm->offset,
1967 msg, chunk);
abb47dc9
JK
1968 if (err < 0)
1969 goto put_on_rx_list_err;
94524d8f 1970
f940b6ef 1971 if (is_peek)
008141de 1972 goto put_on_rx_list;
f940b6ef
JK
1973
1974 if (partially_consumed) {
1975 rxm->offset += chunk;
1976 rxm->full_len -= chunk;
008141de 1977 goto put_on_rx_list;
692d7b5d 1978 }
c46234eb
DW
1979 }
1980
692d7b5d 1981 decrypted += chunk;
c46234eb 1982 len -= chunk;
692d7b5d 1983
f940b6ef 1984 consume_skb(skb);
465ea735 1985
f940b6ef
JK
1986 /* Return full control message to userspace before trying
1987 * to parse another message type
1988 */
1989 msg->msg_flags |= MSG_EOR;
1990 if (control != TLS_RECORD_TYPE_DATA)
1991 break;
04b25a54 1992 }
c46234eb
DW
1993
1994recv_end:
7da18bcc 1995 if (async) {
f314bfee 1996 int ret, pending;
7da18bcc 1997
94524d8f 1998 /* Wait for all previously submitted records to be decrypted */
0cada332 1999 spin_lock_bh(&ctx->decrypt_compl_lock);
37943f04 2000 reinit_completion(&ctx->async_wait.completion);
0cada332
VKY
2001 pending = atomic_read(&ctx->decrypt_pending);
2002 spin_unlock_bh(&ctx->decrypt_compl_lock);
2003 if (pending) {
f314bfee
JK
2004 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2005 if (ret) {
2006 if (err >= 0 || err == -EINPROGRESS)
2007 err = ret;
692d7b5d
VG
2008 decrypted = 0;
2009 goto end;
94524d8f 2010 }
94524d8f 2011 }
0cada332 2012
692d7b5d
VG
2013 /* Drain records from the rx_list & copy if required */
2014 if (is_peek || is_kvec)
06554f4f 2015 err = process_rx_list(ctx, msg, &control, copied,
692d7b5d
VG
2016 decrypted, false, is_peek);
2017 else
06554f4f 2018 err = process_rx_list(ctx, msg, &control, 0,
692d7b5d 2019 decrypted, true, is_peek);
4dcdd971 2020 decrypted = max(err, 0);
94524d8f
VG
2021 }
2022
692d7b5d
VG
2023 copied += decrypted;
2024
2025end:
4cbc325e 2026 tls_rx_reader_unlock(sk, ctx);
d3b18ad3
JF
2027 if (psock)
2028 sk_psock_put(sk, psock);
c46234eb
DW
2029 return copied ? : err;
2030}
2031
2032ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2033 struct pipe_inode_info *pipe,
2034 size_t len, unsigned int flags)
2035{
2036 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
f66de3ee 2037 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
2038 struct strp_msg *rxm = NULL;
2039 struct sock *sk = sock->sk;
c3f6bb74 2040 struct tls_msg *tlm;
c46234eb
DW
2041 struct sk_buff *skb;
2042 ssize_t copied = 0;
2043 int err = 0;
2044 long timeo;
2045 int chunk;
2046
4cbc325e
JK
2047 timeo = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2048 if (timeo < 0)
2049 return timeo;
c46234eb 2050
abb47dc9 2051 if (!skb_queue_empty(&ctx->rx_list)) {
e062fe99
JK
2052 skb = __skb_dequeue(&ctx->rx_list);
2053 } else {
4175eac3
JK
2054 struct tls_decrypt_arg darg = {};
2055
35560b7f
JK
2056 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2057 timeo);
2058 if (err <= 0)
e062fe99 2059 goto splice_read_end;
c46234eb 2060
541cc48b 2061 err = tls_rx_one_record(sk, NULL, &darg);
e062fe99
JK
2062 if (err < 0) {
2063 tls_err_abort(sk, -EBADMSG);
2064 goto splice_read_end;
2065 }
abb47dc9 2066
541cc48b 2067 skb = ctx->recv_pkt;
abb47dc9 2068 tls_rx_rec_done(ctx);
520493f6 2069 }
fedf201e 2070
c3f6bb74
JK
2071 rxm = strp_msg(skb);
2072 tlm = tls_msg(skb);
2073
520493f6 2074 /* splice does not support reading control messages */
c3f6bb74 2075 if (tlm->control != TLS_RECORD_TYPE_DATA) {
520493f6 2076 err = -EINVAL;
