Merge branch 'net-smc-virt-contig-buffers'
[linux-2.6-block.git] / net / tls / tls_sw.c
CommitLineData
3c4d7559
DW
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
d3b18ad3 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
3c4d7559
DW
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
da353fac 38#include <linux/bug.h>
c46234eb 39#include <linux/sched/signal.h>
3c4d7559 40#include <linux/module.h>
974271e5 41#include <linux/splice.h>
3c4d7559
DW
42#include <crypto/aead.h>
43
c46234eb 44#include <net/strparser.h>
3c4d7559
DW
45#include <net/tls.h>
46
58790314
JK
47#include "tls.h"
48
4175eac3
JK
49struct tls_decrypt_arg {
50 bool zc;
51 bool async;
ce61327c 52 u8 tail;
4175eac3
JK
53};
54
b89fec54
JK
55struct tls_decrypt_ctx {
56 u8 iv[MAX_IV_SIZE];
57 u8 aad[TLS_MAX_AAD_SIZE];
58 u8 tail;
59 struct scatterlist sg[];
60};
61
da353fac
DJ
62noinline void tls_err_abort(struct sock *sk, int err)
63{
64 WARN_ON_ONCE(err >= 0);
65 /* sk->sk_err should contain a positive error code. */
66 sk->sk_err = -err;
67 sk_error_report(sk);
68}
69
0927f71d
DRK
70static int __skb_nsg(struct sk_buff *skb, int offset, int len,
71 unsigned int recursion_level)
72{
73 int start = skb_headlen(skb);
74 int i, chunk = start - offset;
75 struct sk_buff *frag_iter;
76 int elt = 0;
77
78 if (unlikely(recursion_level >= 24))
79 return -EMSGSIZE;
80
81 if (chunk > 0) {
82 if (chunk > len)
83 chunk = len;
84 elt++;
85 len -= chunk;
86 if (len == 0)
87 return elt;
88 offset += chunk;
89 }
90
91 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
92 int end;
93
94 WARN_ON(start > offset + len);
95
96 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
97 chunk = end - offset;
98 if (chunk > 0) {
99 if (chunk > len)
100 chunk = len;
101 elt++;
102 len -= chunk;
103 if (len == 0)
104 return elt;
105 offset += chunk;
106 }
107 start = end;
108 }
109
110 if (unlikely(skb_has_frag_list(skb))) {
111 skb_walk_frags(skb, frag_iter) {
112 int end, ret;
113
114 WARN_ON(start > offset + len);
115
116 end = start + frag_iter->len;
117 chunk = end - offset;
118 if (chunk > 0) {
119 if (chunk > len)
120 chunk = len;
121 ret = __skb_nsg(frag_iter, offset - start, chunk,
122 recursion_level + 1);
123 if (unlikely(ret < 0))
124 return ret;
125 elt += ret;
126 len -= chunk;
127 if (len == 0)
128 return elt;
129 offset += chunk;
130 }
131 start = end;
132 }
133 }
134 BUG_ON(len);
135 return elt;
136}
137
138/* Return the number of scatterlist elements required to completely map the
139 * skb, or -EMSGSIZE if the recursion depth is exceeded.
140 */
141static int skb_nsg(struct sk_buff *skb, int offset, int len)
142{
143 return __skb_nsg(skb, offset, len, 0);
144}
145
ce61327c
JK
146static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
147 struct tls_decrypt_arg *darg)
130b392c
DW
148{
149 struct strp_msg *rxm = strp_msg(skb);
c3f6bb74 150 struct tls_msg *tlm = tls_msg(skb);
130b392c
DW
151 int sub = 0;
152
153 /* Determine zero-padding length */
b53f4976 154 if (prot->version == TLS_1_3_VERSION) {
5deee41b 155 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
ce61327c 156 char content_type = darg->zc ? darg->tail : 0;
130b392c 157 int err;
130b392c
DW
158
159 while (content_type == 0) {
5deee41b 160 if (offset < prot->prepend_size)
130b392c 161 return -EBADMSG;
5deee41b 162 err = skb_copy_bits(skb, rxm->offset + offset,
130b392c 163 &content_type, 1);
b53f4976
JK
164 if (err)
165 return err;
130b392c
DW
166 if (content_type)
167 break;
168 sub++;
5deee41b 169 offset--;
130b392c 170 }
c3f6bb74 171 tlm->control = content_type;
130b392c
DW
172 }
173 return sub;
174}
175
94524d8f
VG
176static void tls_decrypt_done(struct crypto_async_request *req, int err)
177{
178 struct aead_request *aead_req = (struct aead_request *)req;
94524d8f 179 struct scatterlist *sgout = aead_req->dst;
692d7b5d 180 struct scatterlist *sgin = aead_req->src;
7a3dd8c8
JF
181 struct tls_sw_context_rx *ctx;
182 struct tls_context *tls_ctx;
4509de14 183 struct tls_prot_info *prot;
94524d8f 184 struct scatterlist *sg;
7a3dd8c8 185 struct sk_buff *skb;
94524d8f 186 unsigned int pages;
7a3dd8c8
JF
187
188 skb = (struct sk_buff *)req->data;
189 tls_ctx = tls_get_ctx(skb->sk);
190 ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 191 prot = &tls_ctx->prot_info;
94524d8f
VG
192
193 /* Propagate if there was an err */
194 if (err) {
5c5ec668
JK
195 if (err == -EBADMSG)
196 TLS_INC_STATS(sock_net(skb->sk),
197 LINUX_MIB_TLSDECRYPTERROR);
94524d8f 198 ctx->async_wait.err = err;
7a3dd8c8 199 tls_err_abort(skb->sk, err);
692d7b5d
VG
200 } else {
201 struct strp_msg *rxm = strp_msg(skb);
72f3ad73
JK
202
203 /* No TLS 1.3 support with async crypto */
204 WARN_ON(prot->tail_size);
205
206 rxm->offset += prot->prepend_size;
207 rxm->full_len -= prot->overhead_size;
94524d8f
VG
208 }
209
7a3dd8c8
JF
210 /* After using skb->sk to propagate sk through crypto async callback
211 * we need to NULL it again.
212 */
213 skb->sk = NULL;
214
94524d8f 215
692d7b5d
VG
216 /* Free the destination pages if skb was not decrypted inplace */
217 if (sgout != sgin) {
218 /* Skip the first S/G entry as it points to AAD */
219 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
220 if (!sg)
221 break;
222 put_page(sg_page(sg));
223 }
94524d8f
VG
224 }
225
226 kfree(aead_req);
227
0cada332 228 spin_lock_bh(&ctx->decrypt_compl_lock);
37943f04 229 if (!atomic_dec_return(&ctx->decrypt_pending))
94524d8f 230 complete(&ctx->async_wait.completion);
0cada332 231 spin_unlock_bh(&ctx->decrypt_compl_lock);
94524d8f
VG
232}
233
c46234eb 234static int tls_do_decryption(struct sock *sk,
94524d8f 235 struct sk_buff *skb,
c46234eb
DW
236 struct scatterlist *sgin,
237 struct scatterlist *sgout,
238 char *iv_recv,
239 size_t data_len,
94524d8f 240 struct aead_request *aead_req,
3547a1f9 241 struct tls_decrypt_arg *darg)
c46234eb
DW
242{
243 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 244 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 245 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 246 int ret;
c46234eb 247
0b243d00 248 aead_request_set_tfm(aead_req, ctx->aead_recv);
4509de14 249 aead_request_set_ad(aead_req, prot->aad_size);
c46234eb 250 aead_request_set_crypt(aead_req, sgin, sgout,
4509de14 251 data_len + prot->tag_size,
c46234eb 252 (u8 *)iv_recv);
c46234eb 253
3547a1f9 254 if (darg->async) {
7a3dd8c8
JF
255 /* Using skb->sk to push sk through to crypto async callback
256 * handler. This allows propagating errors up to the socket
257 * if needed. It _must_ be cleared in the async handler
a88c26f6 258 * before consume_skb is called. We _know_ skb->sk is NULL
7a3dd8c8
JF
259 * because it is a clone from strparser.
260 */
261 skb->sk = sk;
94524d8f
VG
262 aead_request_set_callback(aead_req,
263 CRYPTO_TFM_REQ_MAY_BACKLOG,
264 tls_decrypt_done, skb);
265 atomic_inc(&ctx->decrypt_pending);
266 } else {
267 aead_request_set_callback(aead_req,
268 CRYPTO_TFM_REQ_MAY_BACKLOG,
269 crypto_req_done, &ctx->async_wait);
270 }
271
272 ret = crypto_aead_decrypt(aead_req);
273 if (ret == -EINPROGRESS) {
3547a1f9
JK
274 if (darg->async)
275 return 0;
94524d8f
VG
276
277 ret = crypto_wait_req(ret, &ctx->async_wait);
278 }
3547a1f9
JK
279 darg->async = false;
280
c46234eb
DW
281 return ret;
282}
283
d829e9c4 284static void tls_trim_both_msgs(struct sock *sk, int target_size)
3c4d7559
DW
285{
286 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 287 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 288 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 289 struct tls_rec *rec = ctx->open_rec;
3c4d7559 290
d829e9c4 291 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
3c4d7559 292 if (target_size > 0)
4509de14 293 target_size += prot->overhead_size;
d829e9c4 294 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
3c4d7559
DW
295}
296
d829e9c4 297static int tls_alloc_encrypted_msg(struct sock *sk, int len)
3c4d7559
DW
298{
299 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 300 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 301 struct tls_rec *rec = ctx->open_rec;
d829e9c4 302 struct sk_msg *msg_en = &rec->msg_encrypted;
3c4d7559 303
d829e9c4 304 return sk_msg_alloc(sk, msg_en, len, 0);
3c4d7559
DW
305}
306
d829e9c4 307static int tls_clone_plaintext_msg(struct sock *sk, int required)
3c4d7559
DW
308{
309 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 310 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 312 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
313 struct sk_msg *msg_pl = &rec->msg_plaintext;
314 struct sk_msg *msg_en = &rec->msg_encrypted;
4e6d4720 315 int skip, len;
3c4d7559 316
d829e9c4
DB
317 /* We add page references worth len bytes from encrypted sg
318 * at the end of plaintext sg. It is guaranteed that msg_en
4e6d4720
VG
319 * has enough required room (ensured by caller).
320 */
d829e9c4 321 len = required - msg_pl->sg.size;
52ea992c 322
d829e9c4
DB
323 /* Skip initial bytes in msg_en's data to be able to use
324 * same offset of both plain and encrypted data.
