Merge tag 'riscv-for-linus-6.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / net / tls / tls_device.c
CommitLineData
e8f69799
IL
1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32#include <crypto/aead.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/netdevice.h>
36#include <net/dst.h>
37#include <net/inet_connection_sock.h>
38#include <net/tcp.h>
39#include <net/tls.h>
40
58790314 41#include "tls.h"
8538d29c
JK
42#include "trace.h"
43
e8f69799
IL
44/* device_offload_lock is used to synchronize tls_dev_add
45 * against NETDEV_DOWN notifications.
46 */
47static DECLARE_RWSEM(device_offload_lock);
48
7adc91e0 49static struct workqueue_struct *destruct_wq __read_mostly;
e8f69799 50
e8f69799 51static LIST_HEAD(tls_device_list);
c55dcdd4 52static LIST_HEAD(tls_device_down_list);
e8f69799
IL
53static DEFINE_SPINLOCK(tls_device_lock);
54
55static void tls_device_free_ctx(struct tls_context *ctx)
56{
5a03bc73 57 if (ctx->tx_conf == TLS_HW) {
4799ac81 58 kfree(tls_offload_ctx_tx(ctx));
5a03bc73
JK
59 kfree(ctx->tx.rec_seq);
60 kfree(ctx->tx.iv);
61 }
4799ac81
BP
62
63 if (ctx->rx_conf == TLS_HW)
64 kfree(tls_offload_ctx_rx(ctx));
e8f69799 65
15a7dea7 66 tls_ctx_free(NULL, ctx);
e8f69799
IL
67}
68
7adc91e0 69static void tls_device_tx_del_task(struct work_struct *work)
e8f69799 70{
7adc91e0
TT
71 struct tls_offload_context_tx *offload_ctx =
72 container_of(work, struct tls_offload_context_tx, destruct_work);
73 struct tls_context *ctx = offload_ctx->ctx;
94ce3b64
MM
74 struct net_device *netdev;
75
76 /* Safe, because this is the destroy flow, refcount is 0, so
77 * tls_device_down can't store this field in parallel.
78 */
79 netdev = rcu_dereference_protected(ctx->netdev,
80 !refcount_read(&ctx->refcount));
e8f69799 81
7adc91e0
TT
82 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 tls_device_free_ctx(ctx);
e8f69799
IL
86}
87
88static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89{
94ce3b64 90 struct net_device *netdev;
e8f69799 91 unsigned long flags;
113671b2 92 bool async_cleanup;
e8f69799
IL
93
94 spin_lock_irqsave(&tls_device_lock, flags);
113671b2
TT
95 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96 spin_unlock_irqrestore(&tls_device_lock, flags);
97 return;
98 }
f08d8c1b 99
7adc91e0 100 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
94ce3b64
MM
101
102 /* Safe, because this is the destroy flow, refcount is 0, so
103 * tls_device_down can't store this field in parallel.
104 */
105 netdev = rcu_dereference_protected(ctx->netdev,
106 !refcount_read(&ctx->refcount));
107
108 async_cleanup = netdev && ctx->tx_conf == TLS_HW;
113671b2 109 if (async_cleanup) {
7adc91e0 110 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
e8f69799 111
7adc91e0 112 /* queue_work inside the spinlock
113671b2
TT
113 * to make sure tls_device_down waits for that work.
114 */
7adc91e0 115 queue_work(destruct_wq, &offload_ctx->destruct_work);
113671b2 116 }
e8f69799 117 spin_unlock_irqrestore(&tls_device_lock, flags);
113671b2
TT
118
119 if (!async_cleanup)
120 tls_device_free_ctx(ctx);
e8f69799
IL
121}
122
123/* We assume that the socket is already connected */
124static struct net_device *get_netdev_for_sock(struct sock *sk)
125{
126 struct dst_entry *dst = sk_dst_get(sk);
127 struct net_device *netdev = NULL;
128
129 if (likely(dst)) {
153cbd13 130 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
e8f69799
IL
131 dev_hold(netdev);
132 }
133
134 dst_release(dst);
135
136 return netdev;
137}
138
139static void destroy_record(struct tls_record_info *record)
140{
7ccd4519 141 int i;
e8f69799 142
7ccd4519 143 for (i = 0; i < record->num_frags; i++)
c420c989 144 __skb_frag_unref(&record->frags[i], false);
e8f69799
IL
145 kfree(record);
146}
147
d80a1b9d 148static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
e8f69799
IL
149{
150 struct tls_record_info *info, *temp;
151
152 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
153 list_del(&info->list);
154 destroy_record(info);
155 }
156
157 offload_ctx->retransmit_hint = NULL;
158}
159
160static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
161{
162 struct tls_context *tls_ctx = tls_get_ctx(sk);
163 struct tls_record_info *info, *temp;
d80a1b9d 164 struct tls_offload_context_tx *ctx;
e8f69799
IL
165 u64 deleted_records = 0;
166 unsigned long flags;
167
168 if (!tls_ctx)
169 return;
170
d80a1b9d 171 ctx = tls_offload_ctx_tx(tls_ctx);
e8f69799
IL
172
173 spin_lock_irqsave(&ctx->lock, flags);
174 info = ctx->retransmit_hint;
6e3d02b6 175 if (info && !before(acked_seq, info->end_seq))
e8f69799 176 ctx->retransmit_hint = NULL;
e8f69799
IL
177
178 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
179 if (before(acked_seq, info->end_seq))
180 break;
181 list_del(&info->list);
182
183 destroy_record(info);
184 deleted_records++;
185 }
186
187 ctx->unacked_record_sn += deleted_records;
188 spin_unlock_irqrestore(&ctx->lock, flags);
189}
190
191/* At this point, there should be no references on this
192 * socket and no in-flight SKBs associated with this
193 * socket, so it is safe to free all the resources.
