Merge tag 'lkmm.2023.04.07a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[linux-block.git] / net / sched / sch_qfq.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
0545a303 2/*
462dbc91 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
0545a303 4 *
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
462dbc91 6 * Copyright (c) 2012 Paolo Valente.
0545a303 7 */
8
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/bitops.h>
12#include <linux/errno.h>
13#include <linux/netdevice.h>
14#include <linux/pkt_sched.h>
15#include <net/sch_generic.h>
16#include <net/pkt_sched.h>
17#include <net/pkt_cls.h>
18
19
462dbc91
PV
20/* Quick Fair Queueing Plus
21 ========================
0545a303 22
23 Sources:
24
462dbc91
PV
25 [1] Paolo Valente,
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
28
29 Sources for QFQ:
30
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
0545a303 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
33
34 See also:
35 http://retis.sssup.it/~fabio/linux/qfq/
36 */
37
38/*
39
462dbc91
PV
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
45 scheduled with DRR.
46
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
53
0545a303 54 Virtual time computations.
55
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
58
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 one bit per index.
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
62
63 The layout of the bits is as below:
64
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
67 ^.__grp->index = 0
68 *.__grp->slot_shift
69
70 where MIN_SLOT_SHIFT is derived by difference from the others.
71
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
76
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
84
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
87
88 */
89
90/*
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
93 */
94#define QFQ_MAX_SLOTS 32
95
96/*
462dbc91
PV
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
0545a303 99 * group with the smallest index that can support the L_i / r_i configured
462dbc91 100 * for the classes in the aggregate.
0545a303 101 *
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
104 */
3015f3d2 105#define QFQ_MAX_INDEX 24
462dbc91 106#define QFQ_MAX_WSHIFT 10
0545a303 107
462dbc91
PV
108#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109#define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
0545a303 110
111#define FRAC_BITS 30 /* fixed point arithmetic */
112#define ONE_FP (1UL << FRAC_BITS)
0545a303 113
3015f3d2 114#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
462dbc91
PV
115#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116
117#define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
0545a303 118
119/*
120 * Possible group states. These values are used as indexes for the bitmaps
121 * array of struct qfq_queue.
122 */
123enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
124
125struct qfq_group;
126
462dbc91
PV
127struct qfq_aggregate;
128
0545a303 129struct qfq_class {
130 struct Qdisc_class_common common;
131
0545a303 132 unsigned int filter_cnt;
133
50dc9a85 134 struct gnet_stats_basic_sync bstats;
0545a303 135 struct gnet_stats_queue qstats;
1c0d32fd 136 struct net_rate_estimator __rcu *rate_est;
0545a303 137 struct Qdisc *qdisc;
462dbc91
PV
138 struct list_head alist; /* Link for active-classes list. */
139 struct qfq_aggregate *agg; /* Parent aggregate. */
140 int deficit; /* DRR deficit counter. */
141};
0545a303 142
462dbc91 143struct qfq_aggregate {
0545a303 144 struct hlist_node next; /* Link for the slot list. */
145 u64 S, F; /* flow timestamps (exact) */
146
147 /* group we belong to. In principle we would need the index,
148 * which is log_2(lmax/weight), but we never reference it
149 * directly, only the group.
150 */
151 struct qfq_group *grp;
152
153 /* these are copied from the flowset. */
462dbc91
PV
154 u32 class_weight; /* Weight of each class in this aggregate. */
155 /* Max pkt size for the classes in this aggregate, DRR quantum. */
156 int lmax;
157
158 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
159 u32 budgetmax; /* Max budget for this aggregate. */
160 u32 initial_budget, budget; /* Initial and current budget. */
161
162 int num_classes; /* Number of classes in this aggr. */
163 struct list_head active; /* DRR queue of active classes. */
164
165 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
0545a303 166};
167
168struct qfq_group {
169 u64 S, F; /* group timestamps (approx). */
170 unsigned int slot_shift; /* Slot shift. */
171 unsigned int index; /* Group index. */
172 unsigned int front; /* Index of the front slot. */
173 unsigned long full_slots; /* non-empty slots */
174
462dbc91 175 /* Array of RR lists of active aggregates. */
0545a303 176 struct hlist_head slots[QFQ_MAX_SLOTS];
177};
178
179struct qfq_sched {
25d8c0d5 180 struct tcf_proto __rcu *filter_list;
6529eaba 181 struct tcf_block *block;
0545a303 182 struct Qdisc_class_hash clhash;
183
462dbc91
PV
184 u64 oldV, V; /* Precise virtual times. */
185 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
462dbc91 186 u32 wsum; /* weight sum */
87f40dd6 187 u32 iwsum; /* inverse weight sum */
0545a303 188
189 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
190 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
462dbc91
PV
191 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
192
193 u32 max_agg_classes; /* Max number of classes per aggr. */
194 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
0545a303 195};
196
462dbc91
PV
197/*
198 * Possible reasons why the timestamps of an aggregate are updated
199 * enqueue: the aggregate switches from idle to active and must scheduled
200 * for service
201 * requeue: the aggregate finishes its budget, so it stops being served and
202 * must be rescheduled for service
203 */
204enum update_reason {enqueue, requeue};
205
0545a303 206static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
207{
208 struct qfq_sched *q = qdisc_priv(sch);
209 struct Qdisc_class_common *clc;
210
211 clc = qdisc_class_find(&q->clhash, classid);
212 if (clc == NULL)
213 return NULL;
214 return container_of(clc, struct qfq_class, common);
215}
216
0545a303 217static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
218 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
219 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
220};
221
222/*
223 * Calculate a flow index, given its weight and maximum packet length.
224 * index = log_2(maxlen/weight) but we need to apply the scaling.
225 * This is used only once at flow creation.