4e6d4720 325 */
4509de14 326 skip = prot->prepend_size + msg_pl->sg.size;
4e6d4720 327
d829e9c4 328 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
3c4d7559
DW
329}
330
d3b18ad3 331static struct tls_rec *tls_get_rec(struct sock *sk)
3c4d7559
DW
332{
333 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 334 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 335 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
336 struct sk_msg *msg_pl, *msg_en;
337 struct tls_rec *rec;
338 int mem_size;
3c4d7559 339
d3b18ad3
JF
340 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
341
342 rec = kzalloc(mem_size, sk->sk_allocation);
a42055e8 343 if (!rec)
d3b18ad3
JF
344 return NULL;
345
346 msg_pl = &rec->msg_plaintext;
347 msg_en = &rec->msg_encrypted;
348
349 sk_msg_init(msg_pl);
350 sk_msg_init(msg_en);
351
352 sg_init_table(rec->sg_aead_in, 2);
4509de14 353 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
354 sg_unmark_end(&rec->sg_aead_in[1]);
355
356 sg_init_table(rec->sg_aead_out, 2);
4509de14 357 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
358 sg_unmark_end(&rec->sg_aead_out[1]);
359
360 return rec;
361}
a42055e8 362
d3b18ad3
JF
363static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
364{
d829e9c4
DB
365 sk_msg_free(sk, &rec->msg_encrypted);
366 sk_msg_free(sk, &rec->msg_plaintext);
c774973e 367 kfree(rec);
a42055e8
VG
368}
369
d3b18ad3
JF
370static void tls_free_open_rec(struct sock *sk)
371{
372 struct tls_context *tls_ctx = tls_get_ctx(sk);
373 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
374 struct tls_rec *rec = ctx->open_rec;
375
376 if (rec) {
377 tls_free_rec(sk, rec);
378 ctx->open_rec = NULL;
379 }
380}
381
a42055e8
VG
382int tls_tx_records(struct sock *sk, int flags)
383{
384 struct tls_context *tls_ctx = tls_get_ctx(sk);
385 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
386 struct tls_rec *rec, *tmp;
d829e9c4 387 struct sk_msg *msg_en;
a42055e8
VG
388 int tx_flags, rc = 0;
389
390 if (tls_is_partially_sent_record(tls_ctx)) {
9932a29a 391 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
392 struct tls_rec, list);
393
394 if (flags == -1)
395 tx_flags = rec->tx_flags;
396 else
397 tx_flags = flags;
398
399 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
400 if (rc)
401 goto tx_err;
402
403 /* Full record has been transmitted.
9932a29a 404 * Remove the head of tx_list
a42055e8 405 */
a42055e8 406 list_del(&rec->list);
d829e9c4 407 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
408 kfree(rec);
409 }
410
9932a29a
VG
411 /* Tx all ready records */
412 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
413 if (READ_ONCE(rec->tx_ready)) {
a42055e8
VG
414 if (flags == -1)
415 tx_flags = rec->tx_flags;
416 else
417 tx_flags = flags;
418
d829e9c4 419 msg_en = &rec->msg_encrypted;
a42055e8 420 rc = tls_push_sg(sk, tls_ctx,
d829e9c4 421 &msg_en->sg.data[msg_en->sg.curr],
a42055e8
VG
422 0, tx_flags);
423 if (rc)
424 goto tx_err;
425
a42055e8 426 list_del(&rec->list);
d829e9c4 427 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
428 kfree(rec);
429 } else {
430 break;
431 }
432 }
433
434tx_err:
435 if (rc < 0 && rc != -EAGAIN)
da353fac 436 tls_err_abort(sk, -EBADMSG);
a42055e8
VG
437
438 return rc;
439}
440
441static void tls_encrypt_done(struct crypto_async_request *req, int err)
442{
443 struct aead_request *aead_req = (struct aead_request *)req;
444 struct sock *sk = req->data;
445 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 446 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 447 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d829e9c4
DB
448 struct scatterlist *sge;
449 struct sk_msg *msg_en;
a42055e8
VG
450 struct tls_rec *rec;
451 bool ready = false;
452 int pending;
453
454 rec = container_of(aead_req, struct tls_rec, aead_req);
d829e9c4 455 msg_en = &rec->msg_encrypted;
a42055e8 456
d829e9c4 457 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
4509de14
VG
458 sge->offset -= prot->prepend_size;
459 sge->length += prot->prepend_size;
a42055e8 460
80ece6a0 461 /* Check if error is previously set on socket */
a42055e8 462 if (err || sk->sk_err) {
a42055e8
VG
463 rec = NULL;
464
465 /* If err is already set on socket, return the same code */
466 if (sk->sk_err) {
1d9d6fd2 467 ctx->async_wait.err = -sk->sk_err;
a42055e8
VG
468 } else {
469 ctx->async_wait.err = err;
470 tls_err_abort(sk, err);
471 }
472 }
473
9932a29a
VG
474 if (rec) {
475 struct tls_rec *first_rec;
476
477 /* Mark the record as ready for transmission */
478 smp_store_mb(rec->tx_ready, true);
479
480 /* If received record is at head of tx_list, schedule tx */
481 first_rec = list_first_entry(&ctx->tx_list,
482 struct tls_rec, list);
483 if (rec == first_rec)
484 ready = true;
485 }
a42055e8 486
0cada332 487 spin_lock_bh(&ctx->encrypt_compl_lock);
a42055e8
VG
488 pending = atomic_dec_return(&ctx->encrypt_pending);
489
0cada332 490 if (!pending && ctx->async_notify)
a42055e8 491 complete(&ctx->async_wait.completion);
0cada332 492 spin_unlock_bh(&ctx->encrypt_compl_lock);
a42055e8
VG
493
494 if (!ready)
495 return;
496
497 /* Schedule the transmission */
498 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
d829e9c4 499 schedule_delayed_work(&ctx->tx_work.work, 1);
3c4d7559
DW
500}
501
a42055e8
VG
502static int tls_do_encryption(struct sock *sk,
503 struct tls_context *tls_ctx,
a447da7d
DB
504 struct tls_sw_context_tx *ctx,
505 struct aead_request *aead_req,
d829e9c4 506 size_t data_len, u32 start)
3c4d7559 507{
4509de14 508 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 509 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
510 struct sk_msg *msg_en = &rec->msg_encrypted;
511 struct scatterlist *sge = sk_msg_elem(msg_en, start);
f295b3ae
VG
512 int rc, iv_offset = 0;
513
514 /* For CCM based ciphers, first byte of IV is a constant */
128cfb88
TZ
515 switch (prot->cipher_type) {
516 case TLS_CIPHER_AES_CCM_128:
f295b3ae
VG
517 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
518 iv_offset = 1;
128cfb88
TZ
519 break;
520 case TLS_CIPHER_SM4_CCM:
521 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
522 iv_offset = 1;
523 break;
f295b3ae
VG
524 }
525
526 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
527 prot->iv_size + prot->salt_size);
3c4d7559 528
58790314
JK
529 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
530 tls_ctx->tx.rec_seq);
32eb67b9 531
4509de14
VG
532 sge->offset += prot->prepend_size;
533 sge->length -= prot->prepend_size;
3c4d7559 534
d829e9c4 535 msg_en->sg.curr = start;
4e6d4720 536
3c4d7559 537 aead_request_set_tfm(aead_req, ctx->aead_send);
4509de14 538 aead_request_set_ad(aead_req, prot->aad_size);
d829e9c4
DB
539 aead_request_set_crypt(aead_req, rec->sg_aead_in,
540 rec->sg_aead_out,
32eb67b9 541 data_len, rec->iv_data);
a54667f6
VG
542
543 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
a42055e8
VG
544 tls_encrypt_done, sk);
545
9932a29a
VG
546 /* Add the record in tx_list */
547 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
a42055e8 548 atomic_inc(&ctx->encrypt_pending);
a54667f6 549
a42055e8
VG
550 rc = crypto_aead_encrypt(aead_req);
551 if (!rc || rc != -EINPROGRESS) {
552 atomic_dec(&ctx->encrypt_pending);
4509de14
VG
553 sge->offset -= prot->prepend_size;
554 sge->length += prot->prepend_size;
a42055e8 555 }
3c4d7559 556
9932a29a
VG
557 if (!rc) {
558 WRITE_ONCE(rec->tx_ready, true);
559 } else if (rc != -EINPROGRESS) {
560 list_del(&rec->list);
a42055e8 561 return rc;
9932a29a 562 }
3c4d7559 563
a42055e8
VG
564 /* Unhook the record from context if encryption is not failure */
565 ctx->open_rec = NULL;
fb0f886f 566 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
3c4d7559
DW
567 return rc;
568}
569
d3b18ad3
JF
570static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
571 struct tls_rec **to, struct sk_msg *msg_opl,
572 struct sk_msg *msg_oen, u32 split_point,
573 u32 tx_overhead_size, u32 *orig_end)
574{
575 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
576 struct scatterlist *sge, *osge, *nsge;
577 u32 orig_size = msg_opl->sg.size;
578 struct scatterlist tmp = { };
579 struct sk_msg *msg_npl;
580 struct tls_rec *new;
581 int ret;
582
583 new = tls_get_rec(sk);
584 if (!new)
585 return -ENOMEM;
586 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
587 tx_overhead_size, 0);
588 if (ret < 0) {
589 tls_free_rec(sk, new);
590 return ret;
591 }
592
593 *orig_end = msg_opl->sg.end;
594 i = msg_opl->sg.start;
595 sge = sk_msg_elem(msg_opl, i);
596 while (apply && sge->length) {
597 if (sge->length > apply) {
598 u32 len = sge->length - apply;
599
600 get_page(sg_page(sge));
601 sg_set_page(&tmp, sg_page(sge), len,
602 sge->offset + apply);
603 sge->length = apply;
604 bytes += apply;
605 apply = 0;
606 } else {
607 apply -= sge->length;
608 bytes += sge->length;
609 }
610
611 sk_msg_iter_var_next(i);
612 if (i == msg_opl->sg.end)
613 break;
614 sge = sk_msg_elem(msg_opl, i);
615 }
616
617 msg_opl->sg.end = i;
618 msg_opl->sg.curr = i;
619 msg_opl->sg.copybreak = 0;
620 msg_opl->apply_bytes = 0;
621 msg_opl->sg.size = bytes;
622
623 msg_npl = &new->msg_plaintext;
624 msg_npl->apply_bytes = apply;
625 msg_npl->sg.size = orig_size - bytes;
626
627 j = msg_npl->sg.start;
628 nsge = sk_msg_elem(msg_npl, j);
629 if (tmp.length) {
630 memcpy(nsge, &tmp, sizeof(*nsge));
631 sk_msg_iter_var_next(j);
632 nsge = sk_msg_elem(msg_npl, j);
633 }
634
635 osge = sk_msg_elem(msg_opl, i);
636 while (osge->length) {
637 memcpy(nsge, osge, sizeof(*nsge));
638 sg_unmark_end(nsge);
639 sk_msg_iter_var_next(i);
640 sk_msg_iter_var_next(j);
641 if (i == *orig_end)
642 break;
643 osge = sk_msg_elem(msg_opl, i);
644 nsge = sk_msg_elem(msg_npl, j);
645 }
646
647 msg_npl->sg.end = j;
648 msg_npl->sg.curr = j;
649 msg_npl->sg.copybreak = 0;
650
651 *to = new;
652 return 0;
653}
654
655static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
656 struct tls_rec *from, u32 orig_end)
657{
658 struct sk_msg *msg_npl = &from->msg_plaintext;
659 struct sk_msg *msg_opl = &to->msg_plaintext;
660 struct scatterlist *osge, *nsge;
661 u32 i, j;
662
663 i = msg_opl->sg.end;
664 sk_msg_iter_var_prev(i);
665 j = msg_npl->sg.start;
666
667 osge = sk_msg_elem(msg_opl, i);
668 nsge = sk_msg_elem(msg_npl, j);
669
670 if (sg_page(osge) == sg_page(nsge) &&
671 osge->offset + osge->length == nsge->offset) {
672 osge->length += nsge->length;
673 put_page(sg_page(nsge));
674 }
675
676 msg_opl->sg.end = orig_end;
677 msg_opl->sg.curr = orig_end;
678 msg_opl->sg.copybreak = 0;
679 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
680 msg_opl->sg.size += msg_npl->sg.size;
681
682 sk_msg_free(sk, &to->msg_encrypted);
683 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
684
685 kfree(from);
686}
687
3c4d7559
DW
688static int tls_push_record(struct sock *sk, int flags,
689 unsigned char record_type)
690{
691 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 692 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 693 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3 694 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
3f649ab7 695 u32 i, split_point, orig_end;
d829e9c4 696 struct sk_msg *msg_pl, *msg_en;
a447da7d 697 struct aead_request *req;
d3b18ad3 698 bool split;
3c4d7559
DW
699 int rc;
700
a42055e8
VG
701 if (!rec)
702 return 0;
a447da7d 703
d829e9c4
DB
704 msg_pl = &rec->msg_plaintext;
705 msg_en = &rec->msg_encrypted;
706
d3b18ad3
JF
707 split_point = msg_pl->apply_bytes;
708 split = split_point && split_point < msg_pl->sg.size;
d468e477
JF
709 if (unlikely((!split &&
710 msg_pl->sg.size +
711 prot->overhead_size > msg_en->sg.size) ||
712 (split &&
713 split_point +
714 prot->overhead_size > msg_en->sg.size))) {
715 split = true;
716 split_point = msg_en->sg.size;
717 }
d3b18ad3
JF
718 if (split) {
719 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
4509de14 720 split_point, prot->overhead_size,
d3b18ad3
JF
721 &orig_end);
722 if (rc < 0)
723 return rc;
d468e477
JF
724 /* This can happen if above tls_split_open_record allocates
725 * a single large encryption buffer instead of two smaller
726 * ones. In this case adjust pointers and continue without
727 * split.
