Merge tag 'gpio-v5.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[linux-2.6-block.git] / net / tipc / crypto.c
CommitLineData
fc1b6d6d
TL
1// SPDX-License-Identifier: GPL-2.0
2/**
3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4 *
5 * Copyright (c) 2019, Ericsson AB
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the names of the copyright holders nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include <crypto/aead.h>
38#include <crypto/aes.h>
39#include "crypto.h"
40
41#define TIPC_TX_PROBE_LIM msecs_to_jiffies(1000) /* > 1s */
42#define TIPC_TX_LASTING_LIM msecs_to_jiffies(120000) /* 2 mins */
43#define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */
44#define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(180000) /* 3 mins */
45#define TIPC_MAX_TFMS_DEF 10
46#define TIPC_MAX_TFMS_LIM 1000
47
48/**
49 * TIPC Key ids
50 */
51enum {
52 KEY_UNUSED = 0,
53 KEY_MIN,
54 KEY_1 = KEY_MIN,
55 KEY_2,
56 KEY_3,
57 KEY_MAX = KEY_3,
58};
59
60/**
61 * TIPC Crypto statistics
62 */
63enum {
64 STAT_OK,
65 STAT_NOK,
66 STAT_ASYNC,
67 STAT_ASYNC_OK,
68 STAT_ASYNC_NOK,
69 STAT_BADKEYS, /* tx only */
70 STAT_BADMSGS = STAT_BADKEYS, /* rx only */
71 STAT_NOKEYS,
72 STAT_SWITCHES,
73
74 MAX_STATS,
75};
76
77/* TIPC crypto statistics' header */
78static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
79 "async_nok", "badmsgs", "nokeys",
80 "switches"};
81
82/* Max TFMs number per key */
83int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
84
85/**
86 * struct tipc_key - TIPC keys' status indicator
87 *
88 * 7 6 5 4 3 2 1 0
89 * +-----+-----+-----+-----+-----+-----+-----+-----+
90 * key: | (reserved)|passive idx| active idx|pending idx|
91 * +-----+-----+-----+-----+-----+-----+-----+-----+
92 */
93struct tipc_key {
94#define KEY_BITS (2)
95#define KEY_MASK ((1 << KEY_BITS) - 1)
96 union {
97 struct {
98#if defined(__LITTLE_ENDIAN_BITFIELD)
99 u8 pending:2,
100 active:2,
101 passive:2, /* rx only */
102 reserved:2;
103#elif defined(__BIG_ENDIAN_BITFIELD)
104 u8 reserved:2,
105 passive:2, /* rx only */
106 active:2,
107 pending:2;
108#else
109#error "Please fix <asm/byteorder.h>"
110#endif
111 } __packed;
112 u8 keys;
113 };
114};
115
116/**
117 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
118 */
119struct tipc_tfm {
120 struct crypto_aead *tfm;
121 struct list_head list;
122};
123
124/**
125 * struct tipc_aead - TIPC AEAD key structure
126 * @tfm_entry: per-cpu pointer to one entry in TFM list
127 * @crypto: TIPC crypto owns this key
128 * @cloned: reference to the source key in case cloning
129 * @users: the number of the key users (TX/RX)
130 * @salt: the key's SALT value
131 * @authsize: authentication tag size (max = 16)
132 * @mode: crypto mode is applied to the key
133 * @hint[]: a hint for user key
134 * @rcu: struct rcu_head
135 * @seqno: the key seqno (cluster scope)
136 * @refcnt: the key reference counter
137 */
138struct tipc_aead {
139#define TIPC_AEAD_HINT_LEN (5)
140 struct tipc_tfm * __percpu *tfm_entry;
141 struct tipc_crypto *crypto;
142 struct tipc_aead *cloned;
143 atomic_t users;
144 u32 salt;
145 u8 authsize;
146 u8 mode;
147 char hint[TIPC_AEAD_HINT_LEN + 1];
148 struct rcu_head rcu;
149
150 atomic64_t seqno ____cacheline_aligned;
151 refcount_t refcnt ____cacheline_aligned;
152
153} ____cacheline_aligned;
154
155/**
156 * struct tipc_crypto_stats - TIPC Crypto statistics
157 */
158struct tipc_crypto_stats {
159 unsigned int stat[MAX_STATS];
160};
161
162/**
163 * struct tipc_crypto - TIPC TX/RX crypto structure
164 * @net: struct net
165 * @node: TIPC node (RX)
166 * @aead: array of pointers to AEAD keys for encryption/decryption
167 * @peer_rx_active: replicated peer RX active key index
168 * @key: the key states
169 * @working: the crypto is working or not
170 * @stats: the crypto statistics
171 * @sndnxt: the per-peer sndnxt (TX)
172 * @timer1: general timer 1 (jiffies)
173 * @timer2: general timer 1 (jiffies)
174 * @lock: tipc_key lock
175 */
176struct tipc_crypto {
177 struct net *net;
178 struct tipc_node *node;
179 struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */
180 atomic_t peer_rx_active;
181 struct tipc_key key;
182 u8 working:1;
183 struct tipc_crypto_stats __percpu *stats;
184
185 atomic64_t sndnxt ____cacheline_aligned;
186 unsigned long timer1;
187 unsigned long timer2;
188 spinlock_t lock; /* crypto lock */
189
190} ____cacheline_aligned;
191
192/* struct tipc_crypto_tx_ctx - TX context for callbacks */
193struct tipc_crypto_tx_ctx {
194 struct tipc_aead *aead;
195 struct tipc_bearer *bearer;
196 struct tipc_media_addr dst;
197};
198
199/* struct tipc_crypto_rx_ctx - RX context for callbacks */
200struct tipc_crypto_rx_ctx {
201 struct tipc_aead *aead;
202 struct tipc_bearer *bearer;
203};
204
205static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
206static inline void tipc_aead_put(struct tipc_aead *aead);
207static void tipc_aead_free(struct rcu_head *rp);
208static int tipc_aead_users(struct tipc_aead __rcu *aead);
209static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
210static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
211static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
212static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
213static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
214 u8 mode);
215static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
216static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
217 unsigned int crypto_ctx_size,
218 u8 **iv, struct aead_request **req,
219 struct scatterlist **sg, int nsg);
220static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
221 struct tipc_bearer *b,
222 struct tipc_media_addr *dst,
223 struct tipc_node *__dnode);
224static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
225static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
226 struct sk_buff *skb, struct tipc_bearer *b);
227static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
228static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
229static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
230 u8 tx_key, struct sk_buff *skb,
231 struct tipc_crypto *__rx);
232static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
233 u8 new_passive,
234 u8 new_active,
235 u8 new_pending);
236static int tipc_crypto_key_attach(struct tipc_crypto *c,
237 struct tipc_aead *aead, u8 pos);
238static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
239static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
240 struct tipc_crypto *rx,
241 struct sk_buff *skb);
242static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
243 struct tipc_msg *hdr);
244static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
245static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
246 struct tipc_bearer *b,
247 struct sk_buff **skb, int err);
248static void tipc_crypto_do_cmd(struct net *net, int cmd);
249static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
250#ifdef TIPC_CRYPTO_DEBUG
251static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
252 char *buf);
253#endif
254
255#define key_next(cur) ((cur) % KEY_MAX + 1)
256
257#define tipc_aead_rcu_ptr(rcu_ptr, lock) \
258 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
259
fc1b6d6d
TL
