net/tls: simplify seq calculation in handle_device_resync()
[linux-block.git] / net / tls / tls_sw.c
CommitLineData
3c4d7559
DW
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
d3b18ad3 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
3c4d7559
DW
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
c46234eb 38#include <linux/sched/signal.h>
3c4d7559
DW
39#include <linux/module.h>
40#include <crypto/aead.h>
41
c46234eb 42#include <net/strparser.h>
3c4d7559
DW
43#include <net/tls.h>
44
0927f71d
DRK
45static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
47{
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
51 int elt = 0;
52
53 if (unlikely(recursion_level >= 24))
54 return -EMSGSIZE;
55
56 if (chunk > 0) {
57 if (chunk > len)
58 chunk = len;
59 elt++;
60 len -= chunk;
61 if (len == 0)
62 return elt;
63 offset += chunk;
64 }
65
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67 int end;
68
69 WARN_ON(start > offset + len);
70
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72 chunk = end - offset;
73 if (chunk > 0) {
74 if (chunk > len)
75 chunk = len;
76 elt++;
77 len -= chunk;
78 if (len == 0)
79 return elt;
80 offset += chunk;
81 }
82 start = end;
83 }
84
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
87 int end, ret;
88
89 WARN_ON(start > offset + len);
90
91 end = start + frag_iter->len;
92 chunk = end - offset;
93 if (chunk > 0) {
94 if (chunk > len)
95 chunk = len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
97 recursion_level + 1);
98 if (unlikely(ret < 0))
99 return ret;
100 elt += ret;
101 len -= chunk;
102 if (len == 0)
103 return elt;
104 offset += chunk;
105 }
106 start = end;
107 }
108 }
109 BUG_ON(len);
110 return elt;
111}
112
113/* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
115 */
116static int skb_nsg(struct sk_buff *skb, int offset, int len)
117{
118 return __skb_nsg(skb, offset, len, 0);
119}
120
130b392c 121static int padding_length(struct tls_sw_context_rx *ctx,
b53f4976 122 struct tls_prot_info *prot, struct sk_buff *skb)
130b392c
DW
123{
124 struct strp_msg *rxm = strp_msg(skb);
125 int sub = 0;
126
127 /* Determine zero-padding length */
b53f4976 128 if (prot->version == TLS_1_3_VERSION) {
130b392c
DW
129 char content_type = 0;
130 int err;
131 int back = 17;
132
133 while (content_type == 0) {
b53f4976 134 if (back > rxm->full_len - prot->prepend_size)
130b392c
DW
135 return -EBADMSG;
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
138 &content_type, 1);
b53f4976
JK
139 if (err)
140 return err;
130b392c
DW
141 if (content_type)
142 break;
143 sub++;
144 back++;
145 }
146 ctx->control = content_type;
147 }
148 return sub;
149}
150
94524d8f
VG
151static void tls_decrypt_done(struct crypto_async_request *req, int err)
152{
153 struct aead_request *aead_req = (struct aead_request *)req;
94524d8f 154 struct scatterlist *sgout = aead_req->dst;
692d7b5d 155 struct scatterlist *sgin = aead_req->src;
7a3dd8c8
JF
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
4509de14 158 struct tls_prot_info *prot;
94524d8f 159 struct scatterlist *sg;
7a3dd8c8 160 struct sk_buff *skb;
94524d8f 161 unsigned int pages;
7a3dd8c8
JF
162 int pending;
163
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 167 prot = &tls_ctx->prot_info;
94524d8f
VG
168
169 /* Propagate if there was an err */
170 if (err) {
171 ctx->async_wait.err = err;
7a3dd8c8 172 tls_err_abort(skb->sk, err);
692d7b5d
VG
173 } else {
174 struct strp_msg *rxm = strp_msg(skb);
b53f4976
JK
175 int pad;
176
177 pad = padding_length(ctx, prot, skb);
178 if (pad < 0) {
179 ctx->async_wait.err = pad;
180 tls_err_abort(skb->sk, pad);
181 } else {
182 rxm->full_len -= pad;
183 rxm->offset += prot->prepend_size;
184 rxm->full_len -= prot->overhead_size;
185 }
94524d8f
VG
186 }
187
7a3dd8c8
JF
188 /* After using skb->sk to propagate sk through crypto async callback
189 * we need to NULL it again.
190 */
191 skb->sk = NULL;
192
94524d8f 193
692d7b5d
VG
194 /* Free the destination pages if skb was not decrypted inplace */
195 if (sgout != sgin) {
196 /* Skip the first S/G entry as it points to AAD */
197 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198 if (!sg)
199 break;
200 put_page(sg_page(sg));
201 }
94524d8f
VG
202 }
203
204 kfree(aead_req);
205
692d7b5d
VG
206 pending = atomic_dec_return(&ctx->decrypt_pending);
207
94524d8f
VG
208 if (!pending && READ_ONCE(ctx->async_notify))
209 complete(&ctx->async_wait.completion);
210}
211
c46234eb 212static int tls_do_decryption(struct sock *sk,
94524d8f 213 struct sk_buff *skb,
c46234eb
DW
214 struct scatterlist *sgin,
215 struct scatterlist *sgout,
216 char *iv_recv,
217 size_t data_len,
94524d8f
VG
218 struct aead_request *aead_req,
219 bool async)
c46234eb
DW
220{
221 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 222 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 224 int ret;
c46234eb 225
0b243d00 226 aead_request_set_tfm(aead_req, ctx->aead_recv);
4509de14 227 aead_request_set_ad(aead_req, prot->aad_size);
c46234eb 228 aead_request_set_crypt(aead_req, sgin, sgout,
4509de14 229 data_len + prot->tag_size,
c46234eb 230 (u8 *)iv_recv);
c46234eb 231
94524d8f 232 if (async) {
7a3dd8c8
JF
233 /* Using skb->sk to push sk through to crypto async callback
234 * handler. This allows propagating errors up to the socket
235 * if needed. It _must_ be cleared in the async handler
a88c26f6 236 * before consume_skb is called. We _know_ skb->sk is NULL
7a3dd8c8
JF
237 * because it is a clone from strparser.
238 */
239 skb->sk = sk;
94524d8f
VG
240 aead_request_set_callback(aead_req,
241 CRYPTO_TFM_REQ_MAY_BACKLOG,
242 tls_decrypt_done, skb);
243 atomic_inc(&ctx->decrypt_pending);
244 } else {
245 aead_request_set_callback(aead_req,
246 CRYPTO_TFM_REQ_MAY_BACKLOG,
247 crypto_req_done, &ctx->async_wait);
248 }
249
250 ret = crypto_aead_decrypt(aead_req);
251 if (ret == -EINPROGRESS) {
252 if (async)
253 return ret;
254
255 ret = crypto_wait_req(ret, &ctx->async_wait);
256 }
257
258 if (async)
259 atomic_dec(&ctx->decrypt_pending);
260
c46234eb
DW
261 return ret;
262}
263
d829e9c4 264static void tls_trim_both_msgs(struct sock *sk, int target_size)
3c4d7559
DW
265{
266 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 267 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 268 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 269 struct tls_rec *rec = ctx->open_rec;
3c4d7559 270
d829e9c4 271 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
3c4d7559 272 if (target_size > 0)
4509de14 273 target_size += prot->overhead_size;
d829e9c4 274 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
3c4d7559
DW
275}
276
d829e9c4 277static int tls_alloc_encrypted_msg(struct sock *sk, int len)
3c4d7559
DW
278{
279 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 281 struct tls_rec *rec = ctx->open_rec;
d829e9c4 282 struct sk_msg *msg_en = &rec->msg_encrypted;
3c4d7559 283
d829e9c4 284 return sk_msg_alloc(sk, msg_en, len, 0);
3c4d7559
DW
285}
286
d829e9c4 287static int tls_clone_plaintext_msg(struct sock *sk, int required)
3c4d7559
DW
288{
289 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 290 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 292 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
293 struct sk_msg *msg_pl = &rec->msg_plaintext;
294 struct sk_msg *msg_en = &rec->msg_encrypted;
4e6d4720 295 int skip, len;
3c4d7559 296
d829e9c4
DB
297 /* We add page references worth len bytes from encrypted sg
298 * at the end of plaintext sg. It is guaranteed that msg_en
4e6d4720
VG
299 * has enough required room (ensured by caller).
300 */
d829e9c4 301 len = required - msg_pl->sg.size;
52ea992c 302
d829e9c4
DB
303 /* Skip initial bytes in msg_en's data to be able to use
304 * same offset of both plain and encrypted data.
4e6d4720 305 */
4509de14 306 skip = prot->prepend_size + msg_pl->sg.size;
4e6d4720 307
d829e9c4 308 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
3c4d7559
DW
309}
310
d3b18ad3 311static struct tls_rec *tls_get_rec(struct sock *sk)
3c4d7559
DW
312{
313 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 314 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
316 struct sk_msg *msg_pl, *msg_en;
317 struct tls_rec *rec;
318 int mem_size;
3c4d7559 319
d3b18ad3
JF
320 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321
322 rec = kzalloc(mem_size, sk->sk_allocation);
a42055e8 323 if (!rec)
d3b18ad3
JF
324 return NULL;
325
326 msg_pl = &rec->msg_plaintext;
327 msg_en = &rec->msg_encrypted;
328
329 sk_msg_init(msg_pl);
330 sk_msg_init(msg_en);
331
332 sg_init_table(rec->sg_aead_in, 2);
4509de14 333 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
334 sg_unmark_end(&rec->sg_aead_in[1]);
335
336 sg_init_table(rec->sg_aead_out, 2);
4509de14 337 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
338 sg_unmark_end(&rec->sg_aead_out[1]);
339
340 return rec;
341}
a42055e8 342
d3b18ad3
JF
343static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344{
d829e9c4
DB
345 sk_msg_free(sk, &rec->msg_encrypted);
346 sk_msg_free(sk, &rec->msg_plaintext);
c774973e 347 kfree(rec);
a42055e8
VG
348}
349
d3b18ad3
JF
350static void tls_free_open_rec(struct sock *sk)
351{
352 struct tls_context *tls_ctx = tls_get_ctx(sk);
353 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354 struct tls_rec *rec = ctx->open_rec;
355
356 if (rec) {
357 tls_free_rec(sk, rec);
358 ctx->open_rec = NULL;
359 }
360}
361
a42055e8
VG
362int tls_tx_records(struct sock *sk, int flags)
363{
364 struct tls_context *tls_ctx = tls_get_ctx(sk);
365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366 struct tls_rec *rec, *tmp;
d829e9c4 367 struct sk_msg *msg_en;
a42055e8
VG
368 int tx_flags, rc = 0;
369
370 if (tls_is_partially_sent_record(tls_ctx)) {
9932a29a 371 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
372 struct tls_rec, list);
373
374 if (flags == -1)
375 tx_flags = rec->tx_flags;
376 else
377 tx_flags = flags;
378
379 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380 if (rc)
381 goto tx_err;
382
383 /* Full record has been transmitted.