728 */
729 if (!msg_pl->sg.size) {
730 tls_merge_open_record(sk, rec, tmp, orig_end);
731 msg_pl = &rec->msg_plaintext;
732 msg_en = &rec->msg_encrypted;
733 split = false;
734 }
d3b18ad3 735 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
4509de14 736 prot->overhead_size);
d3b18ad3
JF
737 }
738
a42055e8
VG
739 rec->tx_flags = flags;
740 req = &rec->aead_req;
3c4d7559 741
d829e9c4
DB
742 i = msg_pl->sg.end;
743 sk_msg_iter_var_prev(i);
130b392c
DW
744
745 rec->content_type = record_type;
4509de14 746 if (prot->version == TLS_1_3_VERSION) {
130b392c
DW
747 /* Add content type to end of message. No padding added */
748 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
749 sg_mark_end(&rec->sg_content_type);
750 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
751 &rec->sg_content_type);
752 } else {
753 sg_mark_end(sk_msg_elem(msg_pl, i));
754 }
a42055e8 755
9aaaa568
JF
756 if (msg_pl->sg.end < msg_pl->sg.start) {
757 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
758 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
759 msg_pl->sg.data);
760 }
761
d829e9c4 762 i = msg_pl->sg.start;
9e5ffed3 763 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
d829e9c4
DB
764
765 i = msg_en->sg.end;
766 sk_msg_iter_var_prev(i);
767 sg_mark_end(sk_msg_elem(msg_en, i));
768
769 i = msg_en->sg.start;
770 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
771
4509de14 772 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
6942a284 773 tls_ctx->tx.rec_seq, record_type, prot);
3c4d7559
DW
774
775 tls_fill_prepend(tls_ctx,
d829e9c4 776 page_address(sg_page(&msg_en->sg.data[i])) +
130b392c 777 msg_en->sg.data[i].offset,
4509de14 778 msg_pl->sg.size + prot->tail_size,
6942a284 779 record_type);
3c4d7559 780
d829e9c4 781 tls_ctx->pending_open_record_frags = false;
3c4d7559 782
130b392c 783 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
4509de14 784 msg_pl->sg.size + prot->tail_size, i);
a42055e8 785 if (rc < 0) {
d3b18ad3 786 if (rc != -EINPROGRESS) {
da353fac 787 tls_err_abort(sk, -EBADMSG);
d3b18ad3
JF
788 if (split) {
789 tls_ctx->pending_open_record_frags = true;
790 tls_merge_open_record(sk, rec, tmp, orig_end);
791 }
792 }
5b053e12 793 ctx->async_capable = 1;
a42055e8 794 return rc;
d3b18ad3
JF
795 } else if (split) {
796 msg_pl = &tmp->msg_plaintext;
797 msg_en = &tmp->msg_encrypted;
4509de14 798 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
d3b18ad3
JF
799 tls_ctx->pending_open_record_frags = true;
800 ctx->open_rec = tmp;
a42055e8 801 }
3c4d7559 802
9932a29a 803 return tls_tx_records(sk, flags);
3c4d7559
DW
804}
805
d3b18ad3
JF
806static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
807 bool full_record, u8 record_type,
a7bff11f 808 ssize_t *copied, int flags)
3c4d7559
DW
809{
810 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 811 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
812 struct sk_msg msg_redir = { };
813 struct sk_psock *psock;
814 struct sock *sk_redir;
a42055e8 815 struct tls_rec *rec;
0608c69c 816 bool enospc, policy;
d3b18ad3 817 int err = 0, send;
7246d8ed 818 u32 delta = 0;
d3b18ad3 819
0608c69c 820 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
d3b18ad3 821 psock = sk_psock_get(sk);
d10523d0
JK
822 if (!psock || !policy) {
823 err = tls_push_record(sk, flags, record_type);
635d9398 824 if (err && sk->sk_err == EBADMSG) {
d10523d0
JK
825 *copied -= sk_msg_free(sk, msg);
826 tls_free_open_rec(sk);
635d9398 827 err = -sk->sk_err;
d10523d0 828 }
095f5614
XY
829 if (psock)
830 sk_psock_put(sk, psock);
d10523d0
JK
831 return err;
832 }
d3b18ad3
JF
833more_data:
834 enospc = sk_msg_full(msg);
7246d8ed
JF
835 if (psock->eval == __SK_NONE) {
836 delta = msg->sg.size;
d3b18ad3 837 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
7361d448 838 delta -= msg->sg.size;
7246d8ed 839 }
d3b18ad3
JF
840 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
841 !enospc && !full_record) {
842 err = -ENOSPC;
843 goto out_err;
844 }
845 msg->cork_bytes = 0;
846 send = msg->sg.size;
847 if (msg->apply_bytes && msg->apply_bytes < send)
848 send = msg->apply_bytes;
849
850 switch (psock->eval) {
851 case __SK_PASS:
852 err = tls_push_record(sk, flags, record_type);
635d9398 853 if (err && sk->sk_err == EBADMSG) {
d3b18ad3
JF
854 *copied -= sk_msg_free(sk, msg);
855 tls_free_open_rec(sk);
635d9398 856 err = -sk->sk_err;
d3b18ad3
JF
857 goto out_err;
858 }
859 break;
860 case __SK_REDIRECT:
861 sk_redir = psock->sk_redir;
862 memcpy(&msg_redir, msg, sizeof(*msg));
863 if (msg->apply_bytes < send)
864 msg->apply_bytes = 0;
865 else
866 msg->apply_bytes -= send;
867 sk_msg_return_zero(sk, msg, send);
868 msg->sg.size -= send;
869 release_sock(sk);
870 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
871 lock_sock(sk);
872 if (err < 0) {
873 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
874 msg->sg.size = 0;
875 }
876 if (msg->sg.size == 0)
877 tls_free_open_rec(sk);
878 break;
879 case __SK_DROP:
880 default:
881 sk_msg_free_partial(sk, msg, send);
882 if (msg->apply_bytes < send)
883 msg->apply_bytes = 0;
884 else
885 msg->apply_bytes -= send;
886 if (msg->sg.size == 0)
887 tls_free_open_rec(sk);
7246d8ed 888 *copied -= (send + delta);
d3b18ad3
JF
889 err = -EACCES;
890 }
a42055e8 891
d3b18ad3
JF
892 if (likely(!err)) {
893 bool reset_eval = !ctx->open_rec;
a42055e8 894
d3b18ad3
JF
895 rec = ctx->open_rec;
896 if (rec) {
897 msg = &rec->msg_plaintext;
898 if (!msg->apply_bytes)
899 reset_eval = true;
900 }
901 if (reset_eval) {
902 psock->eval = __SK_NONE;
903 if (psock->sk_redir) {
904 sock_put(psock->sk_redir);
905 psock->sk_redir = NULL;
906 }
907 }
908 if (rec)
909 goto more_data;
910 }
911 out_err:
912 sk_psock_put(sk, psock);
913 return err;
914}
915
916static int tls_sw_push_pending_record(struct sock *sk, int flags)
917{
918 struct tls_context *tls_ctx = tls_get_ctx(sk);
919 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
920 struct tls_rec *rec = ctx->open_rec;
921 struct sk_msg *msg_pl;
922 size_t copied;
a42055e8 923
a42055e8 924 if (!rec)
d3b18ad3 925 return 0;
a42055e8 926
d829e9c4 927 msg_pl = &rec->msg_plaintext;
d3b18ad3
JF
928 copied = msg_pl->sg.size;
929 if (!copied)
930 return 0;
a42055e8 931
d3b18ad3
JF
932 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
933 &copied, flags);
a42055e8
VG
934}
935
936int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
937{
3c4d7559 938 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
a42055e8 939 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 940 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 941 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
5b053e12 942 bool async_capable = ctx->async_capable;
a42055e8 943 unsigned char record_type = TLS_RECORD_TYPE_DATA;
00e23707 944 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
3c4d7559 945 bool eor = !(msg->msg_flags & MSG_MORE);
a7bff11f
VF
946 size_t try_to_copy;
947 ssize_t copied = 0;
d829e9c4 948 struct sk_msg *msg_pl, *msg_en;
a42055e8
VG
949 struct tls_rec *rec;
950 int required_size;
951 int num_async = 0;
3c4d7559 952 bool full_record;
a42055e8
VG
953 int record_room;
954 int num_zc = 0;
3c4d7559 955 int orig_size;
4128c0cf 956 int ret = 0;
0cada332 957 int pending;
3c4d7559 958
1c3b63f1
RC
959 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
960 MSG_CMSG_COMPAT))
4a5cdc60 961 return -EOPNOTSUPP;
3c4d7559 962
79ffe608 963 mutex_lock(&tls_ctx->tx_lock);
3c4d7559
DW
964 lock_sock(sk);
965
3c4d7559 966 if (unlikely(msg->msg_controllen)) {
58790314 967 ret = tls_process_cmsg(sk, msg, &record_type);
a42055e8
VG
968 if (ret) {
969 if (ret == -EINPROGRESS)
970 num_async++;
971 else if (ret != -EAGAIN)
972 goto send_end;
973 }
3c4d7559
DW
974 }
975
976 while (msg_data_left(msg)) {
977 if (sk->sk_err) {
30be8f8d 978 ret = -sk->sk_err;
3c4d7559
DW
979 goto send_end;
980 }
981
d3b18ad3
JF
982 if (ctx->open_rec)
983 rec = ctx->open_rec;
984 else
985 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
986 if (!rec) {
987 ret = -ENOMEM;
988 goto send_end;
989 }
990
d829e9c4
DB
991 msg_pl = &rec->msg_plaintext;
992 msg_en = &rec->msg_encrypted;
993
994 orig_size = msg_pl->sg.size;
3c4d7559
DW
995 full_record = false;
996 try_to_copy = msg_data_left(msg);
d829e9c4 997 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
998 if (try_to_copy >= record_room) {
999 try_to_copy = record_room;
1000 full_record = true;
1001 }
1002
d829e9c4 1003 required_size = msg_pl->sg.size + try_to_copy +
4509de14 1004 prot->overhead_size;
3c4d7559
DW
1005
1006 if (!sk_stream_memory_free(sk))
1007 goto wait_for_sndbuf;
a42055e8 1008
3c4d7559 1009alloc_encrypted:
d829e9c4 1010 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1011 if (ret) {
1012 if (ret != -ENOSPC)
1013 goto wait_for_memory;
1014
1015 /* Adjust try_to_copy according to the amount that was
1016 * actually allocated. The difference is due
1017 * to max sg elements limit
1018 */
d829e9c4 1019 try_to_copy -= required_size - msg_en->sg.size;
3c4d7559
DW
1020 full_record = true;
1021 }
a42055e8
VG
1022
1023 if (!is_kvec && (full_record || eor) && !async_capable) {
d3b18ad3
JF
1024 u32 first = msg_pl->sg.end;
1025
d829e9c4
DB
1026 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1027 msg_pl, try_to_copy);
3c4d7559
DW
1028 if (ret)
1029 goto fallback_to_reg_send;
1030
a42055e8 1031 num_zc++;
3c4d7559 1032 copied += try_to_copy;
d3b18ad3
JF
1033
1034 sk_msg_sg_copy_set(msg_pl, first);
1035 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1036 record_type, &copied,
1037 msg->msg_flags);
a42055e8
VG
1038 if (ret) {
1039 if (ret == -EINPROGRESS)
1040 num_async++;
d3b18ad3
JF
1041 else if (ret == -ENOMEM)
1042 goto wait_for_memory;
c329ef96 1043 else if (ctx->open_rec && ret == -ENOSPC)
d3b18ad3 1044 goto rollback_iter;
a42055e8
VG
1045 else if (ret != -EAGAIN)
1046 goto send_end;
1047 }
5a3611ef 1048 continue;
d3b18ad3
JF
1049rollback_iter:
1050 copied -= try_to_copy;
1051 sk_msg_sg_copy_clear(msg_pl, first);
1052 iov_iter_revert(&msg->msg_iter,
1053 msg_pl->sg.size - orig_size);
3c4d7559 1054fallback_to_reg_send:
d829e9c4 1055 sk_msg_trim(sk, msg_pl, orig_size);
3c4d7559
DW
1056 }
1057
d829e9c4 1058 required_size = msg_pl->sg.size + try_to_copy;
4e6d4720 1059
d829e9c4 1060 ret = tls_clone_plaintext_msg(sk, required_size);
3c4d7559
DW
1061 if (ret) {
1062 if (ret != -ENOSPC)
4e6d4720 1063 goto send_end;
3c4d7559
DW
1064
1065 /* Adjust try_to_copy according to the amount that was
1066 * actually allocated. The difference is due
1067 * to max sg elements limit
1068 */
d829e9c4 1069 try_to_copy -= required_size - msg_pl->sg.size;
3c4d7559 1070 full_record = true;
4509de14
VG
1071 sk_msg_trim(sk, msg_en,
1072 msg_pl->sg.size + prot->overhead_size);
3c4d7559
DW
1073 }
1074
65a10e28
VG
1075 if (try_to_copy) {
1076 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1077 msg_pl, try_to_copy);
1078 if (ret < 0)
1079 goto trim_sgl;
1080 }
3c4d7559 1081
d829e9c4
DB
1082 /* Open records defined only if successfully copied, otherwise
1083 * we would trim the sg but not reset the open record frags.