260#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \
261do { \
262 typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \
263 lockdep_is_held(lock)); \
264 rcu_assign_pointer((rcu_ptr), (ptr)); \
265 tipc_aead_put(__tmp); \
266} while (0)
267
268#define tipc_crypto_key_detach(rcu_ptr, lock) \
269 tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
270
271/**
272 * tipc_aead_key_validate - Validate a AEAD user key
273 */
274int tipc_aead_key_validate(struct tipc_aead_key *ukey)
275{
276 int keylen;
277
278 /* Check if algorithm exists */
279 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
280 pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name);
281 return -ENODEV;
282 }
283
284 /* Currently, we only support the "gcm(aes)" cipher algorithm */
285 if (strcmp(ukey->alg_name, "gcm(aes)"))
286 return -ENOTSUPP;
287
288 /* Check if key size is correct */
289 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
290 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
291 keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
292 keylen != TIPC_AES_GCM_KEY_SIZE_256))
293 return -EINVAL;
294
295 return 0;
296}
297
298static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
299{
300 struct tipc_aead *tmp;
301
302 rcu_read_lock();
303 tmp = rcu_dereference(aead);
304 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
305 tmp = NULL;
306 rcu_read_unlock();
307
308 return tmp;
309}
310
311static inline void tipc_aead_put(struct tipc_aead *aead)
312{
313 if (aead && refcount_dec_and_test(&aead->refcnt))
314 call_rcu(&aead->rcu, tipc_aead_free);
315}
316
317/**
318 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
319 * @rp: rcu head pointer
320 */
321static void tipc_aead_free(struct rcu_head *rp)
322{
323 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
324 struct tipc_tfm *tfm_entry, *head, *tmp;
325
326 if (aead->cloned) {
327 tipc_aead_put(aead->cloned);
328 } else {
bb8872a1
TL
329 head = *get_cpu_ptr(aead->tfm_entry);
330 put_cpu_ptr(aead->tfm_entry);
fc1b6d6d
TL
331 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
332 crypto_free_aead(tfm_entry->tfm);
333 list_del(&tfm_entry->list);
334 kfree(tfm_entry);
335 }
336 /* Free the head */
337 crypto_free_aead(head->tfm);
338 list_del(&head->list);
339 kfree(head);
340 }
341 free_percpu(aead->tfm_entry);
342 kfree(aead);
343}
344
345static int tipc_aead_users(struct tipc_aead __rcu *aead)
346{
347 struct tipc_aead *tmp;
348 int users = 0;
349
350 rcu_read_lock();
351 tmp = rcu_dereference(aead);
352 if (tmp)
353 users = atomic_read(&tmp->users);
354 rcu_read_unlock();
355
356 return users;
357}
358
359static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
360{
361 struct tipc_aead *tmp;
362
363 rcu_read_lock();
364 tmp = rcu_dereference(aead);
365 if (tmp)
366 atomic_add_unless(&tmp->users, 1, lim);
367 rcu_read_unlock();
368}
369
370static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
371{
372 struct tipc_aead *tmp;
373
374 rcu_read_lock();
375 tmp = rcu_dereference(aead);
376 if (tmp)
377 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
378 rcu_read_unlock();
379}
380
381static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
382{
383 struct tipc_aead *tmp;
384 int cur;
385
386 rcu_read_lock();
387 tmp = rcu_dereference(aead);
388 if (tmp) {
389 do {
390 cur = atomic_read(&tmp->users);
391 if (cur == val)
392 break;
393 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
394 }
395 rcu_read_unlock();
396}
397
398/**
399 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
400 */
401static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
402{
bb8872a1
TL
403 struct tipc_tfm **tfm_entry;
404 struct crypto_aead *tfm;
fc1b6d6d 405
bb8872a1 406 tfm_entry = get_cpu_ptr(aead->tfm_entry);
fc1b6d6d 407 *tfm_entry = list_next_entry(*tfm_entry, list);
bb8872a1
TL
408 tfm = (*tfm_entry)->tfm;
409 put_cpu_ptr(tfm_entry);
410
411 return tfm;
fc1b6d6d
TL
412}
413
414/**
415 * tipc_aead_init - Initiate TIPC AEAD
416 * @aead: returned new TIPC AEAD key handle pointer
417 * @ukey: pointer to user key data
418 * @mode: the key mode
419 *
420 * Allocate a (list of) new cipher transformation (TFM) with the specific user
421 * key data if valid. The number of the allocated TFMs can be set via the sysfs
422 * "net/tipc/max_tfms" first.
423 * Also, all the other AEAD data are also initialized.
424 *
425 * Return: 0 if the initiation is successful, otherwise: < 0
426 */
427static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
428 u8 mode)
429{
430 struct tipc_tfm *tfm_entry, *head;
431 struct crypto_aead *tfm;
432 struct tipc_aead *tmp;
433 int keylen, err, cpu;
434 int tfm_cnt = 0;
435
436 if (unlikely(*aead))
437 return -EEXIST;
438
439 /* Allocate a new AEAD */
440 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
441 if (unlikely(!tmp))
442 return -ENOMEM;
443
444 /* The key consists of two parts: [AES-KEY][SALT] */
445 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
446
447 /* Allocate per-cpu TFM entry pointer */
448 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
449 if (!tmp->tfm_entry) {
453431a5 450 kfree_sensitive(tmp);
fc1b6d6d
TL
451 return -ENOMEM;
452 }
453
454 /* Make a list of TFMs with the user key data */
455 do {
456 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
457 if (IS_ERR(tfm)) {
458 err = PTR_ERR(tfm);
459 break;
460 }
461
462 if (unlikely(!tfm_cnt &&
463 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
464 crypto_free_aead(tfm);
465 err = -ENOTSUPP;
466 break;
467 }
468
c33fdc34 469 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
fc1b6d6d
TL
470 err |= crypto_aead_setkey(tfm, ukey->key, keylen);
471 if (unlikely(err)) {
472 crypto_free_aead(tfm);
473 break;
474 }
475
476 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
477 if (unlikely(!tfm_entry)) {
478 crypto_free_aead(tfm);
479 err = -ENOMEM;
480 break;
481 }
482 INIT_LIST_HEAD(&tfm_entry->list);
483 tfm_entry->tfm = tfm;
484
485 /* First entry? */
486 if (!tfm_cnt) {
487 head = tfm_entry;
488 for_each_possible_cpu(cpu) {
489 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
490 }
491 } else {
492 list_add_tail(&tfm_entry->list, &head->list);
493 }
494
495 } while (++tfm_cnt < sysctl_tipc_max_tfms);
496
497 /* Not any TFM is allocated? */
498 if (!tfm_cnt) {
499 free_percpu(tmp->tfm_entry);
453431a5 500 kfree_sensitive(tmp);
fc1b6d6d
TL
501 return err;
502 }
503
504 /* Copy some chars from the user key as a hint */
505 memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN);
506 tmp->hint[TIPC_AEAD_HINT_LEN] = '\0';
507
508 /* Initialize the other data */
509 tmp->mode = mode;
510 tmp->cloned = NULL;
511 tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
512 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
513 atomic_set(&tmp->users, 0);
514 atomic64_set(&tmp->seqno, 0);
515 refcount_set(&tmp->refcnt, 1);
516
517 *aead = tmp;
518 return 0;
519}
520
521/**
522 * tipc_aead_clone - Clone a TIPC AEAD key
523 * @dst: dest key for the cloning
524 * @src: source key to clone from
525 *
526 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
527 * common for the keys.
528 * A reference to the source is hold in the "cloned" pointer for the later
529 * freeing purposes.
530 *
531 * Note: this must be done in cluster-key mode only!