194 */
8d5a49e9 195void tls_device_sk_destruct(struct sock *sk)
e8f69799
IL
196{
197 struct tls_context *tls_ctx = tls_get_ctx(sk);
d80a1b9d 198 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
e8f69799 199
4799ac81 200 tls_ctx->sk_destruct(sk);
e8f69799 201
4799ac81
BP
202 if (tls_ctx->tx_conf == TLS_HW) {
203 if (ctx->open_record)
204 destroy_record(ctx->open_record);
205 delete_all_records(ctx);
206 crypto_free_aead(ctx->aead_send);
207 clean_acked_data_disable(inet_csk(sk));
208 }
e8f69799 209
f08d8c1b 210 tls_device_queue_ctx_destruction(tls_ctx);
e8f69799 211}
8d5a49e9 212EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
e8f69799 213
35b71a34
JK
214void tls_device_free_resources_tx(struct sock *sk)
215{
216 struct tls_context *tls_ctx = tls_get_ctx(sk);
217
218 tls_free_partial_record(sk, tls_ctx);
219}
220
8538d29c
JK
221void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
222{
223 struct tls_context *tls_ctx = tls_get_ctx(sk);
224
225 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
226 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
227}
228EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
229
50180074
JK
230static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
231 u32 seq)
232{
233 struct net_device *netdev;
234 struct sk_buff *skb;
b5d9a834 235 int err = 0;
50180074
JK
236 u8 *rcd_sn;
237
238 skb = tcp_write_queue_tail(sk);
239 if (skb)
240 TCP_SKB_CB(skb)->eor = 1;
241
242 rcd_sn = tls_ctx->tx.rec_seq;
243
8538d29c 244 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
50180074 245 down_read(&device_offload_lock);
94ce3b64
MM
246 netdev = rcu_dereference_protected(tls_ctx->netdev,
247 lockdep_is_held(&device_offload_lock));
50180074 248 if (netdev)
b5d9a834
DM
249 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
250 rcd_sn,
251 TLS_OFFLOAD_CTX_DIR_TX);
50180074 252 up_read(&device_offload_lock);
b5d9a834
DM
253 if (err)
254 return;
50180074
JK
255
256 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
257}
258
e8f69799
IL
259static void tls_append_frag(struct tls_record_info *record,
260 struct page_frag *pfrag,
261 int size)
262{
263 skb_frag_t *frag;
264
265 frag = &record->frags[record->num_frags - 1];
d8e18a51 266 if (skb_frag_page(frag) == pfrag->page &&
b54c9d5b 267 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
d8e18a51 268 skb_frag_size_add(frag, size);
e8f69799
IL
269 } else {
270 ++frag;
d8e18a51 271 __skb_frag_set_page(frag, pfrag->page);
b54c9d5b 272 skb_frag_off_set(frag, pfrag->offset);
d8e18a51 273 skb_frag_size_set(frag, size);
e8f69799
IL
274 ++record->num_frags;
275 get_page(pfrag->page);
276 }
277
278 pfrag->offset += size;
279 record->len += size;
280}
281
282static int tls_push_record(struct sock *sk,
283 struct tls_context *ctx,
d80a1b9d 284 struct tls_offload_context_tx *offload_ctx,
e8f69799 285 struct tls_record_info *record,
e7b159a4 286 int flags)
e8f69799 287{
4509de14 288 struct tls_prot_info *prot = &ctx->prot_info;
e8f69799 289 struct tcp_sock *tp = tcp_sk(sk);
e8f69799
IL
290 skb_frag_t *frag;
291 int i;
292
e8f69799 293 record->end_seq = tp->write_seq + record->len;
d4774ac0 294 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
e8f69799 295 offload_ctx->open_record = NULL;
50180074
JK
296
297 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
298 tls_device_resync_tx(sk, ctx, tp->write_seq);
299
fb0f886f 300 tls_advance_record_sn(sk, prot, &ctx->tx);
e8f69799
IL
301
302 for (i = 0; i < record->num_frags; i++) {
303 frag = &record->frags[i];
304 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
305 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
b54c9d5b 306 skb_frag_size(frag), skb_frag_off(frag));
d8e18a51 307 sk_mem_charge(sk, skb_frag_size(frag));
e8f69799
IL
308 get_page(skb_frag_page(frag));
309 }
310 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
311
312 /* all ready, send */
313 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
314}
315
e7b159a4
JK
316static int tls_device_record_close(struct sock *sk,
317 struct tls_context *ctx,
318 struct tls_record_info *record,
319 struct page_frag *pfrag,
320 unsigned char record_type)
321{
322 struct tls_prot_info *prot = &ctx->prot_info;
323 int ret;
324
325 /* append tag
326 * device will fill in the tag, we just need to append a placeholder
327 * use socket memory to improve coalescing (re-using a single buffer
328 * increases frag count)
329 * if we can't allocate memory now, steal some back from data
330 */
331 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
332 sk->sk_allocation))) {
333 ret = 0;
334 tls_append_frag(record, pfrag, prot->tag_size);
335 } else {
336 ret = prot->tag_size;
337 if (record->len <= prot->overhead_size)
338 return -ENOMEM;
339 }
340
341 /* fill prepend */
342 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
343 record->len - prot->overhead_size,
6942a284 344 record_type);
e7b159a4
JK
345 return ret;
346}
347
d80a1b9d 348static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
e8f69799
IL
349 struct page_frag *pfrag,
350 size_t prepend_size)
351{
352 struct tls_record_info *record;
353 skb_frag_t *frag;
354
355 record = kmalloc(sizeof(*record), GFP_KERNEL);
356 if (!record)
357 return -ENOMEM;
358
359 frag = &record->frags[0];
360 __skb_frag_set_page(frag, pfrag->page);
b54c9d5b 361 skb_frag_off_set(frag, pfrag->offset);
e8f69799
IL
362 skb_frag_size_set(frag, prepend_size);
363
364 get_page(pfrag->page);
365 pfrag->offset += prepend_size;
366
367 record->num_frags = 1;
368 record->len = prepend_size;
369 offload_ctx->open_record = record;
370 return 0;
371}
372
373static int tls_do_allocation(struct sock *sk,
d80a1b9d 374 struct tls_offload_context_tx *offload_ctx,
e8f69799
IL
375 struct page_frag *pfrag,
376 size_t prepend_size)
377{
378 int ret;
379
380 if (!offload_ctx->open_record) {
381 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
382 sk->sk_allocation))) {
d5bee737 383 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
e8f69799
IL
384 sk_stream_moderate_sndbuf(sk);
385 return -ENOMEM;
386 }
387
388 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
389 if (ret)
390 return ret;
391
392 if (pfrag->size > pfrag->offset)
393 return 0;
394 }
395
396 if (!sk_page_frag_refill(sk, pfrag))
397 return -ENOMEM;
398
399 return 0;
400}
401
e681cc60
JK
402static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
403{
404 size_t pre_copy, nocache;
405
406 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
407 if (pre_copy) {
408 pre_copy = min(pre_copy, bytes);
409 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
410 return -EFAULT;
411 bytes -= pre_copy;
412 addr += pre_copy;
413 }
414
415 nocache = round_down(bytes, SMP_CACHE_BYTES);
416 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
417 return -EFAULT;
418 bytes -= nocache;
419 addr += nocache;
420
421 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
422 return -EFAULT;
423
424 return 0;
425}
426
c1318b39
BP
427union tls_iter_offset {
428 struct iov_iter *msg_iter;
429 int offset;
430};
431
e8f69799 432static int tls_push_data(struct sock *sk,
c1318b39 433 union tls_iter_offset iter_offset,
e8f69799 434 size_t size, int flags,
c1318b39
BP
435 unsigned char record_type,
436 struct page *zc_page)
e8f69799
IL
437{
438 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 439 struct tls_prot_info *prot = &tls_ctx->prot_info;
d80a1b9d 440 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
3afef8c7 441 struct tls_record_info *record;
41477662 442 int tls_push_record_flags;
e8f69799
IL
443 struct page_frag *pfrag;
444 size_t orig_size = size;
445 u32 max_open_record_len;
ea1dd3e9 446 bool more = false;
e8f69799 447 bool done = false;
ea1dd3e9 448 int copy, rc = 0;
e8f69799
IL
449 long timeo;
450
451 if (flags &
452 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
4a5cdc60 453 return -EOPNOTSUPP;
e8f69799 454
93277b25 455 if (unlikely(sk->sk_err))
e8f69799
IL
456 return -sk->sk_err;
457
41477662
JK
458 flags |= MSG_SENDPAGE_DECRYPTED;
459 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
460
e8f69799 461 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
94850257
BP
462 if (tls_is_partially_sent_record(tls_ctx)) {
463 rc = tls_push_partial_record(sk, tls_ctx, flags);
464 if (rc < 0)
465 return rc;
466 }
e8f69799
IL
467
468 pfrag = sk_page_frag(sk);
469
470 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
471 * we need to leave room for an authentication tag.