1084 */
1085 tls_ctx->pending_open_record_frags = true;
3c4d7559
DW
1086 copied += try_to_copy;
1087 if (full_record || eor) {
d3b18ad3
JF
1088 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1089 record_type, &copied,
1090 msg->msg_flags);
3c4d7559 1091 if (ret) {
a42055e8
VG
1092 if (ret == -EINPROGRESS)
1093 num_async++;
d3b18ad3
JF
1094 else if (ret == -ENOMEM)
1095 goto wait_for_memory;
1096 else if (ret != -EAGAIN) {
1097 if (ret == -ENOSPC)
1098 ret = 0;
a42055e8 1099 goto send_end;
d3b18ad3 1100 }
3c4d7559
DW
1101 }
1102 }
1103
1104 continue;
1105
1106wait_for_sndbuf:
1107 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1108wait_for_memory:
1109 ret = sk_stream_wait_memory(sk, &timeo);
1110 if (ret) {
1111trim_sgl:
c329ef96
JK
1112 if (ctx->open_rec)
1113 tls_trim_both_msgs(sk, orig_size);
3c4d7559
DW
1114 goto send_end;
1115 }
1116
c329ef96 1117 if (ctx->open_rec && msg_en->sg.size < required_size)
3c4d7559 1118 goto alloc_encrypted;
3c4d7559
DW
1119 }
1120
a42055e8
VG
1121 if (!num_async) {
1122 goto send_end;
1123 } else if (num_zc) {
1124 /* Wait for pending encryptions to get completed */
0cada332
VKY
1125 spin_lock_bh(&ctx->encrypt_compl_lock);
1126 ctx->async_notify = true;
a42055e8 1127
0cada332
VKY
1128 pending = atomic_read(&ctx->encrypt_pending);
1129 spin_unlock_bh(&ctx->encrypt_compl_lock);
1130 if (pending)
a42055e8
VG
1131 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1132 else
1133 reinit_completion(&ctx->async_wait.completion);
1134
0cada332
VKY
1135 /* There can be no concurrent accesses, since we have no
1136 * pending encrypt operations
1137 */
a42055e8
VG
1138 WRITE_ONCE(ctx->async_notify, false);
1139
1140 if (ctx->async_wait.err) {
1141 ret = ctx->async_wait.err;
1142 copied = 0;
1143 }
1144 }
1145
1146 /* Transmit if any encryptions have completed */
1147 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1148 cancel_delayed_work(&ctx->tx_work.work);
1149 tls_tx_records(sk, msg->msg_flags);
1150 }
1151
3c4d7559
DW
1152send_end:
1153 ret = sk_stream_error(sk, msg->msg_flags, ret);
1154
1155 release_sock(sk);
79ffe608 1156 mutex_unlock(&tls_ctx->tx_lock);
a7bff11f 1157 return copied > 0 ? copied : ret;
3c4d7559
DW
1158}
1159
01cb8a1a
Y
1160static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1161 int offset, size_t size, int flags)
3c4d7559 1162{
a42055e8 1163 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
3c4d7559 1164 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1165 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
4509de14 1166 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559 1167 unsigned char record_type = TLS_RECORD_TYPE_DATA;
d829e9c4 1168 struct sk_msg *msg_pl;
a42055e8
VG
1169 struct tls_rec *rec;
1170 int num_async = 0;
a7bff11f 1171 ssize_t copied = 0;
3c4d7559
DW
1172 bool full_record;
1173 int record_room;
4128c0cf 1174 int ret = 0;
a42055e8 1175 bool eor;
3c4d7559 1176
d452d48b 1177 eor = !(flags & MSG_SENDPAGE_NOTLAST);
3c4d7559
DW
1178 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1179
3c4d7559
DW
1180 /* Call the sk_stream functions to manage the sndbuf mem. */
1181 while (size > 0) {
1182 size_t copy, required_size;
1183
1184 if (sk->sk_err) {
30be8f8d 1185 ret = -sk->sk_err;
3c4d7559
DW
1186 goto sendpage_end;
1187 }
1188
d3b18ad3
JF
1189 if (ctx->open_rec)
1190 rec = ctx->open_rec;
1191 else
1192 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
1193 if (!rec) {
1194 ret = -ENOMEM;
1195 goto sendpage_end;
1196 }
1197
d829e9c4
DB
1198 msg_pl = &rec->msg_plaintext;
1199
3c4d7559 1200 full_record = false;
d829e9c4 1201 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
1202 copy = size;
1203 if (copy >= record_room) {
1204 copy = record_room;
1205 full_record = true;
1206 }
d829e9c4 1207
4509de14 1208 required_size = msg_pl->sg.size + copy + prot->overhead_size;
3c4d7559
DW
1209
1210 if (!sk_stream_memory_free(sk))
1211 goto wait_for_sndbuf;
1212alloc_payload:
d829e9c4 1213 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1214 if (ret) {
1215 if (ret != -ENOSPC)
1216 goto wait_for_memory;
1217
1218 /* Adjust copy according to the amount that was
1219 * actually allocated. The difference is due
1220 * to max sg elements limit
1221 */
d829e9c4 1222 copy -= required_size - msg_pl->sg.size;
3c4d7559
DW
1223 full_record = true;
1224 }
1225
d829e9c4 1226 sk_msg_page_add(msg_pl, page, copy, offset);
3c4d7559 1227 sk_mem_charge(sk, copy);
d829e9c4 1228
3c4d7559
DW
1229 offset += copy;
1230 size -= copy;
d3b18ad3 1231 copied += copy;
3c4d7559 1232
d829e9c4
DB
1233 tls_ctx->pending_open_record_frags = true;
1234 if (full_record || eor || sk_msg_full(msg_pl)) {
d3b18ad3
JF
1235 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1236 record_type, &copied, flags);
3c4d7559 1237 if (ret) {
a42055e8
VG
1238 if (ret == -EINPROGRESS)
1239 num_async++;
d3b18ad3
JF
1240 else if (ret == -ENOMEM)
1241 goto wait_for_memory;
1242 else if (ret != -EAGAIN) {
1243 if (ret == -ENOSPC)
1244 ret = 0;
a42055e8 1245 goto sendpage_end;
d3b18ad3 1246 }
3c4d7559
DW
1247 }
1248 }
1249 continue;
1250wait_for_sndbuf:
1251 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1252wait_for_memory:
1253 ret = sk_stream_wait_memory(sk, &timeo);
1254 if (ret) {
c329ef96
JK
1255 if (ctx->open_rec)
1256 tls_trim_both_msgs(sk, msg_pl->sg.size);
3c4d7559
DW
1257 goto sendpage_end;
1258 }
1259
c329ef96
JK
1260 if (ctx->open_rec)
1261 goto alloc_payload;
3c4d7559
DW
1262 }
1263
a42055e8
VG
1264 if (num_async) {
1265 /* Transmit if any encryptions have completed */
1266 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1267 cancel_delayed_work(&ctx->tx_work.work);
1268 tls_tx_records(sk, flags);
1269 }
1270 }
3c4d7559 1271sendpage_end:
d3b18ad3 1272 ret = sk_stream_error(sk, flags, ret);
a7bff11f 1273 return copied > 0 ? copied : ret;
3c4d7559
DW
1274}
1275
d4ffb02d
WB
1276int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1277 int offset, size_t size, int flags)
1278{
1279 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1280 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1281 MSG_NO_SHARED_FRAGS))
4a5cdc60 1282 return -EOPNOTSUPP;
d4ffb02d
WB
1283
1284 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1285}
1286
0608c69c
JF
1287int tls_sw_sendpage(struct sock *sk, struct page *page,
1288 int offset, size_t size, int flags)
1289{
79ffe608 1290 struct tls_context *tls_ctx = tls_get_ctx(sk);
0608c69c
JF
1291 int ret;
1292
1293 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1294 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
4a5cdc60 1295 return -EOPNOTSUPP;
0608c69c 1296
79ffe608 1297 mutex_lock(&tls_ctx->tx_lock);
0608c69c
JF
1298 lock_sock(sk);
1299 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1300 release_sock(sk);
79ffe608 1301 mutex_unlock(&tls_ctx->tx_lock);
0608c69c
JF
1302 return ret;
1303}
1304
35560b7f
JK
1305static int
1306tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1307 long timeo)
c46234eb
DW
1308{
1309 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1310 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1311 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1312
35560b7f
JK
1313 while (!ctx->recv_pkt) {
1314 if (!sk_psock_queue_empty(psock))
1315 return 0;
1316
1317 if (sk->sk_err)
1318 return sock_error(sk);
c46234eb 1319
20ffc7ad
VF
1320 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1321 __strp_unpause(&ctx->strp);
1322 if (ctx->recv_pkt)
35560b7f 1323 break;
20ffc7ad
VF
1324 }
1325
fcf4793e 1326 if (sk->sk_shutdown & RCV_SHUTDOWN)
35560b7f 1327 return 0;
fcf4793e 1328
c46234eb 1329 if (sock_flag(sk, SOCK_DONE))
35560b7f 1330 return 0;
c46234eb 1331
35560b7f
JK
1332 if (nonblock || !timeo)
1333 return -EAGAIN;
c46234eb
DW
1334
1335 add_wait_queue(sk_sleep(sk), &wait);
1336 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
d3b18ad3 1337 sk_wait_event(sk, &timeo,
35560b7f 1338 ctx->recv_pkt || !sk_psock_queue_empty(psock),
d3b18ad3 1339 &wait);
c46234eb
DW
1340 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1341 remove_wait_queue(sk_sleep(sk), &wait);
1342
1343 /* Handle signals */
35560b7f
JK
1344 if (signal_pending(current))
1345 return sock_intr_errno(timeo);
c46234eb
DW
1346 }
1347
35560b7f 1348 return 1;
c46234eb
DW
1349}
1350
d4bd88e6 1351static int tls_setup_from_iter(struct iov_iter *from,
d829e9c4 1352 int length, int *pages_used,
d829e9c4
DB
1353 struct scatterlist *to,
1354 int to_max_pages)
1355{
1356 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1357 struct page *pages[MAX_SKB_FRAGS];
d4bd88e6 1358 unsigned int size = 0;
d829e9c4
DB
1359 ssize_t copied, use;
1360 size_t offset;
1361
1362 while (length > 0) {
1363 i = 0;
1364 maxpages = to_max_pages - num_elem;
1365 if (maxpages == 0) {
1366 rc = -EFAULT;
1367 goto out;
1368 }
1369 copied = iov_iter_get_pages(from, pages,
1370 length,
1371 maxpages, &offset);
1372 if (copied <= 0) {
1373 rc = -EFAULT;
1374 goto out;
1375 }
1376
1377 iov_iter_advance(from, copied);
1378
1379 length -= copied;
1380 size += copied;
1381 while (copied) {
1382 use = min_t(int, copied, PAGE_SIZE - offset);
1383
1384 sg_set_page(&to[num_elem],
1385 pages[i], use, offset);
1386 sg_unmark_end(&to[num_elem]);
1387 /* We do not uncharge memory from this API */
1388
1389 offset = 0;
1390 copied -= use;
1391
1392 i++;
1393 num_elem++;
1394 }
1395 }
1396 /* Mark the end in the last sg entry if newly added */
1397 if (num_elem > *pages_used)
1398 sg_mark_end(&to[num_elem - 1]);
1399out:
1400 if (rc)
d4bd88e6 1401 iov_iter_revert(from, size);
d829e9c4
DB
1402 *pages_used = num_elem;
1403
1404 return rc;
1405}
1406
0b243d00
VG
1407/* This function decrypts the input skb into either out_iov or in out_sg
1408 * or in skb buffers itself. The input parameter 'zc' indicates if
1409 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1410 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1411 * NULL, then the decryption happens inside skb buffers itself, i.e.