532 * Return: 0 in case of success, otherwise < 0
533 */
534static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
535{
536 struct tipc_aead *aead;
537 int cpu;
538
539 if (!src)
540 return -ENOKEY;
541
542 if (src->mode != CLUSTER_KEY)
543 return -EINVAL;
544
545 if (unlikely(*dst))
546 return -EEXIST;
547
548 aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
549 if (unlikely(!aead))
550 return -ENOMEM;
551
552 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
553 if (unlikely(!aead->tfm_entry)) {
453431a5 554 kfree_sensitive(aead);
fc1b6d6d
TL
555 return -ENOMEM;
556 }
557
558 for_each_possible_cpu(cpu) {
559 *per_cpu_ptr(aead->tfm_entry, cpu) =
560 *per_cpu_ptr(src->tfm_entry, cpu);
561 }
562
563 memcpy(aead->hint, src->hint, sizeof(src->hint));
564 aead->mode = src->mode;
565 aead->salt = src->salt;
566 aead->authsize = src->authsize;
567 atomic_set(&aead->users, 0);
568 atomic64_set(&aead->seqno, 0);
569 refcount_set(&aead->refcnt, 1);
570
571 WARN_ON(!refcount_inc_not_zero(&src->refcnt));
572 aead->cloned = src;
573
574 *dst = aead;
575 return 0;
576}
577
578/**
579 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
580 * @tfm: cipher handle to be registered with the request
581 * @crypto_ctx_size: size of crypto context for callback
582 * @iv: returned pointer to IV data
583 * @req: returned pointer to AEAD request data
584 * @sg: returned pointer to SG lists
585 * @nsg: number of SG lists to be allocated
586 *
587 * Allocate memory to store the crypto context data, AEAD request, IV and SG
588 * lists, the memory layout is as follows:
589 * crypto_ctx || iv || aead_req || sg[]
590 *
591 * Return: the pointer to the memory areas in case of success, otherwise NULL
592 */
593static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
594 unsigned int crypto_ctx_size,
595 u8 **iv, struct aead_request **req,
596 struct scatterlist **sg, int nsg)
597{
598 unsigned int iv_size, req_size;
599 unsigned int len;
600 u8 *mem;
601
602 iv_size = crypto_aead_ivsize(tfm);
603 req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
604
605 len = crypto_ctx_size;
606 len += iv_size;
607 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
608 len = ALIGN(len, crypto_tfm_ctx_alignment());
609 len += req_size;
610 len = ALIGN(len, __alignof__(struct scatterlist));
611 len += nsg * sizeof(**sg);
612
613 mem = kmalloc(len, GFP_ATOMIC);
614 if (!mem)
615 return NULL;
616
617 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
618 crypto_aead_alignmask(tfm) + 1);
619 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
620 crypto_tfm_ctx_alignment());
621 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
622 __alignof__(struct scatterlist));
623
624 return (void *)mem;
625}
626
627/**
628 * tipc_aead_encrypt - Encrypt a message
629 * @aead: TIPC AEAD key for the message encryption
630 * @skb: the input/output skb
631 * @b: TIPC bearer where the message will be delivered after the encryption
632 * @dst: the destination media address
633 * @__dnode: TIPC dest node if "known"
634 *
635 * Return:
636 * 0 : if the encryption has completed
637 * -EINPROGRESS/-EBUSY : if a callback will be performed
638 * < 0 : the encryption has failed
639 */
640static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
641 struct tipc_bearer *b,
642 struct tipc_media_addr *dst,
643 struct tipc_node *__dnode)
644{
645 struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
646 struct tipc_crypto_tx_ctx *tx_ctx;
647 struct aead_request *req;
648 struct sk_buff *trailer;
649 struct scatterlist *sg;
650 struct tipc_ehdr *ehdr;
651 int ehsz, len, tailen, nsg, rc;
652 void *ctx;
653 u32 salt;
654 u8 *iv;
655
656 /* Make sure message len at least 4-byte aligned */
657 len = ALIGN(skb->len, 4);
658 tailen = len - skb->len + aead->authsize;
659
660 /* Expand skb tail for authentication tag:
661 * As for simplicity, we'd have made sure skb having enough tailroom
662 * for authentication tag @skb allocation. Even when skb is nonlinear
663 * but there is no frag_list, it should be still fine!
664 * Otherwise, we must cow it to be a writable buffer with the tailroom.
665 */
666#ifdef TIPC_CRYPTO_DEBUG
667 SKB_LINEAR_ASSERT(skb);
668 if (tailen > skb_tailroom(skb)) {
669 pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n",
670 skb_tailroom(skb), tailen);
671 }
672#endif
673
674 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
675 nsg = 1;
676 trailer = skb;
677 } else {
678 /* TODO: We could avoid skb_cow_data() if skb has no frag_list
679 * e.g. by skb_fill_page_desc() to add another page to the skb
680 * with the wanted tailen... However, page skbs look not often,
681 * so take it easy now!
682 * Cloned skbs e.g. from link_xmit() seems no choice though :(
683 */
684 nsg = skb_cow_data(skb, tailen, &trailer);
685 if (unlikely(nsg < 0)) {
686 pr_err("TX: skb_cow_data() returned %d\n", nsg);
687 return nsg;
688 }
689 }
690
691 pskb_put(skb, trailer, tailen);
692
693 /* Allocate memory for the AEAD operation */
694 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
695 if (unlikely(!ctx))
696 return -ENOMEM;
697 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
698
699 /* Map skb to the sg lists */
700 sg_init_table(sg, nsg);
701 rc = skb_to_sgvec(skb, sg, 0, skb->len);
702 if (unlikely(rc < 0)) {
703 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
704 goto exit;
705 }
706
707 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
708 * In case we're in cluster-key mode, SALT is varied by xor-ing with
709 * the source address (or w0 of id), otherwise with the dest address
710 * if dest is known.
711 */
712 ehdr = (struct tipc_ehdr *)skb->data;
713 salt = aead->salt;
714 if (aead->mode == CLUSTER_KEY)
715 salt ^= ehdr->addr; /* __be32 */
716 else if (__dnode)
717 salt ^= tipc_node_get_addr(__dnode);
718 memcpy(iv, &salt, 4);
719 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
720
721 /* Prepare request */
722 ehsz = tipc_ehdr_size(ehdr);
723 aead_request_set_tfm(req, tfm);
724 aead_request_set_ad(req, ehsz);
725 aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
726
727 /* Set callback function & data */
728 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
729 tipc_aead_encrypt_done, skb);
730 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
731 tx_ctx->aead = aead;
732 tx_ctx->bearer = b;
733 memcpy(&tx_ctx->dst, dst, sizeof(*dst));
734
735 /* Hold bearer */
736 if (unlikely(!tipc_bearer_hold(b))) {
737 rc = -ENODEV;
738 goto exit;
739 }
740
741 /* Now, do encrypt */
742 rc = crypto_aead_encrypt(req);
743 if (rc == -EINPROGRESS || rc == -EBUSY)
744 return rc;
745
746 tipc_bearer_put(b);
747
748exit:
749 kfree(ctx);
750 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
751 return rc;
752}
753
754static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
755{
756 struct sk_buff *skb = base->data;
757 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
758 struct tipc_bearer *b = tx_ctx->bearer;
759 struct tipc_aead *aead = tx_ctx->aead;
760 struct tipc_crypto *tx = aead->crypto;
761 struct net *net = tx->net;
762
763 switch (err) {
764 case 0:
765 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
f6db9096 766 rcu_read_lock();
fc1b6d6d
TL
767 if (likely(test_bit(0, &b->up)))
768 b->media->send_msg(net, skb, b, &tx_ctx->dst);
769 else
770 kfree_skb(skb);
f6db9096 771 rcu_read_unlock();
fc1b6d6d
TL
772 break;
773 case -EINPROGRESS:
774 return;
775 default:
776 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
777 kfree_skb(skb);
778 break;
779 }
780
