Commit | Line | Data |
---|---|---|
5c115590 | 1 | /* |
a43cced9 | 2 | * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. |
5c115590 AG |
3 | * |
4 | * This software is available to you under a choice of one of two | |
5 | * licenses. You may choose to be licensed under the terms of the GNU | |
6 | * General Public License (GPL) Version 2, available from the file | |
7 | * COPYING in the main directory of this source tree, or the | |
8 | * OpenIB.org BSD license below: | |
9 | * | |
10 | * Redistribution and use in source and binary forms, with or | |
11 | * without modification, are permitted provided that the following | |
12 | * conditions are met: | |
13 | * | |
14 | * - Redistributions of source code must retain the above | |
15 | * copyright notice, this list of conditions and the following | |
16 | * disclaimer. | |
17 | * | |
18 | * - Redistributions in binary form must reproduce the above | |
19 | * copyright notice, this list of conditions and the following | |
20 | * disclaimer in the documentation and/or other materials | |
21 | * provided with the distribution. | |
22 | * | |
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
30 | * SOFTWARE. | |
31 | * | |
32 | */ | |
33 | #include <linux/kernel.h> | |
d9b93842 | 34 | #include <linux/moduleparam.h> |
5a0e3ad6 | 35 | #include <linux/gfp.h> |
5c115590 AG |
36 | #include <net/sock.h> |
37 | #include <linux/in.h> | |
38 | #include <linux/list.h> | |
cb0a6056 | 39 | #include <linux/ratelimit.h> |
bc3b2d7f | 40 | #include <linux/export.h> |
4bebdd7a | 41 | #include <linux/sizes.h> |
5c115590 AG |
42 | |
43 | #include "rds.h" | |
5c115590 AG |
44 | |
45 | /* When transmitting messages in rds_send_xmit, we need to emerge from | |
46 | * time to time and briefly release the CPU. Otherwise the softlock watchdog | |
47 | * will kick our shin. | |
48 | * Also, it seems fairer to not let one busy connection stall all the | |
49 | * others. | |
50 | * | |
51 | * send_batch_count is the number of times we'll loop in send_xmit. Setting | |
52 | * it to 0 will restore the old behavior (where we looped until we had | |
53 | * drained the queue). | |
54 | */ | |
4bebdd7a | 55 | static int send_batch_count = SZ_1K; |
5c115590 AG |
56 | module_param(send_batch_count, int, 0444); |
57 | MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); | |
58 | ||
ff51bf84 | 59 | static void rds_send_remove_from_sock(struct list_head *messages, int status); |
60 | ||
5c115590 | 61 | /* |
0f4b1c7e ZB |
62 | * Reset the send state. Callers must ensure that this doesn't race with |
63 | * rds_send_xmit(). | |
5c115590 | 64 | */ |
d769ef81 | 65 | void rds_send_path_reset(struct rds_conn_path *cp) |
5c115590 AG |
66 | { |
67 | struct rds_message *rm, *tmp; | |
68 | unsigned long flags; | |
69 | ||
4e9b551c SV |
70 | if (cp->cp_xmit_rm) { |
71 | rm = cp->cp_xmit_rm; | |
72 | cp->cp_xmit_rm = NULL; | |
5c115590 AG |
73 | /* Tell the user the RDMA op is no longer mapped by the |
74 | * transport. This isn't entirely true (it's flushed out | |
75 | * independently) but as the connection is down, there's | |
76 | * no ongoing RDMA to/from that memory */ | |
7e3f2952 | 77 | rds_message_unmapped(rm); |
7e3f2952 | 78 | rds_message_put(rm); |
5c115590 | 79 | } |
7e3f2952 | 80 | |
4e9b551c SV |
81 | cp->cp_xmit_sg = 0; |
82 | cp->cp_xmit_hdr_off = 0; | |
83 | cp->cp_xmit_data_off = 0; | |
84 | cp->cp_xmit_atomic_sent = 0; | |
85 | cp->cp_xmit_rdma_sent = 0; | |
86 | cp->cp_xmit_data_sent = 0; | |
5c115590 | 87 | |
4e9b551c | 88 | cp->cp_conn->c_map_queued = 0; |
5c115590 | 89 | |
4e9b551c SV |
90 | cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; |
91 | cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; | |
5c115590 AG |
92 | |
93 | /* Mark messages as retransmissions, and move them to the send q */ | |
4e9b551c SV |
94 | spin_lock_irqsave(&cp->cp_lock, flags); |
95 | list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { | |
5c115590 AG |
96 | set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
97 | set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); | |
98 | } | |
4e9b551c SV |
99 | list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); |
100 | spin_unlock_irqrestore(&cp->cp_lock, flags); | |
101 | } | |
d769ef81 | 102 | EXPORT_SYMBOL_GPL(rds_send_path_reset); |
5c115590 | 103 | |
1f9ecd7e | 104 | static int acquire_in_xmit(struct rds_conn_path *cp) |
0f4b1c7e | 105 | { |
1422f288 | 106 | return test_and_set_bit_lock(RDS_IN_XMIT, &cp->cp_flags) == 0; |
0f4b1c7e ZB |
107 | } |