9932a29a 384 * Remove the head of tx_list
a42055e8 385 */
a42055e8 386 list_del(&rec->list);
d829e9c4 387 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
388 kfree(rec);
389 }
390
9932a29a
VG
391 /* Tx all ready records */
392 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393 if (READ_ONCE(rec->tx_ready)) {
a42055e8
VG
394 if (flags == -1)
395 tx_flags = rec->tx_flags;
396 else
397 tx_flags = flags;
398
d829e9c4 399 msg_en = &rec->msg_encrypted;
a42055e8 400 rc = tls_push_sg(sk, tls_ctx,
d829e9c4 401 &msg_en->sg.data[msg_en->sg.curr],
a42055e8
VG
402 0, tx_flags);
403 if (rc)
404 goto tx_err;
405
a42055e8 406 list_del(&rec->list);
d829e9c4 407 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
408 kfree(rec);
409 } else {
410 break;
411 }
412 }
413
414tx_err:
415 if (rc < 0 && rc != -EAGAIN)
416 tls_err_abort(sk, EBADMSG);
417
418 return rc;
419}
420
421static void tls_encrypt_done(struct crypto_async_request *req, int err)
422{
423 struct aead_request *aead_req = (struct aead_request *)req;
424 struct sock *sk = req->data;
425 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 426 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d829e9c4
DB
428 struct scatterlist *sge;
429 struct sk_msg *msg_en;
a42055e8
VG
430 struct tls_rec *rec;
431 bool ready = false;
432 int pending;
433
434 rec = container_of(aead_req, struct tls_rec, aead_req);
d829e9c4 435 msg_en = &rec->msg_encrypted;
a42055e8 436
d829e9c4 437 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
4509de14
VG
438 sge->offset -= prot->prepend_size;
439 sge->length += prot->prepend_size;
a42055e8 440
80ece6a0 441 /* Check if error is previously set on socket */
a42055e8 442 if (err || sk->sk_err) {
a42055e8
VG
443 rec = NULL;
444
445 /* If err is already set on socket, return the same code */
446 if (sk->sk_err) {
447 ctx->async_wait.err = sk->sk_err;
448 } else {
449 ctx->async_wait.err = err;
450 tls_err_abort(sk, err);
451 }
452 }
453
9932a29a
VG
454 if (rec) {
455 struct tls_rec *first_rec;
456
457 /* Mark the record as ready for transmission */
458 smp_store_mb(rec->tx_ready, true);
459
460 /* If received record is at head of tx_list, schedule tx */
461 first_rec = list_first_entry(&ctx->tx_list,
462 struct tls_rec, list);
463 if (rec == first_rec)
464 ready = true;
465 }
a42055e8
VG
466
467 pending = atomic_dec_return(&ctx->encrypt_pending);
468
469 if (!pending && READ_ONCE(ctx->async_notify))
470 complete(&ctx->async_wait.completion);
471
472 if (!ready)
473 return;
474
475 /* Schedule the transmission */
476 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
d829e9c4 477 schedule_delayed_work(&ctx->tx_work.work, 1);
3c4d7559
DW
478}
479
a42055e8
VG
480static int tls_do_encryption(struct sock *sk,
481 struct tls_context *tls_ctx,
a447da7d
DB
482 struct tls_sw_context_tx *ctx,
483 struct aead_request *aead_req,
d829e9c4 484 size_t data_len, u32 start)
3c4d7559 485{
4509de14 486 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 487 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
488 struct sk_msg *msg_en = &rec->msg_encrypted;
489 struct scatterlist *sge = sk_msg_elem(msg_en, start);
f295b3ae
VG
490 int rc, iv_offset = 0;
491
492 /* For CCM based ciphers, first byte of IV is a constant */
493 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
495 iv_offset = 1;
496 }
497
498 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499 prot->iv_size + prot->salt_size);
3c4d7559 500
f295b3ae 501 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
32eb67b9 502
4509de14
VG
503 sge->offset += prot->prepend_size;
504 sge->length -= prot->prepend_size;
3c4d7559 505
d829e9c4 506 msg_en->sg.curr = start;
4e6d4720 507
3c4d7559 508 aead_request_set_tfm(aead_req, ctx->aead_send);
4509de14 509 aead_request_set_ad(aead_req, prot->aad_size);
d829e9c4
DB
510 aead_request_set_crypt(aead_req, rec->sg_aead_in,
511 rec->sg_aead_out,
32eb67b9 512 data_len, rec->iv_data);
a54667f6
VG
513
514 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
a42055e8
VG
515 tls_encrypt_done, sk);
516
9932a29a
VG
517 /* Add the record in tx_list */
518 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
a42055e8 519 atomic_inc(&ctx->encrypt_pending);
a54667f6 520
a42055e8
VG
521 rc = crypto_aead_encrypt(aead_req);
522 if (!rc || rc != -EINPROGRESS) {
523 atomic_dec(&ctx->encrypt_pending);
4509de14
VG
524 sge->offset -= prot->prepend_size;
525 sge->length += prot->prepend_size;
a42055e8 526 }
3c4d7559 527
9932a29a
VG
528 if (!rc) {
529 WRITE_ONCE(rec->tx_ready, true);
530 } else if (rc != -EINPROGRESS) {
531 list_del(&rec->list);
a42055e8 532 return rc;
9932a29a 533 }
3c4d7559 534
a42055e8
VG
535 /* Unhook the record from context if encryption is not failure */
536 ctx->open_rec = NULL;
fb0f886f 537 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
3c4d7559
DW
538 return rc;
539}
540
d3b18ad3
JF
541static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542 struct tls_rec **to, struct sk_msg *msg_opl,
543 struct sk_msg *msg_oen, u32 split_point,
544 u32 tx_overhead_size, u32 *orig_end)
545{
546 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547 struct scatterlist *sge, *osge, *nsge;
548 u32 orig_size = msg_opl->sg.size;
549 struct scatterlist tmp = { };
550 struct sk_msg *msg_npl;
551 struct tls_rec *new;
552 int ret;
553
554 new = tls_get_rec(sk);
555 if (!new)
556 return -ENOMEM;
557 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558 tx_overhead_size, 0);
559 if (ret < 0) {
560 tls_free_rec(sk, new);
561 return ret;
562 }
563
564 *orig_end = msg_opl->sg.end;
565 i = msg_opl->sg.start;
566 sge = sk_msg_elem(msg_opl, i);
567 while (apply && sge->length) {
568 if (sge->length > apply) {
569 u32 len = sge->length - apply;
570
571 get_page(sg_page(sge));
572 sg_set_page(&tmp, sg_page(sge), len,
573 sge->offset + apply);
574 sge->length = apply;
575 bytes += apply;
576 apply = 0;
577 } else {
578 apply -= sge->length;
579 bytes += sge->length;
580 }
581
582 sk_msg_iter_var_next(i);
583 if (i == msg_opl->sg.end)
584 break;
585 sge = sk_msg_elem(msg_opl, i);
586 }
587
588 msg_opl->sg.end = i;
589 msg_opl->sg.curr = i;
590 msg_opl->sg.copybreak = 0;
591 msg_opl->apply_bytes = 0;
592 msg_opl->sg.size = bytes;
593
594 msg_npl = &new->msg_plaintext;
595 msg_npl->apply_bytes = apply;
596 msg_npl->sg.size = orig_size - bytes;
597
598 j = msg_npl->sg.start;
599 nsge = sk_msg_elem(msg_npl, j);
600 if (tmp.length) {
601 memcpy(nsge, &tmp, sizeof(*nsge));
602 sk_msg_iter_var_next(j);
603 nsge = sk_msg_elem(msg_npl, j);
604 }
605
606 osge = sk_msg_elem(msg_opl, i);
607 while (osge->length) {
608 memcpy(nsge, osge, sizeof(*nsge));
609 sg_unmark_end(nsge);
610 sk_msg_iter_var_next(i);
611 sk_msg_iter_var_next(j);
612 if (i == *orig_end)
613 break;
614 osge = sk_msg_elem(msg_opl, i);
615 nsge = sk_msg_elem(msg_npl, j);
616 }
617
618 msg_npl->sg.end = j;
619 msg_npl->sg.curr = j;
620 msg_npl->sg.copybreak = 0;
621
622 *to = new;
623 return 0;
624}
625
626static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627 struct tls_rec *from, u32 orig_end)
628{
629 struct sk_msg *msg_npl = &from->msg_plaintext;
630 struct sk_msg *msg_opl = &to->msg_plaintext;
631 struct scatterlist *osge, *nsge;
632 u32 i, j;
633
634 i = msg_opl->sg.end;
635 sk_msg_iter_var_prev(i);
636 j = msg_npl->sg.start;
637
638 osge = sk_msg_elem(msg_opl, i);
639 nsge = sk_msg_elem(msg_npl, j);
640
641 if (sg_page(osge) == sg_page(nsge) &&
642 osge->offset + osge->length == nsge->offset) {
643 osge->length += nsge->length;
644 put_page(sg_page(nsge));
645 }
646
647 msg_opl->sg.end = orig_end;
648 msg_opl->sg.curr = orig_end;
649 msg_opl->sg.copybreak = 0;
650 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651 msg_opl->sg.size += msg_npl->sg.size;
652
653 sk_msg_free(sk, &to->msg_encrypted);
654 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
655
656 kfree(from);
657}
658
3c4d7559
DW
659static int tls_push_record(struct sock *sk, int flags,
660 unsigned char record_type)
661{
662 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 663 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 664 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
665 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666 u32 i, split_point, uninitialized_var(orig_end);
d829e9c4 667 struct sk_msg *msg_pl, *msg_en;
a447da7d 668 struct aead_request *req;
d3b18ad3 669 bool split;
3c4d7559
DW
670 int rc;
671
a42055e8
VG
672 if (!rec)
673 return 0;
a447da7d 674
d829e9c4
DB
675 msg_pl = &rec->msg_plaintext;
676 msg_en = &rec->msg_encrypted;
677
d3b18ad3
JF
678 split_point = msg_pl->apply_bytes;
679 split = split_point && split_point < msg_pl->sg.size;
680 if (split) {
681 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
4509de14 682 split_point, prot->overhead_size,
d3b18ad3
JF
683 &orig_end);
684 if (rc < 0)
685 return rc;
686 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
4509de14 687 prot->overhead_size);