abb47dc9 2077 goto splice_requeue;
c46234eb 2078 }
520493f6 2079
c46234eb
DW
2080 chunk = min_t(unsigned int, rxm->full_len, len);
2081 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2082 if (copied < 0)
abb47dc9 2083 goto splice_requeue;
c46234eb 2084
e062fe99 2085 if (chunk < rxm->full_len) {
e062fe99
JK
2086 rxm->offset += len;
2087 rxm->full_len -= len;
abb47dc9 2088 goto splice_requeue;
e062fe99 2089 }
c46234eb 2090
abb47dc9
JK
2091 consume_skb(skb);
2092
c46234eb 2093splice_read_end:
4cbc325e 2094 tls_rx_reader_unlock(sk, ctx);
c46234eb 2095 return copied ? : err;
abb47dc9
JK
2096
2097splice_requeue:
2098 __skb_queue_head(&ctx->rx_list, skb);
2099 goto splice_read_end;
c46234eb
DW
2100}
2101
7b50ecfc 2102bool tls_sw_sock_is_readable(struct sock *sk)
c46234eb 2103{
c46234eb 2104 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2105 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3
JF
2106 bool ingress_empty = true;
2107 struct sk_psock *psock;
c46234eb 2108
d3b18ad3
JF
2109 rcu_read_lock();
2110 psock = sk_psock(sk);
2111 if (psock)
2112 ingress_empty = list_empty(&psock->ingress_msg);
2113 rcu_read_unlock();
c46234eb 2114
13aecb17
JK
2115 return !ingress_empty || ctx->recv_pkt ||
2116 !skb_queue_empty(&ctx->rx_list);
c46234eb
DW
2117}
2118
2119static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2120{
2121 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
4509de14 2122 struct tls_prot_info *prot = &tls_ctx->prot_info;
3463e51d 2123 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
c46234eb 2124 struct strp_msg *rxm = strp_msg(skb);
c3f6bb74 2125 struct tls_msg *tlm = tls_msg(skb);
c46234eb
DW
2126 size_t cipher_overhead;
2127 size_t data_len = 0;
2128 int ret;
2129
2130 /* Verify that we have a full TLS header, or wait for more data */
4509de14 2131 if (rxm->offset + prot->prepend_size > skb->len)
c46234eb
DW
2132 return 0;
2133
3463e51d 2134 /* Sanity-check size of on-stack buffer. */
4509de14 2135 if (WARN_ON(prot->prepend_size > sizeof(header))) {
3463e51d
KC
2136 ret = -EINVAL;
2137 goto read_failure;
2138 }
2139
c46234eb 2140 /* Linearize header to local buffer */
4509de14 2141 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
c46234eb
DW
2142 if (ret < 0)
2143 goto read_failure;
2144
c3f6bb74 2145 tlm->control = header[0];
c46234eb
DW
2146
2147 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2148
4509de14 2149 cipher_overhead = prot->tag_size;
a6acbe62
VF
2150 if (prot->version != TLS_1_3_VERSION &&
2151 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
4509de14 2152 cipher_overhead += prot->iv_size;
c46234eb 2153
130b392c 2154 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
4509de14 2155 prot->tail_size) {
c46234eb
DW
2156 ret = -EMSGSIZE;
2157 goto read_failure;
2158 }
2159 if (data_len < cipher_overhead) {
2160 ret = -EBADMSG;
2161 goto read_failure;
2162 }
2163
130b392c
DW
2164 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2165 if (header[1] != TLS_1_2_VERSION_MINOR ||
2166 header[2] != TLS_1_2_VERSION_MAJOR) {
c46234eb
DW
2167 ret = -EINVAL;
2168 goto read_failure;
2169 }
be2fbc15 2170
f953d33b 2171 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
fe58a5a0 2172 TCP_SKB_CB(skb)->seq + rxm->offset);
c46234eb
DW
2173 return data_len + TLS_HEADER_SIZE;
2174
2175read_failure:
2176 tls_err_abort(strp->sk, ret);
2177
2178 return ret;
2179}
2180
2181static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2182{
