net: pkt_sched: PIE AQM scheme
[linux-2.6-block.git] / net / sched / sch_pie.c
CommitLineData
d4b36210
VS
1/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version 2
6 * of the License.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * Author: Vijay Subramanian <vijaynsu@cisco.com>
14 * Author: Mythili Prabhu <mysuryan@cisco.com>
15 *
16 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
17 * University of Oslo, Norway.
18 */
19
20#include <linux/module.h>
21#include <linux/slab.h>
22#include <linux/types.h>
23#include <linux/kernel.h>
24#include <linux/errno.h>
25#include <linux/skbuff.h>
26#include <net/pkt_sched.h>
27#include <net/inet_ecn.h>
28
29#define QUEUE_THRESHOLD 10000
30#define DQCOUNT_INVALID -1
31#define MAX_PROB 0xffffffff
32#define PIE_SCALE 8
33
34/* parameters used */
35struct pie_params {
36 psched_time_t target; /* user specified target delay in pschedtime */
37 u32 tupdate; /* timer frequency (in jiffies) */
38 u32 limit; /* number of packets that can be enqueued */
39 u32 alpha; /* alpha and beta are between -4 and 4 */
40 u32 beta; /* and are used for shift relative to 1 */
41 bool ecn; /* true if ecn is enabled */
42 bool bytemode; /* to scale drop early prob based on pkt size */
43};
44
45/* variables used */
46struct pie_vars {
47 u32 prob; /* probability but scaled by u32 limit. */
48 psched_time_t burst_time;
49 psched_time_t qdelay;
50 psched_time_t qdelay_old;
51 u64 dq_count; /* measured in bytes */
52 psched_time_t dq_tstamp; /* drain rate */
53 u32 avg_dq_rate; /* bytes per pschedtime tick,scaled */
54 u32 qlen_old; /* in bytes */
55};
56
57/* statistics gathering */
58struct pie_stats {
59 u32 packets_in; /* total number of packets enqueued */
60 u32 dropped; /* packets dropped due to pie_action */
61 u32 overlimit; /* dropped due to lack of space in queue */
62 u32 maxq; /* maximum queue size */
63 u32 ecn_mark; /* packets marked with ECN */
64};
65
66/* private data for the Qdisc */
67struct pie_sched_data {
68 struct pie_params params;
69 struct pie_vars vars;
70 struct pie_stats stats;
71 struct timer_list adapt_timer;
72};
73
74static void pie_params_init(struct pie_params *params)
75{
76 params->alpha = 2;
77 params->beta = 20;
78 params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */
79 params->limit = 1000; /* default of 1000 packets */
80 params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC); /* 20 ms */
81 params->ecn = false;
82 params->bytemode = false;
83}
84
85static void pie_vars_init(struct pie_vars *vars)
86{
87 vars->dq_count = DQCOUNT_INVALID;
88 vars->avg_dq_rate = 0;
89 /* default of 100 ms in pschedtime */
90 vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC);
91}
92
93static bool drop_early(struct Qdisc *sch, u32 packet_size)
94{
95 struct pie_sched_data *q = qdisc_priv(sch);
96 u32 rnd;
97 u32 local_prob = q->vars.prob;
98 u32 mtu = psched_mtu(qdisc_dev(sch));
99
100 /* If there is still burst allowance left skip random early drop */
101 if (q->vars.burst_time > 0)
102 return false;
103
104 /* If current delay is less than half of target, and
105 * if drop prob is low already, disable early_drop
106 */
107 if ((q->vars.qdelay < q->params.target / 2)
108 && (q->vars.prob < MAX_PROB / 5))
109 return false;
110
111 /* If we have fewer than 2 mtu-sized packets, disable drop_early,
112 * similar to min_th in RED
113 */
114 if (sch->qstats.backlog < 2 * mtu)
115 return false;
116
117 /* If bytemode is turned on, use packet size to compute new
118 * probablity. Smaller packets will have lower drop prob in this case
119 */
120 if (q->params.bytemode && packet_size <= mtu)
121 local_prob = (local_prob / mtu) * packet_size;
122 else
123 local_prob = q->vars.prob;
124
125 rnd = net_random();
126 if (rnd < local_prob)
127 return true;
128
129 return false;
130}
131
132static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
133{
134 struct pie_sched_data *q = qdisc_priv(sch);
135 bool enqueue = false;
136
137 if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
138 q->stats.overlimit++;
139 goto out;
140 }
141
142 if (!drop_early(sch, skb->len)) {
143 enqueue = true;
144 } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
145 INET_ECN_set_ce(skb)) {
146 /* If packet is ecn capable, mark it if drop probability
147 * is lower than 10%, else drop it.
