net: sched: rename qdisc_destroy() to qdisc_put()
[linux-block.git] / net / sched / sch_qfq.c
CommitLineData
0545a303 1/*
462dbc91 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
0545a303 3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
462dbc91 5 * Copyright (c) 2012 Paolo Valente.
0545a303 6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/bitops.h>
15#include <linux/errno.h>
16#include <linux/netdevice.h>
17#include <linux/pkt_sched.h>
18#include <net/sch_generic.h>
19#include <net/pkt_sched.h>
20#include <net/pkt_cls.h>
21
22
462dbc91
PV
23/* Quick Fair Queueing Plus
24 ========================
0545a303 25
26 Sources:
27
462dbc91
PV
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
0545a303 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41/*
42
462dbc91
PV
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
0545a303 57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93/*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97#define QFQ_MAX_SLOTS 32
98
99/*
462dbc91
PV
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
0545a303 102 * group with the smallest index that can support the L_i / r_i configured
462dbc91 103 * for the classes in the aggregate.
0545a303 104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
3015f3d2 108#define QFQ_MAX_INDEX 24
462dbc91 109#define QFQ_MAX_WSHIFT 10
0545a303 110
462dbc91
PV
111#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112#define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
0545a303 113
114#define FRAC_BITS 30 /* fixed point arithmetic */
115#define ONE_FP (1UL << FRAC_BITS)
0545a303 116
3015f3d2 117#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
462dbc91
PV
118#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
119
120#define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
0545a303 121
122/*
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128struct qfq_group;
129
462dbc91
PV
130struct qfq_aggregate;
131
0545a303 132struct qfq_class {
133 struct Qdisc_class_common common;
134
0545a303 135 unsigned int filter_cnt;
136
137 struct gnet_stats_basic_packed bstats;
138 struct gnet_stats_queue qstats;
1c0d32fd 139 struct net_rate_estimator __rcu *rate_est;
0545a303 140 struct Qdisc *qdisc;
462dbc91
PV
141 struct list_head alist; /* Link for active-classes list. */
142 struct qfq_aggregate *agg; /* Parent aggregate. */
143 int deficit; /* DRR deficit counter. */
144};
0545a303 145
462dbc91 146struct qfq_aggregate {
0545a303 147 struct hlist_node next; /* Link for the slot list. */
148 u64 S, F; /* flow timestamps (exact) */
149
150 /* group we belong to. In principle we would need the index,
151 * which is log_2(lmax/weight), but we never reference it
152 * directly, only the group.
153 */
154 struct qfq_group *grp;
155
156 /* these are copied from the flowset. */
462dbc91
PV
157 u32 class_weight; /* Weight of each class in this aggregate. */
158 /* Max pkt size for the classes in this aggregate, DRR quantum. */
159 int lmax;
160
161 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
162 u32 budgetmax; /* Max budget for this aggregate. */
163 u32 initial_budget, budget; /* Initial and current budget. */
164
165 int num_classes; /* Number of classes in this aggr. */
166 struct list_head active; /* DRR queue of active classes. */
167
168 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
0545a303 169};
170
171struct qfq_group {
172 u64 S, F; /* group timestamps (approx). */
173 unsigned int slot_shift; /* Slot shift. */
174 unsigned int index; /* Group index. */
175 unsigned int front; /* Index of the front slot. */
176 unsigned long full_slots; /* non-empty slots */
177
462dbc91 178 /* Array of RR lists of active aggregates. */
0545a303 179 struct hlist_head slots[QFQ_MAX_SLOTS];
180};
181
182struct qfq_sched {
25d8c0d5 183 struct tcf_proto __rcu *filter_list;
6529eaba 184 struct tcf_block *block;
0545a303 185 struct Qdisc_class_hash clhash;
186
462dbc91
PV
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
462dbc91 189 u32 wsum; /* weight sum */
87f40dd6 190 u32 iwsum; /* inverse weight sum */
0545a303 191
192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
462dbc91
PV
194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
195
196 u32 max_agg_classes; /* Max number of classes per aggr. */
197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
0545a303 198};
199
462dbc91
PV
200/*
201 * Possible reasons why the timestamps of an aggregate are updated
202 * enqueue: the aggregate switches from idle to active and must scheduled
203 * for service
204 * requeue: the aggregate finishes its budget, so it stops being served and
205 * must be rescheduled for service
206 */
207enum update_reason {enqueue, requeue};
208
0545a303 209static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
210{
211 struct qfq_sched *q = qdisc_priv(sch);
212 struct Qdisc_class_common *clc;
213
214 clc = qdisc_class_find(&q->clhash, classid);
215 if (clc == NULL)
216 return NULL;
217 return container_of(clc, struct qfq_class, common);
218}
219
220static void qfq_purge_queue(struct qfq_class *cl)
221{
222 unsigned int len = cl->qdisc->q.qlen;
2ccccf5f 223 unsigned int backlog = cl->qdisc->qstats.backlog;
0545a303 224
225 qdisc_reset(cl->qdisc);
2ccccf5f 226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
0545a303 227}
228
229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232};
233
234/*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
462dbc91 239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
0545a303 240{
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
462dbc91 245 size_map = slot_size >> min_slot_shift;
0545a303 246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
462dbc91 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
0545a303 251
252 if (index < 0)
253 index = 0;
254out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259}
260
462dbc91
PV