1412 * zero-copy gets disabled and 'zc' is updated.
1413 */
1414
1415static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1416 struct iov_iter *out_iov,
1417 struct scatterlist *out_sg,
4175eac3 1418 struct tls_decrypt_arg *darg)
0b243d00
VG
1419{
1420 struct tls_context *tls_ctx = tls_get_ctx(sk);
1421 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1422 struct tls_prot_info *prot = &tls_ctx->prot_info;
b89fec54 1423 int n_sgin, n_sgout, aead_size, err, pages = 0;
0b243d00 1424 struct strp_msg *rxm = strp_msg(skb);
c3f6bb74 1425 struct tls_msg *tlm = tls_msg(skb);
0b243d00
VG
1426 struct aead_request *aead_req;
1427 struct sk_buff *unused;
0b243d00
VG
1428 struct scatterlist *sgin = NULL;
1429 struct scatterlist *sgout = NULL;
603380f5 1430 const int data_len = rxm->full_len - prot->overhead_size;
ce61327c 1431 int tail_pages = !!prot->tail_size;
b89fec54 1432 struct tls_decrypt_ctx *dctx;
f295b3ae 1433 int iv_offset = 0;
b89fec54 1434 u8 *mem;
0b243d00 1435
4175eac3 1436 if (darg->zc && (out_iov || out_sg)) {
0b243d00 1437 if (out_iov)
ce61327c 1438 n_sgout = 1 + tail_pages +
b93235e6 1439 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
0b243d00
VG
1440 else
1441 n_sgout = sg_nents(out_sg);
4509de14
VG
1442 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1443 rxm->full_len - prot->prepend_size);
0b243d00
VG
1444 } else {
1445 n_sgout = 0;
4175eac3 1446 darg->zc = false;
0927f71d 1447 n_sgin = skb_cow_data(skb, 0, &unused);
0b243d00
VG
1448 }
1449
0b243d00
VG
1450 if (n_sgin < 1)
1451 return -EBADMSG;
1452
1453 /* Increment to accommodate AAD */
1454 n_sgin = n_sgin + 1;
1455
0b243d00 1456 /* Allocate a single block of memory which contains
b89fec54
JK
1457 * aead_req || tls_decrypt_ctx.
1458 * Both structs are variable length.
0b243d00 1459 */
b89fec54
JK
1460 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1461 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1462 sk->sk_allocation);
0b243d00
VG
1463 if (!mem)
1464 return -ENOMEM;
1465
1466 /* Segment the allocated memory */
1467 aead_req = (struct aead_request *)mem;
b89fec54
JK
1468 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1469 sgin = &dctx->sg[0];
1470 sgout = &dctx->sg[n_sgin];
0b243d00 1471
128cfb88
TZ
1472 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1473 switch (prot->cipher_type) {
1474 case TLS_CIPHER_AES_CCM_128:
b89fec54 1475 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
f295b3ae 1476 iv_offset = 1;
128cfb88
TZ
1477 break;
1478 case TLS_CIPHER_SM4_CCM:
b89fec54 1479 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
128cfb88
TZ
1480 iv_offset = 1;
1481 break;
f295b3ae
VG
1482 }
1483
0b243d00 1484 /* Prepare IV */
a6acbe62 1485 if (prot->version == TLS_1_3_VERSION ||
a4ae58cd 1486 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
b89fec54 1487 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
9381fe8c 1488 prot->iv_size + prot->salt_size);
a4ae58cd
JK
1489 } else {
1490 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
b89fec54 1491 &dctx->iv[iv_offset] + prot->salt_size,
a4ae58cd 1492 prot->iv_size);
03957d84
JK
1493 if (err < 0)
1494 goto exit_free;
b89fec54 1495 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
a4ae58cd 1496 }
58790314 1497 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
0b243d00
VG
1498
1499 /* Prepare AAD */
b89fec54 1500 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
4509de14 1501 prot->tail_size,
c3f6bb74 1502 tls_ctx->rx.rec_seq, tlm->control, prot);
0b243d00
VG
1503
1504 /* Prepare sgin */
1505 sg_init_table(sgin, n_sgin);
b89fec54 1506 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
0b243d00 1507 err = skb_to_sgvec(skb, &sgin[1],
4509de14
VG
1508 rxm->offset + prot->prepend_size,
1509 rxm->full_len - prot->prepend_size);
03957d84
JK
1510 if (err < 0)
1511 goto exit_free;
0b243d00
VG
1512
1513 if (n_sgout) {
1514 if (out_iov) {
1515 sg_init_table(sgout, n_sgout);
b89fec54 1516 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
0b243d00 1517
ce61327c 1518 err = tls_setup_from_iter(out_iov, data_len,
d4bd88e6 1519 &pages, &sgout[1],
ce61327c 1520 (n_sgout - 1 - tail_pages));
0b243d00
VG
1521 if (err < 0)
1522 goto fallback_to_reg_recv;
ce61327c
JK
1523
1524 if (prot->tail_size) {
1525 sg_unmark_end(&sgout[pages]);
b89fec54 1526 sg_set_buf(&sgout[pages + 1], &dctx->tail,
ce61327c
JK
1527 prot->tail_size);
1528 sg_mark_end(&sgout[pages + 1]);
1529 }
0b243d00
VG
1530 } else if (out_sg) {
1531 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1532 } else {
1533 goto fallback_to_reg_recv;
1534 }
1535 } else {
1536fallback_to_reg_recv:
1537 sgout = sgin;
1538 pages = 0;
4175eac3 1539 darg->zc = false;
0b243d00
VG
1540 }
1541
1542 /* Prepare and submit AEAD request */
b89fec54 1543 err = tls_do_decryption(sk, skb, sgin, sgout, dctx->iv,
603380f5 1544 data_len + prot->tail_size, aead_req, darg);
3547a1f9
JK
1545 if (darg->async)
1546 return 0;
0b243d00 1547
ce61327c 1548 if (prot->tail_size)
b89fec54 1549 darg->tail = dctx->tail;
ce61327c 1550
0b243d00
VG
1551 /* Release the pages in case iov was mapped to pages */
1552 for (; pages > 0; pages--)
1553 put_page(sg_page(&sgout[pages]));
03957d84 1554exit_free:
0b243d00
VG
1555 kfree(mem);
1556 return err;
1557}
1558
dafb67f3 1559static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
4175eac3
JK
1560 struct iov_iter *dest,
1561 struct tls_decrypt_arg *darg)
dafb67f3
BP
1562{
1563 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 1564 struct tls_prot_info *prot = &tls_ctx->prot_info;
dafb67f3 1565 struct strp_msg *rxm = strp_msg(skb);
7dc59c33 1566 struct tls_msg *tlm = tls_msg(skb);
3764ae5b 1567 int pad, err;
dafb67f3 1568
3764ae5b 1569 if (tlm->decrypted) {
4175eac3 1570 darg->zc = false;
c706b2b5 1571 darg->async = false;
3764ae5b
JK
1572 return 0;
1573 }
be2fbc15 1574
3764ae5b
JK
1575 if (tls_ctx->rx_conf == TLS_HW) {
1576 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1577 if (err < 0)
1578 return err;
71471ca3
JK
1579 if (err > 0) {
1580 tlm->decrypted = 1;
4175eac3 1581 darg->zc = false;
c706b2b5 1582 darg->async = false;
3764ae5b 1583 goto decrypt_done;
94524d8f 1584 }
3764ae5b 1585 }
130b392c 1586
4175eac3 1587 err = decrypt_internal(sk, skb, dest, NULL, darg);
a069a905
GP
1588 if (err < 0) {
1589 if (err == -EBADMSG)
1590 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
3764ae5b 1591 return err;
a069a905 1592 }
3547a1f9
JK
1593 if (darg->async)
1594 goto decrypt_next;
ce61327c
JK
1595 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1596 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1597 darg->tail != TLS_RECORD_TYPE_DATA)) {
1598 darg->zc = false;
bb56cea9
JK
1599 if (!darg->tail)
1600 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1090c1ea 1601 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
ce61327c
JK
1602 return decrypt_skb_update(sk, skb, dest, darg);
1603 }
dafb67f3 1604
3764ae5b 1605decrypt_done:
ce61327c 1606 pad = tls_padding_length(prot, skb, darg);
3764ae5b
JK
1607 if (pad < 0)
1608 return pad;
1609
1610 rxm->full_len -= pad;
1611 rxm->offset += prot->prepend_size;
1612 rxm->full_len -= prot->overhead_size;
3764ae5b 1613 tlm->decrypted = 1;
3547a1f9
JK
1614decrypt_next:
1615 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
3764ae5b
JK
1616
1617 return 0;
dafb67f3
BP
1618}
1619
1620int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1621 struct scatterlist *sgout)
c46234eb 1622{
4175eac3 1623 struct tls_decrypt_arg darg = { .zc = true, };
c46234eb 1624
4175eac3 1625 return decrypt_internal(sk, skb, NULL, sgout, &darg);
c46234eb
DW
1626}
1627
06554f4f
JK
1628static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1629 u8 *control)
1630{
1631 int err;
1632
1633 if (!*control) {
1634 *control = tlm->control;
1635 if (!*control)
1636 return -EBADMSG;
1637
1638 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1639 sizeof(*control), control);
1640 if (*control != TLS_RECORD_TYPE_DATA) {
1641 if (err || msg->msg_flags & MSG_CTRUNC)
1642 return -EIO;
1643 }
1644 } else if (*control != tlm->control) {
1645 return 0;
1646 }
1647
1648 return 1;
1649}
1650
692d7b5d 1651/* This function traverses the rx_list in tls receive context to copies the
2b794c40 1652 * decrypted records into the buffer provided by caller zero copy is not
692d7b5d
VG
1653 * true. Further, the records are removed from the rx_list if it is not a peek
1654 * case and the record has been consumed completely.