108 | ||
1f9ecd7e | 109 | static void release_in_xmit(struct rds_conn_path *cp) |
0f4b1c7e | 110 | { |
1422f288 | 111 | clear_bit_unlock(RDS_IN_XMIT, &cp->cp_flags); |
0f4b1c7e ZB |
112 | /* |
113 | * We don't use wait_on_bit()/wake_up_bit() because our waking is in a | |
114 | * hot path and finding waiters is very rare. We don't want to walk | |
115 | * the system-wide hashed waitqueue buckets in the fast path only to | |
116 | * almost never find waiters. | |
117 | */ | |
1f9ecd7e SV |
118 | if (waitqueue_active(&cp->cp_waitq)) |
119 | wake_up_all(&cp->cp_waitq); | |
0f4b1c7e ZB |
120 | } |
121 | ||
5c115590 | 122 | /* |
25985edc | 123 | * We're making the conscious trade-off here to only send one message |
5c115590 AG |
124 | * down the connection at a time. |
125 | * Pro: | |
126 | * - tx queueing is a simple fifo list | |
127 | * - reassembly is optional and easily done by transports per conn | |
128 | * - no per flow rx lookup at all, straight to the socket | |
129 | * - less per-frag memory and wire overhead | |
130 | * Con: | |
131 | * - queued acks can be delayed behind large messages | |
132 | * Depends: | |
133 | * - small message latency is higher behind queued large messages | |
134 | * - large message latency isn't starved by intervening small sends | |
135 | */ | |
1f9ecd7e | 136 | int rds_send_xmit(struct rds_conn_path *cp) |
5c115590 | 137 | { |
1f9ecd7e | 138 | struct rds_connection *conn = cp->cp_conn; |
5c115590 AG |
139 | struct rds_message *rm; |
140 | unsigned long flags; | |
141 | unsigned int tmp; | |
5c115590 AG |
142 | struct scatterlist *sg; |
143 | int ret = 0; | |
5c115590 | 144 | LIST_HEAD(to_be_dropped); |
443be0e5 SV |
145 | int batch_count; |
146 | unsigned long send_gen = 0; | |
11740ef4 | 147 | int same_rm = 0; |
5c115590 | 148 | |
fcc5450c | 149 | restart: |
443be0e5 | 150 | batch_count = 0; |
049ee3f5 | 151 | |
5c115590 AG |
152 | /* |
153 | * sendmsg calls here after having queued its message on the send | |
154 | * queue. We only have one task feeding the connection at a time. If | |
155 | * another thread is already feeding the queue then we back off. This | |
156 | * avoids blocking the caller and trading per-connection data between | |
157 | * caches per message. | |
5c115590 | 158 | */ |
1f9ecd7e | 159 | if (!acquire_in_xmit(cp)) { |
049ee3f5 | 160 | rds_stats_inc(s_send_lock_contention); |
5c115590 AG |
161 | ret = -ENOMEM; |
162 | goto out; | |
163 | } | |
0f4b1c7e | 164 | |
ebeeb1ad | 165 | if (rds_destroy_pending(cp->cp_conn)) { |
3db6e0d1 SV |
166 | release_in_xmit(cp); |
167 | ret = -ENETUNREACH; /* dont requeue send work */ | |
168 | goto out; | |
169 | } | |
170 | ||
443be0e5 SV |
171 | /* |
172 | * we record the send generation after doing the xmit acquire. | |
173 | * if someone else manages to jump in and do some work, we'll use | |
174 | * this to avoid a goto restart farther down. | |
175 | * | |
176 | * The acquire_in_xmit() check above ensures that only one | |
177 | * caller can increment c_send_gen at any time. | |
178 | */ | |
e623a48e HB |
179 | send_gen = READ_ONCE(cp->cp_send_gen) + 1; |
180 | WRITE_ONCE(cp->cp_send_gen, send_gen); | |
443be0e5 | 181 | |
0f4b1c7e ZB |
182 | /* |
183 | * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, | |
184 | * we do the opposite to avoid races. | |
185 | */ | |
1f9ecd7e SV |
186 | if (!rds_conn_path_up(cp)) { |
187 | release_in_xmit(cp); | |
0f4b1c7e ZB |
188 | ret = 0; |
189 | goto out; | |
190 | } | |
5c115590 | 191 | |
226f7a7d SV |
192 | if (conn->c_trans->xmit_path_prepare) |
193 | conn->c_trans->xmit_path_prepare(cp); | |
5c115590 AG |
194 | |
195 | /* | |
196 | * spin trying to push headers and data down the connection until | |
5b2366bd | 197 | * the connection doesn't make forward progress. |
5c115590 | 198 | */ |
fcc5450c | 199 | while (1) { |
5c115590 | 200 | |
1f9ecd7e | 201 | rm = cp->cp_xmit_rm; |
5c115590 | 202 | |
11740ef4 AG |
203 | if (!rm) { |
204 | same_rm = 0; | |
205 | } else { | |
206 | same_rm++; | |
207 | if (same_rm >= 4096) { | |
208 | rds_stats_inc(s_send_stuck_rm); | |
209 | ret = -EAGAIN; | |
210 | break; | |
211 | } | |
212 | } | |
213 | ||
5b2366bd AG |
214 | /* |
215 | * If between sending messages, we can send a pending congestion | |
216 | * map update. | |
5c115590 | 217 | */ |
8690bfa1 | 218 | if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { |
77dd550e AG |
219 | rm = rds_cong_update_alloc(conn); |
220 | if (IS_ERR(rm)) { | |
221 | ret = PTR_ERR(rm); | |
222 | break; | |
5b2366bd | 223 | } |