148 */
149 q->stats.ecn_mark++;
150 enqueue = true;
151 }
152
153 /* we can enqueue the packet */
154 if (enqueue) {
155 q->stats.packets_in++;
156 if (qdisc_qlen(sch) > q->stats.maxq)
157 q->stats.maxq = qdisc_qlen(sch);
158
159 return qdisc_enqueue_tail(skb, sch);
160 }
161
162out:
163 q->stats.dropped++;
164 return qdisc_drop(skb, sch);
165}
166
167static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
168 [TCA_PIE_TARGET] = {.type = NLA_U32},
169 [TCA_PIE_LIMIT] = {.type = NLA_U32},
170 [TCA_PIE_TUPDATE] = {.type = NLA_U32},
171 [TCA_PIE_ALPHA] = {.type = NLA_U32},
172 [TCA_PIE_BETA] = {.type = NLA_U32},
173 [TCA_PIE_ECN] = {.type = NLA_U32},
174 [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
175};
176
177static int pie_change(struct Qdisc *sch, struct nlattr *opt)
178{
179 struct pie_sched_data *q = qdisc_priv(sch);
180 struct nlattr *tb[TCA_PIE_MAX + 1];
181 unsigned int qlen;
182 int err;
183
184 if (!opt)
185 return -EINVAL;
186
187 err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy);
188 if (err < 0)
189 return err;
190
191 sch_tree_lock(sch);
192
193 /* convert from microseconds to pschedtime */
194 if (tb[TCA_PIE_TARGET]) {
195 /* target is in us */
196 u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
197
198 /* convert to pschedtime */
199 q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
200 }
201
202 /* tupdate is in jiffies */
203 if (tb[TCA_PIE_TUPDATE])
204 q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
205
206 if (tb[TCA_PIE_LIMIT]) {
207 u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
208
209 q->params.limit = limit;
210 sch->limit = limit;
211 }
212
213 if (tb[TCA_PIE_ALPHA])
214 q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
215
216 if (tb[TCA_PIE_BETA])
217 q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
218
219 if (tb[TCA_PIE_ECN])
220 q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
221
222 if (tb[TCA_PIE_BYTEMODE])
223 q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
224
225 /* Drop excess packets if new limit is lower */
226 qlen = sch->q.qlen;
227 while (sch->q.qlen > sch->limit) {
228 struct sk_buff *skb = __skb_dequeue(&sch->q);
229
230 sch->qstats.backlog -= qdisc_pkt_len(skb);
231 qdisc_drop(skb, sch);
232 }
233 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
234
235 sch_tree_unlock(sch);
236 return 0;
237}
238
239static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
240{
241
242 struct pie_sched_data *q = qdisc_priv(sch);
243 int qlen = sch->qstats.backlog; /* current queue size in bytes */
244
245 /* If current queue is about 10 packets or more and dq_count is unset
246 * we have enough packets to calculate the drain rate. Save
247 * current time as dq_tstamp and start measurement cycle.
248 */
249 if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
250 q->vars.dq_tstamp = psched_get_time();
251 q->vars.dq_count = 0;
252 }
253
254 /* Calculate the average drain rate from this value. If queue length
255 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
256 * the dq_count to -1 as we don't have enough packets to calculate the
257 * drain rate anymore The following if block is entered only when we
258 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
259 * and we calculate the drain rate for the threshold here. dq_count is
260 * in bytes, time difference in psched_time, hence rate is in
261 * bytes/psched_time.