781 kfree(tx_ctx);
782 tipc_bearer_put(b);
783 tipc_aead_put(aead);
784}
785
786/**
787 * tipc_aead_decrypt - Decrypt an encrypted message
788 * @net: struct net
789 * @aead: TIPC AEAD for the message decryption
790 * @skb: the input/output skb
791 * @b: TIPC bearer where the message has been received
792 *
793 * Return:
794 * 0 : if the decryption has completed
795 * -EINPROGRESS/-EBUSY : if a callback will be performed
796 * < 0 : the decryption has failed
797 */
798static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
799 struct sk_buff *skb, struct tipc_bearer *b)
800{
801 struct tipc_crypto_rx_ctx *rx_ctx;
802 struct aead_request *req;
803 struct crypto_aead *tfm;
804 struct sk_buff *unused;
805 struct scatterlist *sg;
806 struct tipc_ehdr *ehdr;
807 int ehsz, nsg, rc;
808 void *ctx;
809 u32 salt;
810 u8 *iv;
811
812 if (unlikely(!aead))
813 return -ENOKEY;
814
815 /* Cow skb data if needed */
816 if (likely(!skb_cloned(skb) &&
817 (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
818 nsg = 1 + skb_shinfo(skb)->nr_frags;
819 } else {
820 nsg = skb_cow_data(skb, 0, &unused);
821 if (unlikely(nsg < 0)) {
822 pr_err("RX: skb_cow_data() returned %d\n", nsg);
823 return nsg;
824 }
825 }
826
827 /* Allocate memory for the AEAD operation */
828 tfm = tipc_aead_tfm_next(aead);
829 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
830 if (unlikely(!ctx))
831 return -ENOMEM;
832 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
833
834 /* Map skb to the sg lists */
835 sg_init_table(sg, nsg);
836 rc = skb_to_sgvec(skb, sg, 0, skb->len);
837 if (unlikely(rc < 0)) {
838 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
839 goto exit;
840 }
841
842 /* Reconstruct IV: */
843 ehdr = (struct tipc_ehdr *)skb->data;
844 salt = aead->salt;
845 if (aead->mode == CLUSTER_KEY)
846 salt ^= ehdr->addr; /* __be32 */
847 else if (ehdr->destined)
848 salt ^= tipc_own_addr(net);
849 memcpy(iv, &salt, 4);
850 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
851
852 /* Prepare request */
853 ehsz = tipc_ehdr_size(ehdr);
854 aead_request_set_tfm(req, tfm);
855 aead_request_set_ad(req, ehsz);
856 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
857
858 /* Set callback function & data */
859 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
860 tipc_aead_decrypt_done, skb);
861 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
862 rx_ctx->aead = aead;
863 rx_ctx->bearer = b;
864
865 /* Hold bearer */
866 if (unlikely(!tipc_bearer_hold(b))) {
867 rc = -ENODEV;
868 goto exit;
869 }
870
871 /* Now, do decrypt */
872 rc = crypto_aead_decrypt(req);
873 if (rc == -EINPROGRESS || rc == -EBUSY)
874 return rc;
875
876 tipc_bearer_put(b);
877
878exit:
879 kfree(ctx);
880 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
881 return rc;
882}
883
884static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
885{
886 struct sk_buff *skb = base->data;
887 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
888 struct tipc_bearer *b = rx_ctx->bearer;
889 struct tipc_aead *aead = rx_ctx->aead;
890 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
891 struct net *net = aead->crypto->net;
892
893 switch (err) {
894 case 0:
895 this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
896 break;
897 case -EINPROGRESS:
898 return;
899 default:
900 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
901 break;
902 }
903
904 kfree(rx_ctx);
905 tipc_crypto_rcv_complete(net, aead, b, &skb, err);
906 if (likely(skb)) {
907 if (likely(test_bit(0, &b->up)))
908 tipc_rcv(net, skb, b);
909 else
910 kfree_skb(skb);
911 }
912
913 tipc_bearer_put(b);
914}
915
916static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
917{
918 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
919}
920
921/**
922 * tipc_ehdr_validate - Validate an encryption message
923 * @skb: the message buffer
924 *
925 * Returns "true" if this is a valid encryption message, otherwise "false"
926 */
927bool tipc_ehdr_validate(struct sk_buff *skb)
928{
929 struct tipc_ehdr *ehdr;
930 int ehsz;
931
932 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
933 return false;
934
935 ehdr = (struct tipc_ehdr *)skb->data;
936 if (unlikely(ehdr->version != TIPC_EVERSION))
937 return false;
938 ehsz = tipc_ehdr_size(ehdr);
939 if (unlikely(!pskb_may_pull(skb, ehsz)))
940 return false;
941 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
942 return false;
943 if (unlikely(!ehdr->tx_key))
944 return false;
945
946 return true;
947}
948
949/**
950 * tipc_ehdr_build - Build TIPC encryption message header
951 * @net: struct net
952 * @aead: TX AEAD key to be used for the message encryption
953 * @tx_key: key id used for the message encryption
954 * @skb: input/output message skb
955 * @__rx: RX crypto handle if dest is "known"
956 *
957 * Return: the header size if the building is successful, otherwise < 0
958 */
959static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
960 u8 tx_key, struct sk_buff *skb,
961 struct tipc_crypto *__rx)
962{
963 struct tipc_msg *hdr = buf_msg(skb);
964 struct tipc_ehdr *ehdr;
965 u32 user = msg_user(hdr);
966 u64 seqno;
967 int ehsz;
968
969 /* Make room for encryption header */
970 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
971 WARN_ON(skb_headroom(skb) < ehsz);
972 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
973
974 /* Obtain a seqno first:
975 * Use the key seqno (= cluster wise) if dest is unknown or we're in
976 * cluster key mode, otherwise it's better for a per-peer seqno!
977 */
978 if (!__rx || aead->mode == CLUSTER_KEY)
979 seqno = atomic64_inc_return(&aead->seqno);
980 else
981 seqno = atomic64_inc_return(&__rx->sndnxt);
982
983 /* Revoke the key if seqno is wrapped around */
984 if (unlikely(!seqno))
985 return tipc_crypto_key_revoke(net, tx_key);
986
987 /* Word 1-2 */
988 ehdr->seqno = cpu_to_be64(seqno);
989
990 /* Words 0, 3- */
991 ehdr->version = TIPC_EVERSION;
992 ehdr->user = 0;
993 ehdr->keepalive = 0;
994 ehdr->tx_key = tx_key;
995 ehdr->destined = (__rx) ? 1 : 0;
996 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
997 ehdr->reserved_1 = 0;
998 ehdr->reserved_2 = 0;
999
1000 switch (user) {
1001 case LINK_CONFIG:
1002 ehdr->user = LINK_CONFIG;
1003 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1004 break;
1005 default:
1006 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1007 ehdr->user = LINK_PROTOCOL;
1008 ehdr->keepalive = msg_is_keepalive(hdr);
1009 }
1010 ehdr->addr = hdr->hdr[3];
1011 break;
1012 }
1013
1014 return ehsz;
1015}
1016
1017static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1018 u8 new_passive,
1019 u8 new_active,
1020 u8 new_pending)
1021{
1022#ifdef TIPC_CRYPTO_DEBUG
1023 struct tipc_key old = c->key;
1024 char buf[32];
1025#endif
1026
1027 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1028 ((new_active & KEY_MASK) << (KEY_BITS)) |
1029 ((new_pending & KEY_MASK));
1030
1031#ifdef TIPC_CRYPTO_DEBUG
1032 pr_info("%s(%s): key changing %s ::%pS\n",
1033 (c->node) ? "RX" : "TX",
1034 (c->node) ? tipc_node_get_id_str(c->node) :
1035 tipc_own_id_string(c->net),
1036 tipc_key_change_dump(old, c->key, buf),
1037 __builtin_return_address(0));
1038#endif
1039}
1040
1041/**
1042 * tipc_crypto_key_init - Initiate a new user / AEAD key
1043 * @c: TIPC crypto to which new key is attached
1044 * @ukey: the user key
1045 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1046 *
1047 * A new TIPC AEAD key will be allocated and initiated with the specified user
1048 * key, then attached to the TIPC crypto.