2183 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 2184 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
2185
2186 ctx->recv_pkt = skb;
2187 strp_pause(strp);
2188
ad13acce 2189 ctx->saved_data_ready(strp->sk);
c46234eb
DW
2190}
2191
2192static void tls_data_ready(struct sock *sk)
2193{
2194 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2195 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3 2196 struct sk_psock *psock;
c46234eb
DW
2197
2198 strp_data_ready(&ctx->strp);
d3b18ad3
JF
2199
2200 psock = sk_psock_get(sk);
62b4011f
XY
2201 if (psock) {
2202 if (!list_empty(&psock->ingress_msg))
2203 ctx->saved_data_ready(sk);
d3b18ad3
JF
2204 sk_psock_put(sk, psock);
2205 }
c46234eb
DW
2206}
2207
f87e62d4
JF
2208void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2209{
2210 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2211
2212 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2213 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2214 cancel_delayed_work_sync(&ctx->tx_work.work);
2215}
2216
313ab004 2217void tls_sw_release_resources_tx(struct sock *sk)
3c4d7559
DW
2218{
2219 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2220 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 2221 struct tls_rec *rec, *tmp;
38f7e1c0 2222 int pending;
a42055e8
VG
2223
2224 /* Wait for any pending async encryptions to complete */
38f7e1c0
RM
2225 spin_lock_bh(&ctx->encrypt_compl_lock);
2226 ctx->async_notify = true;
2227 pending = atomic_read(&ctx->encrypt_pending);
2228 spin_unlock_bh(&ctx->encrypt_compl_lock);
2229
2230 if (pending)
a42055e8
VG
2231 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2232
a42055e8
VG
2233 tls_tx_records(sk, -1);
2234
9932a29a 2235 /* Free up un-sent records in tx_list. First, free
a42055e8
VG
2236 * the partially sent record if any at head of tx_list.
2237 */
c5daa6cc
JK
2238 if (tls_ctx->partially_sent_record) {
2239 tls_free_partial_record(sk, tls_ctx);
9932a29a 2240 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
2241 struct tls_rec, list);
2242 list_del(&rec->list);
d829e9c4 2243 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2244 kfree(rec);
2245 }
2246
9932a29a 2247 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
a42055e8 2248 list_del(&rec->list);
d829e9c4
DB
2249 sk_msg_free(sk, &rec->msg_encrypted);
2250 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2251 kfree(rec);
2252 }
3c4d7559 2253
201876b3 2254 crypto_free_aead(ctx->aead_send);
c774973e 2255 tls_free_open_rec(sk);
313ab004
JF
2256}
2257
2258void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2259{
2260 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
f66de3ee
BP
2261
2262 kfree(ctx);
2263}
2264
39f56e1a 2265void tls_sw_release_resources_rx(struct sock *sk)
f66de3ee
BP
2266{
2267 struct tls_context *tls_ctx = tls_get_ctx(sk);
2268 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2269
12c76861
JK
2270 kfree(tls_ctx->rx.rec_seq);
2271 kfree(tls_ctx->rx.iv);
2272
c46234eb 2273 if (ctx->aead_recv) {
201876b3
VG
2274 kfree_skb(ctx->recv_pkt);
2275 ctx->recv_pkt = NULL;
a30295c4 2276 __skb_queue_purge(&ctx->rx_list);
c46234eb
DW
2277 crypto_free_aead(ctx->aead_recv);
2278 strp_stop(&ctx->strp);
313ab004
JF
2279 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2280 * we still want to strp_stop(), but sk->sk_data_ready was
2281 * never swapped.