261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
be72f63b 267{
462dbc91
PV
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273}
274
275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277{
278 struct qfq_aggregate *agg;
462dbc91 279
b67bfe0d 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
462dbc91
PV
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285}
286
be72f63b 287
462dbc91
PV
288/* Update aggregate as a function of the new number of classes. */
289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291{
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
9b99b7e9
PV
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
304 */
462dbc91
PV
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
308
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
313 }
314
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
87f40dd6 317 q->iwsum = ONE_FP / q->wsum;
462dbc91
PV
318
319 agg->num_classes = new_num_classes;
320}
321
322/* Add class to aggregate. */
323static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
326{
327 cl->agg = agg;
328
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 }
be72f63b
PV
336}
337
462dbc91 338static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
be72f63b 339
462dbc91 340static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 341{
a55e1c5c 342 hlist_del_init(&agg->nonfull_next);
87f40dd6
PV
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
346
462dbc91
PV
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
350}
be72f63b 351
462dbc91
PV
352/* Deschedule class from within its parent aggregate. */
353static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354{
355 struct qfq_aggregate *agg = cl->agg;
be72f63b 356
be72f63b 357
462dbc91
PV
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
be72f63b
PV
361}
362
462dbc91
PV
363/* Remove class from its parent aggregate. */
364static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
3015f3d2 365{
462dbc91 366 struct qfq_aggregate *agg = cl->agg;
3015f3d2 367
462dbc91
PV
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
3015f3d2 372 }
462dbc91
PV
373 qfq_update_agg(q, agg, agg->num_classes-1);
374}
3015f3d2 375
462dbc91
PV
376/* Deschedule class and remove it from its parent aggregate. */
377static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378{
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
3015f3d2 381
462dbc91 382 qfq_rm_from_agg(q, cl);
3015f3d2
PV
383}
384
462dbc91
PV
385/* Move class to a new aggregate, matching the new class weight and/or lmax */
386static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
388{
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
397 }
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
400
401 return 0;
402}
3015f3d2 403
0545a303 404static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
793d81d6
AA
405 struct nlattr **tca, unsigned long *arg,
406 struct netlink_ext_ack *extack)
0545a303 407{
408 struct qfq_sched *q = qdisc_priv(sch);
409 struct qfq_class *cl = (struct qfq_class *)*arg;
462dbc91 410 bool existing = false;
0545a303 411 struct nlattr *tb[TCA_QFQ_MAX + 1];
462dbc91 412 struct qfq_aggregate *new_agg = NULL;
0545a303 413 u32 weight, lmax, inv_w;
3015f3d2 414 int err;
d32ae76f 415 int delta_w;
0545a303 416
417 if (tca[TCA_OPTIONS] == NULL) {
418 pr_notice("qfq: no options\n");
419 return -EINVAL;
420 }
421
fceb6435
JB
422 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
423 NULL);
0545a303 424 if (err < 0)
425 return err;
426
427 if (tb[TCA_QFQ_WEIGHT]) {
428 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
429 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
430 pr_notice("qfq: invalid weight %u\n", weight);
431 return -EINVAL;
432 }
433 } else
434 weight = 1;
435
0545a303 436 if (tb[TCA_QFQ_LMAX]) {
437 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
3015f3d2 438 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
0545a303 439 pr_notice("qfq: invalid max length %u\n", lmax);
440 return -EINVAL;
441 }
442 } else
3015f3d2 443 lmax = psched_mtu(qdisc_dev(sch));
0545a303 444
462dbc91
PV
445 inv_w = ONE_FP / weight;
446 weight = ONE_FP / inv_w;
447
448 if (cl != NULL &&
449 lmax == cl->agg->lmax &&
450 weight == cl->agg->class_weight)
451 return 0; /* nothing to change */
452
453 delta_w = weight - (cl ? cl->agg->class_weight : 0);
454
455 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
456 pr_notice("qfq: total weight out of range (%d + %u)\n",
457 delta_w, q->wsum);
458 return -EINVAL;
459 }
460
461 if (cl != NULL) { /* modify existing class */
0545a303 462 if (tca[TCA_RATE]) {
22e0f8b9
JF
463 err = gen_replace_estimator(&cl->bstats, NULL,
464 &cl->rate_est,
edb09eb1
ED
465 NULL,
466 qdisc_root_sleeping_running(sch),
0545a303 467 tca[TCA_RATE]);
468 if (err)
469 return err;
470 }
462dbc91
PV
471 existing = true;
472 goto set_change_agg;
0545a303 473 }
474
462dbc91 475 /* create and init new class */
0545a303 476 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
477 if (cl == NULL)
478 return -ENOBUFS;
479
0545a303 480 cl->common.classid = classid;
462dbc91 481 cl->deficit = lmax;
0545a303 482
a38a9882
AA
483 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
484 classid, NULL);
0545a303 485 if (cl->qdisc == NULL)
486 cl->qdisc = &noop_qdisc;
487
488 if (tca[TCA_RATE]) {
22e0f8b9
JF
489 err = gen_new_estimator(&cl->bstats, NULL,
490 &cl->rate_est,
edb09eb1
ED
491 NULL,
492 qdisc_root_sleeping_running(sch),
0545a303 493 tca[TCA_RATE]);
462dbc91
PV
494 if (err)
495 goto destroy_class;
0545a303 496 }
497
49b49971
JK
498 if (cl->qdisc != &noop_qdisc)
499 qdisc_hash_add(cl->qdisc, true);
0545a303 500 sch_tree_lock(sch);
501 qdisc_class_hash_insert(&q->clhash, &cl->common);
502 sch_tree_unlock(sch);
503
504 qdisc_class_hash_grow(sch, &q->clhash);
505
462dbc91
PV
506set_change_agg:
507 sch_tree_lock(sch);
508 new_agg = qfq_find_agg(q, lmax, weight);
509 if (new_agg == NULL) { /* create new aggregate */