262 */
263 if (q->vars.dq_count != DQCOUNT_INVALID) {
264 q->vars.dq_count += skb->len;
265
266 if (q->vars.dq_count >= QUEUE_THRESHOLD) {
267 psched_time_t now = psched_get_time();
268 u32 dtime = now - q->vars.dq_tstamp;
269 u32 count = q->vars.dq_count << PIE_SCALE;
270
271 if (dtime == 0)
272 return;
273
274 count = count / dtime;
275
276 if (q->vars.avg_dq_rate == 0)
277 q->vars.avg_dq_rate = count;
278 else
279 q->vars.avg_dq_rate =
280 (q->vars.avg_dq_rate -
281 (q->vars.avg_dq_rate >> 3)) + (count >> 3);
282
283 /* If the queue has receded below the threshold, we hold
284 * on to the last drain rate calculated, else we reset
285 * dq_count to 0 to re-enter the if block when the next
286 * packet is dequeued
287 */
288 if (qlen < QUEUE_THRESHOLD)
289 q->vars.dq_count = DQCOUNT_INVALID;
290 else {
291 q->vars.dq_count = 0;
292 q->vars.dq_tstamp = psched_get_time();
293 }
294
295 if (q->vars.burst_time > 0) {
296 if (q->vars.burst_time > dtime)
297 q->vars.burst_time -= dtime;
298 else
299 q->vars.burst_time = 0;
300 }
301 }
302 }
303}
304
305static void calculate_probability(struct Qdisc *sch)
306{
307 struct pie_sched_data *q = qdisc_priv(sch);
308 u32 qlen = sch->qstats.backlog; /* queue size in bytes */
309 psched_time_t qdelay = 0; /* in pschedtime */
310 psched_time_t qdelay_old = q->vars.qdelay; /* in pschedtime */
311 s32 delta = 0; /* determines the change in probability */
312 u32 oldprob;
313 u32 alpha, beta;
314 bool update_prob = true;
315
316 q->vars.qdelay_old = q->vars.qdelay;
317
318 if (q->vars.avg_dq_rate > 0)
319 qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
320 else
321 qdelay = 0;
322
323 /* If qdelay is zero and qlen is not, it means qlen is very small, less
324 * than dequeue_rate, so we do not update probabilty in this round
325 */
326 if (qdelay == 0 && qlen != 0)
327 update_prob = false;
328
329 /* Add ranges for alpha and beta, more aggressive for high dropping
330 * mode and gentle steps for light dropping mode
331 * In light dropping mode, take gentle steps; in medium dropping mode,
332 * take medium steps; in high dropping mode, take big steps.
333 */
334 if (q->vars.prob < MAX_PROB / 100) {
335 alpha =
336 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
337 beta =
338 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
339 } else if (q->vars.prob < MAX_PROB / 10) {
340 alpha =
341 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
342 beta =
343 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
344 } else {
345 alpha =
346 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
347 beta =
348 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
349 }
350
351 /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
352 delta += alpha * ((qdelay - q->params.target));
353 delta += beta * ((qdelay - qdelay_old));
354
355 oldprob = q->vars.prob;
356
357 /* to ensure we increase probability in steps of no more than 2% */
358 if (delta > (s32) (MAX_PROB / (100 / 2)) &&
359 q->vars.prob >= MAX_PROB / 10)
360 delta = (MAX_PROB / 100) * 2;
361
362 /* Non-linear drop:
363 * Tune drop probability to increase quickly for high delays(>= 250ms)
364 * 250ms is derived through experiments and provides error protection
365 */
366
367 if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
368 delta += MAX_PROB / (100 / 2);
369
370 q->vars.prob += delta;
371
372 if (delta > 0) {
373 /* prevent overflow */
374 if (q->vars.prob < oldprob) {
375 q->vars.prob = MAX_PROB;
376 /* Prevent normalization error. If probability is at
377 * maximum value already, we normalize it here, and
378 * skip the check to do a non-linear drop in the next
379 * section.
380 */
381 update_prob = false;
382 }
383 } else {
384 /* prevent underflow */
385 if (q->vars.prob > oldprob)
386 q->vars.prob = 0;
387 }
388
389 /* Non-linear drop in probability: Reduce drop probability quickly if
390 * delay is 0 for 2 consecutive Tupdate periods.