77dd550e | 224 | rm->data.op_active = 1; |
1f9ecd7e SV |
225 | rm->m_inc.i_conn_path = cp; |
226 | rm->m_inc.i_conn = cp->cp_conn; | |
77dd550e | 227 | |
1f9ecd7e | 228 | cp->cp_xmit_rm = rm; |
5c115590 AG |
229 | } |
230 | ||
231 | /* | |
5b2366bd | 232 | * If not already working on one, grab the next message. |
5c115590 | 233 | * |
1f9ecd7e | 234 | * cp_xmit_rm holds a ref while we're sending this message down |
5c115590 AG |
235 | * the connction. We can use this ref while holding the |
236 | * send_sem.. rds_send_reset() is serialized with it. | |
237 | */ | |
8690bfa1 | 238 | if (!rm) { |
5c115590 AG |
239 | unsigned int len; |
240 | ||
443be0e5 SV |
241 | batch_count++; |
242 | ||
243 | /* we want to process as big a batch as we can, but | |
244 | * we also want to avoid softlockups. If we've been | |
245 | * through a lot of messages, lets back off and see | |
246 | * if anyone else jumps in | |
247 | */ | |
4bebdd7a | 248 | if (batch_count >= send_batch_count) |
443be0e5 SV |
249 | goto over_batch; |
250 | ||
1f9ecd7e | 251 | spin_lock_irqsave(&cp->cp_lock, flags); |
5c115590 | 252 | |
1f9ecd7e SV |
253 | if (!list_empty(&cp->cp_send_queue)) { |
254 | rm = list_entry(cp->cp_send_queue.next, | |
5c115590 AG |
255 | struct rds_message, |
256 | m_conn_item); | |
257 | rds_message_addref(rm); | |
258 | ||
259 | /* | |
260 | * Move the message from the send queue to the retransmit | |
261 | * list right away. | |
262 | */ | |
1f9ecd7e SV |
263 | list_move_tail(&rm->m_conn_item, |
264 | &cp->cp_retrans); | |
5c115590 AG |
265 | } |
266 | ||
1f9ecd7e | 267 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
5c115590 | 268 | |
fcc5450c | 269 | if (!rm) |
5c115590 | 270 | break; |
5c115590 AG |
271 | |
272 | /* Unfortunately, the way Infiniband deals with | |
273 | * RDMA to a bad MR key is by moving the entire | |
db473c07 | 274 | * queue pair to error state. We could possibly |
5c115590 AG |
275 | * recover from that, but right now we drop the |
276 | * connection. | |
277 | * Therefore, we never retransmit messages with RDMA ops. | |
278 | */ | |
905dd418 SV |
279 | if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) || |
280 | (rm->rdma.op_active && | |
281 | test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) { | |
1f9ecd7e | 282 | spin_lock_irqsave(&cp->cp_lock, flags); |
5c115590 AG |
283 | if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) |
284 | list_move(&rm->m_conn_item, &to_be_dropped); | |
1f9ecd7e | 285 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
5c115590 AG |
286 | continue; |
287 | } | |
288 | ||
289 | /* Require an ACK every once in a while */ | |
290 | len = ntohl(rm->m_inc.i_hdr.h_len); | |
1f9ecd7e SV |
291 | if (cp->cp_unacked_packets == 0 || |
292 | cp->cp_unacked_bytes < len) { | |
f530f39f | 293 | set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
5c115590 | 294 | |
1f9ecd7e SV |
295 | cp->cp_unacked_packets = |
296 | rds_sysctl_max_unacked_packets; | |
297 | cp->cp_unacked_bytes = | |
298 | rds_sysctl_max_unacked_bytes; | |
5c115590 AG |
299 | rds_stats_inc(s_send_ack_required); |
300 | } else { | |
1f9ecd7e SV |
301 | cp->cp_unacked_bytes -= len; |
302 | cp->cp_unacked_packets--; | |
5c115590 AG |
303 | } |
304 | ||
1f9ecd7e | 305 | cp->cp_xmit_rm = rm; |
5c115590 AG |
306 | } |
307 | ||
2c3a5f9a | 308 | /* The transport either sends the whole rdma or none of it */ |
1f9ecd7e | 309 | if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) { |
ff3d7d36 | 310 | rm->m_final_op = &rm->rdma; |
4f73113c | 311 | /* The transport owns the mapped memory for now. |
312 | * You can't unmap it while it's on the send queue | |
313 | */ | |
314 | set_bit(RDS_MSG_MAPPED, &rm->m_flags); | |
2c3a5f9a | 315 | ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); |
4f73113c | 316 | if (ret) { |
317 | clear_bit(RDS_MSG_MAPPED, &rm->m_flags); | |
318 | wake_up_interruptible(&rm->m_flush_wait); | |
15133f6e | 319 | break; |
4f73113c | 320 | } |
1f9ecd7e | 321 | cp->cp_xmit_rdma_sent = 1; |
2c3a5f9a | 322 | |
15133f6e AG |
323 | } |
324 | ||
1f9ecd7e | 325 | if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) { |
ff3d7d36 | 326 | rm->m_final_op = &rm->atomic; |
4f73113c | 327 | /* The transport owns the mapped memory for now. |
328 | * You can't unmap it while it's on the send queue | |
329 | */ | |
330 | set_bit(RDS_MSG_MAPPED, &rm->m_flags); | |
ff3d7d36 | 331 | ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); |
4f73113c | 332 | if (ret) { |
333 | clear_bit(RDS_MSG_MAPPED, &rm->m_flags); | |