d3b18ad3
JF
688 }
689
a42055e8
VG
690 rec->tx_flags = flags;
691 req = &rec->aead_req;
3c4d7559 692
d829e9c4
DB
693 i = msg_pl->sg.end;
694 sk_msg_iter_var_prev(i);
130b392c
DW
695
696 rec->content_type = record_type;
4509de14 697 if (prot->version == TLS_1_3_VERSION) {
130b392c
DW
698 /* Add content type to end of message. No padding added */
699 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
700 sg_mark_end(&rec->sg_content_type);
701 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
702 &rec->sg_content_type);
703 } else {
704 sg_mark_end(sk_msg_elem(msg_pl, i));
705 }
a42055e8 706
d829e9c4
DB
707 i = msg_pl->sg.start;
708 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
709 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
710
711 i = msg_en->sg.end;
712 sk_msg_iter_var_prev(i);
713 sg_mark_end(sk_msg_elem(msg_en, i));
714
715 i = msg_en->sg.start;
716 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
717
4509de14
VG
718 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
719 tls_ctx->tx.rec_seq, prot->rec_seq_size,
720 record_type, prot->version);
3c4d7559
DW
721
722 tls_fill_prepend(tls_ctx,
d829e9c4 723 page_address(sg_page(&msg_en->sg.data[i])) +
130b392c 724 msg_en->sg.data[i].offset,
4509de14
VG
725 msg_pl->sg.size + prot->tail_size,
726 record_type, prot->version);
3c4d7559 727
d829e9c4 728 tls_ctx->pending_open_record_frags = false;
3c4d7559 729
130b392c 730 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
4509de14 731 msg_pl->sg.size + prot->tail_size, i);
a42055e8 732 if (rc < 0) {
d3b18ad3 733 if (rc != -EINPROGRESS) {
d829e9c4 734 tls_err_abort(sk, EBADMSG);
d3b18ad3
JF
735 if (split) {
736 tls_ctx->pending_open_record_frags = true;
737 tls_merge_open_record(sk, rec, tmp, orig_end);
738 }
739 }
5b053e12 740 ctx->async_capable = 1;
a42055e8 741 return rc;
d3b18ad3
JF
742 } else if (split) {
743 msg_pl = &tmp->msg_plaintext;
744 msg_en = &tmp->msg_encrypted;
4509de14 745 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
d3b18ad3
JF
746 tls_ctx->pending_open_record_frags = true;
747 ctx->open_rec = tmp;
a42055e8 748 }
3c4d7559 749
9932a29a 750 return tls_tx_records(sk, flags);
3c4d7559
DW
751}
752
d3b18ad3
JF
753static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
754 bool full_record, u8 record_type,
755 size_t *copied, int flags)
3c4d7559
DW
756{
757 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 758 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
759 struct sk_msg msg_redir = { };
760 struct sk_psock *psock;
761 struct sock *sk_redir;
a42055e8 762 struct tls_rec *rec;
0608c69c 763 bool enospc, policy;
d3b18ad3 764 int err = 0, send;
7246d8ed 765 u32 delta = 0;
d3b18ad3 766
0608c69c 767 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
d3b18ad3 768 psock = sk_psock_get(sk);
0608c69c 769 if (!psock || !policy)
d3b18ad3
JF
770 return tls_push_record(sk, flags, record_type);
771more_data:
772 enospc = sk_msg_full(msg);
7246d8ed
JF
773 if (psock->eval == __SK_NONE) {
774 delta = msg->sg.size;
d3b18ad3 775 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
7246d8ed
JF
776 if (delta < msg->sg.size)
777 delta -= msg->sg.size;
778 else
779 delta = 0;
780 }
d3b18ad3
JF
781 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
782 !enospc && !full_record) {
783 err = -ENOSPC;
784 goto out_err;
785 }
786 msg->cork_bytes = 0;
787 send = msg->sg.size;
788 if (msg->apply_bytes && msg->apply_bytes < send)
789 send = msg->apply_bytes;
790
791 switch (psock->eval) {
792 case __SK_PASS:
793 err = tls_push_record(sk, flags, record_type);
794 if (err < 0) {
795 *copied -= sk_msg_free(sk, msg);
796 tls_free_open_rec(sk);
797 goto out_err;
798 }
799 break;
800 case __SK_REDIRECT:
801 sk_redir = psock->sk_redir;
802 memcpy(&msg_redir, msg, sizeof(*msg));
803 if (msg->apply_bytes < send)
804 msg->apply_bytes = 0;
805 else
806 msg->apply_bytes -= send;
807 sk_msg_return_zero(sk, msg, send);
808 msg->sg.size -= send;
809 release_sock(sk);
810 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
811 lock_sock(sk);
812 if (err < 0) {
813 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
814 msg->sg.size = 0;
815 }
816 if (msg->sg.size == 0)
817 tls_free_open_rec(sk);
818 break;
819 case __SK_DROP:
820 default:
821 sk_msg_free_partial(sk, msg, send);
822 if (msg->apply_bytes < send)
823 msg->apply_bytes = 0;
824 else
825 msg->apply_bytes -= send;
826 if (msg->sg.size == 0)
827 tls_free_open_rec(sk);
7246d8ed 828 *copied -= (send + delta);
d3b18ad3
JF
829 err = -EACCES;
830 }
a42055e8 831
d3b18ad3
JF
832 if (likely(!err)) {
833 bool reset_eval = !ctx->open_rec;
a42055e8 834
d3b18ad3
JF
835 rec = ctx->open_rec;
836 if (rec) {
837 msg = &rec->msg_plaintext;
838 if (!msg->apply_bytes)
839 reset_eval = true;
840 }
841 if (reset_eval) {
842 psock->eval = __SK_NONE;
843 if (psock->sk_redir) {
844 sock_put(psock->sk_redir);
845 psock->sk_redir = NULL;
846 }
847 }
848 if (rec)
849 goto more_data;
850 }
851 out_err:
852 sk_psock_put(sk, psock);
853 return err;
854}
855
856static int tls_sw_push_pending_record(struct sock *sk, int flags)
857{
858 struct tls_context *tls_ctx = tls_get_ctx(sk);
859 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
860 struct tls_rec *rec = ctx->open_rec;
861 struct sk_msg *msg_pl;
862 size_t copied;
a42055e8 863
a42055e8 864 if (!rec)
d3b18ad3 865 return 0;
a42055e8 866
d829e9c4 867 msg_pl = &rec->msg_plaintext;
d3b18ad3
JF
868 copied = msg_pl->sg.size;
869 if (!copied)
870 return 0;
a42055e8 871
d3b18ad3
JF
872 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
873 &copied, flags);
a42055e8
VG
874}
875
876int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
877{
3c4d7559 878 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
a42055e8 879 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 880 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 881 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
5b053e12 882 bool async_capable = ctx->async_capable;
a42055e8 883 unsigned char record_type = TLS_RECORD_TYPE_DATA;
00e23707 884 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
3c4d7559
DW
885 bool eor = !(msg->msg_flags & MSG_MORE);
886 size_t try_to_copy, copied = 0;
d829e9c4 887 struct sk_msg *msg_pl, *msg_en;
a42055e8
VG
888 struct tls_rec *rec;
889 int required_size;
890 int num_async = 0;
3c4d7559 891 bool full_record;
a42055e8
VG
892 int record_room;
893 int num_zc = 0;
3c4d7559 894 int orig_size;
4128c0cf 895 int ret = 0;
3c4d7559
DW
896
897 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
898 return -ENOTSUPP;
899
900 lock_sock(sk);
901
a42055e8
VG
902 /* Wait till there is any pending write on socket */
903 if (unlikely(sk->sk_write_pending)) {
904 ret = wait_on_pending_writer(sk, &timeo);
905 if (unlikely(ret))
906 goto send_end;
907 }
3c4d7559
DW
908
909 if (unlikely(msg->msg_controllen)) {
910 ret = tls_proccess_cmsg(sk, msg, &record_type);
a42055e8
VG
911 if (ret) {
912 if (ret == -EINPROGRESS)
913 num_async++;
914 else if (ret != -EAGAIN)
915 goto send_end;
916 }
3c4d7559
DW
917 }
918
919 while (msg_data_left(msg)) {
920 if (sk->sk_err) {
30be8f8d 921 ret = -sk->sk_err;
3c4d7559
DW
922 goto send_end;
923 }
924
d3b18ad3
JF
925 if (ctx->open_rec)
926 rec = ctx->open_rec;
927 else
928 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
929 if (!rec) {
930 ret = -ENOMEM;
931 goto send_end;
932 }
933
d829e9c4
DB
934 msg_pl = &rec->msg_plaintext;
935 msg_en = &rec->msg_encrypted;
936
937 orig_size = msg_pl->sg.size;
3c4d7559
DW
938 full_record = false;
939 try_to_copy = msg_data_left(msg);
d829e9c4 940 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
941 if (try_to_copy >= record_room) {
942 try_to_copy = record_room;
943 full_record = true;
944 }
945
d829e9c4 946 required_size = msg_pl->sg.size + try_to_copy +
4509de14 947 prot->overhead_size;
3c4d7559
DW
948
949 if (!sk_stream_memory_free(sk))
950 goto wait_for_sndbuf;
a42055e8 951
3c4d7559 952alloc_encrypted:
d829e9c4 953 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
954 if (ret) {
955 if (ret != -ENOSPC)
956 goto wait_for_memory;
957
958 /* Adjust try_to_copy according to the amount that was
959 * actually allocated. The difference is due
960 * to max sg elements limit
961 */
d829e9c4 962 try_to_copy -= required_size - msg_en->sg.size;
3c4d7559
DW
963 full_record = true;
964 }
a42055e8
VG
965
966 if (!is_kvec && (full_record || eor) && !async_capable) {
d3b18ad3
JF
967 u32 first = msg_pl->sg.end;
968
d829e9c4
DB
969 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
970 msg_pl, try_to_copy);
3c4d7559
DW
971 if (ret)
972 goto fallback_to_reg_send;
973
4e6d4720
VG
974 rec->inplace_crypto = 0;
975
a42055e8 976 num_zc++;
3c4d7559 977 copied += try_to_copy;
d3b18ad3
JF
978
979 sk_msg_sg_copy_set(msg_pl, first);
980 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
981 record_type, &copied,
982 msg->msg_flags);
a42055e8
VG
983 if (ret) {