1049 *
1050 * Return: new key id in case of success, otherwise: < 0
1051 */
1052int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1053 u8 mode)
1054{
1055 struct tipc_aead *aead = NULL;
1056 int rc = 0;
1057
1058 /* Initiate with the new user key */
1059 rc = tipc_aead_init(&aead, ukey, mode);
1060
1061 /* Attach it to the crypto */
1062 if (likely(!rc)) {
1063 rc = tipc_crypto_key_attach(c, aead, 0);
1064 if (rc < 0)
1065 tipc_aead_free(&aead->rcu);
1066 }
1067
1068 pr_info("%s(%s): key initiating, rc %d!\n",
1069 (c->node) ? "RX" : "TX",
1070 (c->node) ? tipc_node_get_id_str(c->node) :
1071 tipc_own_id_string(c->net),
1072 rc);
1073
1074 return rc;
1075}
1076
1077/**
1078 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1079 * @c: TIPC crypto to which the new AEAD key is attached
1080 * @aead: the new AEAD key pointer
1081 * @pos: desired slot in the crypto key array, = 0 if any!
1082 *
1083 * Return: new key id in case of success, otherwise: -EBUSY
1084 */
1085static int tipc_crypto_key_attach(struct tipc_crypto *c,
1086 struct tipc_aead *aead, u8 pos)
1087{
1088 u8 new_pending, new_passive, new_key;
1089 struct tipc_key key;
1090 int rc = -EBUSY;
1091
1092 spin_lock_bh(&c->lock);
1093 key = c->key;
1094 if (key.active && key.passive)
1095 goto exit;
1096 if (key.passive && !tipc_aead_users(c->aead[key.passive]))
1097 goto exit;
1098 if (key.pending) {
1099 if (pos)
1100 goto exit;
1101 if (tipc_aead_users(c->aead[key.pending]) > 0)
1102 goto exit;
1103 /* Replace it */
1104 new_pending = key.pending;
1105 new_passive = key.passive;
1106 new_key = new_pending;
1107 } else {
1108 if (pos) {
1109 if (key.active && pos != key_next(key.active)) {
1110 new_pending = key.pending;
1111 new_passive = pos;
1112 new_key = new_passive;
1113 goto attach;
1114 } else if (!key.active && !key.passive) {
1115 new_pending = pos;
1116 new_passive = key.passive;
1117 new_key = new_pending;
1118 goto attach;
1119 }
1120 }
1121 new_pending = key_next(key.active ?: key.passive);
1122 new_passive = key.passive;
1123 new_key = new_pending;
1124 }
1125
1126attach:
1127 aead->crypto = c;
1128 tipc_crypto_key_set_state(c, new_passive, key.active, new_pending);
1129 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1130
1131 c->working = 1;
1132 c->timer1 = jiffies;
1133 c->timer2 = jiffies;
1134 rc = new_key;
1135
1136exit:
1137 spin_unlock_bh(&c->lock);
1138 return rc;
1139}
1140
1141void tipc_crypto_key_flush(struct tipc_crypto *c)
1142{
1143 int k;
1144
1145 spin_lock_bh(&c->lock);
1146 c->working = 0;
1147 tipc_crypto_key_set_state(c, 0, 0, 0);
1148 for (k = KEY_MIN; k <= KEY_MAX; k++)
1149 tipc_crypto_key_detach(c->aead[k], &c->lock);
1150 atomic_set(&c->peer_rx_active, 0);
1151 atomic64_set(&c->sndnxt, 0);
1152 spin_unlock_bh(&c->lock);
1153}
1154
1155/**
1156 * tipc_crypto_key_try_align - Align RX keys if possible
1157 * @rx: RX crypto handle
1158 * @new_pending: new pending slot if aligned (= TX key from peer)
1159 *
1160 * Peer has used an unknown key slot, this only happens when peer has left and
1161 * rejoned, or we are newcomer.
1162 * That means, there must be no active key but a pending key at unaligned slot.
1163 * If so, we try to move the pending key to the new slot.
1164 * Note: A potential passive key can exist, it will be shifted correspondingly!
1165 *
1166 * Return: "true" if key is successfully aligned, otherwise "false"
1167 */
1168static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1169{
1170 struct tipc_aead *tmp1, *tmp2 = NULL;
1171 struct tipc_key key;
1172 bool aligned = false;
1173 u8 new_passive = 0;
1174 int x;
1175
1176 spin_lock(&rx->lock);
1177 key = rx->key;
1178 if (key.pending == new_pending) {
1179 aligned = true;
1180 goto exit;
1181 }
1182 if (key.active)
1183 goto exit;
1184 if (!key.pending)
1185 goto exit;
1186 if (tipc_aead_users(rx->aead[key.pending]) > 0)
1187 goto exit;
1188
1189 /* Try to "isolate" this pending key first */
1190 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1191 if (!refcount_dec_if_one(&tmp1->refcnt))
1192 goto exit;
1193 rcu_assign_pointer(rx->aead[key.pending], NULL);
1194
1195 /* Move passive key if any */
1196 if (key.passive) {
1a271ebb 1197 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
fc1b6d6d
TL
1198 x = (key.passive - key.pending + new_pending) % KEY_MAX;
1199 new_passive = (x <= 0) ? x + KEY_MAX : x;
1200 }
1201
1202 /* Re-allocate the key(s) */
1203 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1204 rcu_assign_pointer(rx->aead[new_pending], tmp1);
1205 if (new_passive)
1206 rcu_assign_pointer(rx->aead[new_passive], tmp2);
1207 refcount_set(&tmp1->refcnt, 1);
1208 aligned = true;
1209 pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node));
1210
1211exit:
1212 spin_unlock(&rx->lock);
1213 return aligned;
1214}
1215
1216/**
1217 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1218 * @tx: TX crypto handle
1219 * @rx: RX crypto handle (can be NULL)
1220 * @skb: the message skb which will be decrypted later
1221 *
1222 * This function looks up the existing TX keys and pick one which is suitable
1223 * for the message decryption, that must be a cluster key and not used before
1224 * on the same message (i.e. recursive).
1225 *
1226 * Return: the TX AEAD key handle in case of success, otherwise NULL
1227 */
1228static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1229 struct tipc_crypto *rx,
1230 struct sk_buff *skb)
1231{
1232 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1233 struct tipc_aead *aead = NULL;
1234 struct tipc_key key = tx->key;
1235 u8 k, i = 0;
1236
1237 /* Initialize data if not yet */
1238 if (!skb_cb->tx_clone_deferred) {
1239 skb_cb->tx_clone_deferred = 1;
1240 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1241 }
1242
1243 skb_cb->tx_clone_ctx.rx = rx;
1244 if (++skb_cb->tx_clone_ctx.recurs > 2)
1245 return NULL;
1246
1247 /* Pick one TX key */
1248 spin_lock(&tx->lock);
1249 do {
1250 k = (i == 0) ? key.pending :
1251 ((i == 1) ? key.active : key.passive);
1252 if (!k)
1253 continue;
1254 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1255 if (!aead)
1256 continue;
1257 if (aead->mode != CLUSTER_KEY ||
1258 aead == skb_cb->tx_clone_ctx.last) {
1259 aead = NULL;
1260 continue;
1261 }
1262 /* Ok, found one cluster key */
1263 skb_cb->tx_clone_ctx.last = aead;
1264 WARN_ON(skb->next);
1265 skb->next = skb_clone(skb, GFP_ATOMIC);
1266 if (unlikely(!skb->next))
1267 pr_warn("Failed to clone skb for next round if any\n");
1268 WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1269 break;
1270 } while (++i < 3);
1271 spin_unlock(&tx->lock);
1272
1273 return aead;
1274}
1275
1276/**
1277 * tipc_crypto_key_synch: Synch own key data according to peer key status
1278 * @rx: RX crypto handle
1279 * @new_rx_active: latest RX active key from peer
1280 * @hdr: TIPCv2 message
1281 *
1282 * This function updates the peer node related data as the peer RX active key
1283 * has changed, so the number of TX keys' users on this node are increased and
1284 * decreased correspondingly.