2282 */
2283 if (ctx->saved_data_ready) {
2284 write_lock_bh(&sk->sk_callback_lock);
2285 sk->sk_data_ready = ctx->saved_data_ready;
2286 write_unlock_bh(&sk->sk_callback_lock);
2287 }
c46234eb 2288 }
39f56e1a
BP
2289}
2290
313ab004 2291void tls_sw_strparser_done(struct tls_context *tls_ctx)
39f56e1a 2292{
39f56e1a
BP
2293 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2294
313ab004
JF
2295 strp_done(&ctx->strp);
2296}
2297
2298void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2299{
2300 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
3c4d7559 2301
3c4d7559
DW
2302 kfree(ctx);
2303}
2304
313ab004
JF
2305void tls_sw_free_resources_rx(struct sock *sk)
2306{
2307 struct tls_context *tls_ctx = tls_get_ctx(sk);
2308
2309 tls_sw_release_resources_rx(sk);
2310 tls_sw_free_ctx_rx(tls_ctx);
2311}
2312
9932a29a 2313/* The work handler to transmitt the encrypted records in tx_list */
a42055e8
VG
2314static void tx_work_handler(struct work_struct *work)
2315{
2316 struct delayed_work *delayed_work = to_delayed_work(work);
2317 struct tx_work *tx_work = container_of(delayed_work,
2318 struct tx_work, work);
2319 struct sock *sk = tx_work->sk;
2320 struct tls_context *tls_ctx = tls_get_ctx(sk);
f87e62d4 2321 struct tls_sw_context_tx *ctx;
a42055e8 2322
f87e62d4 2323 if (unlikely(!tls_ctx))
a42055e8
VG
2324 return;
2325
f87e62d4
JF
2326 ctx = tls_sw_ctx_tx(tls_ctx);
2327 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2328 return;
2329
2330 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2331 return;
79ffe608 2332 mutex_lock(&tls_ctx->tx_lock);
a42055e8
VG
2333 lock_sock(sk);
2334 tls_tx_records(sk, -1);
2335 release_sock(sk);
79ffe608 2336 mutex_unlock(&tls_ctx->tx_lock);
a42055e8
VG
2337}
2338
58790314
JK
2339static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2340{
2341 struct tls_rec *rec;
2342
2343 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
2344 if (!rec)
2345 return false;
2346
2347 return READ_ONCE(rec->tx_ready);
2348}
2349
7463d3a2
BP
2350void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2351{
2352 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2353
2354 /* Schedule the transmission if tx list is ready */
58790314 2355 if (tls_is_tx_ready(tx_ctx) &&
02b1fa07
JK
2356 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2357 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
7463d3a2
BP
2358}
2359
318892ac
JK
2360void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2361{
2362 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2363
2364 write_lock_bh(&sk->sk_callback_lock);
2365 rx_ctx->saved_data_ready = sk->sk_data_ready;
2366 sk->sk_data_ready = tls_data_ready;
2367 write_unlock_bh(&sk->sk_callback_lock);
2368
2369 strp_check_rcv(&rx_ctx->strp);
2370}
2371
88527790
JK
2372void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2373{
2374 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2375
2376 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2377 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2378}
2379
c46234eb 2380int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
3c4d7559 2381{
4509de14
VG
2382 struct tls_context *tls_ctx = tls_get_ctx(sk);
2383 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559 2384 struct tls_crypto_info *crypto_info;
f66de3ee
BP
2385 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2386 struct tls_sw_context_rx *sw_ctx_rx = NULL;
c46234eb
DW
2387 struct cipher_context *cctx;
2388 struct crypto_aead **aead;
2389 struct strp_callbacks cb;
f295b3ae 2390 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
692d7b5d 2391 struct crypto_tfm *tfm;
f295b3ae 2392 char *iv, *rec_seq, *key, *salt, *cipher_name;
fb99bce7 2393 size_t keysize;
3c4d7559
DW
2394 int rc = 0;
2395
2396 if (!ctx) {
2397 rc = -EINVAL;
2398 goto out;
2399 }
2400
f66de3ee 2401 if (tx) {
b190a587
BP
2402 if (!ctx->priv_ctx_tx) {
2403 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2404 if (!sw_ctx_tx) {
2405 rc = -ENOMEM;
2406 goto out;
2407 }
2408 ctx->priv_ctx_tx = sw_ctx_tx;
2409 } else {
2410 sw_ctx_tx =
2411 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
c46234eb 2412 }
c46234eb 2413 } else {
b190a587
BP
2414 if (!ctx->priv_ctx_rx) {
2415 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2416 if (!sw_ctx_rx) {