226 */
462dbc91 227static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
0545a303 228{
229 u64 slot_size = (u64)maxlen * inv_w;
230 unsigned long size_map;
231 int index = 0;
232
462dbc91 233 size_map = slot_size >> min_slot_shift;
0545a303 234 if (!size_map)
235 goto out;
236
237 index = __fls(size_map) + 1; /* basically a log_2 */
462dbc91 238 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
0545a303 239
240 if (index < 0)
241 index = 0;
242out:
243 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
244 (unsigned long) ONE_FP/inv_w, maxlen, index);
245
246 return index;
247}
248
462dbc91
PV
249static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
250static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
251 enum update_reason);
252
253static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
254 u32 lmax, u32 weight)
be72f63b 255{
462dbc91
PV
256 INIT_LIST_HEAD(&agg->active);
257 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
258
259 agg->lmax = lmax;
260 agg->class_weight = weight;
261}
262
263static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
264 u32 lmax, u32 weight)
265{
266 struct qfq_aggregate *agg;
462dbc91 267
b67bfe0d 268 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
462dbc91
PV
269 if (agg->lmax == lmax && agg->class_weight == weight)
270 return agg;
271
272 return NULL;
273}
274
be72f63b 275
462dbc91
PV
276/* Update aggregate as a function of the new number of classes. */
277static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
278 int new_num_classes)
279{
280 u32 new_agg_weight;
281
282 if (new_num_classes == q->max_agg_classes)
283 hlist_del_init(&agg->nonfull_next);
284
285 if (agg->num_classes > new_num_classes &&
286 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
287 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
288
9b99b7e9
PV
289 /* The next assignment may let
290 * agg->initial_budget > agg->budgetmax
291 * hold, we will take it into account in charge_actual_service().
292 */
462dbc91
PV
293 agg->budgetmax = new_num_classes * agg->lmax;
294 new_agg_weight = agg->class_weight * new_num_classes;
295 agg->inv_w = ONE_FP/new_agg_weight;
296
297 if (agg->grp == NULL) {
298 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
299 q->min_slot_shift);
300 agg->grp = &q->groups[i];
301 }
302
303 q->wsum +=
304 (int) agg->class_weight * (new_num_classes - agg->num_classes);
87f40dd6 305 q->iwsum = ONE_FP / q->wsum;
462dbc91
PV
306
307 agg->num_classes = new_num_classes;
308}
309
310/* Add class to aggregate. */
311static void qfq_add_to_agg(struct qfq_sched *q,
312 struct qfq_aggregate *agg,
313 struct qfq_class *cl)
314{
315 cl->agg = agg;
316
317 qfq_update_agg(q, agg, agg->num_classes+1);
318 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
319 list_add_tail(&cl->alist, &agg->active);
320 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
321 cl && q->in_serv_agg != agg) /* agg was inactive */
322 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
323 }
be72f63b
PV
324}
325
462dbc91 326static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
be72f63b 327
462dbc91 328static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 329{
a55e1c5c 330 hlist_del_init(&agg->nonfull_next);
87f40dd6
PV
331 q->wsum -= agg->class_weight;
332 if (q->wsum != 0)
333 q->iwsum = ONE_FP / q->wsum;
334
462dbc91
PV
335 if (q->in_serv_agg == agg)
336 q->in_serv_agg = qfq_choose_next_agg(q);
337 kfree(agg);
338}
be72f63b 339
462dbc91
PV
340/* Deschedule class from within its parent aggregate. */
341static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
342{
343 struct qfq_aggregate *agg = cl->agg;
be72f63b 344
be72f63b 345
462dbc91
PV
346 list_del(&cl->alist); /* remove from RR queue of the aggregate */
347 if (list_empty(&agg->active)) /* agg is now inactive */
348 qfq_deactivate_agg(q, agg);
be72f63b
PV
349}
350
462dbc91
PV
351/* Remove class from its parent aggregate. */
352static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
3015f3d2 353{
462dbc91 354 struct qfq_aggregate *agg = cl->agg;
3015f3d2 355
462dbc91
PV
356 cl->agg = NULL;
357 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
358 qfq_destroy_agg(q, agg);
359 return;
3015f3d2 360 }
462dbc91
PV
361 qfq_update_agg(q, agg, agg->num_classes-1);
362}
3015f3d2 363
462dbc91
PV
364/* Deschedule class and remove it from its parent aggregate. */
365static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366{
367 if (cl->qdisc->q.qlen > 0) /* class is active */
368 qfq_deactivate_class(q, cl);
3015f3d2 369
462dbc91 370 qfq_rm_from_agg(q, cl);
3015f3d2
PV
371}
372
462dbc91
PV
373/* Move class to a new aggregate, matching the new class weight and/or lmax */
374static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
375 u32 lmax)
376{
377 struct qfq_sched *q = qdisc_priv(sch);
378 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
379
380 if (new_agg == NULL) { /* create new aggregate */
381 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
382 if (new_agg == NULL)
383 return -ENOBUFS;
384 qfq_init_agg(q, new_agg, lmax, weight);
385 }
386 qfq_deact_rm_from_agg(q, cl);
387 qfq_add_to_agg(q, new_agg, cl);
388
389 return 0;
390}
3015f3d2 391
0545a303 392static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
793d81d6
AA
393 struct nlattr **tca, unsigned long *arg,
394 struct netlink_ext_ack *extack)
0545a303 395{
396 struct qfq_sched *q = qdisc_priv(sch);
397 struct qfq_class *cl = (struct qfq_class *)*arg;
462dbc91 398 bool existing = false;
0545a303 399 struct nlattr *tb[TCA_QFQ_MAX + 1];
462dbc91 400 struct qfq_aggregate *new_agg = NULL;
0545a303 401 u32 weight, lmax, inv_w;
3015f3d2 402 int err;
d32ae76f 403 int delta_w;
0545a303 404
405 if (tca[TCA_OPTIONS] == NULL) {
406 pr_notice("qfq: no options\n");
407 return -EINVAL;
408 }
409
8cb08174
JB
410 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
411 qfq_policy, NULL);
0545a303 412 if (err < 0)
413 return err;
414
415 if (tb[TCA_QFQ_WEIGHT]) {