334 | wake_up_interruptible(&rm->m_flush_wait); | |
5c115590 | 335 | break; |
4f73113c | 336 | } |
1f9ecd7e | 337 | cp->cp_xmit_atomic_sent = 1; |
ff3d7d36 | 338 | |
5c115590 AG |
339 | } |
340 | ||
2c3a5f9a AG |
341 | /* |
342 | * A number of cases require an RDS header to be sent | |
343 | * even if there is no data. | |
344 | * We permit 0-byte sends; rds-ping depends on this. | |
345 | * However, if there are exclusively attached silent ops, | |
346 | * we skip the hdr/data send, to enable silent operation. | |
347 | */ | |
348 | if (rm->data.op_nents == 0) { | |
349 | int ops_present; | |
350 | int all_ops_are_silent = 1; | |
351 | ||
352 | ops_present = (rm->atomic.op_active || rm->rdma.op_active); | |
353 | if (rm->atomic.op_active && !rm->atomic.op_silent) | |
354 | all_ops_are_silent = 0; | |
355 | if (rm->rdma.op_active && !rm->rdma.op_silent) | |
356 | all_ops_are_silent = 0; | |
357 | ||
358 | if (ops_present && all_ops_are_silent | |
359 | && !rm->m_rdma_cookie) | |
360 | rm->data.op_active = 0; | |
361 | } | |
362 | ||
1f9ecd7e | 363 | if (rm->data.op_active && !cp->cp_xmit_data_sent) { |
ff3d7d36 | 364 | rm->m_final_op = &rm->data; |
1f9ecd7e | 365 | |
5c115590 | 366 | ret = conn->c_trans->xmit(conn, rm, |
1f9ecd7e SV |
367 | cp->cp_xmit_hdr_off, |
368 | cp->cp_xmit_sg, | |
369 | cp->cp_xmit_data_off); | |
5c115590 AG |
370 | if (ret <= 0) |
371 | break; | |
372 | ||
1f9ecd7e | 373 | if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) { |
5c115590 AG |
374 | tmp = min_t(int, ret, |
375 | sizeof(struct rds_header) - | |
1f9ecd7e SV |
376 | cp->cp_xmit_hdr_off); |
377 | cp->cp_xmit_hdr_off += tmp; | |
5c115590 AG |
378 | ret -= tmp; |
379 | } | |
380 | ||
1f9ecd7e | 381 | sg = &rm->data.op_sg[cp->cp_xmit_sg]; |
5c115590 AG |
382 | while (ret) { |
383 | tmp = min_t(int, ret, sg->length - | |
1f9ecd7e SV |
384 | cp->cp_xmit_data_off); |
385 | cp->cp_xmit_data_off += tmp; | |
5c115590 | 386 | ret -= tmp; |
1f9ecd7e SV |
387 | if (cp->cp_xmit_data_off == sg->length) { |
388 | cp->cp_xmit_data_off = 0; | |
5c115590 | 389 | sg++; |
1f9ecd7e SV |
390 | cp->cp_xmit_sg++; |
391 | BUG_ON(ret != 0 && cp->cp_xmit_sg == | |
392 | rm->data.op_nents); | |
5c115590 AG |
393 | } |
394 | } | |
5b2366bd | 395 | |
1f9ecd7e SV |
396 | if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) && |
397 | (cp->cp_xmit_sg == rm->data.op_nents)) | |
398 | cp->cp_xmit_data_sent = 1; | |
5b2366bd AG |
399 | } |
400 | ||
401 | /* | |
402 | * A rm will only take multiple times through this loop | |
403 | * if there is a data op. Thus, if the data is sent (or there was | |
404 | * none), then we're done with the rm. | |
405 | */ | |
1f9ecd7e SV |
406 | if (!rm->data.op_active || cp->cp_xmit_data_sent) { |
407 | cp->cp_xmit_rm = NULL; | |
408 | cp->cp_xmit_sg = 0; | |
409 | cp->cp_xmit_hdr_off = 0; | |
410 | cp->cp_xmit_data_off = 0; | |
411 | cp->cp_xmit_rdma_sent = 0; | |
412 | cp->cp_xmit_atomic_sent = 0; | |
413 | cp->cp_xmit_data_sent = 0; | |
5b2366bd AG |
414 | |
415 | rds_message_put(rm); | |
5c115590 AG |
416 | } |
417 | } | |
418 | ||
443be0e5 | 419 | over_batch: |
226f7a7d SV |
420 | if (conn->c_trans->xmit_path_complete) |
421 | conn->c_trans->xmit_path_complete(cp); | |
1f9ecd7e | 422 | release_in_xmit(cp); |
5c115590 | 423 | |
2ad8099b AG |
424 | /* Nuke any messages we decided not to retransmit. */ |
425 | if (!list_empty(&to_be_dropped)) { | |
426 | /* irqs on here, so we can put(), unlike above */ | |
427 | list_for_each_entry(rm, &to_be_dropped, m_conn_item) | |
428 | rds_message_put(rm); | |
429 | rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); | |
430 | } | |
431 | ||
fcc5450c | 432 | /* |
0f4b1c7e ZB |
433 | * Other senders can queue a message after we last test the send queue |
434 | * but before we clear RDS_IN_XMIT. In that case they'd back off and | |
435 | * not try and send their newly queued message. We need to check the | |
436 | * send queue after having cleared RDS_IN_XMIT so that their message | |
437 | * doesn't get stuck on the send queue. | |
fcc5450c AG |
438 | * |
439 | * If the transport cannot continue (i.e ret != 0), then it must | |
440 | * call us when more room is available, such as from the tx | |
441 | * completion handler. | |
443be0e5 SV |
442 | * |
443 | * We have an extra generation check here so that if someone manages | |
444 | * to jump in after our release_in_xmit, we'll see that they have done | |
445 | * some work and we will skip our goto | |
fcc5450c AG |
446 | */ |