472 */
473 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
4509de14 474 prot->prepend_size;
e8f69799 475 do {
34ef1ed1
JK
476 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
477 if (unlikely(rc)) {
e8f69799
IL
478 rc = sk_stream_wait_memory(sk, &timeo);
479 if (!rc)
480 continue;
481
482 record = ctx->open_record;
483 if (!record)
484 break;
485handle_error:
486 if (record_type != TLS_RECORD_TYPE_DATA) {
487 /* avoid sending partial
488 * record with type !=
489 * application_data
490 */
491 size = orig_size;
492 destroy_record(record);
493 ctx->open_record = NULL;
4509de14 494 } else if (record->len > prot->prepend_size) {
e8f69799
IL
495 goto last_record;
496 }
497
498 break;
499 }
500
501 record = ctx->open_record;
e8f69799 502
c1318b39
BP
503 copy = min_t(size_t, size, max_open_record_len - record->len);
504 if (copy && zc_page) {
505 struct page_frag zc_pfrag;
506
507 zc_pfrag.page = zc_page;
508 zc_pfrag.offset = iter_offset.offset;
509 zc_pfrag.size = copy;
510 tls_append_frag(record, &zc_pfrag, copy);
e539a105
JK
511
512 iter_offset.offset += copy;
c1318b39
BP
513 } else if (copy) {
514 copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
515
a0df7194 516 rc = tls_device_copy_data(page_address(pfrag->page) +
c1318b39
BP
517 pfrag->offset, copy,
518 iter_offset.msg_iter);
a0df7194
MM
519 if (rc)
520 goto handle_error;
521 tls_append_frag(record, pfrag, copy);
522 }
e8f69799
IL
523
524 size -= copy;
525 if (!size) {
526last_record:
527 tls_push_record_flags = flags;
ea1dd3e9
RM
528 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
529 more = true;
e8f69799
IL
530 break;
531 }
532
533 done = true;
534 }
535
536 if (done || record->len >= max_open_record_len ||
537 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
e7b159a4
JK
538 rc = tls_device_record_close(sk, tls_ctx, record,
539 pfrag, record_type);
540 if (rc) {
541 if (rc > 0) {
542 size += rc;
543 } else {
544 size = orig_size;
545 destroy_record(record);
546 ctx->open_record = NULL;
547 break;
548 }
549 }
550
e8f69799
IL
551 rc = tls_push_record(sk,
552 tls_ctx,
553 ctx,
554 record,
e7b159a4 555 tls_push_record_flags);
e8f69799
IL
556 if (rc < 0)
557 break;
558 }
559 } while (!done);
560
ea1dd3e9
RM
561 tls_ctx->pending_open_record_frags = more;
562
e8f69799
IL
563 if (orig_size - size > 0)
564 rc = orig_size - size;
565
566 return rc;
567}
568
569int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
570{
571 unsigned char record_type = TLS_RECORD_TYPE_DATA;
79ffe608 572 struct tls_context *tls_ctx = tls_get_ctx(sk);
c1318b39 573 union tls_iter_offset iter;
e8f69799
IL
574 int rc;
575
79ffe608 576 mutex_lock(&tls_ctx->tx_lock);
e8f69799
IL
577 lock_sock(sk);
578
579 if (unlikely(msg->msg_controllen)) {
58790314 580 rc = tls_process_cmsg(sk, msg, &record_type);
e8f69799
IL
581 if (rc)
582 goto out;
583 }
584
c1318b39
BP
585 iter.msg_iter = &msg->msg_iter;
586 rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
e8f69799
IL
587
588out:
589 release_sock(sk);
79ffe608 590 mutex_unlock(&tls_ctx->tx_lock);
e8f69799
IL
591 return rc;
592}
593
594int tls_device_sendpage(struct sock *sk, struct page *page,
595 int offset, size_t size, int flags)
596{
79ffe608 597 struct tls_context *tls_ctx = tls_get_ctx(sk);
c1318b39
BP
598 union tls_iter_offset iter_offset;
599 struct iov_iter msg_iter;
b06c19d9 600 char *kaddr;
e8f69799
IL
601 struct kvec iov;
602 int rc;
603
604 if (flags & MSG_SENDPAGE_NOTLAST)
605 flags |= MSG_MORE;
606
79ffe608 607 mutex_lock(&tls_ctx->tx_lock);
e8f69799
IL
608 lock_sock(sk);
609
610 if (flags & MSG_OOB) {
4a5cdc60 611 rc = -EOPNOTSUPP;
e8f69799
IL
612 goto out;
613 }
614
c1318b39
BP
615 if (tls_ctx->zerocopy_sendfile) {
616 iter_offset.offset = offset;
617 rc = tls_push_data(sk, iter_offset, size,
618 flags, TLS_RECORD_TYPE_DATA, page);
619 goto out;
620 }
621
b06c19d9 622 kaddr = kmap(page);
e8f69799
IL
623 iov.iov_base = kaddr + offset;
624 iov.iov_len = size;
de4eda9d 625 iov_iter_kvec(&msg_iter, ITER_SOURCE, &iov, 1, size);
c1318b39
BP
626 iter_offset.msg_iter = &msg_iter;
627 rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
628 NULL);
e8f69799
IL
629 kunmap(page);
630
631out:
632 release_sock(sk);
79ffe608 633 mutex_unlock(&tls_ctx->tx_lock);
e8f69799
IL
634 return rc;
635}
636
d80a1b9d 637struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
e8f69799
IL
638 u32 seq, u64 *p_record_sn)
639{
640 u64 record_sn = context->hint_record_sn;
06f5201c 641 struct tls_record_info *info, *last;
e8f69799
IL
642
643 info = context->retransmit_hint;
644 if (!info ||
645 before(seq, info->end_seq - info->len)) {
646 /* if retransmit_hint is irrelevant start
72a0f6d0 647 * from the beginning of the list
e8f69799 648 */
d4774ac0
JK
649 info = list_first_entry_or_null(&context->records_list,
650 struct tls_record_info, list);
651 if (!info)
652 return NULL;
06f5201c
RM
653 /* send the start_marker record if seq number is before the
654 * tls offload start marker sequence number. This record is
655 * required to handle TCP packets which are before TLS offload
656 * started.