984 if (ret == -EINPROGRESS)
985 num_async++;
d3b18ad3
JF
986 else if (ret == -ENOMEM)
987 goto wait_for_memory;
988 else if (ret == -ENOSPC)
989 goto rollback_iter;
a42055e8
VG
990 else if (ret != -EAGAIN)
991 goto send_end;
992 }
5a3611ef 993 continue;
d3b18ad3
JF
994rollback_iter:
995 copied -= try_to_copy;
996 sk_msg_sg_copy_clear(msg_pl, first);
997 iov_iter_revert(&msg->msg_iter,
998 msg_pl->sg.size - orig_size);
3c4d7559 999fallback_to_reg_send:
d829e9c4 1000 sk_msg_trim(sk, msg_pl, orig_size);
3c4d7559
DW
1001 }
1002
d829e9c4 1003 required_size = msg_pl->sg.size + try_to_copy;
4e6d4720 1004
d829e9c4 1005 ret = tls_clone_plaintext_msg(sk, required_size);
3c4d7559
DW
1006 if (ret) {
1007 if (ret != -ENOSPC)
4e6d4720 1008 goto send_end;
3c4d7559
DW
1009
1010 /* Adjust try_to_copy according to the amount that was
1011 * actually allocated. The difference is due
1012 * to max sg elements limit
1013 */
d829e9c4 1014 try_to_copy -= required_size - msg_pl->sg.size;
3c4d7559 1015 full_record = true;
4509de14
VG
1016 sk_msg_trim(sk, msg_en,
1017 msg_pl->sg.size + prot->overhead_size);
3c4d7559
DW
1018 }
1019
65a10e28
VG
1020 if (try_to_copy) {
1021 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1022 msg_pl, try_to_copy);
1023 if (ret < 0)
1024 goto trim_sgl;
1025 }
3c4d7559 1026
d829e9c4
DB
1027 /* Open records defined only if successfully copied, otherwise
1028 * we would trim the sg but not reset the open record frags.
1029 */
1030 tls_ctx->pending_open_record_frags = true;
3c4d7559
DW
1031 copied += try_to_copy;
1032 if (full_record || eor) {
d3b18ad3
JF
1033 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1034 record_type, &copied,
1035 msg->msg_flags);
3c4d7559 1036 if (ret) {
a42055e8
VG
1037 if (ret == -EINPROGRESS)
1038 num_async++;
d3b18ad3
JF
1039 else if (ret == -ENOMEM)
1040 goto wait_for_memory;
1041 else if (ret != -EAGAIN) {
1042 if (ret == -ENOSPC)
1043 ret = 0;
a42055e8 1044 goto send_end;
d3b18ad3 1045 }
3c4d7559
DW
1046 }
1047 }
1048
1049 continue;
1050
1051wait_for_sndbuf:
1052 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1053wait_for_memory:
1054 ret = sk_stream_wait_memory(sk, &timeo);
1055 if (ret) {
1056trim_sgl:
d829e9c4 1057 tls_trim_both_msgs(sk, orig_size);
3c4d7559
DW
1058 goto send_end;
1059 }
1060
d829e9c4 1061 if (msg_en->sg.size < required_size)
3c4d7559 1062 goto alloc_encrypted;
3c4d7559
DW
1063 }
1064
a42055e8
VG
1065 if (!num_async) {
1066 goto send_end;
1067 } else if (num_zc) {
1068 /* Wait for pending encryptions to get completed */
1069 smp_store_mb(ctx->async_notify, true);
1070
1071 if (atomic_read(&ctx->encrypt_pending))
1072 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1073 else
1074 reinit_completion(&ctx->async_wait.completion);
1075
1076 WRITE_ONCE(ctx->async_notify, false);
1077
1078 if (ctx->async_wait.err) {
1079 ret = ctx->async_wait.err;
1080 copied = 0;
1081 }
1082 }
1083
1084 /* Transmit if any encryptions have completed */
1085 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1086 cancel_delayed_work(&ctx->tx_work.work);
1087 tls_tx_records(sk, msg->msg_flags);
1088 }
1089
3c4d7559
DW
1090send_end:
1091 ret = sk_stream_error(sk, msg->msg_flags, ret);
1092
1093 release_sock(sk);
1094 return copied ? copied : ret;
1095}
1096
01cb8a1a
Y
1097static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1098 int offset, size_t size, int flags)
3c4d7559 1099{
a42055e8 1100 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
3c4d7559 1101 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1102 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
4509de14 1103 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559 1104 unsigned char record_type = TLS_RECORD_TYPE_DATA;
d829e9c4 1105 struct sk_msg *msg_pl;
a42055e8
VG
1106 struct tls_rec *rec;
1107 int num_async = 0;
d3b18ad3 1108 size_t copied = 0;
3c4d7559
DW
1109 bool full_record;
1110 int record_room;
4128c0cf 1111 int ret = 0;
a42055e8 1112 bool eor;
3c4d7559 1113
3c4d7559 1114 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
3c4d7559
DW
1115 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1116
a42055e8
VG
1117 /* Wait till there is any pending write on socket */
1118 if (unlikely(sk->sk_write_pending)) {
1119 ret = wait_on_pending_writer(sk, &timeo);
1120 if (unlikely(ret))
1121 goto sendpage_end;
1122 }
3c4d7559
DW
1123
1124 /* Call the sk_stream functions to manage the sndbuf mem. */
1125 while (size > 0) {
1126 size_t copy, required_size;
1127
1128 if (sk->sk_err) {
30be8f8d 1129 ret = -sk->sk_err;
3c4d7559
DW
1130 goto sendpage_end;
1131 }
1132
d3b18ad3
JF
1133 if (ctx->open_rec)
1134 rec = ctx->open_rec;
1135 else
1136 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
1137 if (!rec) {
1138 ret = -ENOMEM;
1139 goto sendpage_end;
1140 }
1141
d829e9c4
DB
1142 msg_pl = &rec->msg_plaintext;
1143
3c4d7559 1144 full_record = false;
d829e9c4 1145 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
d3b18ad3 1146 copied = 0;
3c4d7559
DW
1147 copy = size;
1148 if (copy >= record_room) {
1149 copy = record_room;
1150 full_record = true;
1151 }
d829e9c4 1152
4509de14 1153 required_size = msg_pl->sg.size + copy + prot->overhead_size;
3c4d7559
DW
1154
1155 if (!sk_stream_memory_free(sk))
1156 goto wait_for_sndbuf;
1157alloc_payload:
d829e9c4 1158 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1159 if (ret) {
1160 if (ret != -ENOSPC)
1161 goto wait_for_memory;
1162
1163 /* Adjust copy according to the amount that was
1164 * actually allocated. The difference is due
1165 * to max sg elements limit
1166 */
d829e9c4 1167 copy -= required_size - msg_pl->sg.size;
3c4d7559
DW
1168 full_record = true;
1169 }
1170
d829e9c4 1171 sk_msg_page_add(msg_pl, page, copy, offset);
3c4d7559 1172 sk_mem_charge(sk, copy);
d829e9c4 1173
3c4d7559
DW
1174 offset += copy;
1175 size -= copy;
d3b18ad3 1176 copied += copy;
3c4d7559 1177
d829e9c4
DB
1178 tls_ctx->pending_open_record_frags = true;
1179 if (full_record || eor || sk_msg_full(msg_pl)) {
4e6d4720 1180 rec->inplace_crypto = 0;
d3b18ad3
JF
1181 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1182 record_type, &copied, flags);
3c4d7559 1183 if (ret) {
a42055e8
VG
1184 if (ret == -EINPROGRESS)
1185 num_async++;
d3b18ad3
JF
1186 else if (ret == -ENOMEM)
1187 goto wait_for_memory;
1188 else if (ret != -EAGAIN) {
1189 if (ret == -ENOSPC)
1190 ret = 0;
a42055e8 1191 goto sendpage_end;
d3b18ad3 1192 }
3c4d7559
DW
1193 }
1194 }
1195 continue;
1196wait_for_sndbuf:
1197 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1198wait_for_memory:
1199 ret = sk_stream_wait_memory(sk, &timeo);
1200 if (ret) {
d829e9c4 1201 tls_trim_both_msgs(sk, msg_pl->sg.size);
3c4d7559
DW
1202 goto sendpage_end;
1203 }
1204
3c4d7559
DW
1205 goto alloc_payload;
1206 }
1207
a42055e8
VG
1208 if (num_async) {
1209 /* Transmit if any encryptions have completed */
1210 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1211 cancel_delayed_work(&ctx->tx_work.work);
1212 tls_tx_records(sk, flags);
1213 }
1214 }
3c4d7559 1215sendpage_end:
d3b18ad3 1216 ret = sk_stream_error(sk, flags, ret);
d3b18ad3 1217 return copied ? copied : ret;
3c4d7559
DW
1218}
1219
0608c69c
JF
1220int tls_sw_sendpage(struct sock *sk, struct page *page,
1221 int offset, size_t size, int flags)
1222{
1223 int ret;
1224
1225 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1226 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1227 return -ENOTSUPP;
1228
1229 lock_sock(sk);
1230 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1231 release_sock(sk);
1232 return ret;
1233}
1234
d3b18ad3
JF
1235static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1236 int flags, long timeo, int *err)
c46234eb
DW
1237{
1238 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1239 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1240 struct sk_buff *skb;
1241 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1242
d3b18ad3 1243 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
c46234eb
DW
1244 if (sk->sk_err) {
1245 *err = sock_error(sk);
1246 return NULL;
1247 }
1248
fcf4793e
DRK
1249 if (sk->sk_shutdown & RCV_SHUTDOWN)
1250 return NULL;
1251
c46234eb
DW
1252 if (sock_flag(sk, SOCK_DONE))
1253 return NULL;
1254
1255 if ((flags & MSG_DONTWAIT) || !timeo) {
1256 *err = -EAGAIN;
1257 return NULL;
1258 }
1259
1260 add_wait_queue(sk_sleep(sk), &wait);
1261 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
d3b18ad3
JF
1262 sk_wait_event(sk, &timeo,
1263 ctx->recv_pkt != skb ||
1264 !sk_psock_queue_empty(psock),
1265 &wait);
c46234eb
DW
1266 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1267 remove_wait_queue(sk_sleep(sk), &wait);
1268
1269 /* Handle signals */
1270 if (signal_pending(current)) {
1271 *err = sock_intr_errno(timeo);
1272 return NULL;
1273 }
1274 }
1275
1276 return skb;
1277}
1278
d829e9c4
DB
1279static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1280 int length, int *pages_used,