416 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
417 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
418 pr_notice("qfq: invalid weight %u\n", weight);
419 return -EINVAL;
420 }
421 } else
422 weight = 1;
423
30379334 424 if (tb[TCA_QFQ_LMAX])
0545a303 425 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
30379334 426 else
3015f3d2 427 lmax = psched_mtu(qdisc_dev(sch));
0545a303 428
30379334
GJ
429 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
430 pr_notice("qfq: invalid max length %u\n", lmax);
431 return -EINVAL;
432 }
433
462dbc91
PV
434 inv_w = ONE_FP / weight;
435 weight = ONE_FP / inv_w;
436
437 if (cl != NULL &&
438 lmax == cl->agg->lmax &&
439 weight == cl->agg->class_weight)
440 return 0; /* nothing to change */
441
442 delta_w = weight - (cl ? cl->agg->class_weight : 0);
443
444 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
445 pr_notice("qfq: total weight out of range (%d + %u)\n",
446 delta_w, q->wsum);
447 return -EINVAL;
448 }
449
450 if (cl != NULL) { /* modify existing class */
0545a303 451 if (tca[TCA_RATE]) {
22e0f8b9
JF
452 err = gen_replace_estimator(&cl->bstats, NULL,
453 &cl->rate_est,
edb09eb1 454 NULL,
29cbcd85 455 true,
0545a303 456 tca[TCA_RATE]);
457 if (err)
458 return err;
459 }
462dbc91
PV
460 existing = true;
461 goto set_change_agg;
0545a303 462 }
463
462dbc91 464 /* create and init new class */
0545a303 465 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
466 if (cl == NULL)
467 return -ENOBUFS;
468
50dc9a85 469 gnet_stats_basic_sync_init(&cl->bstats);
0545a303 470 cl->common.classid = classid;
462dbc91 471 cl->deficit = lmax;
0545a303 472
a38a9882
AA
473 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
474 classid, NULL);
0545a303 475 if (cl->qdisc == NULL)
476 cl->qdisc = &noop_qdisc;
477
478 if (tca[TCA_RATE]) {
22e0f8b9
JF
479 err = gen_new_estimator(&cl->bstats, NULL,
480 &cl->rate_est,
edb09eb1 481 NULL,
29cbcd85 482 true,
0545a303 483 tca[TCA_RATE]);
462dbc91
PV
484 if (err)
485 goto destroy_class;
0545a303 486 }
487
49b49971
JK
488 if (cl->qdisc != &noop_qdisc)
489 qdisc_hash_add(cl->qdisc, true);
0545a303 490
462dbc91
PV
491set_change_agg:
492 sch_tree_lock(sch);
493 new_agg = qfq_find_agg(q, lmax, weight);
494 if (new_agg == NULL) { /* create new aggregate */
495 sch_tree_unlock(sch);
496 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
497 if (new_agg == NULL) {
498 err = -ENOBUFS;
1c0d32fd 499 gen_kill_estimator(&cl->rate_est);
462dbc91
PV
500 goto destroy_class;
501 }
502 sch_tree_lock(sch);
503 qfq_init_agg(q, new_agg, lmax, weight);
504 }
505 if (existing)
506 qfq_deact_rm_from_agg(q, cl);
0cd58e5c
ED
507 else
508 qdisc_class_hash_insert(&q->clhash, &cl->common);
462dbc91
PV
509 qfq_add_to_agg(q, new_agg, cl);
510 sch_tree_unlock(sch);
0cd58e5c 511 qdisc_class_hash_grow(sch, &q->clhash);
462dbc91 512
0545a303 513 *arg = (unsigned long)cl;
514 return 0;
462dbc91
PV
515
516destroy_class:
86bd446b 517 qdisc_put(cl->qdisc);
462dbc91
PV
518 kfree(cl);
519 return err;
0545a303 520}
521
522static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
523{
524 struct qfq_sched *q = qdisc_priv(sch);
525
462dbc91 526 qfq_rm_from_agg(q, cl);
1c0d32fd 527 gen_kill_estimator(&cl->rate_est);
86bd446b 528 qdisc_put(cl->qdisc);
0545a303 529 kfree(cl);
530}
531
4dd78a73
MM
532static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
533 struct netlink_ext_ack *extack)
0545a303 534{
535 struct qfq_sched *q = qdisc_priv(sch);
536 struct qfq_class *cl = (struct qfq_class *)arg;
537
538 if (cl->filter_cnt > 0)
539 return -EBUSY;
540
541 sch_tree_lock(sch);
542
e5f0e8f8 543 qdisc_purge_queue(cl->qdisc);
0545a303 544 qdisc_class_hash_remove(&q->clhash, &cl->common);
545
0545a303 546 sch_tree_unlock(sch);
0545a303 547
143976ce
WC
548 qfq_destroy_class(sch, cl);
549 return 0;
0545a303 550}
551
143976ce 552static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
0545a303 553{
143976ce 554 return (unsigned long)qfq_find_class(sch, classid);
0545a303 555}
556
cbaacc4e
AA
557static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
558 struct netlink_ext_ack *extack)
0545a303 559{
560 struct qfq_sched *q = qdisc_priv(sch);
561
562 if (cl)
563 return NULL;
564
6529eaba 565 return q->block;
0545a303 566}
567
568static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
569 u32 classid)
570{
571 struct qfq_class *cl = qfq_find_class(sch, classid);
572
573 if (cl != NULL)
574 cl->filter_cnt++;
575
576 return (unsigned long)cl;
577}
578
579static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
580{
581 struct qfq_class *cl = (struct qfq_class *)arg;
582
583 cl->filter_cnt--;
584}
585
586static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
653d6fd6
AA
587 struct Qdisc *new, struct Qdisc **old,
588 struct netlink_ext_ack *extack)
0545a303 589{
590 struct qfq_class *cl = (struct qfq_class *)arg;
591
592 if (new == NULL) {
a38a9882
AA
593 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
594 cl->common.classid, NULL);
0545a303 595 if (new == NULL)
596 new = &noop_qdisc;
597 }
598
86a7996c 599 *old = qdisc_replace(sch, new, &cl->qdisc);
0545a303 600 return 0;
601}
602
603static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
604{
605 struct qfq_class *cl = (struct qfq_class *)arg;
606
607 return cl->qdisc;
608}
609
610static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
611 struct sk_buff *skb, struct tcmsg *tcm)
612{
613 struct qfq_class *cl = (struct qfq_class *)arg;
614 struct nlattr *nest;
615
616 tcm->tcm_parent = TC_H_ROOT;
617 tcm->tcm_handle = cl->common.classid;
618 tcm->tcm_info = cl->qdisc->handle;
619
ae0be8de 620 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
0545a303 621 if (nest == NULL)
622 goto nla_put_failure;
462dbc91
PV
623 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
624 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
1b34ec43 625 goto nla_put_failure;
0545a303 626 return nla_nest_end(skb, nest);
627
628nla_put_failure:
629 nla_nest_cancel(skb, nest);
630 return -EMSGSIZE;
631}
632