1655 */
1656static int process_rx_list(struct tls_sw_context_rx *ctx,
1657 struct msghdr *msg,
2b794c40 1658 u8 *control,
692d7b5d
VG
1659 size_t skip,
1660 size_t len,
1661 bool zc,
1662 bool is_peek)
1663{
1664 struct sk_buff *skb = skb_peek(&ctx->rx_list);
2b794c40 1665 struct tls_msg *tlm;
692d7b5d 1666 ssize_t copied = 0;
06554f4f 1667 int err;
2b794c40 1668
692d7b5d
VG
1669 while (skip && skb) {
1670 struct strp_msg *rxm = strp_msg(skb);
2b794c40
VG
1671 tlm = tls_msg(skb);
1672
06554f4f
JK
1673 err = tls_record_content_type(msg, tlm, control);
1674 if (err <= 0)
4dcdd971 1675 goto out;
692d7b5d
VG
1676
1677 if (skip < rxm->full_len)
1678 break;
1679
1680 skip = skip - rxm->full_len;
1681 skb = skb_peek_next(skb, &ctx->rx_list);
1682 }
1683
1684 while (len && skb) {
1685 struct sk_buff *next_skb;
1686 struct strp_msg *rxm = strp_msg(skb);
1687 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1688
2b794c40
VG
1689 tlm = tls_msg(skb);
1690
06554f4f
JK
1691 err = tls_record_content_type(msg, tlm, control);
1692 if (err <= 0)
4dcdd971 1693 goto out;
2b794c40 1694
692d7b5d 1695 if (!zc || (rxm->full_len - skip) > len) {
06554f4f 1696 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
692d7b5d
VG
1697 msg, chunk);
1698 if (err < 0)
4dcdd971 1699 goto out;
692d7b5d
VG
1700 }
1701
1702 len = len - chunk;
1703 copied = copied + chunk;
1704
1705 /* Consume the data from record if it is non-peek case*/
1706 if (!is_peek) {
1707 rxm->offset = rxm->offset + chunk;
1708 rxm->full_len = rxm->full_len - chunk;
1709
1710 /* Return if there is unconsumed data in the record */
1711 if (rxm->full_len - skip)
1712 break;
1713 }
1714
1715 /* The remaining skip-bytes must lie in 1st record in rx_list.
1716 * So from the 2nd record, 'skip' should be 0.
1717 */
1718 skip = 0;
1719
1720 if (msg)
1721 msg->msg_flags |= MSG_EOR;
1722
1723 next_skb = skb_peek_next(skb, &ctx->rx_list);
1724
1725 if (!is_peek) {
a30295c4 1726 __skb_unlink(skb, &ctx->rx_list);
a88c26f6 1727 consume_skb(skb);
692d7b5d
VG
1728 }
1729
1730 skb = next_skb;
1731 }
4dcdd971 1732 err = 0;
692d7b5d 1733
4dcdd971
JK
1734out:
1735 return copied ? : err;
692d7b5d
VG
1736}
1737
c46b0183
JK
1738static void
1739tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1740 size_t len_left, size_t decrypted, ssize_t done,
1741 size_t *flushed_at)
1742{
1743 size_t max_rec;
1744
1745 if (len_left <= decrypted)
1746 return;
1747
1748 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1749 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1750 return;
1751
1752 *flushed_at = done;
1753 sk_flush_backlog(sk);
1754}
1755
c46234eb
DW
1756int tls_sw_recvmsg(struct sock *sk,
1757 struct msghdr *msg,
1758 size_t len,
c46234eb
DW
1759 int flags,
1760 int *addr_len)
1761{
1762 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1763 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1764 struct tls_prot_info *prot = &tls_ctx->prot_info;
d3b18ad3 1765 struct sk_psock *psock;
692d7b5d
VG
1766 unsigned char control = 0;
1767 ssize_t decrypted = 0;
c46b0183 1768 size_t flushed_at = 0;
c46234eb 1769 struct strp_msg *rxm;
2b794c40 1770 struct tls_msg *tlm;
c46234eb
DW
1771 struct sk_buff *skb;
1772 ssize_t copied = 0;
7da18bcc 1773 bool async = false;
06030dba 1774 int target, err = 0;
c46234eb 1775 long timeo;
00e23707 1776 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
692d7b5d 1777 bool is_peek = flags & MSG_PEEK;
e91de6af 1778 bool bpf_strp_enabled;
ba13609d 1779 bool zc_capable;
c46234eb 1780
c46234eb
DW
1781 if (unlikely(flags & MSG_ERRQUEUE))
1782 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1783
d3b18ad3 1784 psock = sk_psock_get(sk);
c46234eb 1785 lock_sock(sk);
e91de6af 1786 bpf_strp_enabled = sk_psock_strp_enabled(psock);
c46234eb 1787
f314bfee
JK
1788 /* If crypto failed the connection is broken */
1789 err = ctx->async_wait.err;
1790 if (err)
1791 goto end;
1792
692d7b5d 1793 /* Process pending decrypted records. It must be non-zero-copy */
06554f4f 1794 err = process_rx_list(ctx, msg, &control, 0, len, false, is_peek);
4dcdd971 1795 if (err < 0)
692d7b5d 1796 goto end;
692d7b5d 1797
d5123edd 1798 copied = err;
46a16959 1799 if (len <= copied)
bfc06e1a 1800 goto end;
46a16959
JK
1801
1802 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1803 len = len - copied;
1804 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
692d7b5d 1805
ba13609d 1806 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
88527790 1807 ctx->zc_capable;
bfc06e1a 1808 decrypted = 0;
04b25a54 1809 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
4175eac3 1810 struct tls_decrypt_arg darg = {};
9bdf75cc 1811 int to_decrypt, chunk;
c46234eb 1812
35560b7f
JK
1813 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, timeo);
1814 if (err <= 0) {
d3b18ad3 1815 if (psock) {
0775639c
JK
1816 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1817 flags);
1818 if (chunk > 0)
1819 goto leave_on_list;
d3b18ad3 1820 }
c46234eb 1821 goto recv_end;
d3b18ad3 1822 }
c46234eb 1823
35560b7f 1824 skb = ctx->recv_pkt;
c46234eb 1825 rxm = strp_msg(skb);
c3f6bb74 1826 tlm = tls_msg(skb);
94524d8f 1827
4509de14 1828 to_decrypt = rxm->full_len - prot->overhead_size;
fedf201e 1829
ba13609d
JK
1830 if (zc_capable && to_decrypt <= len &&
1831 tlm->control == TLS_RECORD_TYPE_DATA)
4175eac3 1832 darg.zc = true;
fedf201e 1833
c0ab4732 1834 /* Do not use async mode if record is non-data */
c3f6bb74 1835 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
4175eac3 1836 darg.async = ctx->async_capable;
c0ab4732 1837 else
4175eac3 1838 darg.async = false;
c0ab4732 1839
4175eac3 1840 err = decrypt_skb_update(sk, skb, &msg->msg_iter, &darg);
3547a1f9 1841 if (err < 0) {
da353fac 1842 tls_err_abort(sk, -EBADMSG);
fedf201e
DW
1843 goto recv_end;
1844 }
1845
3547a1f9 1846 async |= darg.async;
2b794c40
VG
1847
1848 /* If the type of records being processed is not known yet,
1849 * set it to record type just dequeued. If it is already known,
1850 * but does not match the record type just dequeued, go to end.
1851 * We always get record type here since for tls1.2, record type
1852 * is known just after record is dequeued from stream parser.
1853 * For tls1.3, we disable async.
1854 */
06554f4f
JK
1855 err = tls_record_content_type(msg, tlm, &control);
1856 if (err <= 0)
2b794c40 1857 goto recv_end;
fedf201e 1858
c46b0183
JK
1859 /* periodically flush backlog, and feed strparser */
1860 tls_read_flush_backlog(sk, prot, len, to_decrypt,
1861 decrypted + copied, &flushed_at);
1862
b1a2c178
JK
1863 ctx->recv_pkt = NULL;
1864 __strp_unpause(&ctx->strp);
a30295c4 1865 __skb_queue_tail(&ctx->rx_list, skb);
b1a2c178 1866
9bdf75cc
JK
1867 if (async) {
1868 /* TLS 1.2-only, to_decrypt must be text length */
1869 chunk = min_t(int, to_decrypt, len);
f940b6ef
JK
1870leave_on_list:
1871 decrypted += chunk;
1872 len -= chunk;
1873 continue;
9bdf75cc
JK
1874 }
1875 /* TLS 1.3 may have updated the length by more than overhead */
1876 chunk = rxm->full_len;
c0ab4732 1877
4175eac3 1878 if (!darg.zc) {
f940b6ef
JK
1879 bool partially_consumed = chunk > len;
1880
e91de6af 1881 if (bpf_strp_enabled) {
1c213311
JK
1882 /* BPF may try to queue the skb */
1883 __skb_unlink(skb, &ctx->rx_list);
e91de6af
JF
1884 err = sk_psock_tls_strp_read(psock, skb);
1885 if (err != __SK_PASS) {
1886 rxm->offset = rxm->offset + rxm->full_len;
1887 rxm->full_len = 0;
1888 if (err == __SK_DROP)
1889 consume_skb(skb);
e91de6af
JF
1890 continue;
1891 }
1c213311 1892 __skb_queue_tail(&ctx->rx_list, skb);
e91de6af
JF
1893 }
1894
f940b6ef 1895 if (partially_consumed)
fedf201e 1896 chunk = len;
692d7b5d 1897
fedf201e
DW
1898 err = skb_copy_datagram_msg(skb, rxm->offset,
1899 msg, chunk);
1900 if (err < 0)
1901 goto recv_end;
94524d8f 1902
f940b6ef
JK
1903 if (is_peek)
1904 goto leave_on_list;
1905
1906 if (partially_consumed) {
1907 rxm->offset += chunk;
1908 rxm->full_len -= chunk;
1909 goto leave_on_list;
692d7b5d 1910 }
c46234eb
DW
1911 }
1912
692d7b5d 1913 decrypted += chunk;
c46234eb 1914 len -= chunk;
692d7b5d 1915
a30295c4 1916 __skb_unlink(skb, &ctx->rx_list);
f940b6ef 1917 consume_skb(skb);
465ea735 1918
f940b6ef
JK
1919 /* Return full control message to userspace before trying
1920 * to parse another message type
1921 */
1922 msg->msg_flags |= MSG_EOR;
1923 if (control != TLS_RECORD_TYPE_DATA)
1924 break;
04b25a54 1925 }
c46234eb
DW
1926
1927recv_end:
7da18bcc 1928 if (async) {
f314bfee 1929 int ret, pending;
7da18bcc 1930
94524d8f 1931 /* Wait for all previously submitted records to be decrypted */
0cada332 1932 spin_lock_bh(&ctx->decrypt_compl_lock);
37943f04 1933 reinit_completion(&ctx->async_wait.completion);
0cada332
VKY
1934 pending = atomic_read(&ctx->decrypt_pending);
1935 spin_unlock_bh(&ctx->decrypt_compl_lock);
1936 if (pending) {
f314bfee
JK
1937 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1938 if (ret) {