1285 *
1286 * The "per-peer" sndnxt is also reset when the peer key has switched.
1287 */
1288static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
1289 struct tipc_msg *hdr)
1290{
1291 struct net *net = rx->net;
1292 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1293 u8 cur_rx_active;
1294
1295 /* TX might be even not ready yet */
1296 if (unlikely(!tx->key.active && !tx->key.pending))
1297 return;
1298
1299 cur_rx_active = atomic_read(&rx->peer_rx_active);
1300 if (likely(cur_rx_active == new_rx_active))
1301 return;
1302
1303 /* Make sure this message destined for this node */
1304 if (unlikely(msg_short(hdr) ||
1305 msg_destnode(hdr) != tipc_own_addr(net)))
1306 return;
1307
1308 /* Peer RX active key has changed, try to update owns' & TX users */
1309 if (atomic_cmpxchg(&rx->peer_rx_active,
1310 cur_rx_active,
1311 new_rx_active) == cur_rx_active) {
1312 if (new_rx_active)
1313 tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX);
1314 if (cur_rx_active)
1315 tipc_aead_users_dec(tx->aead[cur_rx_active], 0);
1316
1317 atomic64_set(&rx->sndnxt, 0);
1318 /* Mark the point TX key users changed */
1319 tx->timer1 = jiffies;
1320
1321#ifdef TIPC_CRYPTO_DEBUG
1322 pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n",
1323 tipc_own_id_string(net), cur_rx_active,
1324 new_rx_active, tipc_node_get_id_str(rx->node));
1325#endif
1326 }
1327}
1328
1329static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1330{
1331 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1332 struct tipc_key key;
1333
1334 spin_lock(&tx->lock);
1335 key = tx->key;
1336 WARN_ON(!key.active || tx_key != key.active);
1337
1338 /* Free the active key */
1339 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1340 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1341 spin_unlock(&tx->lock);
1342
1343 pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net));
1344 return -EKEYREVOKED;
1345}
1346
1347int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1348 struct tipc_node *node)
1349{
1350 struct tipc_crypto *c;
1351
1352 if (*crypto)
1353 return -EEXIST;
1354
1355 /* Allocate crypto */
1356 c = kzalloc(sizeof(*c), GFP_ATOMIC);
1357 if (!c)
1358 return -ENOMEM;
1359
1360 /* Allocate statistic structure */
1361 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1362 if (!c->stats) {
453431a5 1363 kfree_sensitive(c);
fc1b6d6d
TL
1364 return -ENOMEM;
1365 }
1366
1367 c->working = 0;
1368 c->net = net;
1369 c->node = node;
1370 tipc_crypto_key_set_state(c, 0, 0, 0);
1371 atomic_set(&c->peer_rx_active, 0);
1372 atomic64_set(&c->sndnxt, 0);
1373 c->timer1 = jiffies;
1374 c->timer2 = jiffies;
1375 spin_lock_init(&c->lock);
1376 *crypto = c;
1377
1378 return 0;
1379}
1380
1381void tipc_crypto_stop(struct tipc_crypto **crypto)
1382{
1383 struct tipc_crypto *c, *tx, *rx;
1384 bool is_rx;
1385 u8 k;
1386
1387 if (!*crypto)
1388 return;
1389
1390 rcu_read_lock();
1391 /* RX stopping? => decrease TX key users if any */
1392 is_rx = !!((*crypto)->node);
1393 if (is_rx) {
1394 rx = *crypto;
1395 tx = tipc_net(rx->net)->crypto_tx;
1396 k = atomic_read(&rx->peer_rx_active);
1397 if (k) {
1398 tipc_aead_users_dec(tx->aead[k], 0);
1399 /* Mark the point TX key users changed */
1400 tx->timer1 = jiffies;
1401 }
1402 }
1403
1404 /* Release AEAD keys */
1405 c = *crypto;
1406 for (k = KEY_MIN; k <= KEY_MAX; k++)
1407 tipc_aead_put(rcu_dereference(c->aead[k]));
1408 rcu_read_unlock();
1409
1410 pr_warn("%s(%s) has been purged, node left!\n",
1411 (is_rx) ? "RX" : "TX",
1412 (is_rx) ? tipc_node_get_id_str((*crypto)->node) :
1413 tipc_own_id_string((*crypto)->net));
1414
1415 /* Free this crypto statistics */
1416 free_percpu(c->stats);
1417
1418 *crypto = NULL;
453431a5 1419 kfree_sensitive(c);
fc1b6d6d
TL
1420}
1421
1422void tipc_crypto_timeout(struct tipc_crypto *rx)
1423{
1424 struct tipc_net *tn = tipc_net(rx->net);
1425 struct tipc_crypto *tx = tn->crypto_tx;
1426 struct tipc_key key;
1427 u8 new_pending, new_passive;
1428 int cmd;
1429
1430 /* TX key activating:
1431 * The pending key (users > 0) -> active
1432 * The active key if any (users == 0) -> free
1433 */
1434 spin_lock(&tx->lock);
1435 key = tx->key;
1436 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1437 goto s1;
1438 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1439 goto s1;
1440 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM))
1441 goto s1;
1442
1443 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1444 if (key.active)
1445 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1446 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1447 pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net),
1448 key.pending);
1449
1450s1:
1451 spin_unlock(&tx->lock);
1452
1453 /* RX key activating:
1454 * The pending key (users > 0) -> active
1455 * The active key if any -> passive, freed later
1456 */
1457 spin_lock(&rx->lock);
1458 key = rx->key;
1459 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1460 goto s2;
1461
1462 new_pending = (key.passive &&
1463 !tipc_aead_users(rx->aead[key.passive])) ?
1464 key.passive : 0;
1465 new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive);
1466 tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending);
1467 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1468 pr_info("RX(%s): key %d is activated!\n",
1469 tipc_node_get_id_str(rx->node), key.pending);
1470 goto s5;
1471
1472s2:
1473 /* RX key "faulty" switching:
1474 * The faulty pending key (users < -30) -> passive
1475 * The passive key (users = 0) -> pending
1476 * Note: This only happens after RX deactivated - s3!
1477 */
1478 key = rx->key;
1479 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30)
1480 goto s3;
1481 if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0)
1482 goto s3;
1483
1484 new_pending = key.passive;
1485 new_passive = key.pending;
1486 tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending);
1487 goto s5;
1488
1489s3:
1490 /* RX key deactivating:
1491 * The passive key if any -> pending
1492 * The active key -> passive (users = 0) / pending
1493 * The pending key if any -> passive (users = 0)
1494 */
1495 key = rx->key;
1496 if (!key.active)
1497 goto s4;
1498 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM))
1499 goto s4;
1500
1501 new_pending = (key.passive) ?: key.active;
1502 new_passive = (key.passive) ? key.active : key.pending;
1503 tipc_aead_users_set(rx->aead[new_pending], 0);
1504 if (new_passive)
1505 tipc_aead_users_set(rx->aead[new_passive], 0);
1506 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1507 pr_info("RX(%s): key %d is deactivated!\n",
1508 tipc_node_get_id_str(rx->node), key.active);
1509 goto s5;
1510
1511s4:
1512 /* RX key passive -> freed: */
1513 key = rx->key;
1514 if (!key.passive || !tipc_aead_users(rx->aead[key.passive]))
1515 goto s5;
1516 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM))
1517 goto s5;
1518
1519 tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1520 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1521 pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node),
1522 key.passive);
1523
1524s5:
1525 spin_unlock(&rx->lock);
1526
1527 /* Limit max_tfms & do debug commands if needed */
1528 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1529 return;
1530
1531 cmd = sysctl_tipc_max_tfms;
1532 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1533 tipc_crypto_do_cmd(rx->net, cmd);
1534}
1535
1536/**
1537 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1538 * @net: struct net
1539 * @skb: input/output message skb pointer
1540 * @b: bearer used for xmit later
1541 * @dst: destination media address
1542 * @__dnode: destination node for reference if any
1543 *
1544 * First, build an encryption message header on the top of the message, then
1545 * encrypt the original TIPC message by using the active or pending TX key.