2417 rc = -ENOMEM;
2418 goto out;
2419 }
2420 ctx->priv_ctx_rx = sw_ctx_rx;
2421 } else {
2422 sw_ctx_rx =
2423 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
f66de3ee 2424 }
3c4d7559
DW
2425 }
2426
c46234eb 2427 if (tx) {
b190a587 2428 crypto_init_wait(&sw_ctx_tx->async_wait);
0cada332 2429 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
86029d10 2430 crypto_info = &ctx->crypto_send.info;
c46234eb 2431 cctx = &ctx->tx;
f66de3ee 2432 aead = &sw_ctx_tx->aead_send;
9932a29a 2433 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
a42055e8
VG
2434 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2435 sw_ctx_tx->tx_work.sk = sk;
c46234eb 2436 } else {
b190a587 2437 crypto_init_wait(&sw_ctx_rx->async_wait);
0cada332 2438 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
4cbc325e 2439 init_waitqueue_head(&sw_ctx_rx->wq);
86029d10 2440 crypto_info = &ctx->crypto_recv.info;
c46234eb 2441 cctx = &ctx->rx;
692d7b5d 2442 skb_queue_head_init(&sw_ctx_rx->rx_list);
f66de3ee 2443 aead = &sw_ctx_rx->aead_recv;
c46234eb
DW
2444 }
2445
3c4d7559
DW
2446 switch (crypto_info->cipher_type) {
2447 case TLS_CIPHER_AES_GCM_128: {
dc2724a6
TZ
2448 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2449
2450 gcm_128_info = (void *)crypto_info;
3c4d7559
DW
2451 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2452 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2453 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
dc2724a6 2454 iv = gcm_128_info->iv;
3c4d7559 2455 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
dc2724a6 2456 rec_seq = gcm_128_info->rec_seq;
fb99bce7
DW
2457 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2458 key = gcm_128_info->key;
2459 salt = gcm_128_info->salt;
f295b3ae
VG
2460 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2461 cipher_name = "gcm(aes)";
fb99bce7
DW
2462 break;
2463 }
2464 case TLS_CIPHER_AES_GCM_256: {
dc2724a6
TZ
2465 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2466
2467 gcm_256_info = (void *)crypto_info;
fb99bce7
DW
2468 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2469 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2470 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
dc2724a6 2471 iv = gcm_256_info->iv;
fb99bce7 2472 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
dc2724a6 2473 rec_seq = gcm_256_info->rec_seq;
fb99bce7
DW
2474 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2475 key = gcm_256_info->key;
2476 salt = gcm_256_info->salt;
f295b3ae
VG
2477 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2478 cipher_name = "gcm(aes)";
2479 break;
2480 }
2481 case TLS_CIPHER_AES_CCM_128: {
dc2724a6
TZ
2482 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2483
2484 ccm_128_info = (void *)crypto_info;
f295b3ae
VG
2485 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2486 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2487 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
dc2724a6 2488 iv = ccm_128_info->iv;
f295b3ae 2489 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
dc2724a6 2490 rec_seq = ccm_128_info->rec_seq;
f295b3ae
VG
2491 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2492 key = ccm_128_info->key;
2493 salt = ccm_128_info->salt;
2494 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2495 cipher_name = "ccm(aes)";
3c4d7559
DW
2496 break;
2497 }
74ea6106 2498 case TLS_CIPHER_CHACHA20_POLY1305: {
dc2724a6
TZ
2499 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2500
74ea6106
VF
2501 chacha20_poly1305_info = (void *)crypto_info;
2502 nonce_size = 0;
2503 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2504 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2505 iv = chacha20_poly1305_info->iv;
2506 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2507 rec_seq = chacha20_poly1305_info->rec_seq;
2508 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2509 key = chacha20_poly1305_info->key;
2510 salt = chacha20_poly1305_info->salt;
2511 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2512 cipher_name = "rfc7539(chacha20,poly1305)";
2513 break;
2514 }
227b9644
TZ
2515 case TLS_CIPHER_SM4_GCM: {
2516 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2517
2518 sm4_gcm_info = (void *)crypto_info;