447 | if (ret == 0) { | |
126f760c HB |
448 | bool raced; |
449 | ||
9e29db0e | 450 | smp_mb(); |
126f760c HB |
451 | raced = send_gen != READ_ONCE(cp->cp_send_gen); |
452 | ||
0c484240 | 453 | if ((test_bit(0, &conn->c_map_queued) || |
126f760c | 454 | !list_empty(&cp->cp_send_queue)) && !raced) { |
4bebdd7a SS |
455 | if (batch_count < send_batch_count) |
456 | goto restart; | |
3db6e0d1 | 457 | rcu_read_lock(); |
ebeeb1ad | 458 | if (rds_destroy_pending(cp->cp_conn)) |
3db6e0d1 SV |
459 | ret = -ENETUNREACH; |
460 | else | |
461 | queue_delayed_work(rds_wq, &cp->cp_send_w, 1); | |
462 | rcu_read_unlock(); | |
126f760c HB |
463 | } else if (raced) { |
464 | rds_stats_inc(s_send_lock_queue_raced); | |
5c115590 | 465 | } |
5c115590 AG |
466 | } |
467 | out: | |
468 | return ret; | |
469 | } | |
0c28c045 | 470 | EXPORT_SYMBOL_GPL(rds_send_xmit); |
5c115590 AG |
471 | |
472 | static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) | |
473 | { | |
474 | u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); | |
475 | ||
476 | assert_spin_locked(&rs->rs_lock); | |
477 | ||
478 | BUG_ON(rs->rs_snd_bytes < len); | |
479 | rs->rs_snd_bytes -= len; | |
480 | ||
481 | if (rs->rs_snd_bytes == 0) | |
482 | rds_stats_inc(s_send_queue_empty); | |
483 | } | |
484 | ||
485 | static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, | |
486 | is_acked_func is_acked) | |
487 | { | |
488 | if (is_acked) | |
489 | return is_acked(rm, ack); | |
490 | return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; | |
491 | } | |
492 | ||
5c115590 AG |
493 | /* |
494 | * This is pretty similar to what happens below in the ACK | |
495 | * handling code - except that we call here as soon as we get | |
496 | * the IB send completion on the RDMA op and the accompanying | |
497 | * message. | |
498 | */ | |
499 | void rds_rdma_send_complete(struct rds_message *rm, int status) | |
500 | { | |
501 | struct rds_sock *rs = NULL; | |
f8b3aaf2 | 502 | struct rm_rdma_op *ro; |
5c115590 | 503 | struct rds_notifier *notifier; |
9de0864c | 504 | unsigned long flags; |
5c115590 | 505 | |
9de0864c | 506 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
5c115590 | 507 | |
f8b3aaf2 | 508 | ro = &rm->rdma; |
f64f9e71 | 509 | if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && |
616d37a0 | 510 | ro->op_active && ro->op_notify && ro->op_notifier) { |
f8b3aaf2 | 511 | notifier = ro->op_notifier; |
5c115590 AG |
512 | rs = rm->m_rs; |
513 | sock_hold(rds_rs_to_sk(rs)); | |
514 | ||
515 | notifier->n_status = status; | |
516 | spin_lock(&rs->rs_lock); | |
517 | list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); | |
518 | spin_unlock(&rs->rs_lock); | |
519 | ||
f8b3aaf2 | 520 | ro->op_notifier = NULL; |
5c115590 AG |
521 | } |
522 | ||
9de0864c | 523 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
5c115590 AG |
524 | |
525 | if (rs) { | |
526 | rds_wake_sk_sleep(rs); | |
527 | sock_put(rds_rs_to_sk(rs)); | |
528 | } | |
529 | } | |
616b757a | 530 | EXPORT_SYMBOL_GPL(rds_rdma_send_complete); |
5c115590 | 531 | |
15133f6e AG |
532 | /* |
533 | * Just like above, except looks at atomic op | |
534 | */ | |
535 | void rds_atomic_send_complete(struct rds_message *rm, int status) | |
536 | { | |
537 | struct rds_sock *rs = NULL; | |
538 | struct rm_atomic_op *ao; | |
539 | struct rds_notifier *notifier; | |
cf4b7389 | 540 | unsigned long flags; |
15133f6e | 541 | |
cf4b7389 | 542 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
15133f6e AG |
543 | |
544 | ao = &rm->atomic; | |
545 | if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) | |
546 | && ao->op_active && ao->op_notify && ao->op_notifier) { | |
547 | notifier = ao->op_notifier; | |
548 | rs = rm->m_rs; | |
549 | sock_hold(rds_rs_to_sk(rs)); | |
550 | ||
551 | notifier->n_status = status; | |
552 | spin_lock(&rs->rs_lock); | |
553 | list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); | |
554 | spin_unlock(&rs->rs_lock); | |
555 | ||
556 | ao->op_notifier = NULL; | |
557 | } | |
558 | ||
cf4b7389 | 559 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
15133f6e AG |
560 | |
561 | if (rs) { | |
562 | rds_wake_sk_sleep(rs); | |
563 | sock_put(rds_rs_to_sk(rs)); | |
564 | } | |
565 | } | |
566 | EXPORT_SYMBOL_GPL(rds_atomic_send_complete); | |
567 | ||
5c115590 AG |
568 | /* |
569 | * This is the same as rds_rdma_send_complete except we | |
570 | * don't do any locking - we have all the ingredients (message, | |
571 | * socket, socket lock) and can just move the notifier. | |
572 | */ | |