1281 unsigned int *size_used,
1282 struct scatterlist *to,
1283 int to_max_pages)
1284{
1285 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1286 struct page *pages[MAX_SKB_FRAGS];
1287 unsigned int size = *size_used;
1288 ssize_t copied, use;
1289 size_t offset;
1290
1291 while (length > 0) {
1292 i = 0;
1293 maxpages = to_max_pages - num_elem;
1294 if (maxpages == 0) {
1295 rc = -EFAULT;
1296 goto out;
1297 }
1298 copied = iov_iter_get_pages(from, pages,
1299 length,
1300 maxpages, &offset);
1301 if (copied <= 0) {
1302 rc = -EFAULT;
1303 goto out;
1304 }
1305
1306 iov_iter_advance(from, copied);
1307
1308 length -= copied;
1309 size += copied;
1310 while (copied) {
1311 use = min_t(int, copied, PAGE_SIZE - offset);
1312
1313 sg_set_page(&to[num_elem],
1314 pages[i], use, offset);
1315 sg_unmark_end(&to[num_elem]);
1316 /* We do not uncharge memory from this API */
1317
1318 offset = 0;
1319 copied -= use;
1320
1321 i++;
1322 num_elem++;
1323 }
1324 }
1325 /* Mark the end in the last sg entry if newly added */
1326 if (num_elem > *pages_used)
1327 sg_mark_end(&to[num_elem - 1]);
1328out:
1329 if (rc)
1330 iov_iter_revert(from, size - *size_used);
1331 *size_used = size;
1332 *pages_used = num_elem;
1333
1334 return rc;
1335}
1336
0b243d00
VG
1337/* This function decrypts the input skb into either out_iov or in out_sg
1338 * or in skb buffers itself. The input parameter 'zc' indicates if
1339 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1340 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1341 * NULL, then the decryption happens inside skb buffers itself, i.e.
1342 * zero-copy gets disabled and 'zc' is updated.
1343 */
1344
1345static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1346 struct iov_iter *out_iov,
1347 struct scatterlist *out_sg,
692d7b5d 1348 int *chunk, bool *zc, bool async)
0b243d00
VG
1349{
1350 struct tls_context *tls_ctx = tls_get_ctx(sk);
1351 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1352 struct tls_prot_info *prot = &tls_ctx->prot_info;
0b243d00
VG
1353 struct strp_msg *rxm = strp_msg(skb);
1354 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1355 struct aead_request *aead_req;
1356 struct sk_buff *unused;
1357 u8 *aad, *iv, *mem = NULL;
1358 struct scatterlist *sgin = NULL;
1359 struct scatterlist *sgout = NULL;
4509de14
VG
1360 const int data_len = rxm->full_len - prot->overhead_size +
1361 prot->tail_size;
f295b3ae 1362 int iv_offset = 0;
0b243d00
VG
1363
1364 if (*zc && (out_iov || out_sg)) {
1365 if (out_iov)
1366 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1367 else
1368 n_sgout = sg_nents(out_sg);
4509de14
VG
1369 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1370 rxm->full_len - prot->prepend_size);
0b243d00
VG
1371 } else {
1372 n_sgout = 0;
1373 *zc = false;
0927f71d 1374 n_sgin = skb_cow_data(skb, 0, &unused);
0b243d00
VG
1375 }
1376
0b243d00
VG
1377 if (n_sgin < 1)
1378 return -EBADMSG;
1379
1380 /* Increment to accommodate AAD */
1381 n_sgin = n_sgin + 1;
1382
1383 nsg = n_sgin + n_sgout;
1384
1385 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1386 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
4509de14 1387 mem_size = mem_size + prot->aad_size;
0b243d00
VG
1388 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1389
1390 /* Allocate a single block of memory which contains
1391 * aead_req || sgin[] || sgout[] || aad || iv.
1392 * This order achieves correct alignment for aead_req, sgin, sgout.
1393 */
1394 mem = kmalloc(mem_size, sk->sk_allocation);
1395 if (!mem)
1396 return -ENOMEM;
1397
1398 /* Segment the allocated memory */
1399 aead_req = (struct aead_request *)mem;
1400 sgin = (struct scatterlist *)(mem + aead_size);
1401 sgout = sgin + n_sgin;
1402 aad = (u8 *)(sgout + n_sgout);
4509de14 1403 iv = aad + prot->aad_size;
0b243d00 1404
f295b3ae
VG
1405 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1406 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1407 iv[0] = 2;
1408 iv_offset = 1;
1409 }
1410
0b243d00
VG
1411 /* Prepare IV */
1412 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
f295b3ae 1413 iv + iv_offset + prot->salt_size,
4509de14 1414 prot->iv_size);
0b243d00
VG
1415 if (err < 0) {
1416 kfree(mem);
1417 return err;
1418 }
4509de14 1419 if (prot->version == TLS_1_3_VERSION)
f295b3ae
VG
1420 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1421 crypto_aead_ivsize(ctx->aead_recv));
130b392c 1422 else
f295b3ae 1423 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
130b392c 1424
4509de14 1425 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
0b243d00
VG
1426
1427 /* Prepare AAD */
4509de14
VG
1428 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1429 prot->tail_size,
1430 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1431 ctx->control, prot->version);
0b243d00
VG
1432
1433 /* Prepare sgin */
1434 sg_init_table(sgin, n_sgin);
4509de14 1435 sg_set_buf(&sgin[0], aad, prot->aad_size);
0b243d00 1436 err = skb_to_sgvec(skb, &sgin[1],
4509de14
VG
1437 rxm->offset + prot->prepend_size,
1438 rxm->full_len - prot->prepend_size);
0b243d00
VG
1439 if (err < 0) {
1440 kfree(mem);
1441 return err;
1442 }
1443
1444 if (n_sgout) {
1445 if (out_iov) {
1446 sg_init_table(sgout, n_sgout);
4509de14 1447 sg_set_buf(&sgout[0], aad, prot->aad_size);
0b243d00
VG
1448
1449 *chunk = 0;
d829e9c4
DB
1450 err = tls_setup_from_iter(sk, out_iov, data_len,
1451 &pages, chunk, &sgout[1],
1452 (n_sgout - 1));
0b243d00
VG
1453 if (err < 0)
1454 goto fallback_to_reg_recv;
1455 } else if (out_sg) {
1456 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1457 } else {
1458 goto fallback_to_reg_recv;
1459 }
1460 } else {
1461fallback_to_reg_recv:
1462 sgout = sgin;
1463 pages = 0;
692d7b5d 1464 *chunk = data_len;
0b243d00
VG
1465 *zc = false;
1466 }
1467
1468 /* Prepare and submit AEAD request */
94524d8f 1469 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
692d7b5d 1470 data_len, aead_req, async);
94524d8f
VG
1471 if (err == -EINPROGRESS)
1472 return err;
0b243d00
VG
1473
1474 /* Release the pages in case iov was mapped to pages */
1475 for (; pages > 0; pages--)
1476 put_page(sg_page(&sgout[pages]));
1477
1478 kfree(mem);
1479 return err;
1480}
1481
dafb67f3 1482static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
692d7b5d
VG
1483 struct iov_iter *dest, int *chunk, bool *zc,
1484 bool async)
dafb67f3
BP
1485{
1486 struct tls_context *tls_ctx = tls_get_ctx(sk);
1487 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1488 struct tls_prot_info *prot = &tls_ctx->prot_info;
dafb67f3 1489 struct strp_msg *rxm = strp_msg(skb);
b53f4976 1490 int pad, err = 0;
dafb67f3 1491
4799ac81 1492 if (!ctx->decrypted) {
d069b780 1493#ifdef CONFIG_TLS_DEVICE
b9d8fec9
JK
1494 if (tls_ctx->rx_conf == TLS_HW) {
1495 err = tls_device_decrypted(sk, skb);
1496 if (err < 0)
1497 return err;
1498 }
d069b780
BP
1499#endif
1500 /* Still not decrypted after tls_device */
1501 if (!ctx->decrypted) {
1502 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1503 async);
1504 if (err < 0) {
1505 if (err == -EINPROGRESS)
fb0f886f
JK
1506 tls_advance_record_sn(sk, prot,
1507 &tls_ctx->rx);
d069b780
BP
1508
1509 return err;
1510 }
c43ac97b
JK
1511 } else {
1512 *zc = false;
94524d8f 1513 }
130b392c 1514
b53f4976
JK
1515 pad = padding_length(ctx, prot, skb);
1516 if (pad < 0)
1517 return pad;
1518
1519 rxm->full_len -= pad;
4509de14
VG
1520 rxm->offset += prot->prepend_size;
1521 rxm->full_len -= prot->overhead_size;
fb0f886f 1522 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
fedf201e
DW
1523 ctx->decrypted = true;
1524 ctx->saved_data_ready(sk);
4799ac81
BP
1525 } else {
1526 *zc = false;
1527 }
dafb67f3 1528
dafb67f3
BP
1529 return err;
1530}
1531
1532int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1533 struct scatterlist *sgout)
c46234eb 1534{
0b243d00
VG
1535 bool zc = true;
1536 int chunk;
c46234eb 1537
692d7b5d 1538 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
c46234eb
DW
1539}
1540
1541static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1542 unsigned int len)
1543{
1544 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1545 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 1546
94524d8f
VG
1547 if (skb) {
1548 struct strp_msg *rxm = strp_msg(skb);
c46234eb 1549
94524d8f
VG
1550 if (len < rxm->full_len) {
1551 rxm->offset += len;
1552 rxm->full_len -= len;
1553 return false;
1554 }
a88c26f6 1555 consume_skb(skb);
c46234eb
DW
1556 }
1557
1558 /* Finished with message */
1559 ctx->recv_pkt = NULL;
7170e604 1560 __strp_unpause(&ctx->strp);
c46234eb
DW
1561
1562 return true;
1563}
1564
692d7b5d 1565/* This function traverses the rx_list in tls receive context to copies the
2b794c40 1566 * decrypted records into the buffer provided by caller zero copy is not
692d7b5d
VG
1567 * true. Further, the records are removed from the rx_list if it is not a peek
1568 * case and the record has been consumed completely.