510 sch_tree_unlock(sch);
511 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
512 if (new_agg == NULL) {
513 err = -ENOBUFS;
1c0d32fd 514 gen_kill_estimator(&cl->rate_est);
462dbc91
PV
515 goto destroy_class;
516 }
517 sch_tree_lock(sch);
518 qfq_init_agg(q, new_agg, lmax, weight);
519 }
520 if (existing)
521 qfq_deact_rm_from_agg(q, cl);
522 qfq_add_to_agg(q, new_agg, cl);
523 sch_tree_unlock(sch);
524
0545a303 525 *arg = (unsigned long)cl;
526 return 0;
462dbc91
PV
527
528destroy_class:
86bd446b 529 qdisc_put(cl->qdisc);
462dbc91
PV
530 kfree(cl);
531 return err;
0545a303 532}
533
534static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
535{
536 struct qfq_sched *q = qdisc_priv(sch);
537
462dbc91 538 qfq_rm_from_agg(q, cl);
1c0d32fd 539 gen_kill_estimator(&cl->rate_est);
86bd446b 540 qdisc_put(cl->qdisc);
0545a303 541 kfree(cl);
542}
543
544static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
545{
546 struct qfq_sched *q = qdisc_priv(sch);
547 struct qfq_class *cl = (struct qfq_class *)arg;
548
549 if (cl->filter_cnt > 0)
550 return -EBUSY;
551
552 sch_tree_lock(sch);
553
554 qfq_purge_queue(cl);
555 qdisc_class_hash_remove(&q->clhash, &cl->common);
556
0545a303 557 sch_tree_unlock(sch);
0545a303 558
143976ce
WC
559 qfq_destroy_class(sch, cl);
560 return 0;
0545a303 561}
562
143976ce 563static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
0545a303 564{
143976ce 565 return (unsigned long)qfq_find_class(sch, classid);
0545a303 566}
567
cbaacc4e
AA
568static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
569 struct netlink_ext_ack *extack)
0545a303 570{
571 struct qfq_sched *q = qdisc_priv(sch);
572
573 if (cl)
574 return NULL;
575
6529eaba 576 return q->block;
0545a303 577}
578
579static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
580 u32 classid)
581{
582 struct qfq_class *cl = qfq_find_class(sch, classid);
583
584 if (cl != NULL)
585 cl->filter_cnt++;
586
587 return (unsigned long)cl;
588}
589
590static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
591{
592 struct qfq_class *cl = (struct qfq_class *)arg;
593
594 cl->filter_cnt--;
595}
596
597static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
653d6fd6
AA
598 struct Qdisc *new, struct Qdisc **old,
599 struct netlink_ext_ack *extack)
0545a303 600{
601 struct qfq_class *cl = (struct qfq_class *)arg;
602
603 if (new == NULL) {
a38a9882
AA
604 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
605 cl->common.classid, NULL);
0545a303 606 if (new == NULL)
607 new = &noop_qdisc;
608 }
609
86a7996c 610 *old = qdisc_replace(sch, new, &cl->qdisc);
0545a303 611 return 0;
612}
613
614static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
615{
616 struct qfq_class *cl = (struct qfq_class *)arg;
617
618 return cl->qdisc;
619}
620
621static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
622 struct sk_buff *skb, struct tcmsg *tcm)
623{
624 struct qfq_class *cl = (struct qfq_class *)arg;
625 struct nlattr *nest;
626
627 tcm->tcm_parent = TC_H_ROOT;
628 tcm->tcm_handle = cl->common.classid;
629 tcm->tcm_info = cl->qdisc->handle;
630
631 nest = nla_nest_start(skb, TCA_OPTIONS);
632 if (nest == NULL)
633 goto nla_put_failure;
462dbc91
PV
634 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
635 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
1b34ec43 636 goto nla_put_failure;
0545a303 637 return nla_nest_end(skb, nest);
638
639nla_put_failure:
640 nla_nest_cancel(skb, nest);
641 return -EMSGSIZE;
642}
643
644static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
645 struct gnet_dump *d)
646{
647 struct qfq_class *cl = (struct qfq_class *)arg;
648 struct tc_qfq_stats xstats;
649
650 memset(&xstats, 0, sizeof(xstats));
0545a303 651
462dbc91
PV
652 xstats.weight = cl->agg->class_weight;
653 xstats.lmax = cl->agg->lmax;
0545a303 654
edb09eb1
ED
655 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
656 d, NULL, &cl->bstats) < 0 ||
1c0d32fd 657 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
b0ab6f92
JF
658 gnet_stats_copy_queue(d, NULL,
659 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
0545a303 660 return -1;
661
662 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
663}
664
665static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
666{
667 struct qfq_sched *q = qdisc_priv(sch);
668 struct qfq_class *cl;
0545a303 669 unsigned int i;
670
671 if (arg->stop)
672 return;
673
674 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 675 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
0545a303 676 if (arg->count < arg->skip) {
677 arg->count++;
678 continue;
679 }
680 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
681 arg->stop = 1;
682 return;
683 }
684 arg->count++;
685 }
686 }
687}
688
689static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
690 int *qerr)
691{
692 struct qfq_sched *q = qdisc_priv(sch);
693 struct qfq_class *cl;
694 struct tcf_result res;
25d8c0d5 695 struct tcf_proto *fl;
0545a303 696 int result;
697
698 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
699 pr_debug("qfq_classify: found %d\n", skb->priority);
700 cl = qfq_find_class(sch, skb->priority);
701 if (cl != NULL)
702 return cl;
703 }
704
705 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
25d8c0d5 706 fl = rcu_dereference_bh(q->filter_list);
87d83093 707 result = tcf_classify(skb, fl, &res, false);
0545a303 708 if (result >= 0) {
709#ifdef CONFIG_NET_CLS_ACT
710 switch (result) {
711 case TC_ACT_QUEUED:
712 case TC_ACT_STOLEN:
e25ea21f 713 case TC_ACT_TRAP:
0545a303 714 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
f3ae608e 715 /* fall through */
0545a303 716 case TC_ACT_SHOT:
717 return NULL;
718 }
719#endif
720 cl = (struct qfq_class *)res.class;
721 if (cl == NULL)
722 cl = qfq_find_class(sch, res.classid);
723 return cl;
724 }
725
726 return NULL;
727}
728
729/* Generic comparison function, handling wraparound. */
730static inline int qfq_gt(u64 a, u64 b)