1939 if (err >= 0 || err == -EINPROGRESS)
1940 err = ret;
692d7b5d
VG
1941 decrypted = 0;
1942 goto end;
94524d8f 1943 }
94524d8f 1944 }
0cada332 1945
692d7b5d
VG
1946 /* Drain records from the rx_list & copy if required */
1947 if (is_peek || is_kvec)
06554f4f 1948 err = process_rx_list(ctx, msg, &control, copied,
692d7b5d
VG
1949 decrypted, false, is_peek);
1950 else
06554f4f 1951 err = process_rx_list(ctx, msg, &control, 0,
692d7b5d 1952 decrypted, true, is_peek);
4dcdd971 1953 decrypted = max(err, 0);
94524d8f
VG
1954 }
1955
692d7b5d
VG
1956 copied += decrypted;
1957
1958end:
c46234eb 1959 release_sock(sk);
d3b18ad3
JF
1960 if (psock)
1961 sk_psock_put(sk, psock);
c46234eb
DW
1962 return copied ? : err;
1963}
1964
1965ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1966 struct pipe_inode_info *pipe,
1967 size_t len, unsigned int flags)
1968{
1969 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
f66de3ee 1970 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1971 struct strp_msg *rxm = NULL;
1972 struct sock *sk = sock->sk;
c3f6bb74 1973 struct tls_msg *tlm;
c46234eb
DW
1974 struct sk_buff *skb;
1975 ssize_t copied = 0;
e062fe99 1976 bool from_queue;
c46234eb
DW
1977 int err = 0;
1978 long timeo;
1979 int chunk;
1980
1981 lock_sock(sk);
1982
974271e5 1983 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
c46234eb 1984
e062fe99
JK
1985 from_queue = !skb_queue_empty(&ctx->rx_list);
1986 if (from_queue) {
1987 skb = __skb_dequeue(&ctx->rx_list);
1988 } else {
4175eac3
JK
1989 struct tls_decrypt_arg darg = {};
1990
35560b7f
JK
1991 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
1992 timeo);
1993 if (err <= 0)
e062fe99 1994 goto splice_read_end;
c46234eb 1995
35560b7f
JK
1996 skb = ctx->recv_pkt;
1997
4175eac3 1998 err = decrypt_skb_update(sk, skb, NULL, &darg);
e062fe99
JK
1999 if (err < 0) {
2000 tls_err_abort(sk, -EBADMSG);
2001 goto splice_read_end;
2002 }
520493f6 2003 }
fedf201e 2004
c3f6bb74
JK
2005 rxm = strp_msg(skb);
2006 tlm = tls_msg(skb);
2007
520493f6 2008 /* splice does not support reading control messages */
c3f6bb74 2009 if (tlm->control != TLS_RECORD_TYPE_DATA) {
520493f6
JK
2010 err = -EINVAL;
2011 goto splice_read_end;
c46234eb 2012 }
520493f6 2013
c46234eb
DW
2014 chunk = min_t(unsigned int, rxm->full_len, len);
2015 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2016 if (copied < 0)
2017 goto splice_read_end;
2018
e062fe99
JK
2019 if (!from_queue) {
2020 ctx->recv_pkt = NULL;
2021 __strp_unpause(&ctx->strp);
2022 }
2023 if (chunk < rxm->full_len) {
2024 __skb_queue_head(&ctx->rx_list, skb);
2025 rxm->offset += len;
2026 rxm->full_len -= len;
2027 } else {
2028 consume_skb(skb);
2029 }
c46234eb
DW
2030
2031splice_read_end:
2032 release_sock(sk);
2033 return copied ? : err;
2034}
2035
7b50ecfc 2036bool tls_sw_sock_is_readable(struct sock *sk)
c46234eb 2037{
c46234eb 2038 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2039 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3
JF
2040 bool ingress_empty = true;
2041 struct sk_psock *psock;
c46234eb 2042
d3b18ad3
JF
2043 rcu_read_lock();
2044 psock = sk_psock(sk);
2045 if (psock)
2046 ingress_empty = list_empty(&psock->ingress_msg);
2047 rcu_read_unlock();
c46234eb 2048
13aecb17
JK
2049 return !ingress_empty || ctx->recv_pkt ||
2050 !skb_queue_empty(&ctx->rx_list);
c46234eb
DW
2051}
2052
2053static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2054{
2055 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
4509de14 2056 struct tls_prot_info *prot = &tls_ctx->prot_info;
3463e51d 2057 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
c46234eb 2058 struct strp_msg *rxm = strp_msg(skb);
c3f6bb74 2059 struct tls_msg *tlm = tls_msg(skb);
c46234eb
DW
2060 size_t cipher_overhead;
2061 size_t data_len = 0;
2062 int ret;
2063
2064 /* Verify that we have a full TLS header, or wait for more data */
4509de14 2065 if (rxm->offset + prot->prepend_size > skb->len)
c46234eb
DW
2066 return 0;
2067
3463e51d 2068 /* Sanity-check size of on-stack buffer. */
4509de14 2069 if (WARN_ON(prot->prepend_size > sizeof(header))) {
3463e51d
KC
2070 ret = -EINVAL;
2071 goto read_failure;
2072 }
2073
c46234eb 2074 /* Linearize header to local buffer */
4509de14 2075 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
c46234eb
DW
2076 if (ret < 0)
2077 goto read_failure;
2078
863533e3 2079 tlm->decrypted = 0;
c3f6bb74 2080 tlm->control = header[0];
c46234eb
DW
2081
2082 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2083
4509de14 2084 cipher_overhead = prot->tag_size;
a6acbe62
VF
2085 if (prot->version != TLS_1_3_VERSION &&
2086 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
4509de14 2087 cipher_overhead += prot->iv_size;
c46234eb 2088
130b392c 2089 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
4509de14 2090 prot->tail_size) {
c46234eb
DW
2091 ret = -EMSGSIZE;
2092 goto read_failure;
2093 }
2094 if (data_len < cipher_overhead) {
2095 ret = -EBADMSG;
2096 goto read_failure;
2097 }
2098
130b392c
DW
2099 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2100 if (header[1] != TLS_1_2_VERSION_MINOR ||
2101 header[2] != TLS_1_2_VERSION_MAJOR) {
c46234eb
DW
2102 ret = -EINVAL;
2103 goto read_failure;
2104 }
be2fbc15 2105
f953d33b 2106 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
fe58a5a0 2107 TCP_SKB_CB(skb)->seq + rxm->offset);
c46234eb
DW
2108 return data_len + TLS_HEADER_SIZE;
2109
2110read_failure:
2111 tls_err_abort(strp->sk, ret);
2112
2113 return ret;
2114}
2115
2116static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2117{
2118 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 2119 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
2120
2121 ctx->recv_pkt = skb;
2122 strp_pause(strp);
2123
ad13acce 2124 ctx->saved_data_ready(strp->sk);
c46234eb
DW
2125}
2126
2127static void tls_data_ready(struct sock *sk)
2128{
2129 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3 2131 struct sk_psock *psock;
c46234eb
DW
2132
2133 strp_data_ready(&ctx->strp);
d3b18ad3
JF
2134
2135 psock = sk_psock_get(sk);
62b4011f
XY
2136 if (psock) {
2137 if (!list_empty(&psock->ingress_msg))
2138 ctx->saved_data_ready(sk);
d3b18ad3
JF
2139 sk_psock_put(sk, psock);
2140 }
c46234eb
DW
2141}
2142
f87e62d4
JF
2143void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2144{
2145 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2146
2147 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2148 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2149 cancel_delayed_work_sync(&ctx->tx_work.work);
2150}
2151
313ab004 2152void tls_sw_release_resources_tx(struct sock *sk)
3c4d7559
DW
2153{
2154 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2155 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 2156 struct tls_rec *rec, *tmp;
38f7e1c0 2157 int pending;
a42055e8
VG
2158
2159 /* Wait for any pending async encryptions to complete */
38f7e1c0
RM
2160 spin_lock_bh(&ctx->encrypt_compl_lock);
2161 ctx->async_notify = true;
2162 pending = atomic_read(&ctx->encrypt_pending);
2163 spin_unlock_bh(&ctx->encrypt_compl_lock);
2164
2165 if (pending)
a42055e8
VG
2166 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2167
a42055e8
VG
2168 tls_tx_records(sk, -1);
2169
9932a29a 2170 /* Free up un-sent records in tx_list. First, free
a42055e8
VG
2171 * the partially sent record if any at head of tx_list.
2172 */
c5daa6cc
JK
2173 if (tls_ctx->partially_sent_record) {
2174 tls_free_partial_record(sk, tls_ctx);
9932a29a 2175 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
2176 struct tls_rec, list);
2177 list_del(&rec->list);
d829e9c4 2178 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2179 kfree(rec);
2180 }
2181
9932a29a 2182 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
a42055e8 2183 list_del(&rec->list);
d829e9c4
DB
2184 sk_msg_free(sk, &rec->msg_encrypted);
2185 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2186 kfree(rec);
2187 }
3c4d7559 2188
201876b3 2189 crypto_free_aead(ctx->aead_send);
c774973e 2190 tls_free_open_rec(sk);
313ab004
JF
2191}
2192
2193void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2194{
2195 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
f66de3ee
BP
2196
2197 kfree(ctx);
2198}
2199
39f56e1a 2200void tls_sw_release_resources_rx(struct sock *sk)
f66de3ee
BP
2201{
2202 struct tls_context *tls_ctx = tls_get_ctx(sk);
2203 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2204
12c76861
JK
2205 kfree(tls_ctx->rx.rec_seq);
2206 kfree(tls_ctx->rx.iv);
2207
c46234eb 2208 if (ctx->aead_recv) {
201876b3
VG
2209 kfree_skb(ctx->recv_pkt);
2210 ctx->recv_pkt = NULL;
a30295c4 2211 __skb_queue_purge(&ctx->rx_list);
c46234eb
DW
2212 crypto_free_aead(ctx->aead_recv);
2213 strp_stop(&ctx->strp);
313ab004
JF
2214 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2215 * we still want to strp_stop(), but sk->sk_data_ready was
2216 * never swapped.