633static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
634 struct gnet_dump *d)
635{
636 struct qfq_class *cl = (struct qfq_class *)arg;
637 struct tc_qfq_stats xstats;
638
639 memset(&xstats, 0, sizeof(xstats));
0545a303 640
462dbc91
PV
641 xstats.weight = cl->agg->class_weight;
642 xstats.lmax = cl->agg->lmax;
0545a303 643
29cbcd85 644 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
1c0d32fd 645 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
5dd431b6 646 qdisc_qstats_copy(d, cl->qdisc) < 0)
0545a303 647 return -1;
648
649 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
650}
651
652static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
653{
654 struct qfq_sched *q = qdisc_priv(sch);
655 struct qfq_class *cl;
0545a303 656 unsigned int i;
657
658 if (arg->stop)
659 return;
660
661 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 662 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
e046fa89 663 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
0545a303 664 return;
0545a303 665 }
666 }
667}
668
669static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
670 int *qerr)
671{
672 struct qfq_sched *q = qdisc_priv(sch);
673 struct qfq_class *cl;
674 struct tcf_result res;
25d8c0d5 675 struct tcf_proto *fl;
0545a303 676 int result;
677
678 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
679 pr_debug("qfq_classify: found %d\n", skb->priority);
680 cl = qfq_find_class(sch, skb->priority);
681 if (cl != NULL)
682 return cl;
683 }
684
685 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
25d8c0d5 686 fl = rcu_dereference_bh(q->filter_list);
3aa26055 687 result = tcf_classify(skb, NULL, fl, &res, false);
0545a303 688 if (result >= 0) {
689#ifdef CONFIG_NET_CLS_ACT
690 switch (result) {
691 case TC_ACT_QUEUED:
692 case TC_ACT_STOLEN:
e25ea21f 693 case TC_ACT_TRAP:
0545a303 694 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
964201de 695 fallthrough;
0545a303 696 case TC_ACT_SHOT:
697 return NULL;
698 }
699#endif
700 cl = (struct qfq_class *)res.class;
701 if (cl == NULL)
702 cl = qfq_find_class(sch, res.classid);
703 return cl;
704 }
705
706 return NULL;
707}
708
709/* Generic comparison function, handling wraparound. */
710static inline int qfq_gt(u64 a, u64 b)
711{
712 return (s64)(a - b) > 0;
713}
714
715/* Round a precise timestamp to its slotted value. */
716static inline u64 qfq_round_down(u64 ts, unsigned int shift)
717{
718 return ts & ~((1ULL << shift) - 1);
719}
720
721/* return the pointer to the group with lowest index in the bitmap */
722static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
723 unsigned long bitmap)
724{
725 int index = __ffs(bitmap);
726 return &q->groups[index];
727}
728/* Calculate a mask to mimic what would be ffs_from(). */
729static inline unsigned long mask_from(unsigned long bitmap, int from)
730{
731 return bitmap & ~((1UL << from) - 1);
732}
733
734/*
735 * The state computation relies on ER=0, IR=1, EB=2, IB=3
736 * First compute eligibility comparing grp->S, q->V,
737 * then check if someone is blocking us and possibly add EB
738 */
739static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
740{
741 /* if S > V we are not eligible */
742 unsigned int state = qfq_gt(grp->S, q->V);
743 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
744 struct qfq_group *next;
745
746 if (mask) {
747 next = qfq_ffs(q, mask);
748 if (qfq_gt(grp->F, next->F))
749 state |= EB;
750 }
751
752 return state;
753}
754
755
756/*
757 * In principle
758 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
759 * q->bitmaps[src] &= ~mask;
760 * but we should make sure that src != dst
761 */
762static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
763 int src, int dst)
764{
765 q->bitmaps[dst] |= q->bitmaps[src] & mask;
766 q->bitmaps[src] &= ~mask;
767}
768
769static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
770{
771 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
772 struct qfq_group *next;
773
774 if (mask) {
775 next = qfq_ffs(q, mask);
776 if (!qfq_gt(next->F, old_F))
777 return;
778 }
779
780 mask = (1UL << index) - 1;
781 qfq_move_groups(q, mask, EB, ER);
782 qfq_move_groups(q, mask, IB, IR);
783}
784
785/*
786 * perhaps
787 *
788 old_V ^= q->V;
462dbc91 789 old_V >>= q->min_slot_shift;
0545a303 790 if (old_V) {
791 ...
792 }
793 *
794 */
462dbc91 795static void qfq_make_eligible(struct qfq_sched *q)
0545a303 796{
462dbc91
PV
797 unsigned long vslot = q->V >> q->min_slot_shift;
798 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
0545a303 799
800 if (vslot != old_vslot) {
87f1369d
PV
801 unsigned long mask;
802 int last_flip_pos = fls(vslot ^ old_vslot);
803
804 if (last_flip_pos > 31) /* higher than the number of groups */
805 mask = ~0UL; /* make all groups eligible */
806 else
807 mask = (1UL << last_flip_pos) - 1;
808
0545a303 809 qfq_move_groups(q, mask, IR, ER);
810 qfq_move_groups(q, mask, IB, EB);
811 }
812}
813
0545a303 814/*
87f40dd6
PV
815 * The index of the slot in which the input aggregate agg is to be
816 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
817 * and not a '-1' because the start time of the group may be moved
818 * backward by one slot after the aggregate has been inserted, and
819 * this would cause non-empty slots to be right-shifted by one
820 * position.
821 *
822 * QFQ+ fully satisfies this bound to the slot index if the parameters
823 * of the classes are not changed dynamically, and if QFQ+ never
824 * happens to postpone the service of agg unjustly, i.e., it never
825 * happens that the aggregate becomes backlogged and eligible, or just
826 * eligible, while an aggregate with a higher approximated finish time
827 * is being served. In particular, in this case QFQ+ guarantees that
828 * the timestamps of agg are low enough that the slot index is never
829 * higher than 2. Unfortunately, QFQ+ cannot provide the same
830 * guarantee if it happens to unjustly postpone the service of agg, or
831 * if the parameters of some class are changed.