657 * And if it's not start marker, look if this seq number
658 * belongs to the list.
659 */
660 if (likely(!tls_record_is_start_marker(info))) {
661 /* we have the first record, get the last record to see
662 * if this seq number belongs to the list.
663 */
664 last = list_last_entry(&context->records_list,
665 struct tls_record_info, list);
666
667 if (!between(seq, tls_record_start_seq(info),
668 last->end_seq))
669 return NULL;
670 }
e8f69799
IL
671 record_sn = context->unacked_record_sn;
672 }
673
d4774ac0
JK
674 /* We just need the _rcu for the READ_ONCE() */
675 rcu_read_lock();
676 list_for_each_entry_from_rcu(info, &context->records_list, list) {
e8f69799
IL
677 if (before(seq, info->end_seq)) {
678 if (!context->retransmit_hint ||
679 after(info->end_seq,
680 context->retransmit_hint->end_seq)) {
681 context->hint_record_sn = record_sn;
682 context->retransmit_hint = info;
683 }
684 *p_record_sn = record_sn;
d4774ac0 685 goto exit_rcu_unlock;
e8f69799
IL
686 }
687 record_sn++;
688 }
d4774ac0 689 info = NULL;
e8f69799 690
d4774ac0
JK
691exit_rcu_unlock:
692 rcu_read_unlock();
693 return info;
e8f69799
IL
694}
695EXPORT_SYMBOL(tls_get_record);
696
697static int tls_device_push_pending_record(struct sock *sk, int flags)
698{
c1318b39
BP
699 union tls_iter_offset iter;
700 struct iov_iter msg_iter;
e8f69799 701
de4eda9d 702 iov_iter_kvec(&msg_iter, ITER_SOURCE, NULL, 0, 0);
c1318b39
BP
703 iter.msg_iter = &msg_iter;
704 return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
e8f69799
IL
705}
706
7463d3a2
BP
707void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
708{
02b1fa07 709 if (tls_is_partially_sent_record(ctx)) {
7463d3a2
BP
710 gfp_t sk_allocation = sk->sk_allocation;
711
02b1fa07
JK
712 WARN_ON_ONCE(sk->sk_write_pending);
713
7463d3a2 714 sk->sk_allocation = GFP_ATOMIC;
41477662
JK
715 tls_push_partial_record(sk, ctx,
716 MSG_DONTWAIT | MSG_NOSIGNAL |
717 MSG_SENDPAGE_DECRYPTED);
7463d3a2
BP
718 sk->sk_allocation = sk_allocation;
719 }
7463d3a2
BP
720}
721
e52972c1 722static void tls_device_resync_rx(struct tls_context *tls_ctx,
89fec474 723 struct sock *sk, u32 seq, u8 *rcd_sn)
e52972c1 724{
8538d29c 725 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
e52972c1
JK
726 struct net_device *netdev;
727
8538d29c 728 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
05fc8b6c 729 rcu_read_lock();
94ce3b64 730 netdev = rcu_dereference(tls_ctx->netdev);
e52972c1 731 if (netdev)
eeb2efaf
JK
732 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
733 TLS_OFFLOAD_CTX_DIR_RX);
05fc8b6c 734 rcu_read_unlock();
a4d26fdb 735 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
e52972c1
JK
736}
737
ed9b7646
BP
738static bool
739tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
138559b9 740 s64 resync_req, u32 *seq, u16 *rcd_delta)
ed9b7646
BP
741{
742 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
743 u32 req_seq = resync_req >> 32;
744 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
138559b9
TT
745 u16 i;
746
747 *rcd_delta = 0;
ed9b7646
BP
748
749 if (is_async) {
138559b9
TT
750 /* shouldn't get to wraparound:
751 * too long in async stage, something bad happened
752 */
753 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
754 return false;
755
ed9b7646
BP
756 /* asynchronous stage: log all headers seq such that
757 * req_seq <= seq <= end_seq, and wait for real resync request
758 */
138559b9
TT
759 if (before(*seq, req_seq))
760 return false;
761 if (!after(*seq, req_end) &&
ed9b7646
BP
762 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
763 resync_async->log[resync_async->loglen++] = *seq;
764
138559b9
TT
765 resync_async->rcd_delta++;
766
ed9b7646
BP
767 return false;
768 }
769
770 /* synchronous stage: check against the logged entries and
771 * proceed to check the next entries if no match was found
772 */
138559b9
TT
773 for (i = 0; i < resync_async->loglen; i++)
774 if (req_seq == resync_async->log[i] &&
775 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
776 *rcd_delta = resync_async->rcd_delta - i;
ed9b7646 777 *seq = req_seq;
138559b9
TT
778 resync_async->loglen = 0;
779 resync_async->rcd_delta = 0;
ed9b7646
BP
780 return true;
781 }
138559b9
TT
782
783 resync_async->loglen = 0;
784 resync_async->rcd_delta = 0;
ed9b7646
BP
785
786 if (req_seq == *seq &&
787 atomic64_try_cmpxchg(&resync_async->req,
788 &resync_req, 0))
789 return true;
790
791 return false;
792}
793
f953d33b 794void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
4799ac81
BP
795{
796 struct tls_context *tls_ctx = tls_get_ctx(sk);
4799ac81 797 struct tls_offload_context_rx *rx_ctx;
f953d33b 798 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
acb5a07a 799 u32 sock_data, is_req_pending;
f953d33b 800 struct tls_prot_info *prot;
4799ac81 801 s64 resync_req;
138559b9 802 u16 rcd_delta;
4799ac81
BP
803 u32 req_seq;
804
805 if (tls_ctx->rx_conf != TLS_HW)
806 return;
c55dcdd4
MM
807 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
808 return;
4799ac81 809
f953d33b 810 prot = &tls_ctx->prot_info;
4799ac81 811 rx_ctx = tls_offload_ctx_rx(tls_ctx);
f953d33b
JK
812 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
813
814 switch (rx_ctx->resync_type) {
815 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