731{
732 return (s64)(a - b) > 0;
733}
734
735/* Round a precise timestamp to its slotted value. */
736static inline u64 qfq_round_down(u64 ts, unsigned int shift)
737{
738 return ts & ~((1ULL << shift) - 1);
739}
740
741/* return the pointer to the group with lowest index in the bitmap */
742static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
743 unsigned long bitmap)
744{
745 int index = __ffs(bitmap);
746 return &q->groups[index];
747}
748/* Calculate a mask to mimic what would be ffs_from(). */
749static inline unsigned long mask_from(unsigned long bitmap, int from)
750{
751 return bitmap & ~((1UL << from) - 1);
752}
753
754/*
755 * The state computation relies on ER=0, IR=1, EB=2, IB=3
756 * First compute eligibility comparing grp->S, q->V,
757 * then check if someone is blocking us and possibly add EB
758 */
759static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
760{
761 /* if S > V we are not eligible */
762 unsigned int state = qfq_gt(grp->S, q->V);
763 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
764 struct qfq_group *next;
765
766 if (mask) {
767 next = qfq_ffs(q, mask);
768 if (qfq_gt(grp->F, next->F))
769 state |= EB;
770 }
771
772 return state;
773}
774
775
776/*
777 * In principle
778 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
779 * q->bitmaps[src] &= ~mask;
780 * but we should make sure that src != dst
781 */
782static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
783 int src, int dst)
784{
785 q->bitmaps[dst] |= q->bitmaps[src] & mask;
786 q->bitmaps[src] &= ~mask;
787}
788
789static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
790{
791 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
792 struct qfq_group *next;
793
794 if (mask) {
795 next = qfq_ffs(q, mask);
796 if (!qfq_gt(next->F, old_F))
797 return;
798 }
799
800 mask = (1UL << index) - 1;
801 qfq_move_groups(q, mask, EB, ER);
802 qfq_move_groups(q, mask, IB, IR);
803}
804
805/*
806 * perhaps
807 *
808 old_V ^= q->V;
462dbc91 809 old_V >>= q->min_slot_shift;
0545a303 810 if (old_V) {
811 ...
812 }
813 *
814 */
462dbc91 815static void qfq_make_eligible(struct qfq_sched *q)
0545a303 816{
462dbc91
PV
817 unsigned long vslot = q->V >> q->min_slot_shift;
818 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
0545a303 819
820 if (vslot != old_vslot) {
87f1369d
PV
821 unsigned long mask;
822 int last_flip_pos = fls(vslot ^ old_vslot);
823
824 if (last_flip_pos > 31) /* higher than the number of groups */
825 mask = ~0UL; /* make all groups eligible */
826 else
827 mask = (1UL << last_flip_pos) - 1;
828
0545a303 829 qfq_move_groups(q, mask, IR, ER);
830 qfq_move_groups(q, mask, IB, EB);
831 }
832}
833
0545a303 834/*
87f40dd6
PV
835 * The index of the slot in which the input aggregate agg is to be
836 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
837 * and not a '-1' because the start time of the group may be moved
838 * backward by one slot after the aggregate has been inserted, and
839 * this would cause non-empty slots to be right-shifted by one
840 * position.
841 *
842 * QFQ+ fully satisfies this bound to the slot index if the parameters
843 * of the classes are not changed dynamically, and if QFQ+ never
844 * happens to postpone the service of agg unjustly, i.e., it never
845 * happens that the aggregate becomes backlogged and eligible, or just
846 * eligible, while an aggregate with a higher approximated finish time
847 * is being served. In particular, in this case QFQ+ guarantees that
848 * the timestamps of agg are low enough that the slot index is never
849 * higher than 2. Unfortunately, QFQ+ cannot provide the same
850 * guarantee if it happens to unjustly postpone the service of agg, or
851 * if the parameters of some class are changed.
852 *
853 * As for the first event, i.e., an out-of-order service, the
854 * upper bound to the slot index guaranteed by QFQ+ grows to
855 * 2 +
856 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
857 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
3015f3d2 858 *
87f40dd6
PV
859 * The following function deals with this problem by backward-shifting
860 * the timestamps of agg, if needed, so as to guarantee that the slot
861 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
862 * cause the service of other aggregates to be postponed, yet the
863 * worst-case guarantees of these aggregates are not violated. In
864 * fact, in case of no out-of-order service, the timestamps of agg
865 * would have been even lower than they are after the backward shift,
866 * because QFQ+ would have guaranteed a maximum value equal to 2 for
867 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
868 * service is postponed because of the backward-shift would have
869 * however waited for the service of agg before being served.
3015f3d2 870 *
87f40dd6
PV
871 * The other event that may cause the slot index to be higher than 2
872 * for agg is a recent change of the parameters of some class. If the
873 * weight of a class is increased or the lmax (max_pkt_size) of the
874 * class is decreased, then a new aggregate with smaller slot size
875 * than the original parent aggregate of the class may happen to be
876 * activated. The activation of this aggregate should be properly
877 * delayed to when the service of the class has finished in the ideal
878 * system tracked by QFQ+. If the activation of the aggregate is not
879 * delayed to this reference time instant, then this aggregate may be
880 * unjustly served before other aggregates waiting for service. This
881 * may cause the above bound to the slot index to be violated for some
882 * of these unlucky aggregates.
3015f3d2 883 *
462dbc91 884 * Instead of delaying the activation of the new aggregate, which is
87f40dd6
PV
885 * quite complex, the above-discussed capping of the slot index is
886 * used to handle also the consequences of a change of the parameters
887 * of a class.