1546 * If the encryption is successful, the encrypted skb is returned directly or
1547 * via the callback.
1548 * Otherwise, the skb is freed!
1549 *
1550 * Return:
1551 * 0 : the encryption has succeeded (or no encryption)
1552 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1553 * -ENOKEK : the encryption has failed due to no key
1554 * -EKEYREVOKED : the encryption has failed due to key revoked
1555 * -ENOMEM : the encryption has failed due to no memory
1556 * < 0 : the encryption has failed due to other reasons
1557 */
1558int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1559 struct tipc_bearer *b, struct tipc_media_addr *dst,
1560 struct tipc_node *__dnode)
1561{
1562 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1563 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1564 struct tipc_crypto_stats __percpu *stats = tx->stats;
1565 struct tipc_key key = tx->key;
1566 struct tipc_aead *aead = NULL;
1567 struct sk_buff *probe;
1568 int rc = -ENOKEY;
1569 u8 tx_key;
1570
1571 /* No encryption? */
1572 if (!tx->working)
1573 return 0;
1574
1575 /* Try with the pending key if available and:
1576 * 1) This is the only choice (i.e. no active key) or;
1577 * 2) Peer has switched to this key (unicast only) or;
1578 * 3) It is time to do a pending key probe;
1579 */
1580 if (unlikely(key.pending)) {
1581 tx_key = key.pending;
1582 if (!key.active)
1583 goto encrypt;
1584 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1585 goto encrypt;
1586 if (TIPC_SKB_CB(*skb)->probe)
1587 goto encrypt;
1588 if (!__rx &&
1589 time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) {
1590 tx->timer2 = jiffies;
1591 probe = skb_clone(*skb, GFP_ATOMIC);
1592 if (probe) {
1593 TIPC_SKB_CB(probe)->probe = 1;
1594 tipc_crypto_xmit(net, &probe, b, dst, __dnode);
1595 if (probe)
1596 b->media->send_msg(net, probe, b, dst);
1597 }
1598 }
1599 }
1600 /* Else, use the active key if any */
1601 if (likely(key.active)) {
1602 tx_key = key.active;
1603 goto encrypt;
1604 }
1605 goto exit;
1606
1607encrypt:
1608 aead = tipc_aead_get(tx->aead[tx_key]);
1609 if (unlikely(!aead))
1610 goto exit;
1611 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1612 if (likely(rc > 0))
1613 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1614
1615exit:
1616 switch (rc) {
1617 case 0:
1618 this_cpu_inc(stats->stat[STAT_OK]);
1619 break;
1620 case -EINPROGRESS:
1621 case -EBUSY:
1622 this_cpu_inc(stats->stat[STAT_ASYNC]);
1623 *skb = NULL;
1624 return rc;
1625 default:
1626 this_cpu_inc(stats->stat[STAT_NOK]);
1627 if (rc == -ENOKEY)
1628 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1629 else if (rc == -EKEYREVOKED)
1630 this_cpu_inc(stats->stat[STAT_BADKEYS]);
1631 kfree_skb(*skb);
1632 *skb = NULL;
1633 break;
1634 }
1635
1636 tipc_aead_put(aead);
1637 return rc;
1638}
1639
1640/**
1641 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1642 * @net: struct net
1643 * @rx: RX crypto handle
1644 * @skb: input/output message skb pointer
1645 * @b: bearer where the message has been received
1646 *
1647 * If the decryption is successful, the decrypted skb is returned directly or
1648 * as the callback, the encryption header and auth tag will be trimed out
1649 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1650 * Otherwise, the skb will be freed!
1651 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1652 * cluster key(s) can be taken for decryption (- recursive).
1653 *
1654 * Return:
1655 * 0 : the decryption has successfully completed
1656 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1657 * -ENOKEY : the decryption has failed due to no key
1658 * -EBADMSG : the decryption has failed due to bad message
1659 * -ENOMEM : the decryption has failed due to no memory
1660 * < 0 : the decryption has failed due to other reasons
1661 */
1662int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1663 struct sk_buff **skb, struct tipc_bearer *b)
1664{
1665 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1666 struct tipc_crypto_stats __percpu *stats;
1667 struct tipc_aead *aead = NULL;
1668 struct tipc_key key;
1669 int rc = -ENOKEY;
1670 u8 tx_key = 0;
1671
1672 /* New peer?
1673 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1674 */
1675 if (unlikely(!rx))
1676 goto pick_tx;
1677
1678 /* Pick RX key according to TX key, three cases are possible:
1679 * 1) The current active key (likely) or;
1680 * 2) The pending (new or deactivated) key (if any) or;
1681 * 3) The passive or old active key (i.e. users > 0);
1682 */
1683 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1684 key = rx->key;
1685 if (likely(tx_key == key.active))
1686 goto decrypt;
1687 if (tx_key == key.pending)
1688 goto decrypt;
1689 if (tx_key == key.passive) {
1690 rx->timer2 = jiffies;
1691 if (tipc_aead_users(rx->aead[key.passive]) > 0)
1692 goto decrypt;
1693 }
1694
1695 /* Unknown key, let's try to align RX key(s) */
1696 if (tipc_crypto_key_try_align(rx, tx_key))
1697 goto decrypt;
1698
1699pick_tx:
1700 /* No key suitable? Try to pick one from TX... */
1701 aead = tipc_crypto_key_pick_tx(tx, rx, *skb);
1702 if (aead)
1703 goto decrypt;
1704 goto exit;
1705
1706decrypt:
1707 rcu_read_lock();
1708 if (!aead)
1709 aead = tipc_aead_get(rx->aead[tx_key]);
1710 rc = tipc_aead_decrypt(net, aead, *skb, b);
1711 rcu_read_unlock();
1712
1713exit:
1714 stats = ((rx) ?: tx)->stats;
1715 switch (rc) {
1716 case 0:
1717 this_cpu_inc(stats->stat[STAT_OK]);
1718 break;
1719 case -EINPROGRESS:
1720 case -EBUSY:
1721 this_cpu_inc(stats->stat[STAT_ASYNC]);
1722 *skb = NULL;
1723 return rc;
1724 default:
1725 this_cpu_inc(stats->stat[STAT_NOK]);
1726 if (rc == -ENOKEY) {
1727 kfree_skb(*skb);
1728 *skb = NULL;
1729 if (rx)
1730 tipc_node_put(rx->node);
1731 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1732 return rc;
1733 } else if (rc == -EBADMSG) {
1734 this_cpu_inc(stats->stat[STAT_BADMSGS]);
1735 }
1736 break;
1737 }
1738
1739 tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1740 return rc;
1741}
1742
1743static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1744 struct tipc_bearer *b,
1745 struct sk_buff **skb, int err)
1746{
1747 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1748 struct tipc_crypto *rx = aead->crypto;
1749 struct tipc_aead *tmp = NULL;
1750 struct tipc_ehdr *ehdr;
1751 struct tipc_node *n;
1752 u8 rx_key_active;
1753 bool destined;
1754
1755 /* Is this completed by TX? */