816 resync_req = atomic64_read(&rx_ctx->resync_req);
817 req_seq = resync_req >> 32;
818 seq += TLS_HEADER_SIZE - 1;
acb5a07a 819 is_req_pending = resync_req;
f953d33b 820
acb5a07a 821 if (likely(!is_req_pending) || req_seq != seq ||
f953d33b
JK
822 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
823 return;
824 break;
825 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
826 if (likely(!rx_ctx->resync_nh_do_now))
827 return;
828
829 /* head of next rec is already in, note that the sock_inq will
830 * include the currently parsed message when called from parser
831 */
8538d29c
JK
832 sock_data = tcp_inq(sk);
833 if (sock_data > rcd_len) {
834 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
835 rcd_len);
f953d33b 836 return;
8538d29c 837 }
f953d33b
JK
838
839 rx_ctx->resync_nh_do_now = 0;
840 seq += rcd_len;
841 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
842 break;
ed9b7646
BP
843 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
844 resync_req = atomic64_read(&rx_ctx->resync_async->req);
845 is_req_pending = resync_req;
846 if (likely(!is_req_pending))
847 return;
848
849 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
138559b9 850 resync_req, &seq, &rcd_delta))
ed9b7646 851 return;
138559b9 852 tls_bigint_subtract(rcd_sn, rcd_delta);
ed9b7646 853 break;
f953d33b
JK
854 }
855
856 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
857}
858
859static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
860 struct tls_offload_context_rx *ctx,
861 struct sock *sk, struct sk_buff *skb)
862{
863 struct strp_msg *rxm;
864
865 /* device will request resyncs by itself based on stream scan */
866 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
867 return;
868 /* already scheduled */
869 if (ctx->resync_nh_do_now)
870 return;
871 /* seen decrypted fragments since last fully-failed record */
872 if (ctx->resync_nh_reset) {
873 ctx->resync_nh_reset = 0;
874 ctx->resync_nh.decrypted_failed = 1;
875 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
876 return;
877 }
878
879 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
880 return;
881
882 /* doing resync, bump the next target in case it fails */
883 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
884 ctx->resync_nh.decrypted_tgt *= 2;
885 else
886 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
887
888 rxm = strp_msg(skb);
889
890 /* head of next rec is already in, parser will sync for us */
891 if (tcp_inq(sk) > rxm->full_len) {
8538d29c 892 trace_tls_device_rx_resync_nh_schedule(sk);
f953d33b
JK
893 ctx->resync_nh_do_now = 1;
894 } else {
895 struct tls_prot_info *prot = &tls_ctx->prot_info;
896 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
897
898 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
899 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
900
901 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
902 rcd_sn);
903 }
4799ac81
BP
904}
905
541cc48b 906static int
ea7a9d88 907tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
4799ac81 908{
ea7a9d88
GP
909 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
910 const struct tls_cipher_size_desc *cipher_sz;
8b3c59a7
JK
911 int err, offset, copy, data_len, pos;
912 struct sk_buff *skb, *skb_iter;
4799ac81 913 struct scatterlist sg[1];
541cc48b 914 struct strp_msg *rxm;
4799ac81
BP
915 char *orig_buf, *buf;
916
ea7a9d88
GP
917 switch (tls_ctx->crypto_recv.info.cipher_type) {
918 case TLS_CIPHER_AES_GCM_128:
56e5a6d3 919 case TLS_CIPHER_AES_GCM_256:
ea7a9d88
GP
920 break;
921 default:
922 return -EINVAL;
923 }
924 cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type];
925
8b3c59a7 926 rxm = strp_msg(tls_strp_msg(sw_ctx));
ea7a9d88
GP
927 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv,
928 sk->sk_allocation);
4799ac81
BP
929 if (!orig_buf)
930 return -ENOMEM;
931 buf = orig_buf;
932
8b3c59a7
JK
933 err = tls_strp_msg_cow(sw_ctx);
934 if (unlikely(err))
4799ac81 935 goto free_buf;
8b3c59a7
JK
936
937 skb = tls_strp_msg(sw_ctx);
938 rxm = strp_msg(skb);
939 offset = rxm->offset;
4799ac81
BP
940
941 sg_init_table(sg, 1);
942 sg_set_buf(&sg[0], buf,
ea7a9d88
GP
943 rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv);
944 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv);
aeb11ff0
JK
945 if (err)
946 goto free_buf;
4799ac81
BP
947
948 /* We are interested only in the decrypted data not the auth */
541cc48b 949 err = decrypt_skb(sk, sg);
4799ac81
BP
950 if (err != -EBADMSG)
951 goto free_buf;
952 else
953 err = 0;
954
ea7a9d88 955 data_len = rxm->full_len - cipher_sz->tag;
4799ac81 956
97e1caa5 957 if (skb_pagelen(skb) > offset) {
eb3d38d5 958 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
4799ac81 959
aeb11ff0
JK
960 if (skb->decrypted) {
961 err = skb_store_bits(skb, offset, buf, copy);
962 if (err)
963 goto free_buf;
964 }
4799ac81 965
97e1caa5
JK
966 offset += copy;
967 buf += copy;
968 }
4799ac81 969
eb3d38d5 970 pos = skb_pagelen(skb);
4799ac81 971 skb_walk_frags(skb, skb_iter) {
eb3d38d5
JK
972 int frag_pos;
973
974 /* Practically all frags must belong to msg if reencrypt
975 * is needed with current strparser and coalescing logic,
976 * but strparser may "get optimized", so let's be safe.