832 *
833 * As for the first event, i.e., an out-of-order service, the
834 * upper bound to the slot index guaranteed by QFQ+ grows to
835 * 2 +
836 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
837 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
3015f3d2 838 *
87f40dd6
PV
839 * The following function deals with this problem by backward-shifting
840 * the timestamps of agg, if needed, so as to guarantee that the slot
841 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
842 * cause the service of other aggregates to be postponed, yet the
843 * worst-case guarantees of these aggregates are not violated. In
844 * fact, in case of no out-of-order service, the timestamps of agg
845 * would have been even lower than they are after the backward shift,
846 * because QFQ+ would have guaranteed a maximum value equal to 2 for
847 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
848 * service is postponed because of the backward-shift would have
849 * however waited for the service of agg before being served.
3015f3d2 850 *
87f40dd6
PV
851 * The other event that may cause the slot index to be higher than 2
852 * for agg is a recent change of the parameters of some class. If the
853 * weight of a class is increased or the lmax (max_pkt_size) of the
854 * class is decreased, then a new aggregate with smaller slot size
855 * than the original parent aggregate of the class may happen to be
856 * activated. The activation of this aggregate should be properly
857 * delayed to when the service of the class has finished in the ideal
858 * system tracked by QFQ+. If the activation of the aggregate is not
859 * delayed to this reference time instant, then this aggregate may be
860 * unjustly served before other aggregates waiting for service. This
861 * may cause the above bound to the slot index to be violated for some
862 * of these unlucky aggregates.
3015f3d2 863 *
462dbc91 864 * Instead of delaying the activation of the new aggregate, which is
87f40dd6
PV
865 * quite complex, the above-discussed capping of the slot index is
866 * used to handle also the consequences of a change of the parameters
867 * of a class.
0545a303 868 */
462dbc91 869static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
0545a303 870 u64 roundedS)
871{
872 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
3015f3d2
PV
873 unsigned int i; /* slot index in the bucket list */
874
875 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
876 u64 deltaS = roundedS - grp->S -
877 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
462dbc91
PV
878 agg->S -= deltaS;
879 agg->F -= deltaS;
3015f3d2
PV
880 slot = QFQ_MAX_SLOTS - 2;
881 }
882
883 i = (grp->front + slot) % QFQ_MAX_SLOTS;
0545a303 884
462dbc91 885 hlist_add_head(&agg->next, &grp->slots[i]);
0545a303 886 __set_bit(slot, &grp->full_slots);
887}
888
889/* Maybe introduce hlist_first_entry?? */
462dbc91 890static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
0545a303 891{
892 return hlist_entry(grp->slots[grp->front].first,
462dbc91 893 struct qfq_aggregate, next);
0545a303 894}
895
896/*
897 * remove the entry from the slot
898 */
899static void qfq_front_slot_remove(struct qfq_group *grp)
900{
462dbc91 901 struct qfq_aggregate *agg = qfq_slot_head(grp);
0545a303 902
462dbc91
PV
903 BUG_ON(!agg);
904 hlist_del(&agg->next);
0545a303 905 if (hlist_empty(&grp->slots[grp->front]))
906 __clear_bit(0, &grp->full_slots);
907}
908
909/*
462dbc91
PV
910 * Returns the first aggregate in the first non-empty bucket of the
911 * group. As a side effect, adjusts the bucket list so the first
912 * non-empty bucket is at position 0 in full_slots.
0545a303 913 */
462dbc91 914static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
0545a303 915{
916 unsigned int i;
917
918 pr_debug("qfq slot_scan: grp %u full %#lx\n",
919 grp->index, grp->full_slots);
920
921 if (grp->full_slots == 0)
922 return NULL;
923
924 i = __ffs(grp->full_slots); /* zero based */
925 if (i > 0) {
926 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
927 grp->full_slots >>= i;
928 }
929
930 return qfq_slot_head(grp);
931}
932
933/*
934 * adjust the bucket list. When the start time of a group decreases,
935 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
936 * move the objects. The mask of occupied slots must be shifted
937 * because we use ffs() to find the first non-empty slot.
938 * This covers decreases in the group's start time, but what about
939 * increases of the start time ?
940 * Here too we should make sure that i is less than 32
941 */
942static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
943{
944 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
945
946 grp->full_slots <<= i;
947 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
948}
949
462dbc91 950static void qfq_update_eligible(struct qfq_sched *q)
0545a303 951{
952 struct qfq_group *grp;
953 unsigned long ineligible;
954
955 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
956 if (ineligible) {
957 if (!q->bitmaps[ER]) {
958 grp = qfq_ffs(q, ineligible);
959 if (qfq_gt(grp->S, q->V))
960 q->V = grp->S;
961 }
462dbc91 962 qfq_make_eligible(q);
0545a303 963 }
964}
965
462dbc91
PV
966/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
967static void agg_dequeue(struct qfq_aggregate *agg,
968 struct qfq_class *cl, unsigned int len)
0545a303 969{
462dbc91 970 qdisc_dequeue_peeked(cl->qdisc);
0545a303 971
462dbc91 972 cl->deficit -= (int) len;
0545a303 973
462dbc91
PV
974 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
975 list_del(&cl->alist);
976 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
977 cl->deficit += agg->lmax;
978 list_move_tail(&cl->alist, &agg->active);
0545a303 979 }
462dbc91
PV
980}
981
982static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
983 struct qfq_class **cl,
984 unsigned int *len)
985{
986 struct sk_buff *skb;
0545a303 987
462dbc91
PV
988 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
989 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
990 if (skb == NULL)
991 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
992 else
993 *len = qdisc_pkt_len(skb);
994
995 return skb;
996}
997
998/* Update F according to the actual service received by the aggregate. */
999static inline void charge_actual_service(struct qfq_aggregate *agg)
1000{
9b99b7e9
PV
1001 /* Compute the service received by the aggregate, taking into
1002 * account that, after decreasing the number of classes in
1003 * agg, it may happen that
1004 * agg->initial_budget - agg->budget > agg->bugdetmax
1005 */
1006 u32 service_received = min(agg->budgetmax,
1007 agg->initial_budget - agg->budget);
462dbc91
PV
1008
1009 agg->F = agg->S + (u64)service_received * agg->inv_w;
0545a303 1010}
1011
88d4f419
PV
1012/* Assign a reasonable start time for a new aggregate in group i.
1013 * Admissible values for \hat(F) are multiples of \sigma_i
1014 * no greater than V+\sigma_i . Larger values mean that
1015 * we had a wraparound so we consider the timestamp to be stale.