0545a303 888 */
462dbc91 889static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
0545a303 890 u64 roundedS)
891{
892 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
3015f3d2
PV
893 unsigned int i; /* slot index in the bucket list */
894
895 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
896 u64 deltaS = roundedS - grp->S -
897 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
462dbc91
PV
898 agg->S -= deltaS;
899 agg->F -= deltaS;
3015f3d2
PV
900 slot = QFQ_MAX_SLOTS - 2;
901 }
902
903 i = (grp->front + slot) % QFQ_MAX_SLOTS;
0545a303 904
462dbc91 905 hlist_add_head(&agg->next, &grp->slots[i]);
0545a303 906 __set_bit(slot, &grp->full_slots);
907}
908
909/* Maybe introduce hlist_first_entry?? */
462dbc91 910static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
0545a303 911{
912 return hlist_entry(grp->slots[grp->front].first,
462dbc91 913 struct qfq_aggregate, next);
0545a303 914}
915
916/*
917 * remove the entry from the slot
918 */
919static void qfq_front_slot_remove(struct qfq_group *grp)
920{
462dbc91 921 struct qfq_aggregate *agg = qfq_slot_head(grp);
0545a303 922
462dbc91
PV
923 BUG_ON(!agg);
924 hlist_del(&agg->next);
0545a303 925 if (hlist_empty(&grp->slots[grp->front]))
926 __clear_bit(0, &grp->full_slots);
927}
928
929/*
462dbc91
PV
930 * Returns the first aggregate in the first non-empty bucket of the
931 * group. As a side effect, adjusts the bucket list so the first
932 * non-empty bucket is at position 0 in full_slots.
0545a303 933 */
462dbc91 934static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
0545a303 935{
936 unsigned int i;
937
938 pr_debug("qfq slot_scan: grp %u full %#lx\n",
939 grp->index, grp->full_slots);
940
941 if (grp->full_slots == 0)
942 return NULL;
943
944 i = __ffs(grp->full_slots); /* zero based */
945 if (i > 0) {
946 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
947 grp->full_slots >>= i;
948 }
949
950 return qfq_slot_head(grp);
951}
952
953/*
954 * adjust the bucket list. When the start time of a group decreases,
955 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
956 * move the objects. The mask of occupied slots must be shifted
957 * because we use ffs() to find the first non-empty slot.
958 * This covers decreases in the group's start time, but what about
959 * increases of the start time ?
960 * Here too we should make sure that i is less than 32
961 */
962static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
963{
964 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
965
966 grp->full_slots <<= i;
967 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
968}
969
462dbc91 970static void qfq_update_eligible(struct qfq_sched *q)
0545a303 971{
972 struct qfq_group *grp;
973 unsigned long ineligible;
974
975 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
976 if (ineligible) {
977 if (!q->bitmaps[ER]) {
978 grp = qfq_ffs(q, ineligible);
979 if (qfq_gt(grp->S, q->V))
980 q->V = grp->S;
981 }
462dbc91 982 qfq_make_eligible(q);
0545a303 983 }
984}
985
462dbc91
PV
986/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
987static void agg_dequeue(struct qfq_aggregate *agg,
988 struct qfq_class *cl, unsigned int len)
0545a303 989{
462dbc91 990 qdisc_dequeue_peeked(cl->qdisc);
0545a303 991
462dbc91 992 cl->deficit -= (int) len;
0545a303 993
462dbc91
PV
994 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
995 list_del(&cl->alist);
996 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
997 cl->deficit += agg->lmax;
998 list_move_tail(&cl->alist, &agg->active);
0545a303 999 }
462dbc91
PV
1000}
1001
1002static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1003 struct qfq_class **cl,
1004 unsigned int *len)
1005{
1006 struct sk_buff *skb;
0545a303 1007
462dbc91
PV
1008 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1009 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1010 if (skb == NULL)
1011 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1012 else
1013 *len = qdisc_pkt_len(skb);
1014
1015 return skb;
1016}
1017
1018/* Update F according to the actual service received by the aggregate. */
1019static inline void charge_actual_service(struct qfq_aggregate *agg)
1020{
9b99b7e9
PV
1021 /* Compute the service received by the aggregate, taking into
1022 * account that, after decreasing the number of classes in
1023 * agg, it may happen that
1024 * agg->initial_budget - agg->budget > agg->bugdetmax
1025 */
1026 u32 service_received = min(agg->budgetmax,
1027 agg->initial_budget - agg->budget);
462dbc91
PV
1028
1029 agg->F = agg->S + (u64)service_received * agg->inv_w;
0545a303 1030}
1031
88d4f419
PV
1032/* Assign a reasonable start time for a new aggregate in group i.
1033 * Admissible values for \hat(F) are multiples of \sigma_i
1034 * no greater than V+\sigma_i . Larger values mean that
1035 * we had a wraparound so we consider the timestamp to be stale.
1036 *
1037 * If F is not stale and F >= V then we set S = F.
1038 * Otherwise we should assign S = V, but this may violate
1039 * the ordering in EB (see [2]). So, if we have groups in ER,
1040 * set S to the F_j of the first group j which would be blocking us.
1041 * We are guaranteed not to move S backward because
1042 * otherwise our group i would still be blocked.
1043 */
1044static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1045{
1046 unsigned long mask;
1047 u64 limit, roundedF;
1048 int slot_shift = agg->grp->slot_shift;
1049
1050 roundedF = qfq_round_down(agg->F, slot_shift);
1051 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1052
1053 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1054 /* timestamp was stale */
1055 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1056 if (mask) {
1057 struct qfq_group *next = qfq_ffs(q, mask);
1058 if (qfq_gt(roundedF, next->F)) {
1059 if (qfq_gt(limit, next->F))
1060 agg->S = next->F;
1061 else /* preserve timestamp correctness */
1062 agg->S = limit;
1063 return;
1064 }
1065 }
1066 agg->S = q->V;
1067 } else /* timestamp is not stale */
1068 agg->S = agg->F;
1069}
1070
1071/* Update the timestamps of agg before scheduling/rescheduling it for
1072 * service. In particular, assign to agg->F its maximum possible
1073 * value, i.e., the virtual finish time with which the aggregate
1074 * should be labeled if it used all its budget once in service.