977 */
978 if (pos + skb_iter->len <= offset)
979 goto done_with_frag;
980 if (pos >= data_len + rxm->offset)
981 break;
982
983 frag_pos = offset - pos;
984 copy = min_t(int, skb_iter->len - frag_pos,
985 data_len + rxm->offset - offset);
4799ac81 986
aeb11ff0
JK
987 if (skb_iter->decrypted) {
988 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
989 if (err)
990 goto free_buf;
991 }
4799ac81
BP
992
993 offset += copy;
994 buf += copy;
eb3d38d5
JK
995done_with_frag:
996 pos += skb_iter->len;
4799ac81
BP
997 }
998
999free_buf:
1000 kfree(orig_buf);
1001 return err;
1002}
1003
541cc48b 1004int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
4799ac81 1005{
4799ac81 1006 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
541cc48b
JK
1007 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
1008 struct sk_buff *skb = tls_strp_msg(sw_ctx);
1009 struct strp_msg *rxm = strp_msg(skb);
4799ac81
BP
1010 int is_decrypted = skb->decrypted;
1011 int is_encrypted = !is_decrypted;
1012 struct sk_buff *skb_iter;
86b259f6 1013 int left;
4799ac81 1014
86b259f6 1015 left = rxm->full_len - skb->len;
4799ac81 1016 /* Check if all the data is decrypted already */
86b259f6
JK
1017 skb_iter = skb_shinfo(skb)->frag_list;
1018 while (skb_iter && left > 0) {
4799ac81
BP
1019 is_decrypted &= skb_iter->decrypted;
1020 is_encrypted &= !skb_iter->decrypted;
86b259f6
JK
1021
1022 left -= skb_iter->len;
1023 skb_iter = skb_iter->next;
4799ac81
BP
1024 }
1025
9ec1c6ac
JK
1026 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
1027 tls_ctx->rx.rec_seq, rxm->full_len,
1028 is_encrypted, is_decrypted);
1029
c55dcdd4
MM
1030 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1031 if (likely(is_encrypted || is_decrypted))
71471ca3 1032 return is_decrypted;
c55dcdd4
MM
1033
1034 /* After tls_device_down disables the offload, the next SKB will
1035 * likely have initial fragments decrypted, and final ones not
1036 * decrypted. We need to reencrypt that single SKB.
1037 */
ea7a9d88 1038 return tls_device_reencrypt(sk, tls_ctx);
c55dcdd4
MM
1039 }
1040
f953d33b 1041 /* Return immediately if the record is either entirely plaintext or
4799ac81
BP
1042 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1043 * record.
1044 */
f953d33b
JK
1045 if (is_decrypted) {
1046 ctx->resync_nh_reset = 1;
71471ca3 1047 return is_decrypted;
f953d33b
JK
1048 }
1049 if (is_encrypted) {
1050 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1051 return 0;
1052 }
1053
1054 ctx->resync_nh_reset = 1;
ea7a9d88 1055 return tls_device_reencrypt(sk, tls_ctx);
4799ac81
BP
1056}
1057
9e995797
JK
1058static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1059 struct net_device *netdev)
1060{
1061 if (sk->sk_destruct != tls_device_sk_destruct) {
1062 refcount_set(&ctx->refcount, 1);
1063 dev_hold(netdev);
94ce3b64 1064 RCU_INIT_POINTER(ctx->netdev, netdev);
9e995797
JK
1065 spin_lock_irq(&tls_device_lock);
1066 list_add_tail(&ctx->list, &tls_device_list);
1067 spin_unlock_irq(&tls_device_lock);
1068
1069 ctx->sk_destruct = sk->sk_destruct;
8d5a49e9 1070 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
9e995797
JK
1071 }
1072}
1073
e8f69799
IL
1074int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1075{
4509de14
VG
1076 struct tls_context *tls_ctx = tls_get_ctx(sk);
1077 struct tls_prot_info *prot = &tls_ctx->prot_info;
ea7a9d88 1078 const struct tls_cipher_size_desc *cipher_sz;
e8f69799 1079 struct tls_record_info *start_marker_record;
d80a1b9d 1080 struct tls_offload_context_tx *offload_ctx;
e8f69799
IL
1081 struct tls_crypto_info *crypto_info;
1082 struct net_device *netdev;
1083 char *iv, *rec_seq;
1084 struct sk_buff *skb;
e8f69799 1085 __be64 rcd_sn;
90962b48 1086 int rc;
e8f69799
IL
1087
1088 if (!ctx)
90962b48 1089 return -EINVAL;
e8f69799 1090
90962b48
JK
1091 if (ctx->priv_ctx_tx)
1092 return -EEXIST;
e8f69799 1093
b1a6f56b
ZX
1094 netdev = get_netdev_for_sock(sk);
1095 if (!netdev) {
1096 pr_err_ratelimited("%s: netdev not found\n", __func__);
1097 return -EINVAL;
1098 }
e8f69799 1099
b1a6f56b
ZX
1100 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1101 rc = -EOPNOTSUPP;
1102 goto release_netdev;
e8f69799
IL
1103 }
1104
86029d10 1105 crypto_info = &ctx->crypto_send.info;
618bac45
JK
1106 if (crypto_info->version != TLS_1_2_VERSION) {
1107 rc = -EOPNOTSUPP;
b1a6f56b 1108 goto release_netdev;
618bac45
JK
1109 }
1110
e8f69799
IL
1111 switch (crypto_info->cipher_type) {
1112 case TLS_CIPHER_AES_GCM_128:
e8f69799 1113 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
e8f69799
IL
1114 rec_seq =
1115 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1116 break;
56e5a6d3
GP
1117 case TLS_CIPHER_AES_GCM_256:
1118 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
1119 rec_seq =
1120 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
1121 break;
e8f69799
IL
1122 default:
1123 rc = -EINVAL;
b1a6f56b 1124 goto release_netdev;
e8f69799 1125 }
ea7a9d88 1126 cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type];
e8f69799 1127
89fec474 1128 /* Sanity-check the rec_seq_size for stack allocations */
ea7a9d88 1129 if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) {
89fec474 1130 rc = -EINVAL;
b1a6f56b 1131 goto release_netdev;
89fec474
JK
1132 }
1133
ab232e61
JK
1134 prot->version = crypto_info->version;
1135 prot->cipher_type = crypto_info->cipher_type;
ea7a9d88
GP
1136 prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv;
1137 prot->tag_size = cipher_sz->tag;
4509de14 1138 prot->overhead_size = prot->prepend_size + prot->tag_size;
ea7a9d88
GP
1139 prot->iv_size = cipher_sz->iv;
1140 prot->salt_size = cipher_sz->salt;
1141 ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL);
e8f69799
IL
1142 if (!ctx->tx.iv) {
1143 rc = -ENOMEM;
b1a6f56b 1144 goto release_netdev;
e8f69799
IL
1145 }
1146
ea7a9d88 1147 memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv);
e8f69799 1148
ea7a9d88
GP
1149 prot->rec_seq_size = cipher_sz->rec_seq;
1150 ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL);
e8f69799
IL
1151 if (!ctx->tx.rec_seq) {
1152 rc = -ENOMEM;
1153 goto free_iv;
1154 }
e8f69799 1155
b1a6f56b
ZX
1156 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1157 if (!start_marker_record) {
1158 rc = -ENOMEM;
1159 goto free_rec_seq;
1160 }
1161
1162 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1163 if (!offload_ctx) {
1164 rc = -ENOMEM;
1165 goto free_marker_record;
1166 }
1167
e8f69799
IL
1168 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1169 if (rc)
b1a6f56b 1170 goto free_offload_ctx;
e8f69799
IL
1171
1172 /* start at rec_seq - 1 to account for the start marker record */
1173 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1174 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1175
1176 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1177 start_marker_record->len = 0;
1178 start_marker_record->num_frags = 0;
1179
7adc91e0
TT
1180 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1181 offload_ctx->ctx = ctx;
1182
e8f69799
IL
1183 INIT_LIST_HEAD(&offload_ctx->records_list);
1184 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1185 spin_lock_init(&offload_ctx->lock);
895262d8
BP
1186 sg_init_table(offload_ctx->sg_tx_data,
1187 ARRAY_SIZE(offload_ctx->sg_tx_data));
e8f69799
IL
1188
1189 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1190 ctx->push_pending_record = tls_device_push_pending_record;
e8f69799
IL
1191
1192 /* TLS offload is greatly simplified if we don't send
1193 * SKBs where only part of the payload needs to be encrypted.