1016 *
1017 * If F is not stale and F >= V then we set S = F.
1018 * Otherwise we should assign S = V, but this may violate
1019 * the ordering in EB (see [2]). So, if we have groups in ER,
1020 * set S to the F_j of the first group j which would be blocking us.
1021 * We are guaranteed not to move S backward because
1022 * otherwise our group i would still be blocked.
1023 */
1024static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1025{
1026 unsigned long mask;
1027 u64 limit, roundedF;
1028 int slot_shift = agg->grp->slot_shift;
1029
1030 roundedF = qfq_round_down(agg->F, slot_shift);
1031 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1032
1033 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1034 /* timestamp was stale */
1035 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1036 if (mask) {
1037 struct qfq_group *next = qfq_ffs(q, mask);
1038 if (qfq_gt(roundedF, next->F)) {
1039 if (qfq_gt(limit, next->F))
1040 agg->S = next->F;
1041 else /* preserve timestamp correctness */
1042 agg->S = limit;
1043 return;
1044 }
1045 }
1046 agg->S = q->V;
1047 } else /* timestamp is not stale */
1048 agg->S = agg->F;
1049}
1050
1051/* Update the timestamps of agg before scheduling/rescheduling it for
1052 * service. In particular, assign to agg->F its maximum possible
1053 * value, i.e., the virtual finish time with which the aggregate
1054 * should be labeled if it used all its budget once in service.
1055 */
1056static inline void
1057qfq_update_agg_ts(struct qfq_sched *q,
1058 struct qfq_aggregate *agg, enum update_reason reason)
1059{
1060 if (reason != requeue)
1061 qfq_update_start(q, agg);
1062 else /* just charge agg for the service received */
1063 agg->S = agg->F;
1064
1065 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1066}
2f3b89a1
PV
1067
1068static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1069
0545a303 1070static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1071{
1072 struct qfq_sched *q = qdisc_priv(sch);
462dbc91 1073 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
0545a303 1074 struct qfq_class *cl;
462dbc91
PV
1075 struct sk_buff *skb = NULL;
1076 /* next-packet len, 0 means no more active classes in in-service agg */
1077 unsigned int len = 0;
0545a303 1078
462dbc91 1079 if (in_serv_agg == NULL)
0545a303 1080 return NULL;
1081
462dbc91
PV
1082 if (!list_empty(&in_serv_agg->active))
1083 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1084
462dbc91
PV
1085 /*
1086 * If there are no active classes in the in-service aggregate,
1087 * or if the aggregate has not enough budget to serve its next
1088 * class, then choose the next aggregate to serve.
1089 */
1090 if (len == 0 || in_serv_agg->budget < len) {
1091 charge_actual_service(in_serv_agg);
1092
1093 /* recharge the budget of the aggregate */
1094 in_serv_agg->initial_budget = in_serv_agg->budget =
1095 in_serv_agg->budgetmax;
1096
2f3b89a1 1097 if (!list_empty(&in_serv_agg->active)) {
462dbc91
PV
1098 /*
1099 * Still active: reschedule for
1100 * service. Possible optimization: if no other
1101 * aggregate is active, then there is no point
1102 * in rescheduling this aggregate, and we can
1103 * just keep it as the in-service one. This
1104 * should be however a corner case, and to
1105 * handle it, we would need to maintain an
1106 * extra num_active_aggs field.
1107 */
2f3b89a1
PV
1108 qfq_update_agg_ts(q, in_serv_agg, requeue);
1109 qfq_schedule_agg(q, in_serv_agg);
1110 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
462dbc91
PV
1111 q->in_serv_agg = NULL;
1112 return NULL;
1113 }
1114
1115 /*
1116 * If we get here, there are other aggregates queued:
1117 * choose the new aggregate to serve.
1118 */
1119 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1120 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1121 }
462dbc91
PV
1122 if (!skb)
1123 return NULL;
0545a303 1124
2ed5c3f0 1125 qdisc_qstats_backlog_dec(sch, skb);
0545a303 1126 sch->q.qlen--;
1127 qdisc_bstats_update(sch, skb);
1128
462dbc91 1129 agg_dequeue(in_serv_agg, cl, len);
a0143efa
PV
1130 /* If lmax is lowered, through qfq_change_class, for a class
1131 * owning pending packets with larger size than the new value
1132 * of lmax, then the following condition may hold.
1133 */
1134 if (unlikely(in_serv_agg->budget < len))
1135 in_serv_agg->budget = 0;
1136 else
1137 in_serv_agg->budget -= len;
1138
87f40dd6 1139 q->V += (u64)len * q->iwsum;
0545a303 1140 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
462dbc91
PV
1141 len, (unsigned long long) in_serv_agg->F,
1142 (unsigned long long) q->V);
0545a303 1143
462dbc91
PV
1144 return skb;
1145}
0545a303 1146
462dbc91
PV
1147static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1148{
1149 struct qfq_group *grp;
1150 struct qfq_aggregate *agg, *new_front_agg;
1151 u64 old_F;
0545a303 1152
462dbc91
PV
1153 qfq_update_eligible(q);
1154 q->oldV = q->V;
1155
1156 if (!q->bitmaps[ER])
1157 return NULL;
1158
1159 grp = qfq_ffs(q, q->bitmaps[ER]);
1160 old_F = grp->F;
1161
1162 agg = qfq_slot_head(grp);
0545a303 1163
462dbc91
PV
1164 /* agg starts to be served, remove it from schedule */
1165 qfq_front_slot_remove(grp);
1166
1167 new_front_agg = qfq_slot_scan(grp);
1168
1169 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1170 __clear_bit(grp->index, &q->bitmaps[ER]);
1171 else {
1172 u64 roundedS = qfq_round_down(new_front_agg->S,
1173 grp->slot_shift);
1174 unsigned int s;
1175
1176 if (grp->S == roundedS)
1177 return agg;
1178 grp->S = roundedS;
1179 grp->F = roundedS + (2ULL << grp->slot_shift);
1180 __clear_bit(grp->index, &q->bitmaps[ER]);
1181 s = qfq_calc_state(q, grp);
1182 __set_bit(grp->index, &q->bitmaps[s]);