573 | static inline void | |
940786eb | 574 | __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) |
5c115590 | 575 | { |
f8b3aaf2 | 576 | struct rm_rdma_op *ro; |
940786eb | 577 | struct rm_atomic_op *ao; |
5c115590 | 578 | |
f8b3aaf2 AG |
579 | ro = &rm->rdma; |
580 | if (ro->op_active && ro->op_notify && ro->op_notifier) { | |
581 | ro->op_notifier->n_status = status; | |
582 | list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); | |
583 | ro->op_notifier = NULL; | |
5c115590 AG |
584 | } |
585 | ||
940786eb AG |
586 | ao = &rm->atomic; |
587 | if (ao->op_active && ao->op_notify && ao->op_notifier) { | |
588 | ao->op_notifier->n_status = status; | |
589 | list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); | |
590 | ao->op_notifier = NULL; | |
591 | } | |
592 | ||
5c115590 AG |
593 | /* No need to wake the app - caller does this */ |
594 | } | |
595 | ||
5c115590 AG |
596 | /* |
597 | * This removes messages from the socket's list if they're on it. The list | |
598 | * argument must be private to the caller, we must be able to modify it | |
599 | * without locks. The messages must have a reference held for their | |
600 | * position on the list. This function will drop that reference after | |
601 | * removing the messages from the 'messages' list regardless of if it found | |
602 | * the messages on the socket list or not. | |
603 | */ | |
ff51bf84 | 604 | static void rds_send_remove_from_sock(struct list_head *messages, int status) |
5c115590 | 605 | { |
561c7df6 | 606 | unsigned long flags; |
5c115590 AG |
607 | struct rds_sock *rs = NULL; |
608 | struct rds_message *rm; | |
609 | ||
5c115590 | 610 | while (!list_empty(messages)) { |
561c7df6 AG |
611 | int was_on_sock = 0; |
612 | ||
5c115590 AG |
613 | rm = list_entry(messages->next, struct rds_message, |
614 | m_conn_item); | |
615 | list_del_init(&rm->m_conn_item); | |
616 | ||
617 | /* | |
618 | * If we see this flag cleared then we're *sure* that someone | |
619 | * else beat us to removing it from the sock. If we race | |
620 | * with their flag update we'll get the lock and then really | |
621 | * see that the flag has been cleared. | |
622 | * | |
623 | * The message spinlock makes sure nobody clears rm->m_rs | |
624 | * while we're messing with it. It does not prevent the | |
625 | * message from being removed from the socket, though. | |
626 | */ | |
561c7df6 | 627 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
5c115590 AG |
628 | if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) |
629 | goto unlock_and_drop; | |
630 | ||
631 | if (rs != rm->m_rs) { | |
632 | if (rs) { | |
5c115590 AG |
633 | rds_wake_sk_sleep(rs); |
634 | sock_put(rds_rs_to_sk(rs)); | |
635 | } | |
636 | rs = rm->m_rs; | |
593cbb3e HK |
637 | if (rs) |
638 | sock_hold(rds_rs_to_sk(rs)); | |
5c115590 | 639 | } |
593cbb3e HK |
640 | if (!rs) |
641 | goto unlock_and_drop; | |
048c15e6 | 642 | spin_lock(&rs->rs_lock); |
5c115590 AG |
643 | |
644 | if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { | |
f8b3aaf2 | 645 | struct rm_rdma_op *ro = &rm->rdma; |
5c115590 AG |
646 | struct rds_notifier *notifier; |
647 | ||
648 | list_del_init(&rm->m_sock_item); | |
649 | rds_send_sndbuf_remove(rs, rm); | |
650 | ||
f8b3aaf2 AG |
651 | if (ro->op_active && ro->op_notifier && |
652 | (ro->op_notify || (ro->op_recverr && status))) { | |
653 | notifier = ro->op_notifier; | |
5c115590 AG |
654 | list_add_tail(¬ifier->n_list, |
655 | &rs->rs_notify_queue); | |
656 | if (!notifier->n_status) | |
657 | notifier->n_status = status; | |
f8b3aaf2 | 658 | rm->rdma.op_notifier = NULL; |
5c115590 | 659 | } |
561c7df6 | 660 | was_on_sock = 1; |
5c115590 | 661 | } |
048c15e6 | 662 | spin_unlock(&rs->rs_lock); |
5c115590 AG |
663 | |
664 | unlock_and_drop: | |
561c7df6 | 665 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
5c115590 | 666 | rds_message_put(rm); |
799bac55 | 667 | if (was_on_sock) |
561c7df6 | 668 | rds_message_put(rm); |
5c115590 AG |
669 | } |
670 | ||
671 | if (rs) { | |
5c115590 AG |
672 | rds_wake_sk_sleep(rs); |
673 | sock_put(rds_rs_to_sk(rs)); | |
674 | } | |
5c115590 AG |
675 | } |
676 | ||
677 | /* | |
678 | * Transports call here when they've determined that the receiver queued | |
679 | * messages up to, and including, the given sequence number. Messages are | |
680 | * moved to the retrans queue when rds_send_xmit picks them off the send | |
681 | * queue. This means that in the TCP case, the message may not have been | |
682 | * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked | |
683 | * checks the RDS_MSG_HAS_ACK_SEQ bit. | |
5c115590 | 684 | */ |
5c3d274c SV |
685 | void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, |
686 | is_acked_func is_acked) | |
5c115590 AG |
687 | { |
688 | struct rds_message *rm, *tmp; | |
689 | unsigned long flags; | |
690 | LIST_HEAD(list); | |
691 | ||
5c3d274c | 692 | spin_lock_irqsave(&cp->cp_lock, flags); |
5c115590 | 693 | |
5c3d274c | 694 | list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { |
5c115590 AG |
695 | if (!rds_send_is_acked(rm, ack, is_acked)) |
696 | break; | |
697 | ||
698 | list_move(&rm->m_conn_item, &list); | |
699 | clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); | |
700 | } | |
701 | ||
702 | /* order flag updates with spin locks */ | |
703 | if (!list_empty(&list)) | |
4e857c58 | 704 | smp_mb__after_atomic(); |
5c115590 | 705 | |
5c3d274c | 706 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
5c115590 AG |
707 | |
708 | /* now remove the messages from the sock list as needed */ | |
709 | rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); | |
710 | } | |
5c3d274c SV |
711 | EXPORT_SYMBOL_GPL(rds_send_path_drop_acked); |
712 | ||
713 | void rds_send_drop_acked(struct rds_connection *conn, u64 ack, | |
714 | is_acked_func is_acked) | |
715 | { | |
716 | WARN_ON(conn->c_trans->t_mp_capable); | |
717 | rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked); | |
718 | } | |
616b757a | 719 | EXPORT_SYMBOL_GPL(rds_send_drop_acked); |
5c115590 | 720 | |
eee2fa6a | 721 | void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest) |
5c115590 AG |
722 | { |
723 | struct rds_message *rm, *tmp; | |
724 | struct rds_connection *conn; | |
01ff34ed | 725 | struct rds_conn_path *cp; |
7c82eaf0 | 726 | unsigned long flags; |
5c115590 | 727 | LIST_HEAD(list); |
5c115590 AG |
728 | |
729 | /* get all the messages we're dropping under the rs lock */ | |
730 | spin_lock_irqsave(&rs->rs_lock, flags); | |
731 | ||
732 | list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { | |
eee2fa6a KCP |
733 | if (dest && |
734 | (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) || | |
735 | dest->sin6_port != rm->m_inc.i_hdr.h_dport)) | |
5c115590 AG |
736 | continue; |
737 | ||
5c115590 AG |
738 | list_move(&rm->m_sock_item, &list); |
739 | rds_send_sndbuf_remove(rs, rm); | |
740 | clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); | |
5c115590 AG |
741 | } |
742 | ||
743 | /* order flag updates with the rs lock */ | |
4e857c58 | 744 | smp_mb__after_atomic(); |
5c115590 AG |
745 | |
746 | spin_unlock_irqrestore(&rs->rs_lock, flags); | |
747 | ||
7c82eaf0 AG |
748 | if (list_empty(&list)) |
749 | return; | |
5c115590 | 750 | |
7c82eaf0 | 751 | /* Remove the messages from the conn */ |
5c115590 | 752 | list_for_each_entry(rm, &list, m_sock_item) { |
7c82eaf0 AG |
753 | |
754 | conn = rm->m_inc.i_conn; | |
01ff34ed SV |
755 | if (conn->c_trans->t_mp_capable) |
756 | cp = rm->m_inc.i_conn_path; | |
757 | else | |
758 | cp = &conn->c_path[0]; | |
5c115590 | 759 | |
01ff34ed | 760 | spin_lock_irqsave(&cp->cp_lock, flags); |
5c115590 | 761 | /* |
7c82eaf0 AG |
762 | * Maybe someone else beat us to removing rm from the conn. |
763 | * If we race with their flag update we'll get the lock and | |
764 | * then really see that the flag has been cleared. | |
5c115590 | 765 | */ |
7c82eaf0 | 766 | if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { |
01ff34ed | 767 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
5c115590 | 768 | continue; |
5c115590 | 769 | } |
9de0864c | 770 | list_del_init(&rm->m_conn_item); |
01ff34ed | 771 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
5c115590 | 772 | |
7c82eaf0 AG |
773 | /* |
774 | * Couldn't grab m_rs_lock in top loop (lock ordering), | |
775 | * but we can now. | |
776 | */ | |
9de0864c | 777 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
5c115590 | 778 | |
7c82eaf0 | 779 | spin_lock(&rs->rs_lock); |
940786eb | 780 | __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); |
7c82eaf0 AG |
781 | spin_unlock(&rs->rs_lock); |
782 | ||
9de0864c | 783 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
7c82eaf0 | 784 | |
7c82eaf0 | 785 | rds_message_put(rm); |
7c82eaf0 | 786 | } |
5c115590 | 787 | |
7c82eaf0 | 788 | rds_wake_sk_sleep(rs); |
550a8002 | 789 | |
5c115590 AG |
790 | while (!list_empty(&list)) { |
791 | rm = list_entry(list.next, struct rds_message, m_sock_item); | |
792 | list_del_init(&rm->m_sock_item); | |
5c115590 | 793 | rds_message_wait(rm); |