1075 */
1076static inline void
1077qfq_update_agg_ts(struct qfq_sched *q,
1078 struct qfq_aggregate *agg, enum update_reason reason)
1079{
1080 if (reason != requeue)
1081 qfq_update_start(q, agg);
1082 else /* just charge agg for the service received */
1083 agg->S = agg->F;
1084
1085 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1086}
2f3b89a1
PV
1087
1088static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1089
0545a303 1090static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1091{
1092 struct qfq_sched *q = qdisc_priv(sch);
462dbc91 1093 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
0545a303 1094 struct qfq_class *cl;
462dbc91
PV
1095 struct sk_buff *skb = NULL;
1096 /* next-packet len, 0 means no more active classes in in-service agg */
1097 unsigned int len = 0;
0545a303 1098
462dbc91 1099 if (in_serv_agg == NULL)
0545a303 1100 return NULL;
1101
462dbc91
PV
1102 if (!list_empty(&in_serv_agg->active))
1103 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1104
462dbc91
PV
1105 /*
1106 * If there are no active classes in the in-service aggregate,
1107 * or if the aggregate has not enough budget to serve its next
1108 * class, then choose the next aggregate to serve.
1109 */
1110 if (len == 0 || in_serv_agg->budget < len) {
1111 charge_actual_service(in_serv_agg);
1112
1113 /* recharge the budget of the aggregate */
1114 in_serv_agg->initial_budget = in_serv_agg->budget =
1115 in_serv_agg->budgetmax;
1116
2f3b89a1 1117 if (!list_empty(&in_serv_agg->active)) {
462dbc91
PV
1118 /*
1119 * Still active: reschedule for
1120 * service. Possible optimization: if no other
1121 * aggregate is active, then there is no point
1122 * in rescheduling this aggregate, and we can
1123 * just keep it as the in-service one. This
1124 * should be however a corner case, and to
1125 * handle it, we would need to maintain an
1126 * extra num_active_aggs field.
1127 */
2f3b89a1
PV
1128 qfq_update_agg_ts(q, in_serv_agg, requeue);
1129 qfq_schedule_agg(q, in_serv_agg);
1130 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
462dbc91
PV
1131 q->in_serv_agg = NULL;
1132 return NULL;
1133 }
1134
1135 /*
1136 * If we get here, there are other aggregates queued:
1137 * choose the new aggregate to serve.
1138 */
1139 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1140 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1141 }
462dbc91
PV
1142 if (!skb)
1143 return NULL;
0545a303 1144
2ed5c3f0 1145 qdisc_qstats_backlog_dec(sch, skb);
0545a303 1146 sch->q.qlen--;
1147 qdisc_bstats_update(sch, skb);
1148
462dbc91 1149 agg_dequeue(in_serv_agg, cl, len);
a0143efa
PV
1150 /* If lmax is lowered, through qfq_change_class, for a class
1151 * owning pending packets with larger size than the new value
1152 * of lmax, then the following condition may hold.
1153 */
1154 if (unlikely(in_serv_agg->budget < len))
1155 in_serv_agg->budget = 0;
1156 else
1157 in_serv_agg->budget -= len;
1158
87f40dd6 1159 q->V += (u64)len * q->iwsum;
0545a303 1160 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
462dbc91
PV
1161 len, (unsigned long long) in_serv_agg->F,
1162 (unsigned long long) q->V);
0545a303 1163
462dbc91
PV
1164 return skb;
1165}
0545a303 1166
462dbc91
PV
1167static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1168{
1169 struct qfq_group *grp;
1170 struct qfq_aggregate *agg, *new_front_agg;
1171 u64 old_F;
0545a303 1172
462dbc91
PV
1173 qfq_update_eligible(q);
1174 q->oldV = q->V;
1175
1176 if (!q->bitmaps[ER])
1177 return NULL;
1178
1179 grp = qfq_ffs(q, q->bitmaps[ER]);
1180 old_F = grp->F;
1181
1182 agg = qfq_slot_head(grp);
0545a303 1183
462dbc91
PV
1184 /* agg starts to be served, remove it from schedule */
1185 qfq_front_slot_remove(grp);
1186
1187 new_front_agg = qfq_slot_scan(grp);
1188
1189 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1190 __clear_bit(grp->index, &q->bitmaps[ER]);
1191 else {
1192 u64 roundedS = qfq_round_down(new_front_agg->S,
1193 grp->slot_shift);
1194 unsigned int s;
1195
1196 if (grp->S == roundedS)
1197 return agg;
1198 grp->S = roundedS;
1199 grp->F = roundedS + (2ULL << grp->slot_shift);
1200 __clear_bit(grp->index, &q->bitmaps[ER]);
1201 s = qfq_calc_state(q, grp);
1202 __set_bit(grp->index, &q->bitmaps[s]);
0545a303 1203 }
1204
462dbc91 1205 qfq_unblock_groups(q, grp->index, old_F);
0545a303 1206
462dbc91 1207 return agg;
0545a303 1208}
1209
520ac30f
ED
1210static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1211 struct sk_buff **to_free)
0545a303 1212{
1213 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1214 struct qfq_class *cl;
462dbc91 1215 struct qfq_aggregate *agg;
f54ba779 1216 int err = 0;
0545a303 1217
1218 cl = qfq_classify(skb, sch, &err);
1219 if (cl == NULL) {
1220 if (err & __NET_XMIT_BYPASS)
25331d6c 1221 qdisc_qstats_drop(sch);
39ad1297 1222 __qdisc_drop(skb, to_free);
0545a303 1223 return err;
1224 }