2217 */
2218 if (ctx->saved_data_ready) {
2219 write_lock_bh(&sk->sk_callback_lock);
2220 sk->sk_data_ready = ctx->saved_data_ready;
2221 write_unlock_bh(&sk->sk_callback_lock);
2222 }
c46234eb 2223 }
39f56e1a
BP
2224}
2225
313ab004 2226void tls_sw_strparser_done(struct tls_context *tls_ctx)
39f56e1a 2227{
39f56e1a
BP
2228 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2229
313ab004
JF
2230 strp_done(&ctx->strp);
2231}
2232
2233void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2234{
2235 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
3c4d7559 2236
3c4d7559
DW
2237 kfree(ctx);
2238}
2239
313ab004
JF
2240void tls_sw_free_resources_rx(struct sock *sk)
2241{
2242 struct tls_context *tls_ctx = tls_get_ctx(sk);
2243
2244 tls_sw_release_resources_rx(sk);
2245 tls_sw_free_ctx_rx(tls_ctx);
2246}
2247
9932a29a 2248/* The work handler to transmitt the encrypted records in tx_list */
a42055e8
VG
2249static void tx_work_handler(struct work_struct *work)
2250{
2251 struct delayed_work *delayed_work = to_delayed_work(work);
2252 struct tx_work *tx_work = container_of(delayed_work,
2253 struct tx_work, work);
2254 struct sock *sk = tx_work->sk;
2255 struct tls_context *tls_ctx = tls_get_ctx(sk);
f87e62d4 2256 struct tls_sw_context_tx *ctx;
a42055e8 2257
f87e62d4 2258 if (unlikely(!tls_ctx))
a42055e8
VG
2259 return;
2260
f87e62d4
JF
2261 ctx = tls_sw_ctx_tx(tls_ctx);
2262 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2263 return;
2264
2265 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2266 return;
79ffe608 2267 mutex_lock(&tls_ctx->tx_lock);
a42055e8
VG
2268 lock_sock(sk);
2269 tls_tx_records(sk, -1);
2270 release_sock(sk);
79ffe608 2271 mutex_unlock(&tls_ctx->tx_lock);
a42055e8
VG
2272}
2273
58790314
JK
2274static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2275{
2276 struct tls_rec *rec;
2277
2278 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
2279 if (!rec)
2280 return false;
2281
2282 return READ_ONCE(rec->tx_ready);
2283}
2284
7463d3a2
BP
2285void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2286{
2287 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2288
2289 /* Schedule the transmission if tx list is ready */
58790314 2290 if (tls_is_tx_ready(tx_ctx) &&
02b1fa07
JK
2291 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2292 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
7463d3a2
BP
2293}
2294
318892ac
JK
2295void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2296{
2297 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2298
2299 write_lock_bh(&sk->sk_callback_lock);
2300 rx_ctx->saved_data_ready = sk->sk_data_ready;
2301 sk->sk_data_ready = tls_data_ready;
2302 write_unlock_bh(&sk->sk_callback_lock);
2303
2304 strp_check_rcv(&rx_ctx->strp);
2305}
2306
88527790
JK
2307void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2308{
2309 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2310
2311 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2312 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2313}
2314
c46234eb 2315int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
3c4d7559 2316{
4509de14
VG
2317 struct tls_context *tls_ctx = tls_get_ctx(sk);
2318 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559 2319 struct tls_crypto_info *crypto_info;
f66de3ee
BP
2320 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2321 struct tls_sw_context_rx *sw_ctx_rx = NULL;
c46234eb
DW
2322 struct cipher_context *cctx;
2323 struct crypto_aead **aead;
2324 struct strp_callbacks cb;
f295b3ae 2325 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
692d7b5d 2326 struct crypto_tfm *tfm;
f295b3ae 2327 char *iv, *rec_seq, *key, *salt, *cipher_name;
fb99bce7 2328 size_t keysize;
3c4d7559
DW
2329 int rc = 0;
2330
2331 if (!ctx) {
2332 rc = -EINVAL;
2333 goto out;
2334 }
2335
f66de3ee 2336 if (tx) {
b190a587
BP
2337 if (!ctx->priv_ctx_tx) {
2338 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2339 if (!sw_ctx_tx) {
2340 rc = -ENOMEM;
2341 goto out;
2342 }
2343 ctx->priv_ctx_tx = sw_ctx_tx;
2344 } else {
2345 sw_ctx_tx =
2346 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
c46234eb 2347 }
c46234eb 2348 } else {
b190a587
BP
2349 if (!ctx->priv_ctx_rx) {
2350 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2351 if (!sw_ctx_rx) {
2352 rc = -ENOMEM;
2353 goto out;
2354 }
2355 ctx->priv_ctx_rx = sw_ctx_rx;
2356 } else {
2357 sw_ctx_rx =
2358 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
f66de3ee 2359 }
3c4d7559
DW
2360 }
2361
c46234eb 2362 if (tx) {
b190a587 2363 crypto_init_wait(&sw_ctx_tx->async_wait);
0cada332 2364 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
86029d10 2365 crypto_info = &ctx->crypto_send.info;
c46234eb 2366 cctx = &ctx->tx;
f66de3ee 2367 aead = &sw_ctx_tx->aead_send;
9932a29a 2368 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
a42055e8
VG
2369 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2370 sw_ctx_tx->tx_work.sk = sk;
c46234eb 2371 } else {
b190a587 2372 crypto_init_wait(&sw_ctx_rx->async_wait);
0cada332 2373 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
86029d10 2374 crypto_info = &ctx->crypto_recv.info;
c46234eb 2375 cctx = &ctx->rx;
692d7b5d 2376 skb_queue_head_init(&sw_ctx_rx->rx_list);
f66de3ee 2377 aead = &sw_ctx_rx->aead_recv;
c46234eb
DW
2378 }
2379
3c4d7559
DW
2380 switch (crypto_info->cipher_type) {
2381 case TLS_CIPHER_AES_GCM_128: {
dc2724a6
TZ
2382 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2383
2384 gcm_128_info = (void *)crypto_info;
3c4d7559
DW
2385 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2386 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2387 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
dc2724a6 2388 iv = gcm_128_info->iv;
3c4d7559 2389 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
dc2724a6 2390 rec_seq = gcm_128_info->rec_seq;
fb99bce7
DW
2391 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2392 key = gcm_128_info->key;
2393 salt = gcm_128_info->salt;
f295b3ae
VG
2394 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2395 cipher_name = "gcm(aes)";
fb99bce7
DW
2396 break;
2397 }
2398 case TLS_CIPHER_AES_GCM_256: {
dc2724a6
TZ
2399 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2400
2401 gcm_256_info = (void *)crypto_info;
fb99bce7
DW
2402 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2403 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2404 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
dc2724a6 2405 iv = gcm_256_info->iv;
fb99bce7 2406 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
dc2724a6 2407 rec_seq = gcm_256_info->rec_seq;
fb99bce7
DW
2408 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2409 key = gcm_256_info->key;
2410 salt = gcm_256_info->salt;
f295b3ae
VG
2411 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2412 cipher_name = "gcm(aes)";
2413 break;
2414 }
2415 case TLS_CIPHER_AES_CCM_128: {
dc2724a6
TZ
2416 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2417
2418 ccm_128_info = (void *)crypto_info;
f295b3ae
VG
2419 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2420 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2421 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
dc2724a6 2422 iv = ccm_128_info->iv;
f295b3ae 2423 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
dc2724a6 2424 rec_seq = ccm_128_info->rec_seq;
f295b3ae
VG
2425 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2426 key = ccm_128_info->key;
2427 salt = ccm_128_info->salt;
2428 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2429 cipher_name = "ccm(aes)";
3c4d7559
DW
2430 break;
2431 }
74ea6106 2432 case TLS_CIPHER_CHACHA20_POLY1305: {
dc2724a6
TZ
2433 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2434
74ea6106
VF
2435 chacha20_poly1305_info = (void *)crypto_info;
2436 nonce_size = 0;
2437 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2438 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2439 iv = chacha20_poly1305_info->iv;
2440 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2441 rec_seq = chacha20_poly1305_info->rec_seq;
2442 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2443 key = chacha20_poly1305_info->key;
2444 salt = chacha20_poly1305_info->salt;
2445 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2446 cipher_name = "rfc7539(chacha20,poly1305)";
2447 break;
2448 }
227b9644
TZ
2449 case TLS_CIPHER_SM4_GCM: {
2450 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2451
2452 sm4_gcm_info = (void *)crypto_info;
2453 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2454 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2455 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2456 iv = sm4_gcm_info->iv;
2457 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2458 rec_seq = sm4_gcm_info->rec_seq;
2459 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2460 key = sm4_gcm_info->key;
2461 salt = sm4_gcm_info->salt;
2462 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2463 cipher_name = "gcm(sm4)";
2464 break;
2465 }
2466 case TLS_CIPHER_SM4_CCM: {
2467 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2468
2469 sm4_ccm_info = (void *)crypto_info;
2470 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2471 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2472 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2473 iv = sm4_ccm_info->iv;
2474 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2475 rec_seq = sm4_ccm_info->rec_seq;
2476 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2477 key = sm4_ccm_info->key;
2478 salt = sm4_ccm_info->salt;
2479 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2480 cipher_name = "ccm(sm4)";
2481 break;
2482 }
3c4d7559
DW
2483 default:
2484 rc = -EINVAL;
cf6d43ef 2485 goto free_priv;
3c4d7559
DW
2486 }
2487
130b392c
DW
2488 if (crypto_info->version == TLS_1_3_VERSION) {
2489 nonce_size = 0;
4509de14
VG
2490 prot->aad_size = TLS_HEADER_SIZE;
2491 prot->tail_size = 1;
130b392c 2492 } else {
4509de14
VG
2493 prot->aad_size = TLS_AAD_SPACE_SIZE;
2494 prot->tail_size = 0;
130b392c
DW
2495 }
2496
50a07aa5
JK
2497 /* Sanity-check the sizes for stack allocations. */
2498 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2499 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2500 prot->aad_size > TLS_MAX_AAD_SIZE) {
2501 rc = -EINVAL;
2502 goto free_priv;
2503 }
2504
4509de14
VG
2505 prot->version = crypto_info->version;
2506 prot->cipher_type = crypto_info->cipher_type;
2507 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2508 prot->tag_size = tag_size;
2509 prot->overhead_size = prot->prepend_size +
2510 prot->tag_size + prot->tail_size;
2511 prot->iv_size = iv_size;
f295b3ae
VG
2512 prot->salt_size = salt_size;
2513 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
c46234eb 2514 if (!cctx->iv) {
3c4d7559 2515 rc = -ENOMEM;
cf6d43ef 2516 goto free_priv;
3c4d7559 2517 }
fb99bce7 2518 /* Note: 128 & 256 bit salt are the same size */
4509de14 2519 prot->rec_seq_size = rec_seq_size;
f295b3ae
VG
2520 memcpy(cctx->iv, salt, salt_size);
2521 memcpy(cctx->iv + salt_size, iv, iv_size);
969d5090 2522 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
c46234eb 2523 if (!cctx->rec_seq) {
3c4d7559
DW
2524 rc = -ENOMEM;
2525 goto free_iv;
2526 }
c46234eb 2527
c46234eb 2528 if (!*aead) {
f295b3ae 2529 *aead = crypto_alloc_aead(cipher_name, 0, 0);
c46234eb
DW
2530 if (IS_ERR(*aead)) {
2531 rc = PTR_ERR(*aead);
2532 *aead = NULL;
3c4d7559
DW
2533 goto free_rec_seq;
2534 }
2535 }
2536
2537 ctx->push_pending_record = tls_sw_push_pending_record;
2538
fb99bce7
DW
2539 rc = crypto_aead_setkey(*aead, key, keysize);
2540
3c4d7559
DW
2541 if (rc)
2542 goto free_aead;
2543
4509de14 2544 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
c46234eb
DW
2545 if (rc)
2546 goto free_aead;
2547
f66de3ee 2548 if (sw_ctx_rx) {
692d7b5d 2549 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
8497ded2 2550
88527790
JK
2551 tls_update_rx_zc_capable(ctx);
2552 sw_ctx_rx->async_capable =
2553 crypto_info->version != TLS_1_3_VERSION &&
2554 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
692d7b5d 2555
c46234eb
DW
2556 /* Set up strparser */
2557 memset(&cb, 0, sizeof(cb));
2558 cb.rcv_msg = tls_queue;
2559 cb.parse_msg = tls_read_size;
2560
f66de3ee 2561 strp_init(&sw_ctx_rx->strp, sk, &cb);
c46234eb
DW
2562 }
2563
2564 goto out;
3c4d7559
DW
2565
2566free_aead:
c46234eb
DW
2567 crypto_free_aead(*aead);
2568 *aead = NULL;
3c4d7559 2569free_rec_seq:
c46234eb
DW
2570 kfree(cctx->rec_seq);
2571 cctx->rec_seq = NULL;
3c4d7559 2572free_iv:
f66de3ee
BP
2573 kfree(cctx->iv);
2574 cctx->iv = NULL;
cf6d43ef 2575free_priv:
f66de3ee
BP
2576 if (tx) {
2577 kfree(ctx->priv_ctx_tx);
2578 ctx->priv_ctx_tx = NULL;
2579 } else {
2580 kfree(ctx->priv_ctx_rx);
2581 ctx->priv_ctx_rx = NULL;
2582 }
3c4d7559
DW
2583out:
2584 return rc;
2585}