0545a303 1183 }
1184
462dbc91 1185 qfq_unblock_groups(q, grp->index, old_F);
0545a303 1186
462dbc91 1187 return agg;
0545a303 1188}
1189
ac5c66f2 1190static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
520ac30f 1191 struct sk_buff **to_free)
0545a303 1192{
f6bab199 1193 unsigned int len = qdisc_pkt_len(skb), gso_segs;
0545a303 1194 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1195 struct qfq_class *cl;
462dbc91 1196 struct qfq_aggregate *agg;
f54ba779 1197 int err = 0;
37d9cf1a 1198 bool first;
0545a303 1199
1200 cl = qfq_classify(skb, sch, &err);
1201 if (cl == NULL) {
1202 if (err & __NET_XMIT_BYPASS)
25331d6c 1203 qdisc_qstats_drop(sch);
39ad1297 1204 __qdisc_drop(skb, to_free);
0545a303 1205 return err;
1206 }
1207 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1208
f6bab199 1209 if (unlikely(cl->agg->lmax < len)) {
3015f3d2 1210 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
f6bab199
THJ
1211 cl->agg->lmax, len, cl->common.classid);
1212 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
9b15350f
FW
1213 if (err) {
1214 cl->qstats.drops++;
520ac30f 1215 return qdisc_drop(skb, sch, to_free);
9b15350f 1216 }
3015f3d2
PV
1217 }
1218
f6bab199 1219 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
37d9cf1a 1220 first = !cl->qdisc->q.qlen;
ac5c66f2 1221 err = qdisc_enqueue(skb, cl->qdisc, to_free);
0545a303 1222 if (unlikely(err != NET_XMIT_SUCCESS)) {
1223 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1224 if (net_xmit_drop_count(err)) {
1225 cl->qstats.drops++;
25331d6c 1226 qdisc_qstats_drop(sch);
0545a303 1227 }
1228 return err;
1229 }
1230
f56940da 1231 _bstats_update(&cl->bstats, len, gso_segs);
f6bab199 1232 sch->qstats.backlog += len;
0545a303 1233 ++sch->q.qlen;
1234
462dbc91
PV
1235 agg = cl->agg;
1236 /* if the queue was not empty, then done here */
37d9cf1a 1237 if (!first) {
462dbc91
PV
1238 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1239 list_first_entry(&agg->active, struct qfq_class, alist)
f6bab199 1240 == cl && cl->deficit < len)
462dbc91
PV
1241 list_move_tail(&cl->alist, &agg->active);
1242
0545a303 1243 return err;
462dbc91
PV
1244 }
1245
1246 /* schedule class for service within the aggregate */
1247 cl->deficit = agg->lmax;
1248 list_add_tail(&cl->alist, &agg->active);
0545a303 1249
2f3b89a1
PV
1250 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1251 q->in_serv_agg == agg)
1252 return err; /* non-empty or in service, nothing else to do */
462dbc91 1253
2f3b89a1 1254 qfq_activate_agg(q, agg, enqueue);
be72f63b
PV
1255
1256 return err;
1257}
1258
1259/*
462dbc91 1260 * Schedule aggregate according to its timestamps.
be72f63b 1261 */
462dbc91 1262static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 1263{
462dbc91 1264 struct qfq_group *grp = agg->grp;
be72f63b
PV
1265 u64 roundedS;
1266 int s;
1267
462dbc91 1268 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1269
1270 /*
462dbc91
PV
1271 * Insert agg in the correct bucket.
1272 * If agg->S >= grp->S we don't need to adjust the
0545a303 1273 * bucket list and simply go to the insertion phase.
1274 * Otherwise grp->S is decreasing, we must make room
1275 * in the bucket list, and also recompute the group state.
1276 * Finally, if there were no flows in this group and nobody
1277 * was in ER make sure to adjust V.
1278 */
1279 if (grp->full_slots) {
462dbc91 1280 if (!qfq_gt(grp->S, agg->S))
0545a303 1281 goto skip_update;
1282
462dbc91 1283 /* create a slot for this agg->S */
0545a303 1284 qfq_slot_rotate(grp, roundedS);
1285 /* group was surely ineligible, remove */
1286 __clear_bit(grp->index, &q->bitmaps[IR]);
1287 __clear_bit(grp->index, &q->bitmaps[IB]);
40dd2d54
PV
1288 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1289 q->in_serv_agg == NULL)
0545a303 1290 q->V = roundedS;
1291
1292 grp->S = roundedS;
1293 grp->F = roundedS + (2ULL << grp->slot_shift);
1294 s = qfq_calc_state(q, grp);
1295 __set_bit(grp->index, &q->bitmaps[s]);
1296
1297 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1298 s, q->bitmaps[s],
462dbc91
PV
1299 (unsigned long long) agg->S,
1300 (unsigned long long) agg->F,
0545a303 1301 (unsigned long long) q->V);
1302
1303skip_update:
462dbc91 1304 qfq_slot_insert(grp, agg, roundedS);
0545a303 1305}
1306
1307
462dbc91
PV
1308/* Update agg ts and schedule agg for service */
1309static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1310 enum update_reason reason)
1311{
2f3b89a1
PV
1312 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1313
462dbc91 1314 qfq_update_agg_ts(q, agg, reason);
2f3b89a1
PV
1315 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1316 q->in_serv_agg = agg; /* start serving this aggregate */
1317 /* update V: to be in service, agg must be eligible */
1318 q->oldV = q->V = agg->S;
1319 } else if (agg != q->in_serv_agg)
1320 qfq_schedule_agg(q, agg);
462dbc91
PV
1321}
1322
0545a303 1323static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
462dbc91 1324 struct qfq_aggregate *agg)
0545a303 1325{
1326 unsigned int i, offset;
1327 u64 roundedS;
1328
462dbc91 1329 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1330 offset = (roundedS - grp->S) >> grp->slot_shift;
462dbc91 1331
0545a303 1332 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1333
462dbc91 1334 hlist_del(&agg->next);
0545a303 1335 if (hlist_empty(&grp->slots[i]))
1336 __clear_bit(offset, &grp->full_slots);
1337}
1338
1339/*
462dbc91
PV
1340 * Called to forcibly deschedule an aggregate. If the aggregate is
1341 * not in the front bucket, or if the latter has other aggregates in
1342 * the front bucket, we can simply remove the aggregate with no other
1343 * side effects.