391 */
392
393 if ((qdelay == 0) && (qdelay_old == 0) && update_prob)
394 q->vars.prob = (q->vars.prob * 98) / 100;
395
396 q->vars.qdelay = qdelay;
397 q->vars.qlen_old = qlen;
398
399 /* We restart the measurement cycle if the following conditions are met
400 * 1. If the delay has been low for 2 consecutive Tupdate periods
401 * 2. Calculated drop probability is zero
402 * 3. We have atleast one estimate for the avg_dq_rate ie.,
403 * is a non-zero value
404 */
405 if ((q->vars.qdelay < q->params.target / 2) &&
406 (q->vars.qdelay_old < q->params.target / 2) &&
407 (q->vars.prob == 0) &&
408 (q->vars.avg_dq_rate > 0))
409 pie_vars_init(&q->vars);
410}
411
412static void pie_timer(unsigned long arg)
413{
414 struct Qdisc *sch = (struct Qdisc *)arg;
415 struct pie_sched_data *q = qdisc_priv(sch);
416 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
417
418 spin_lock(root_lock);
419 calculate_probability(sch);
420
421 /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
422 if (q->params.tupdate)
423 mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
424 spin_unlock(root_lock);
425
426}
427
428static int pie_init(struct Qdisc *sch, struct nlattr *opt)
429{
430 struct pie_sched_data *q = qdisc_priv(sch);
431
432 pie_params_init(&q->params);
433 pie_vars_init(&q->vars);
434 sch->limit = q->params.limit;
435
436 setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch);
437 mod_timer(&q->adapt_timer, jiffies + HZ / 2);
438
439 if (opt) {
440 int err = pie_change(sch, opt);
441
442 if (err)
443 return err;
444 }
445
446 return 0;
447}
448
449static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
450{
451 struct pie_sched_data *q = qdisc_priv(sch);
452 struct nlattr *opts;
453
454 opts = nla_nest_start(skb, TCA_OPTIONS);
455 if (opts == NULL)
456 goto nla_put_failure;
457
458 /* convert target from pschedtime to us */
459 if (nla_put_u32(skb, TCA_PIE_TARGET,
460 ((u32) PSCHED_TICKS2NS(q->params.target)) /
461 NSEC_PER_USEC) ||
462 nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
463 nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) ||
464 nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
465 nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
466 nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
467 nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
468 goto nla_put_failure;
469
470 return nla_nest_end(skb, opts);
471
472nla_put_failure:
473 nla_nest_cancel(skb, opts);
474 return -1;
475
476}
477
478static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
479{
480 struct pie_sched_data *q = qdisc_priv(sch);
481 struct tc_pie_xstats st = {
482 .prob = q->vars.prob,
483 .delay = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) /
484 NSEC_PER_USEC,
485 /* unscale and return dq_rate in bytes per sec */
486 .avg_dq_rate = q->vars.avg_dq_rate *
487 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
488 .packets_in = q->stats.packets_in,
489 .overlimit = q->stats.overlimit,
490 .maxq = q->stats.maxq,
491 .dropped = q->stats.dropped,
492 .ecn_mark = q->stats.ecn_mark,
493 };
494
495 return gnet_stats_copy_app(d, &st, sizeof(st));
496}
497
498static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
499{
500 struct sk_buff *skb;
501 skb = __qdisc_dequeue_head(sch, &sch->q);
502
503 if (!skb)
504 return NULL;
505
506 pie_process_dequeue(sch, skb);
507 return skb;
508}
509
510static void pie_reset(struct Qdisc *sch)
511{
512 struct pie_sched_data *q = qdisc_priv(sch);
513 qdisc_reset_queue(sch);
514 pie_vars_init(&q->vars);
515}
516
517static void pie_destroy(struct Qdisc *sch)
518{
519 struct pie_sched_data *q = qdisc_priv(sch);
520 q->params.tupdate = 0;
521 del_timer_sync(&q->adapt_timer);
522}
523
524static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
525 .id = "pie",
526 .priv_size = sizeof(struct pie_sched_data),
527 .enqueue = pie_qdisc_enqueue,
528 .dequeue = pie_qdisc_dequeue,
529 .peek = qdisc_peek_dequeued,
530 .init = pie_init,
531 .destroy = pie_destroy,
532 .reset = pie_reset,
533 .change = pie_change,
534 .dump = pie_dump,
535 .dump_stats = pie_dump_stats,
536 .owner = THIS_MODULE,
537};
538
539static int __init pie_module_init(void)
540{
541 return register_qdisc(&pie_qdisc_ops);
542}
543
544static void __exit pie_module_exit(void)
545{
546 unregister_qdisc(&pie_qdisc_ops);
547}
548
549module_init(pie_module_init);
550module_exit(pie_module_exit);
551
552MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
553MODULE_AUTHOR("Vijay Subramanian");
554MODULE_AUTHOR("Mythili Prabhu");
555MODULE_LICENSE("GPL");