1225 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1226
462dbc91 1227 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
3015f3d2 1228 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
462dbc91
PV
1229 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1230 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1231 qdisc_pkt_len(skb));
9b15350f
FW
1232 if (err) {
1233 cl->qstats.drops++;
520ac30f 1234 return qdisc_drop(skb, sch, to_free);
9b15350f 1235 }
3015f3d2
PV
1236 }
1237
520ac30f 1238 err = qdisc_enqueue(skb, cl->qdisc, to_free);
0545a303 1239 if (unlikely(err != NET_XMIT_SUCCESS)) {
1240 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1241 if (net_xmit_drop_count(err)) {
1242 cl->qstats.drops++;
25331d6c 1243 qdisc_qstats_drop(sch);
0545a303 1244 }
1245 return err;
1246 }
1247
1248 bstats_update(&cl->bstats, skb);
2ed5c3f0 1249 qdisc_qstats_backlog_inc(sch, skb);
0545a303 1250 ++sch->q.qlen;
1251
462dbc91
PV
1252 agg = cl->agg;
1253 /* if the queue was not empty, then done here */
1254 if (cl->qdisc->q.qlen != 1) {
1255 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1256 list_first_entry(&agg->active, struct qfq_class, alist)
1257 == cl && cl->deficit < qdisc_pkt_len(skb))
1258 list_move_tail(&cl->alist, &agg->active);
1259
0545a303 1260 return err;
462dbc91
PV
1261 }
1262
1263 /* schedule class for service within the aggregate */
1264 cl->deficit = agg->lmax;
1265 list_add_tail(&cl->alist, &agg->active);
0545a303 1266
2f3b89a1
PV
1267 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1268 q->in_serv_agg == agg)
1269 return err; /* non-empty or in service, nothing else to do */
462dbc91 1270
2f3b89a1 1271 qfq_activate_agg(q, agg, enqueue);
be72f63b
PV
1272
1273 return err;
1274}
1275
1276/*
462dbc91 1277 * Schedule aggregate according to its timestamps.
be72f63b 1278 */
462dbc91 1279static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 1280{
462dbc91 1281 struct qfq_group *grp = agg->grp;
be72f63b
PV
1282 u64 roundedS;
1283 int s;
1284
462dbc91 1285 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1286
1287 /*
462dbc91
PV
1288 * Insert agg in the correct bucket.
1289 * If agg->S >= grp->S we don't need to adjust the
0545a303 1290 * bucket list and simply go to the insertion phase.
1291 * Otherwise grp->S is decreasing, we must make room
1292 * in the bucket list, and also recompute the group state.
1293 * Finally, if there were no flows in this group and nobody
1294 * was in ER make sure to adjust V.
1295 */
1296 if (grp->full_slots) {
462dbc91 1297 if (!qfq_gt(grp->S, agg->S))
0545a303 1298 goto skip_update;
1299
462dbc91 1300 /* create a slot for this agg->S */
0545a303 1301 qfq_slot_rotate(grp, roundedS);
1302 /* group was surely ineligible, remove */
1303 __clear_bit(grp->index, &q->bitmaps[IR]);
1304 __clear_bit(grp->index, &q->bitmaps[IB]);
40dd2d54
PV
1305 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1306 q->in_serv_agg == NULL)
0545a303 1307 q->V = roundedS;
1308
1309 grp->S = roundedS;
1310 grp->F = roundedS + (2ULL << grp->slot_shift);
1311 s = qfq_calc_state(q, grp);
1312 __set_bit(grp->index, &q->bitmaps[s]);
1313
1314 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1315 s, q->bitmaps[s],
462dbc91
PV
1316 (unsigned long long) agg->S,
1317 (unsigned long long) agg->F,
0545a303 1318 (unsigned long long) q->V);
1319
1320skip_update:
462dbc91 1321 qfq_slot_insert(grp, agg, roundedS);
0545a303 1322}
1323
1324
462dbc91
PV
1325/* Update agg ts and schedule agg for service */
1326static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1327 enum update_reason reason)
1328{
2f3b89a1
PV
1329 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1330
462dbc91 1331 qfq_update_agg_ts(q, agg, reason);
2f3b89a1
PV
1332 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1333 q->in_serv_agg = agg; /* start serving this aggregate */
1334 /* update V: to be in service, agg must be eligible */
1335 q->oldV = q->V = agg->S;
1336 } else if (agg != q->in_serv_agg)
1337 qfq_schedule_agg(q, agg);
462dbc91
PV
1338}
1339
0545a303 1340static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
462dbc91 1341 struct qfq_aggregate *agg)
0545a303 1342{
1343 unsigned int i, offset;
1344 u64 roundedS;
1345
462dbc91 1346 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1347 offset = (roundedS - grp->S) >> grp->slot_shift;
462dbc91 1348
0545a303 1349 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1350
462dbc91 1351 hlist_del(&agg->next);
0545a303 1352 if (hlist_empty(&grp->slots[i]))
1353 __clear_bit(offset, &grp->full_slots);
1354}
1355
1356/*
462dbc91
PV
1357 * Called to forcibly deschedule an aggregate. If the aggregate is
1358 * not in the front bucket, or if the latter has other aggregates in
1359 * the front bucket, we can simply remove the aggregate with no other
1360 * side effects.
0545a303 1361 * Otherwise we must propagate the event up.