0545a303 1344 * Otherwise we must propagate the event up.
1345 */
462dbc91 1346static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
0545a303 1347{
462dbc91 1348 struct qfq_group *grp = agg->grp;
0545a303 1349 unsigned long mask;
1350 u64 roundedS;
1351 int s;
1352
462dbc91
PV
1353 if (agg == q->in_serv_agg) {
1354 charge_actual_service(agg);
1355 q->in_serv_agg = qfq_choose_next_agg(q);
1356 return;
1357 }
1358
1359 agg->F = agg->S;
1360 qfq_slot_remove(q, grp, agg);
0545a303 1361
1362 if (!grp->full_slots) {
1363 __clear_bit(grp->index, &q->bitmaps[IR]);
1364 __clear_bit(grp->index, &q->bitmaps[EB]);
1365 __clear_bit(grp->index, &q->bitmaps[IB]);
1366
1367 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1368 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1369 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1370 if (mask)
1371 mask = ~((1UL << __fls(mask)) - 1);
1372 else
1373 mask = ~0UL;
1374 qfq_move_groups(q, mask, EB, ER);
1375 qfq_move_groups(q, mask, IB, IR);
1376 }
1377 __clear_bit(grp->index, &q->bitmaps[ER]);
1378 } else if (hlist_empty(&grp->slots[grp->front])) {
462dbc91
PV
1379 agg = qfq_slot_scan(grp);
1380 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1381 if (grp->S != roundedS) {
1382 __clear_bit(grp->index, &q->bitmaps[ER]);
1383 __clear_bit(grp->index, &q->bitmaps[IR]);
1384 __clear_bit(grp->index, &q->bitmaps[EB]);
1385 __clear_bit(grp->index, &q->bitmaps[IB]);
1386 grp->S = roundedS;
1387 grp->F = roundedS + (2ULL << grp->slot_shift);
1388 s = qfq_calc_state(q, grp);
1389 __set_bit(grp->index, &q->bitmaps[s]);
1390 }
1391 }
0545a303 1392}
1393
1394static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1395{
1396 struct qfq_sched *q = qdisc_priv(sch);
1397 struct qfq_class *cl = (struct qfq_class *)arg;
1398
95946658 1399 qfq_deactivate_class(q, cl);
0545a303 1400}
1401
e63d7dfd
AA
1402static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1403 struct netlink_ext_ack *extack)
0545a303 1404{
1405 struct qfq_sched *q = qdisc_priv(sch);
1406 struct qfq_group *grp;
1407 int i, j, err;
462dbc91 1408 u32 max_cl_shift, maxbudg_shift, max_classes;
0545a303 1409
8d1a77f9 1410 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
6529eaba
JP
1411 if (err)
1412 return err;
1413
0545a303 1414 err = qdisc_class_hash_init(&q->clhash);
1415 if (err < 0)
1416 return err;
1417
7d18a078
ED
1418 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1419 QFQ_MAX_AGG_CLASSES);
462dbc91
PV
1420 /* max_cl_shift = floor(log_2(max_classes)) */
1421 max_cl_shift = __fls(max_classes);
1422 q->max_agg_classes = 1<<max_cl_shift;
1423
1424 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1425 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1426 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1427
0545a303 1428 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1429 grp = &q->groups[i];
1430 grp->index = i;
462dbc91 1431 grp->slot_shift = q->min_slot_shift + i;
0545a303 1432 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1433 INIT_HLIST_HEAD(&grp->slots[j]);
1434 }
1435
462dbc91
PV
1436 INIT_HLIST_HEAD(&q->nonfull_aggs);
1437
0545a303 1438 return 0;
1439}
1440
1441static void qfq_reset_qdisc(struct Qdisc *sch)
1442{
1443 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1444 struct qfq_class *cl;
462dbc91 1445 unsigned int i;
0545a303 1446
462dbc91 1447 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1448 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
462dbc91 1449 if (cl->qdisc->q.qlen > 0)
0545a303 1450 qfq_deactivate_class(q, cl);
0545a303 1451
0545a303 1452 qdisc_reset(cl->qdisc);
462dbc91 1453 }
0545a303 1454 }
0545a303 1455}
1456
1457static void qfq_destroy_qdisc(struct Qdisc *sch)
1458{
1459 struct qfq_sched *q = qdisc_priv(sch);
1460 struct qfq_class *cl;
b67bfe0d 1461 struct hlist_node *next;
0545a303 1462 unsigned int i;
1463
6529eaba 1464 tcf_block_put(q->block);
0545a303 1465
1466 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1467 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
0545a303 1468 common.hnode) {
1469 qfq_destroy_class(sch, cl);
1470 }
1471 }
1472 qdisc_class_hash_destroy(&q->clhash);
1473}
1474
1475static const struct Qdisc_class_ops qfq_class_ops = {
1476 .change = qfq_change_class,
1477 .delete = qfq_delete_class,
143976ce 1478 .find = qfq_search_class,
6529eaba 1479 .tcf_block = qfq_tcf_block,
0545a303 1480 .bind_tcf = qfq_bind_tcf,
1481 .unbind_tcf = qfq_unbind_tcf,
1482 .graft = qfq_graft_class,
1483 .leaf = qfq_class_leaf,
1484 .qlen_notify = qfq_qlen_notify,
1485 .dump = qfq_dump_class,
1486 .dump_stats = qfq_dump_class_stats,
1487 .walk = qfq_walk,
1488};
1489
1490static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1491 .cl_ops = &qfq_class_ops,
1492 .id = "qfq",
1493 .priv_size = sizeof(struct qfq_sched),
1494 .enqueue = qfq_enqueue,
1495 .dequeue = qfq_dequeue,
1496 .peek = qdisc_peek_dequeued,
0545a303 1497 .init = qfq_init_qdisc,
1498 .reset = qfq_reset_qdisc,
1499 .destroy = qfq_destroy_qdisc,
1500 .owner = THIS_MODULE,
1501};
1502
1503static int __init qfq_init(void)
1504{
1505 return register_qdisc(&qfq_qdisc_ops);
1506}
1507
1508static void __exit qfq_exit(void)
1509{
1510 unregister_qdisc(&qfq_qdisc_ops);
1511}
1512
1513module_init(qfq_init);
1514module_exit(qfq_exit);
1515MODULE_LICENSE("GPL");