1756 if (unlikely(!rx->node)) {
1757 rx = skb_cb->tx_clone_ctx.rx;
1758#ifdef TIPC_CRYPTO_DEBUG
1759 pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1760 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1761 (*skb)->next, skb_cb->flags);
1762 pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1763 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1764 aead->crypto->aead[1], aead->crypto->aead[2],
1765 aead->crypto->aead[3]);
1766#endif
1767 if (unlikely(err)) {
1768 if (err == -EBADMSG && (*skb)->next)
1769 tipc_rcv(net, (*skb)->next, b);
1770 goto free_skb;
1771 }
1772
1773 if (likely((*skb)->next)) {
1774 kfree_skb((*skb)->next);
1775 (*skb)->next = NULL;
1776 }
1777 ehdr = (struct tipc_ehdr *)(*skb)->data;
1778 if (!rx) {
1779 WARN_ON(ehdr->user != LINK_CONFIG);
1780 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1781 true);
1782 rx = tipc_node_crypto_rx(n);
1783 if (unlikely(!rx))
1784 goto free_skb;
1785 }
1786
1787 /* Skip cloning this time as we had a RX pending key */
1788 if (rx->key.pending)
1789 goto rcv;
1790 if (tipc_aead_clone(&tmp, aead) < 0)
1791 goto rcv;
1792 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) {
1793 tipc_aead_free(&tmp->rcu);
1794 goto rcv;
1795 }
1796 tipc_aead_put(aead);
1797 aead = tipc_aead_get(tmp);
1798 }
1799
1800 if (unlikely(err)) {
1801 tipc_aead_users_dec(aead, INT_MIN);
1802 goto free_skb;
1803 }
1804
1805 /* Set the RX key's user */
1806 tipc_aead_users_set(aead, 1);
1807
1808rcv:
1809 /* Mark this point, RX works */
1810 rx->timer1 = jiffies;
1811
1812 /* Remove ehdr & auth. tag prior to tipc_rcv() */
1813 ehdr = (struct tipc_ehdr *)(*skb)->data;
1814 destined = ehdr->destined;
1815 rx_key_active = ehdr->rx_key_active;
1816 skb_pull(*skb, tipc_ehdr_size(ehdr));
1817 pskb_trim(*skb, (*skb)->len - aead->authsize);
1818
1819 /* Validate TIPCv2 message */
1820 if (unlikely(!tipc_msg_validate(skb))) {
1821 pr_err_ratelimited("Packet dropped after decryption!\n");
1822 goto free_skb;
1823 }
1824
1825 /* Update peer RX active key & TX users */
1826 if (destined)
1827 tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb));
1828
1829 /* Mark skb decrypted */
1830 skb_cb->decrypted = 1;
1831
1832 /* Clear clone cxt if any */
1833 if (likely(!skb_cb->tx_clone_deferred))
1834 goto exit;
1835 skb_cb->tx_clone_deferred = 0;
1836 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1837 goto exit;
1838
1839free_skb:
1840 kfree_skb(*skb);
1841 *skb = NULL;
1842
1843exit:
1844 tipc_aead_put(aead);
1845 if (rx)
1846 tipc_node_put(rx->node);
1847}
1848
1849static void tipc_crypto_do_cmd(struct net *net, int cmd)
1850{
1851 struct tipc_net *tn = tipc_net(net);
1852 struct tipc_crypto *tx = tn->crypto_tx, *rx;
1853 struct list_head *p;
1854 unsigned int stat;
1855 int i, j, cpu;
1856 char buf[200];
1857
1858 /* Currently only one command is supported */
1859 switch (cmd) {
1860 case 0xfff1:
1861 goto print_stats;
1862 default:
1863 return;
1864 }
1865
1866print_stats:
1867 /* Print a header */
1868 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
1869
1870 /* Print key status */
1871 pr_info("Key status:\n");
1872 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
1873 tipc_crypto_key_dump(tx, buf));
1874
1875 rcu_read_lock();
1876 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1877 rx = tipc_node_crypto_rx_by_list(p);
1878 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
1879 tipc_crypto_key_dump(rx, buf));
1880 }
1881 rcu_read_unlock();
1882
1883 /* Print crypto statistics */
1884 for (i = 0, j = 0; i < MAX_STATS; i++)
1885 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
1886 pr_info("\nCounter %s", buf);
1887
1888 memset(buf, '-', 115);
1889 buf[115] = '\0';
1890 pr_info("%s\n", buf);
1891
1892 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
1893 for_each_possible_cpu(cpu) {
1894 for (i = 0; i < MAX_STATS; i++) {
1895 stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
1896 j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
1897 }
1898 pr_info("%s", buf);
1899 j = scnprintf(buf, 200, "%12s", " ");
1900 }
1901
1902 rcu_read_lock();
1903 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1904 rx = tipc_node_crypto_rx_by_list(p);
1905 j = scnprintf(buf, 200, "RX(%7.7s) ",
1906 tipc_node_get_id_str(rx->node));
1907 for_each_possible_cpu(cpu) {
1908 for (i = 0; i < MAX_STATS; i++) {
1909 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
1910 j += scnprintf(buf + j, 200 - j, "|%11d ",
1911 stat);
1912 }
1913 pr_info("%s", buf);
1914 j = scnprintf(buf, 200, "%12s", " ");
1915 }
1916 }
1917 rcu_read_unlock();
1918
1919 pr_info("\n======================== Done ========================\n");
1920}
1921
1922static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
1923{
1924 struct tipc_key key = c->key;
1925 struct tipc_aead *aead;
1926 int k, i = 0;
1927 char *s;
1928
1929 for (k = KEY_MIN; k <= KEY_MAX; k++) {
1930 if (k == key.passive)
1931 s = "PAS";
1932 else if (k == key.active)
1933 s = "ACT";
1934 else if (k == key.pending)
1935 s = "PEN";
1936 else
1937 s = "-";
1938 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
1939
1940 rcu_read_lock();
1941 aead = rcu_dereference(c->aead[k]);
1942 if (aead)
1943 i += scnprintf(buf + i, 200 - i,
1944 "{\"%s...\", \"%s\"}/%d:%d",
1945 aead->hint,
1946 (aead->mode == CLUSTER_KEY) ? "c" : "p",
1947 atomic_read(&aead->users),
1948 refcount_read(&aead->refcnt));
1949 rcu_read_unlock();
1950 i += scnprintf(buf + i, 200 - i, "\n");
1951 }
1952
1953 if (c->node)
1954 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
1955 atomic_read(&c->peer_rx_active));
1956
1957 return buf;
1958}
1959
1960#ifdef TIPC_CRYPTO_DEBUG
1961static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
1962 char *buf)
1963{
1964 struct tipc_key *key = &old;
1965 int k, i = 0;
1966 char *s;
1967
1968 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
1969again:
1970 i += scnprintf(buf + i, 32 - i, "[");
1971 for (k = KEY_MIN; k <= KEY_MAX; k++) {
1972 if (k == key->passive)
1973 s = "pas";
1974 else if (k == key->active)
1975 s = "act";
1976 else if (k == key->pending)
1977 s = "pen";
1978 else
1979 s = "-";
1980 i += scnprintf(buf + i, 32 - i,
1981 (k != KEY_MAX) ? "%s " : "%s", s);
1982 }
1983 if (key != &new) {
1984 i += scnprintf(buf + i, 32 - i, "] -> ");
1985 key = &new;
1986 goto again;
1987 }
1988 i += scnprintf(buf + i, 32 - i, "]");
1989 return buf;
1990}
1991#endif