1362 */
462dbc91 1363static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
0545a303 1364{
462dbc91 1365 struct qfq_group *grp = agg->grp;
0545a303 1366 unsigned long mask;
1367 u64 roundedS;
1368 int s;
1369
462dbc91
PV
1370 if (agg == q->in_serv_agg) {
1371 charge_actual_service(agg);
1372 q->in_serv_agg = qfq_choose_next_agg(q);
1373 return;
1374 }
1375
1376 agg->F = agg->S;
1377 qfq_slot_remove(q, grp, agg);
0545a303 1378
1379 if (!grp->full_slots) {
1380 __clear_bit(grp->index, &q->bitmaps[IR]);
1381 __clear_bit(grp->index, &q->bitmaps[EB]);
1382 __clear_bit(grp->index, &q->bitmaps[IB]);
1383
1384 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1385 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1386 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1387 if (mask)
1388 mask = ~((1UL << __fls(mask)) - 1);
1389 else
1390 mask = ~0UL;
1391 qfq_move_groups(q, mask, EB, ER);
1392 qfq_move_groups(q, mask, IB, IR);
1393 }
1394 __clear_bit(grp->index, &q->bitmaps[ER]);
1395 } else if (hlist_empty(&grp->slots[grp->front])) {
462dbc91
PV
1396 agg = qfq_slot_scan(grp);
1397 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1398 if (grp->S != roundedS) {
1399 __clear_bit(grp->index, &q->bitmaps[ER]);
1400 __clear_bit(grp->index, &q->bitmaps[IR]);
1401 __clear_bit(grp->index, &q->bitmaps[EB]);
1402 __clear_bit(grp->index, &q->bitmaps[IB]);
1403 grp->S = roundedS;
1404 grp->F = roundedS + (2ULL << grp->slot_shift);
1405 s = qfq_calc_state(q, grp);
1406 __set_bit(grp->index, &q->bitmaps[s]);
1407 }
1408 }
0545a303 1409}
1410
1411static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1412{
1413 struct qfq_sched *q = qdisc_priv(sch);
1414 struct qfq_class *cl = (struct qfq_class *)arg;
1415
95946658 1416 qfq_deactivate_class(q, cl);
0545a303 1417}
1418
e63d7dfd
AA
1419static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1420 struct netlink_ext_ack *extack)
0545a303 1421{
1422 struct qfq_sched *q = qdisc_priv(sch);
1423 struct qfq_group *grp;
1424 int i, j, err;
462dbc91 1425 u32 max_cl_shift, maxbudg_shift, max_classes;
0545a303 1426
8d1a77f9 1427 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
6529eaba
JP
1428 if (err)
1429 return err;
1430
0545a303 1431 err = qdisc_class_hash_init(&q->clhash);
1432 if (err < 0)
1433 return err;
1434
462dbc91
PV
1435 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1436 max_classes = QFQ_MAX_AGG_CLASSES;
1437 else
1438 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1439 /* max_cl_shift = floor(log_2(max_classes)) */
1440 max_cl_shift = __fls(max_classes);
1441 q->max_agg_classes = 1<<max_cl_shift;
1442
1443 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1444 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1445 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1446
0545a303 1447 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1448 grp = &q->groups[i];
1449 grp->index = i;
462dbc91 1450 grp->slot_shift = q->min_slot_shift + i;
0545a303 1451 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1452 INIT_HLIST_HEAD(&grp->slots[j]);
1453 }
1454
462dbc91
PV
1455 INIT_HLIST_HEAD(&q->nonfull_aggs);
1456
0545a303 1457 return 0;
1458}
1459
1460static void qfq_reset_qdisc(struct Qdisc *sch)
1461{
1462 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1463 struct qfq_class *cl;
462dbc91 1464 unsigned int i;
0545a303 1465
462dbc91 1466 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1467 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
462dbc91 1468 if (cl->qdisc->q.qlen > 0)
0545a303 1469 qfq_deactivate_class(q, cl);
0545a303 1470
0545a303 1471 qdisc_reset(cl->qdisc);
462dbc91 1472 }
0545a303 1473 }
2ed5c3f0 1474 sch->qstats.backlog = 0;
0545a303 1475 sch->q.qlen = 0;
1476}
1477
1478static void qfq_destroy_qdisc(struct Qdisc *sch)
1479{
1480 struct qfq_sched *q = qdisc_priv(sch);
1481 struct qfq_class *cl;
b67bfe0d 1482 struct hlist_node *next;
0545a303 1483 unsigned int i;
1484
6529eaba 1485 tcf_block_put(q->block);
0545a303 1486
1487 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1488 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
0545a303 1489 common.hnode) {
1490 qfq_destroy_class(sch, cl);
1491 }
1492 }
1493 qdisc_class_hash_destroy(&q->clhash);
1494}
1495
1496static const struct Qdisc_class_ops qfq_class_ops = {
1497 .change = qfq_change_class,
1498 .delete = qfq_delete_class,
143976ce 1499 .find = qfq_search_class,
6529eaba 1500 .tcf_block = qfq_tcf_block,
0545a303 1501 .bind_tcf = qfq_bind_tcf,
1502 .unbind_tcf = qfq_unbind_tcf,
1503 .graft = qfq_graft_class,
1504 .leaf = qfq_class_leaf,
1505 .qlen_notify = qfq_qlen_notify,
1506 .dump = qfq_dump_class,
1507 .dump_stats = qfq_dump_class_stats,
1508 .walk = qfq_walk,
1509};
1510
1511static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1512 .cl_ops = &qfq_class_ops,
1513 .id = "qfq",
1514 .priv_size = sizeof(struct qfq_sched),
1515 .enqueue = qfq_enqueue,
1516 .dequeue = qfq_dequeue,
1517 .peek = qdisc_peek_dequeued,
0545a303 1518 .init = qfq_init_qdisc,
1519 .reset = qfq_reset_qdisc,
1520 .destroy = qfq_destroy_qdisc,
1521 .owner = THIS_MODULE,
1522};
1523
1524static int __init qfq_init(void)
1525{
1526 return register_qdisc(&qfq_qdisc_ops);
1527}
1528
1529static void __exit qfq_exit(void)
1530{
1531 unregister_qdisc(&qfq_qdisc_ops);
1532}
1533
1534module_init(qfq_init);
1535module_exit(qfq_exit);
1536MODULE_LICENSE("GPL");