1569 */
1570static int process_rx_list(struct tls_sw_context_rx *ctx,
1571 struct msghdr *msg,
2b794c40
VG
1572 u8 *control,
1573 bool *cmsg,
692d7b5d
VG
1574 size_t skip,
1575 size_t len,
1576 bool zc,
1577 bool is_peek)
1578{
1579 struct sk_buff *skb = skb_peek(&ctx->rx_list);
2b794c40
VG
1580 u8 ctrl = *control;
1581 u8 msgc = *cmsg;
1582 struct tls_msg *tlm;
692d7b5d
VG
1583 ssize_t copied = 0;
1584
2b794c40
VG
1585 /* Set the record type in 'control' if caller didn't pass it */
1586 if (!ctrl && skb) {
1587 tlm = tls_msg(skb);
1588 ctrl = tlm->control;
1589 }
1590
692d7b5d
VG
1591 while (skip && skb) {
1592 struct strp_msg *rxm = strp_msg(skb);
2b794c40
VG
1593 tlm = tls_msg(skb);
1594
1595 /* Cannot process a record of different type */
1596 if (ctrl != tlm->control)
1597 return 0;
692d7b5d
VG
1598
1599 if (skip < rxm->full_len)
1600 break;
1601
1602 skip = skip - rxm->full_len;
1603 skb = skb_peek_next(skb, &ctx->rx_list);
1604 }
1605
1606 while (len && skb) {
1607 struct sk_buff *next_skb;
1608 struct strp_msg *rxm = strp_msg(skb);
1609 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1610
2b794c40
VG
1611 tlm = tls_msg(skb);
1612
1613 /* Cannot process a record of different type */
1614 if (ctrl != tlm->control)
1615 return 0;
1616
1617 /* Set record type if not already done. For a non-data record,
1618 * do not proceed if record type could not be copied.
1619 */
1620 if (!msgc) {
1621 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1622 sizeof(ctrl), &ctrl);
1623 msgc = true;
1624 if (ctrl != TLS_RECORD_TYPE_DATA) {
1625 if (cerr || msg->msg_flags & MSG_CTRUNC)
1626 return -EIO;
1627
1628 *cmsg = msgc;
1629 }
1630 }
1631
692d7b5d
VG
1632 if (!zc || (rxm->full_len - skip) > len) {
1633 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1634 msg, chunk);
1635 if (err < 0)
1636 return err;
1637 }
1638
1639 len = len - chunk;
1640 copied = copied + chunk;
1641
1642 /* Consume the data from record if it is non-peek case*/
1643 if (!is_peek) {
1644 rxm->offset = rxm->offset + chunk;
1645 rxm->full_len = rxm->full_len - chunk;
1646
1647 /* Return if there is unconsumed data in the record */
1648 if (rxm->full_len - skip)
1649 break;
1650 }
1651
1652 /* The remaining skip-bytes must lie in 1st record in rx_list.
1653 * So from the 2nd record, 'skip' should be 0.
1654 */
1655 skip = 0;
1656
1657 if (msg)
1658 msg->msg_flags |= MSG_EOR;
1659
1660 next_skb = skb_peek_next(skb, &ctx->rx_list);
1661
1662 if (!is_peek) {
1663 skb_unlink(skb, &ctx->rx_list);
a88c26f6 1664 consume_skb(skb);
692d7b5d
VG
1665 }
1666
1667 skb = next_skb;
1668 }
1669
2b794c40 1670 *control = ctrl;
692d7b5d
VG
1671 return copied;
1672}
1673
c46234eb
DW
1674int tls_sw_recvmsg(struct sock *sk,
1675 struct msghdr *msg,
1676 size_t len,
1677 int nonblock,
1678 int flags,
1679 int *addr_len)
1680{
1681 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1682 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1683 struct tls_prot_info *prot = &tls_ctx->prot_info;
d3b18ad3 1684 struct sk_psock *psock;
692d7b5d
VG
1685 unsigned char control = 0;
1686 ssize_t decrypted = 0;
c46234eb 1687 struct strp_msg *rxm;
2b794c40 1688 struct tls_msg *tlm;
c46234eb
DW
1689 struct sk_buff *skb;
1690 ssize_t copied = 0;
1691 bool cmsg = false;
06030dba 1692 int target, err = 0;
c46234eb 1693 long timeo;
00e23707 1694 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
692d7b5d 1695 bool is_peek = flags & MSG_PEEK;
94524d8f 1696 int num_async = 0;
c46234eb
DW
1697
1698 flags |= nonblock;
1699
1700 if (unlikely(flags & MSG_ERRQUEUE))
1701 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1702
d3b18ad3 1703 psock = sk_psock_get(sk);
c46234eb
DW
1704 lock_sock(sk);
1705
692d7b5d 1706 /* Process pending decrypted records. It must be non-zero-copy */
2b794c40
VG
1707 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1708 is_peek);
692d7b5d
VG
1709 if (err < 0) {
1710 tls_err_abort(sk, err);
1711 goto end;
1712 } else {
1713 copied = err;
1714 }
1715
46a16959 1716 if (len <= copied)
692d7b5d 1717 goto recv_end;
46a16959
JK
1718
1719 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1720 len = len - copied;
1721 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
692d7b5d 1722
04b25a54 1723 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
692d7b5d 1724 bool retain_skb = false;
692d7b5d
VG
1725 bool zc = false;
1726 int to_decrypt;
c46234eb 1727 int chunk = 0;
7754bd63
EBE
1728 bool async_capable;
1729 bool async = false;
c46234eb 1730
d3b18ad3
JF
1731 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1732 if (!skb) {
1733 if (psock) {
02c558b2
JF
1734 int ret = __tcp_bpf_recvmsg(sk, psock,
1735 msg, len, flags);
d3b18ad3
JF
1736
1737 if (ret > 0) {
692d7b5d 1738 decrypted += ret;
d3b18ad3
JF
1739 len -= ret;
1740 continue;
1741 }
1742 }
c46234eb 1743 goto recv_end;
2b794c40
VG
1744 } else {
1745 tlm = tls_msg(skb);
1746 if (prot->version == TLS_1_3_VERSION)
1747 tlm->control = 0;
1748 else
1749 tlm->control = ctx->control;
d3b18ad3 1750 }
c46234eb
DW
1751
1752 rxm = strp_msg(skb);
94524d8f 1753
4509de14 1754 to_decrypt = rxm->full_len - prot->overhead_size;
fedf201e
DW
1755
1756 if (to_decrypt <= len && !is_kvec && !is_peek &&
130b392c 1757 ctx->control == TLS_RECORD_TYPE_DATA &&
4509de14 1758 prot->version != TLS_1_3_VERSION)
fedf201e
DW
1759 zc = true;
1760
c0ab4732
VG
1761 /* Do not use async mode if record is non-data */
1762 if (ctx->control == TLS_RECORD_TYPE_DATA)
7754bd63 1763 async_capable = ctx->async_capable;
c0ab4732 1764 else
7754bd63 1765 async_capable = false;
c0ab4732 1766
fedf201e 1767 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
7754bd63 1768 &chunk, &zc, async_capable);
fedf201e
DW
1769 if (err < 0 && err != -EINPROGRESS) {
1770 tls_err_abort(sk, EBADMSG);
1771 goto recv_end;
1772 }
1773
7754bd63
EBE
1774 if (err == -EINPROGRESS) {
1775 async = true;
fedf201e 1776 num_async++;
7754bd63 1777 } else if (prot->version == TLS_1_3_VERSION) {
2b794c40 1778 tlm->control = ctx->control;
7754bd63 1779 }
2b794c40
VG
1780
1781 /* If the type of records being processed is not known yet,
1782 * set it to record type just dequeued. If it is already known,
1783 * but does not match the record type just dequeued, go to end.
1784 * We always get record type here since for tls1.2, record type
1785 * is known just after record is dequeued from stream parser.
1786 * For tls1.3, we disable async.