1194 * So mark the last skb in the write queue as end of record.
1195 */
1196 skb = tcp_write_queue_tail(sk);
1197 if (skb)
1198 TCP_SKB_CB(skb)->eor = 1;
1199
e8f69799
IL
1200 /* Avoid offloading if the device is down
1201 * We don't want to offload new flows after
1202 * the NETDEV_DOWN event
3544c98a
JK
1203 *
1204 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1205 * handler thus protecting from the device going down before
1206 * ctx was added to tls_device_list.
e8f69799 1207 */
3544c98a 1208 down_read(&device_offload_lock);
e8f69799
IL
1209 if (!(netdev->flags & IFF_UP)) {
1210 rc = -EINVAL;
3544c98a 1211 goto release_lock;
e8f69799
IL
1212 }
1213
1214 ctx->priv_ctx_tx = offload_ctx;
1215 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
86029d10 1216 &ctx->crypto_send.info,
e8f69799 1217 tcp_sk(sk)->write_seq);
8538d29c
JK
1218 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1219 tcp_sk(sk)->write_seq, rec_seq, rc);
e8f69799 1220 if (rc)
3544c98a 1221 goto release_lock;
e8f69799 1222
4799ac81 1223 tls_device_attach(ctx, sk, netdev);
3544c98a 1224 up_read(&device_offload_lock);
e8f69799 1225
e8f69799
IL
1226 /* following this assignment tls_is_sk_tx_device_offloaded
1227 * will return true and the context might be accessed
1228 * by the netdev's xmit function.
1229 */
4799ac81
BP
1230 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1231 dev_put(netdev);
90962b48
JK
1232
1233 return 0;
e8f69799 1234
e8f69799
IL
1235release_lock:
1236 up_read(&device_offload_lock);
1237 clean_acked_data_disable(inet_csk(sk));
1238 crypto_free_aead(offload_ctx->aead_send);
e8f69799
IL
1239free_offload_ctx:
1240 kfree(offload_ctx);
1241 ctx->priv_ctx_tx = NULL;
1242free_marker_record:
1243 kfree(start_marker_record);
b1a6f56b
ZX
1244free_rec_seq:
1245 kfree(ctx->tx.rec_seq);
1246free_iv:
1247 kfree(ctx->tx.iv);
1248release_netdev:
1249 dev_put(netdev);
e8f69799
IL
1250 return rc;
1251}
1252
4799ac81
BP
1253int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1254{
8538d29c 1255 struct tls12_crypto_info_aes_gcm_128 *info;
4799ac81
BP
1256 struct tls_offload_context_rx *context;
1257 struct net_device *netdev;
1258 int rc = 0;
1259
618bac45
JK
1260 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1261 return -EOPNOTSUPP;
1262
4799ac81
BP
1263 netdev = get_netdev_for_sock(sk);
1264 if (!netdev) {
1265 pr_err_ratelimited("%s: netdev not found\n", __func__);
3544c98a 1266 return -EINVAL;
4799ac81
BP
1267 }
1268
1269 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
4a5cdc60 1270 rc = -EOPNOTSUPP;
4799ac81
BP
1271 goto release_netdev;
1272 }
1273
1274 /* Avoid offloading if the device is down
1275 * We don't want to offload new flows after
1276 * the NETDEV_DOWN event
3544c98a
JK
1277 *
1278 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1279 * handler thus protecting from the device going down before
1280 * ctx was added to tls_device_list.