2519 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2520 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2521 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2522 iv = sm4_gcm_info->iv;
2523 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2524 rec_seq = sm4_gcm_info->rec_seq;
2525 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2526 key = sm4_gcm_info->key;
2527 salt = sm4_gcm_info->salt;
2528 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2529 cipher_name = "gcm(sm4)";
2530 break;
2531 }
2532 case TLS_CIPHER_SM4_CCM: {
2533 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2534
2535 sm4_ccm_info = (void *)crypto_info;
2536 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2537 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2538 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2539 iv = sm4_ccm_info->iv;
2540 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2541 rec_seq = sm4_ccm_info->rec_seq;
2542 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2543 key = sm4_ccm_info->key;
2544 salt = sm4_ccm_info->salt;
2545 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2546 cipher_name = "ccm(sm4)";
2547 break;
2548 }
3c4d7559
DW
2549 default:
2550 rc = -EINVAL;
cf6d43ef 2551 goto free_priv;
3c4d7559
DW
2552 }
2553
130b392c
DW
2554 if (crypto_info->version == TLS_1_3_VERSION) {
2555 nonce_size = 0;
4509de14
VG
2556 prot->aad_size = TLS_HEADER_SIZE;
2557 prot->tail_size = 1;
130b392c 2558 } else {
4509de14
VG
2559 prot->aad_size = TLS_AAD_SPACE_SIZE;
2560 prot->tail_size = 0;
130b392c
DW
2561 }
2562
50a07aa5
JK
2563 /* Sanity-check the sizes for stack allocations. */
2564 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2565 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2566 prot->aad_size > TLS_MAX_AAD_SIZE) {
2567 rc = -EINVAL;
2568 goto free_priv;
2569 }
2570
4509de14
VG
2571 prot->version = crypto_info->version;
2572 prot->cipher_type = crypto_info->cipher_type;
2573 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2574 prot->tag_size = tag_size;
2575 prot->overhead_size = prot->prepend_size +
2576 prot->tag_size + prot->tail_size;
2577 prot->iv_size = iv_size;
f295b3ae
VG
2578 prot->salt_size = salt_size;
2579 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
c46234eb 2580 if (!cctx->iv) {
3c4d7559 2581 rc = -ENOMEM;
cf6d43ef 2582 goto free_priv;
3c4d7559 2583 }
fb99bce7 2584 /* Note: 128 & 256 bit salt are the same size */
4509de14 2585 prot->rec_seq_size = rec_seq_size;
f295b3ae
VG
2586 memcpy(cctx->iv, salt, salt_size);
2587 memcpy(cctx->iv + salt_size, iv, iv_size);
969d5090 2588 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
c46234eb 2589 if (!cctx->rec_seq) {
3c4d7559
DW
2590 rc = -ENOMEM;
2591 goto free_iv;
2592 }
c46234eb 2593
c46234eb 2594 if (!*aead) {
f295b3ae 2595 *aead = crypto_alloc_aead(cipher_name, 0, 0);
c46234eb
DW
2596 if (IS_ERR(*aead)) {
2597 rc = PTR_ERR(*aead);
2598 *aead = NULL;
3c4d7559
DW
2599 goto free_rec_seq;
2600 }
2601 }
2602
2603 ctx->push_pending_record = tls_sw_push_pending_record;
2604
fb99bce7
DW
2605 rc = crypto_aead_setkey(*aead, key, keysize);
2606
3c4d7559
DW
2607 if (rc)
2608 goto free_aead;
2609
4509de14 2610 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
c46234eb
DW
2611 if (rc)
2612 goto free_aead;
2613
f66de3ee 2614 if (sw_ctx_rx) {
692d7b5d 2615 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
8497ded2 2616
88527790
JK
2617 tls_update_rx_zc_capable(ctx);
2618 sw_ctx_rx->async_capable =
2619 crypto_info->version != TLS_1_3_VERSION &&
2620 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
692d7b5d 2621
c46234eb
DW
2622 /* Set up strparser */
2623 memset(&cb, 0, sizeof(cb));
2624 cb.rcv_msg = tls_queue;
2625 cb.parse_msg = tls_read_size;
2626
f66de3ee 2627 strp_init(&sw_ctx_rx->strp, sk, &cb);
c46234eb
DW
2628 }
2629
2630 goto out;
3c4d7559
DW
2631
2632free_aead:
c46234eb
DW
2633 crypto_free_aead(*aead);
2634 *aead = NULL;
3c4d7559 2635free_rec_seq:
c46234eb
DW
2636 kfree(cctx->rec_seq);
2637 cctx->rec_seq = NULL;
3c4d7559 2638free_iv:
f66de3ee
BP
2639 kfree(cctx->iv);
2640 cctx->iv = NULL;
cf6d43ef 2641free_priv:
f66de3ee
BP
2642 if (tx) {
2643 kfree(ctx->priv_ctx_tx);
2644 ctx->priv_ctx_tx = NULL;
2645 } else {
2646 kfree(ctx->priv_ctx_rx);
2647 ctx->priv_ctx_rx = NULL;
2648 }
3c4d7559
DW
2649out:
2650 return rc;
2651}