1787 */
1788
1789 if (!control)
1790 control = tlm->control;
1791 else if (control != tlm->control)
1792 goto recv_end;
fedf201e 1793
c46234eb
DW
1794 if (!cmsg) {
1795 int cerr;
1796
1797 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
2b794c40 1798 sizeof(control), &control);
c46234eb 1799 cmsg = true;
2b794c40 1800 if (control != TLS_RECORD_TYPE_DATA) {
c46234eb
DW
1801 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1802 err = -EIO;
1803 goto recv_end;
1804 }
1805 }
c46234eb
DW
1806 }
1807
c0ab4732
VG
1808 if (async)
1809 goto pick_next_record;
1810
fedf201e
DW
1811 if (!zc) {
1812 if (rxm->full_len > len) {
1813 retain_skb = true;
1814 chunk = len;
1815 } else {
1816 chunk = rxm->full_len;
1817 }
692d7b5d 1818
fedf201e
DW
1819 err = skb_copy_datagram_msg(skb, rxm->offset,
1820 msg, chunk);
1821 if (err < 0)
1822 goto recv_end;
94524d8f 1823
fedf201e
DW
1824 if (!is_peek) {
1825 rxm->offset = rxm->offset + chunk;
1826 rxm->full_len = rxm->full_len - chunk;
692d7b5d 1827 }
c46234eb
DW
1828 }
1829
94524d8f 1830pick_next_record:
692d7b5d
VG
1831 if (chunk > len)
1832 chunk = len;
1833
1834 decrypted += chunk;
c46234eb 1835 len -= chunk;
692d7b5d
VG
1836
1837 /* For async or peek case, queue the current skb */
1838 if (async || is_peek || retain_skb) {
1839 skb_queue_tail(&ctx->rx_list, skb);
1840 skb = NULL;
1841 }
1842
1843 if (tls_sw_advance_skb(sk, skb, chunk)) {
1844 /* Return full control message to
1845 * userspace before trying to parse
1846 * another message type
50c6b58a 1847 */
692d7b5d
VG
1848 msg->msg_flags |= MSG_EOR;
1849 if (ctx->control != TLS_RECORD_TYPE_DATA)
1850 goto recv_end;
1851 } else {
50c6b58a 1852 break;
c46234eb 1853 }
04b25a54 1854 }
c46234eb
DW
1855
1856recv_end:
94524d8f
VG
1857 if (num_async) {
1858 /* Wait for all previously submitted records to be decrypted */
1859 smp_store_mb(ctx->async_notify, true);
1860 if (atomic_read(&ctx->decrypt_pending)) {
1861 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1862 if (err) {
1863 /* one of async decrypt failed */
1864 tls_err_abort(sk, err);
1865 copied = 0;
692d7b5d
VG
1866 decrypted = 0;
1867 goto end;
94524d8f
VG
1868 }
1869 } else {
1870 reinit_completion(&ctx->async_wait.completion);
1871 }
1872 WRITE_ONCE(ctx->async_notify, false);
692d7b5d
VG
1873
1874 /* Drain records from the rx_list & copy if required */
1875 if (is_peek || is_kvec)
2b794c40 1876 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
692d7b5d
VG
1877 decrypted, false, is_peek);
1878 else
2b794c40 1879 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
692d7b5d
VG
1880 decrypted, true, is_peek);
1881 if (err < 0) {
1882 tls_err_abort(sk, err);
1883 copied = 0;
1884 goto end;
1885 }
94524d8f
VG
1886 }
1887
692d7b5d
VG
1888 copied += decrypted;
1889
1890end:
c46234eb 1891 release_sock(sk);
d3b18ad3
JF
1892 if (psock)
1893 sk_psock_put(sk, psock);
c46234eb
DW
1894 return copied ? : err;
1895}
1896
1897ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1898 struct pipe_inode_info *pipe,
1899 size_t len, unsigned int flags)
1900{
1901 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
f66de3ee 1902 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1903 struct strp_msg *rxm = NULL;
1904 struct sock *sk = sock->sk;
1905 struct sk_buff *skb;
1906 ssize_t copied = 0;
1907 int err = 0;
1908 long timeo;
1909 int chunk;
0b243d00 1910 bool zc = false;
c46234eb
DW
1911
1912 lock_sock(sk);
1913
1914 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1915
d3b18ad3 1916 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
c46234eb
DW
1917 if (!skb)
1918 goto splice_read_end;
1919
c46234eb 1920 if (!ctx->decrypted) {
692d7b5d 1921 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
c46234eb 1922
fedf201e
DW
1923 /* splice does not support reading control messages */
1924 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1925 err = -ENOTSUPP;
1926 goto splice_read_end;
1927 }
1928
c46234eb
DW
1929 if (err < 0) {
1930 tls_err_abort(sk, EBADMSG);
1931 goto splice_read_end;
1932 }
1933 ctx->decrypted = true;
1934 }
1935 rxm = strp_msg(skb);
1936
1937 chunk = min_t(unsigned int, rxm->full_len, len);
1938 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1939 if (copied < 0)
1940 goto splice_read_end;
1941
1942 if (likely(!(flags & MSG_PEEK)))
1943 tls_sw_advance_skb(sk, skb, copied);
1944
1945splice_read_end:
1946 release_sock(sk);
1947 return copied ? : err;
1948}
1949
924ad65e 1950bool tls_sw_stream_read(const struct sock *sk)
c46234eb 1951{
c46234eb 1952 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1953 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3
JF
1954 bool ingress_empty = true;
1955 struct sk_psock *psock;
c46234eb 1956
d3b18ad3
JF
1957 rcu_read_lock();
1958 psock = sk_psock(sk);
1959 if (psock)
1960 ingress_empty = list_empty(&psock->ingress_msg);
1961 rcu_read_unlock();
c46234eb 1962
d3b18ad3 1963 return !ingress_empty || ctx->recv_pkt;
c46234eb
DW
1964}
1965
1966static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1967{
1968 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 1969 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1970 struct tls_prot_info *prot = &tls_ctx->prot_info;
3463e51d 1971 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
c46234eb
DW
1972 struct strp_msg *rxm = strp_msg(skb);
1973 size_t cipher_overhead;
1974 size_t data_len = 0;
1975 int ret;
1976
1977 /* Verify that we have a full TLS header, or wait for more data */
4509de14 1978 if (rxm->offset + prot->prepend_size > skb->len)
c46234eb
DW
1979 return 0;
1980
3463e51d 1981 /* Sanity-check size of on-stack buffer. */
4509de14 1982 if (WARN_ON(prot->prepend_size > sizeof(header))) {
3463e51d
KC
1983 ret = -EINVAL;
1984 goto read_failure;
1985 }
1986
c46234eb 1987 /* Linearize header to local buffer */
4509de14 1988 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
c46234eb
DW
1989
1990 if (ret < 0)
1991 goto read_failure;
1992
1993 ctx->control = header[0];
1994
1995 data_len = ((header[4] & 0xFF) | (header[3] << 8));
1996
4509de14
VG
1997 cipher_overhead = prot->tag_size;
1998 if (prot->version != TLS_1_3_VERSION)
1999 cipher_overhead += prot->iv_size;
c46234eb 2000
130b392c 2001 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
4509de14 2002 prot->tail_size) {
c46234eb
DW
2003 ret = -EMSGSIZE;
2004 goto read_failure;
2005 }
2006 if (data_len < cipher_overhead) {
2007 ret = -EBADMSG;
2008 goto read_failure;
2009 }
2010
130b392c
DW
2011 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2012 if (header[1] != TLS_1_2_VERSION_MINOR ||
2013 header[2] != TLS_1_2_VERSION_MAJOR) {
c46234eb
DW
2014 ret = -EINVAL;
2015 goto read_failure;
2016 }
4799ac81
BP
2017#ifdef CONFIG_TLS_DEVICE
2018 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
2019 *(u64*)tls_ctx->rx.rec_seq);
2020#endif
c46234eb
DW
2021 return data_len + TLS_HEADER_SIZE;
2022
2023read_failure:
2024 tls_err_abort(strp->sk, ret);
2025
2026 return ret;
2027}
2028
2029static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2030{
2031 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 2032 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
2033
2034 ctx->decrypted = false;
2035
2036 ctx->recv_pkt = skb;
2037 strp_pause(strp);
2038
ad13acce 2039 ctx->saved_data_ready(strp->sk);
c46234eb
DW
2040}
2041
2042static void tls_data_ready(struct sock *sk)
2043{
2044 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2045 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3 2046 struct sk_psock *psock;
c46234eb
DW
2047
2048 strp_data_ready(&ctx->strp);
d3b18ad3
JF
2049
2050 psock = sk_psock_get(sk);
2051 if (psock && !list_empty(&psock->ingress_msg)) {
2052 ctx->saved_data_ready(sk);
2053 sk_psock_put(sk, psock);
2054 }
c46234eb
DW
2055}
2056
f66de3ee 2057void tls_sw_free_resources_tx(struct sock *sk)
3c4d7559
DW
2058{
2059 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2060 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8
VG
2061 struct tls_rec *rec, *tmp;
2062
2063 /* Wait for any pending async encryptions to complete */
2064 smp_store_mb(ctx->async_notify, true);
2065 if (atomic_read(&ctx->encrypt_pending))
2066 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2067
10231213 2068 release_sock(sk);
a42055e8 2069 cancel_delayed_work_sync(&ctx->tx_work.work);
10231213 2070 lock_sock(sk);
a42055e8
VG
2071
2072 /* Tx whatever records we can transmit and abandon the rest */
2073 tls_tx_records(sk, -1);
2074
9932a29a 2075 /* Free up un-sent records in tx_list. First, free
a42055e8
VG
2076 * the partially sent record if any at head of tx_list.