4799ac81 1281 */
3544c98a 1282 down_read(&device_offload_lock);
4799ac81
BP
1283 if (!(netdev->flags & IFF_UP)) {
1284 rc = -EINVAL;
3544c98a 1285 goto release_lock;
4799ac81
BP
1286 }
1287
1288 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1289 if (!context) {
1290 rc = -ENOMEM;
3544c98a 1291 goto release_lock;
4799ac81 1292 }
f953d33b 1293 context->resync_nh_reset = 1;
4799ac81
BP
1294
1295 ctx->priv_ctx_rx = context;
1296 rc = tls_set_sw_offload(sk, ctx, 0);
1297 if (rc)
1298 goto release_ctx;
1299
1300 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
86029d10 1301 &ctx->crypto_recv.info,
4799ac81 1302 tcp_sk(sk)->copied_seq);
8538d29c
JK
1303 info = (void *)&ctx->crypto_recv.info;
1304 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1305 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
e49d268d 1306 if (rc)
4799ac81 1307 goto free_sw_resources;
4799ac81
BP
1308
1309 tls_device_attach(ctx, sk, netdev);
90962b48
JK
1310 up_read(&device_offload_lock);
1311
1312 dev_put(netdev);
1313
1314 return 0;
4799ac81
BP
1315
1316free_sw_resources:
62ef81d5 1317 up_read(&device_offload_lock);
4799ac81 1318 tls_sw_free_resources_rx(sk);
62ef81d5 1319 down_read(&device_offload_lock);
4799ac81
BP
1320release_ctx:
1321 ctx->priv_ctx_rx = NULL;
4799ac81
BP
1322release_lock:
1323 up_read(&device_offload_lock);
3544c98a
JK
1324release_netdev:
1325 dev_put(netdev);
4799ac81
BP
1326 return rc;
1327}
1328
1329void tls_device_offload_cleanup_rx(struct sock *sk)
1330{
1331 struct tls_context *tls_ctx = tls_get_ctx(sk);
1332 struct net_device *netdev;
1333
1334 down_read(&device_offload_lock);
94ce3b64
MM
1335 netdev = rcu_dereference_protected(tls_ctx->netdev,
1336 lockdep_is_held(&device_offload_lock));
4799ac81
BP
1337 if (!netdev)
1338 goto out;
1339
4799ac81
BP
1340 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1341 TLS_OFFLOAD_CTX_DIR_RX);
1342
1343 if (tls_ctx->tx_conf != TLS_HW) {
1344 dev_put(netdev);
94ce3b64 1345 rcu_assign_pointer(tls_ctx->netdev, NULL);
025cc2fb
MM
1346 } else {
1347 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
4799ac81
BP
1348 }
1349out:
1350 up_read(&device_offload_lock);
4799ac81
BP
1351 tls_sw_release_resources_rx(sk);
1352}
1353
e8f69799
IL
1354static int tls_device_down(struct net_device *netdev)
1355{
1356 struct tls_context *ctx, *tmp;
1357 unsigned long flags;
1358 LIST_HEAD(list);
1359
1360 /* Request a write lock to block new offload attempts */
1361 down_write(&device_offload_lock);
1362
1363 spin_lock_irqsave(&tls_device_lock, flags);
1364 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
94ce3b64
MM
1365 struct net_device *ctx_netdev =
1366 rcu_dereference_protected(ctx->netdev,
1367 lockdep_is_held(&device_offload_lock));
1368
1369 if (ctx_netdev != netdev ||
e8f69799
IL
1370 !refcount_inc_not_zero(&ctx->refcount))
1371 continue;
1372
1373 list_move(&ctx->list, &list);
1374 }
1375 spin_unlock_irqrestore(&tls_device_lock, flags);
1376
1377 list_for_each_entry_safe(ctx, tmp, &list, list) {
c55dcdd4
MM
1378 /* Stop offloaded TX and switch to the fallback.
1379 * tls_is_sk_tx_device_offloaded will return false.
1380 */
1381 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1382
1383 /* Stop the RX and TX resync.
1384 * tls_dev_resync must not be called after tls_dev_del.
1385 */
94ce3b64 1386 rcu_assign_pointer(ctx->netdev, NULL);
c55dcdd4
MM
1387
1388 /* Start skipping the RX resync logic completely. */
1389 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1390
1391 /* Sync with inflight packets. After this point:
1392 * TX: no non-encrypted packets will be passed to the driver.
1393 * RX: resync requests from the driver will be ignored.
1394 */
1395 synchronize_net();
1396
1397 /* Release the offload context on the driver side. */
4799ac81
BP
1398 if (ctx->tx_conf == TLS_HW)
1399 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1400 TLS_OFFLOAD_CTX_DIR_TX);
025cc2fb
MM
1401 if (ctx->rx_conf == TLS_HW &&
1402 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
4799ac81
BP
1403 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1404 TLS_OFFLOAD_CTX_DIR_RX);
c55dcdd4 1405
e8f69799 1406 dev_put(netdev);
e8f69799 1407
c55dcdd4
MM
1408 /* Move the context to a separate list for two reasons:
1409 * 1. When the context is deallocated, list_del is called.
1410 * 2. It's no longer an offloaded context, so we don't want to
1411 * run offload-specific code on this context.
1412 */
1413 spin_lock_irqsave(&tls_device_lock, flags);
1414 list_move_tail(&ctx->list, &tls_device_down_list);
1415 spin_unlock_irqrestore(&tls_device_lock, flags);
1416
1417 /* Device contexts for RX and TX will be freed in on sk_destruct
1418 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
3740651b 1419 * Now release the ref taken above.
c55dcdd4 1420 */
f6336724
MM
1421 if (refcount_dec_and_test(&ctx->refcount)) {
1422 /* sk_destruct ran after tls_device_down took a ref, and
1423 * it returned early. Complete the destruction here.
1424 */
1425 list_del(&ctx->list);
3740651b 1426 tls_device_free_ctx(ctx);
f6336724 1427 }
e8f69799
IL
1428 }
1429
1430 up_write(&device_offload_lock);
1431
7adc91e0 1432 flush_workqueue(destruct_wq);
e8f69799
IL
1433
1434 return NOTIFY_DONE;
1435}
1436
1437static int tls_dev_event(struct notifier_block *this, unsigned long event,
1438 void *ptr)
1439{
1440 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1441
c3f4a6c3
JK
1442 if (!dev->tlsdev_ops &&
1443 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
e8f69799
IL
1444 return NOTIFY_DONE;
1445
1446 switch (event) {
1447 case NETDEV_REGISTER:
1448 case NETDEV_FEAT_CHANGE:
4e5a7332
TT
1449 if (netif_is_bond_master(dev))
1450 return NOTIFY_DONE;
4799ac81 1451 if ((dev->features & NETIF_F_HW_TLS_RX) &&
eeb2efaf 1452 !dev->tlsdev_ops->tls_dev_resync)
4799ac81
BP
1453 return NOTIFY_BAD;
1454
e8f69799
IL
1455 if (dev->tlsdev_ops &&
1456 dev->tlsdev_ops->tls_dev_add &&
1457 dev->tlsdev_ops->tls_dev_del)
1458 return NOTIFY_DONE;
1459 else
1460 return NOTIFY_BAD;
1461 case NETDEV_DOWN:
1462 return tls_device_down(dev);
1463 }
1464 return NOTIFY_DONE;
1465}
1466
1467static struct notifier_block tls_dev_notifier = {
1468 .notifier_call = tls_dev_event,
1469};
1470
3d8c51b2 1471int __init tls_device_init(void)
e8f69799 1472{
7adc91e0
TT
1473 int err;
1474
1475 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1476 if (!destruct_wq)
1477 return -ENOMEM;
1478
1479 err = register_netdevice_notifier(&tls_dev_notifier);
1480 if (err)
1481 destroy_workqueue(destruct_wq);
1482
1483 return err;
e8f69799
IL
1484}
1485
1486void __exit tls_device_cleanup(void)
1487{
1488 unregister_netdevice_notifier(&tls_dev_notifier);
7adc91e0 1489 destroy_workqueue(destruct_wq);
494bc1d2 1490 clean_acked_data_flush();
e8f69799 1491}