2077 */
35b71a34 2078 if (tls_free_partial_record(sk, tls_ctx)) {
9932a29a 2079 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
2080 struct tls_rec, list);
2081 list_del(&rec->list);
d829e9c4 2082 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2083 kfree(rec);
2084 }
2085
9932a29a 2086 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
a42055e8 2087 list_del(&rec->list);
d829e9c4
DB
2088 sk_msg_free(sk, &rec->msg_encrypted);
2089 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2090 kfree(rec);
2091 }
3c4d7559 2092
201876b3 2093 crypto_free_aead(ctx->aead_send);
c774973e 2094 tls_free_open_rec(sk);
f66de3ee
BP
2095
2096 kfree(ctx);
2097}
2098
39f56e1a 2099void tls_sw_release_resources_rx(struct sock *sk)
f66de3ee
BP
2100{
2101 struct tls_context *tls_ctx = tls_get_ctx(sk);
2102 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2103
12c76861
JK
2104 kfree(tls_ctx->rx.rec_seq);
2105 kfree(tls_ctx->rx.iv);
2106
c46234eb 2107 if (ctx->aead_recv) {
201876b3
VG
2108 kfree_skb(ctx->recv_pkt);
2109 ctx->recv_pkt = NULL;
692d7b5d 2110 skb_queue_purge(&ctx->rx_list);
c46234eb
DW
2111 crypto_free_aead(ctx->aead_recv);
2112 strp_stop(&ctx->strp);
2113 write_lock_bh(&sk->sk_callback_lock);
2114 sk->sk_data_ready = ctx->saved_data_ready;
2115 write_unlock_bh(&sk->sk_callback_lock);
2116 release_sock(sk);
2117 strp_done(&ctx->strp);
2118 lock_sock(sk);
2119 }
39f56e1a
BP
2120}
2121
2122void tls_sw_free_resources_rx(struct sock *sk)
2123{
2124 struct tls_context *tls_ctx = tls_get_ctx(sk);
2125 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126
2127 tls_sw_release_resources_rx(sk);
3c4d7559 2128
3c4d7559
DW
2129 kfree(ctx);
2130}
2131
9932a29a 2132/* The work handler to transmitt the encrypted records in tx_list */
a42055e8
VG
2133static void tx_work_handler(struct work_struct *work)
2134{
2135 struct delayed_work *delayed_work = to_delayed_work(work);
2136 struct tx_work *tx_work = container_of(delayed_work,
2137 struct tx_work, work);
2138 struct sock *sk = tx_work->sk;
2139 struct tls_context *tls_ctx = tls_get_ctx(sk);
2140 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2141
2142 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2143 return;
2144
2145 lock_sock(sk);
2146 tls_tx_records(sk, -1);
2147 release_sock(sk);
2148}
2149
7463d3a2
BP
2150void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2151{
2152 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2153
2154 /* Schedule the transmission if tx list is ready */
2155 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2156 /* Schedule the transmission */
2157 if (!test_and_set_bit(BIT_TX_SCHEDULED,
2158 &tx_ctx->tx_bitmask))
2159 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2160 }
2161}
2162
c46234eb 2163int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
3c4d7559 2164{
4509de14
VG
2165 struct tls_context *tls_ctx = tls_get_ctx(sk);
2166 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559
DW
2167 struct tls_crypto_info *crypto_info;
2168 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
fb99bce7 2169 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
f295b3ae 2170 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
f66de3ee
BP
2171 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2172 struct tls_sw_context_rx *sw_ctx_rx = NULL;
c46234eb
DW
2173 struct cipher_context *cctx;
2174 struct crypto_aead **aead;
2175 struct strp_callbacks cb;
f295b3ae 2176 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
692d7b5d 2177 struct crypto_tfm *tfm;
f295b3ae 2178 char *iv, *rec_seq, *key, *salt, *cipher_name;
fb99bce7 2179 size_t keysize;
3c4d7559
DW
2180 int rc = 0;
2181
2182 if (!ctx) {
2183 rc = -EINVAL;
2184 goto out;
2185 }
2186
f66de3ee 2187 if (tx) {
b190a587
BP
2188 if (!ctx->priv_ctx_tx) {
2189 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2190 if (!sw_ctx_tx) {
2191 rc = -ENOMEM;
2192 goto out;
2193 }
2194 ctx->priv_ctx_tx = sw_ctx_tx;
2195 } else {
2196 sw_ctx_tx =
2197 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
c46234eb 2198 }
c46234eb 2199 } else {
b190a587
BP
2200 if (!ctx->priv_ctx_rx) {
2201 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2202 if (!sw_ctx_rx) {
2203 rc = -ENOMEM;
2204 goto out;
2205 }
2206 ctx->priv_ctx_rx = sw_ctx_rx;
2207 } else {
2208 sw_ctx_rx =
2209 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
f66de3ee 2210 }
3c4d7559
DW
2211 }
2212
c46234eb 2213 if (tx) {
b190a587 2214 crypto_init_wait(&sw_ctx_tx->async_wait);
86029d10 2215 crypto_info = &ctx->crypto_send.info;
c46234eb 2216 cctx = &ctx->tx;
f66de3ee 2217 aead = &sw_ctx_tx->aead_send;
9932a29a 2218 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
a42055e8
VG
2219 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2220 sw_ctx_tx->tx_work.sk = sk;
c46234eb 2221 } else {
b190a587 2222 crypto_init_wait(&sw_ctx_rx->async_wait);
86029d10 2223 crypto_info = &ctx->crypto_recv.info;
c46234eb 2224 cctx = &ctx->rx;
692d7b5d 2225 skb_queue_head_init(&sw_ctx_rx->rx_list);
f66de3ee 2226 aead = &sw_ctx_rx->aead_recv;
c46234eb
DW
2227 }
2228
3c4d7559
DW
2229 switch (crypto_info->cipher_type) {
2230 case TLS_CIPHER_AES_GCM_128: {
2231 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2232 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2233 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2234 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2235 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2236 rec_seq =
2237 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2238 gcm_128_info =
2239 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
fb99bce7
DW
2240 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2241 key = gcm_128_info->key;
2242 salt = gcm_128_info->salt;
f295b3ae
VG
2243 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2244 cipher_name = "gcm(aes)";
fb99bce7
DW
2245 break;
2246 }
2247 case TLS_CIPHER_AES_GCM_256: {
2248 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2249 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2250 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2251 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2252 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2253 rec_seq =
2254 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2255 gcm_256_info =
2256 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2257 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2258 key = gcm_256_info->key;
2259 salt = gcm_256_info->salt;
f295b3ae
VG
2260 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2261 cipher_name = "gcm(aes)";
2262 break;
2263 }
2264 case TLS_CIPHER_AES_CCM_128: {
2265 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2266 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2267 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2268 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2269 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2270 rec_seq =
2271 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2272 ccm_128_info =
2273 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2274 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2275 key = ccm_128_info->key;
2276 salt = ccm_128_info->salt;
2277 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2278 cipher_name = "ccm(aes)";
3c4d7559
DW
2279 break;
2280 }
2281 default:
2282 rc = -EINVAL;
cf6d43ef 2283 goto free_priv;
3c4d7559
DW
2284 }
2285
b16520f7 2286 /* Sanity-check the IV size for stack allocations. */
3463e51d 2287 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
b16520f7
KC
2288 rc = -EINVAL;
2289 goto free_priv;
2290 }
2291
130b392c
DW
2292 if (crypto_info->version == TLS_1_3_VERSION) {
2293 nonce_size = 0;
4509de14
VG
2294 prot->aad_size = TLS_HEADER_SIZE;
2295 prot->tail_size = 1;
130b392c 2296 } else {
4509de14
VG
2297 prot->aad_size = TLS_AAD_SPACE_SIZE;
2298 prot->tail_size = 0;
130b392c
DW
2299 }
2300
4509de14
VG
2301 prot->version = crypto_info->version;
2302 prot->cipher_type = crypto_info->cipher_type;
2303 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2304 prot->tag_size = tag_size;
2305 prot->overhead_size = prot->prepend_size +
2306 prot->tag_size + prot->tail_size;
2307 prot->iv_size = iv_size;
f295b3ae
VG
2308 prot->salt_size = salt_size;
2309 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
c46234eb 2310 if (!cctx->iv) {
3c4d7559 2311 rc = -ENOMEM;
cf6d43ef 2312 goto free_priv;
3c4d7559 2313 }
fb99bce7 2314 /* Note: 128 & 256 bit salt are the same size */
4509de14 2315 prot->rec_seq_size = rec_seq_size;
f295b3ae
VG
2316 memcpy(cctx->iv, salt, salt_size);
2317 memcpy(cctx->iv + salt_size, iv, iv_size);
969d5090 2318 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
c46234eb 2319 if (!cctx->rec_seq) {
3c4d7559
DW
2320 rc = -ENOMEM;
2321 goto free_iv;
2322 }
c46234eb 2323
c46234eb 2324 if (!*aead) {
f295b3ae 2325 *aead = crypto_alloc_aead(cipher_name, 0, 0);
c46234eb
DW
2326 if (IS_ERR(*aead)) {
2327 rc = PTR_ERR(*aead);
2328 *aead = NULL;
3c4d7559
DW
2329 goto free_rec_seq;
2330 }
2331 }
2332
2333 ctx->push_pending_record = tls_sw_push_pending_record;
2334
fb99bce7
DW
2335 rc = crypto_aead_setkey(*aead, key, keysize);
2336
3c4d7559
DW
2337 if (rc)
2338 goto free_aead;
2339
4509de14 2340 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
c46234eb
DW
2341 if (rc)
2342 goto free_aead;
2343
f66de3ee 2344 if (sw_ctx_rx) {
692d7b5d 2345 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
8497ded2
VG
2346
2347 if (crypto_info->version == TLS_1_3_VERSION)
2348 sw_ctx_rx->async_capable = false;
2349 else
2350 sw_ctx_rx->async_capable =
2351 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
692d7b5d 2352
c46234eb
DW
2353 /* Set up strparser */
2354 memset(&cb, 0, sizeof(cb));
2355 cb.rcv_msg = tls_queue;
2356 cb.parse_msg = tls_read_size;
2357
f66de3ee 2358 strp_init(&sw_ctx_rx->strp, sk, &cb);
c46234eb
DW
2359
2360 write_lock_bh(&sk->sk_callback_lock);
f66de3ee 2361 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
c46234eb
DW
2362 sk->sk_data_ready = tls_data_ready;
2363 write_unlock_bh(&sk->sk_callback_lock);
2364
f66de3ee 2365 strp_check_rcv(&sw_ctx_rx->strp);
c46234eb
DW
2366 }
2367
2368 goto out;
3c4d7559
DW
2369
2370free_aead:
c46234eb
DW
2371 crypto_free_aead(*aead);
2372 *aead = NULL;
3c4d7559 2373free_rec_seq:
c46234eb
DW
2374 kfree(cctx->rec_seq);
2375 cctx->rec_seq = NULL;
3c4d7559 2376free_iv:
f66de3ee
BP
2377 kfree(cctx->iv);
2378 cctx->iv = NULL;
cf6d43ef 2379free_priv:
f66de3ee
BP
2380 if (tx) {
2381 kfree(ctx->priv_ctx_tx);
2382 ctx->priv_ctx_tx = NULL;
2383 } else {
2384 kfree(ctx->priv_ctx_rx);
2385 ctx->priv_ctx_rx = NULL;
2386 }
3c4d7559
DW
2387out:
2388 return rc;
2389}