dfcec251 | 794 | |
795 | /* just in case the code above skipped this message | |
796 | * because RDS_MSG_ON_CONN wasn't set, run it again here | |
797 | * taking m_rs_lock is the only thing that keeps us | |
798 | * from racing with ack processing. | |
799 | */ | |
800 | spin_lock_irqsave(&rm->m_rs_lock, flags); | |
801 | ||
802 | spin_lock(&rs->rs_lock); | |
803 | __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); | |
804 | spin_unlock(&rs->rs_lock); | |
805 | ||
dfcec251 | 806 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
807 | ||
5c115590 AG |
808 | rds_message_put(rm); |
809 | } | |
810 | } | |
811 | ||
812 | /* | |
813 | * we only want this to fire once so we use the callers 'queued'. It's | |
814 | * possible that another thread can race with us and remove the | |
815 | * message from the flow with RDS_CANCEL_SENT_TO. | |
816 | */ | |
817 | static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, | |
780a6d9e | 818 | struct rds_conn_path *cp, |
5c115590 AG |
819 | struct rds_message *rm, __be16 sport, |
820 | __be16 dport, int *queued) | |
821 | { | |
822 | unsigned long flags; | |
823 | u32 len; | |
824 | ||
825 | if (*queued) | |
826 | goto out; | |
827 | ||
828 | len = be32_to_cpu(rm->m_inc.i_hdr.h_len); | |
829 | ||
830 | /* this is the only place which holds both the socket's rs_lock | |
831 | * and the connection's c_lock */ | |
832 | spin_lock_irqsave(&rs->rs_lock, flags); | |
833 | ||
834 | /* | |
835 | * If there is a little space in sndbuf, we don't queue anything, | |
836 | * and userspace gets -EAGAIN. But poll() indicates there's send | |
837 | * room. This can lead to bad behavior (spinning) if snd_bytes isn't | |
838 | * freed up by incoming acks. So we check the *old* value of | |
839 | * rs_snd_bytes here to allow the last msg to exceed the buffer, | |
840 | * and poll() now knows no more data can be sent. | |
841 | */ | |
842 | if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { | |
843 | rs->rs_snd_bytes += len; | |
844 | ||
845 | /* let recv side know we are close to send space exhaustion. | |
846 | * This is probably not the optimal way to do it, as this | |
847 | * means we set the flag on *all* messages as soon as our | |
848 | * throughput hits a certain threshold. | |
849 | */ | |
850 | if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) | |
f530f39f | 851 | set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
5c115590 AG |
852 | |
853 | list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); | |
854 | set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); | |
855 | rds_message_addref(rm); | |
ea8994cb | 856 | sock_hold(rds_rs_to_sk(rs)); |
5c115590 AG |
857 | rm->m_rs = rs; |
858 | ||
859 | /* The code ordering is a little weird, but we're | |
860 | trying to minimize the time we hold c_lock */ | |
861 | rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); | |
862 | rm->m_inc.i_conn = conn; | |
780a6d9e | 863 | rm->m_inc.i_conn_path = cp; |
5c115590 AG |
864 | rds_message_addref(rm); |
865 | ||
780a6d9e SV |
866 | spin_lock(&cp->cp_lock); |
867 | rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++); | |
868 | list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); | |
5c115590 | 869 | set_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
780a6d9e | 870 | spin_unlock(&cp->cp_lock); |
5c115590 AG |
871 | |
872 | rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", | |
873 | rm, len, rs, rs->rs_snd_bytes, | |
874 | (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); | |
875 | ||
876 | *queued = 1; | |
877 | } | |
878 | ||
879 | spin_unlock_irqrestore(&rs->rs_lock, flags); | |
880 | out: | |
881 | return *queued; | |
882 | } | |
883 | ||
fc445084 AG |
884 | /* |
885 | * rds_message is getting to be quite complicated, and we'd like to allocate | |
886 | * it all in one go. This figures out how big it needs to be up front. | |
887 | */ | |
ea010070 | 888 | static int rds_rm_size(struct msghdr *msg, int num_sgs, |
889 | struct rds_iov_vector_arr *vct) | |
fc445084 | 890 | { |
ff87e97a | 891 | struct cmsghdr *cmsg; |
fc445084 | 892 | int size = 0; |
aa0a4ef4 | 893 | int cmsg_groups = 0; |
ff87e97a | 894 | int retval; |
0cebacce | 895 | bool zcopy_cookie = false; |
ea010070 | 896 | struct rds_iov_vector *iov, *tmp_iov; |
ff87e97a | 897 | |
c75ab8a5 | 898 | if (num_sgs < 0) |
899 | return -EINVAL; | |
900 | ||
f95b414e | 901 | for_each_cmsghdr(cmsg, msg) { |
ff87e97a AG |
902 | if (!CMSG_OK(msg, cmsg)) |
903 | return -EINVAL; | |
904 | ||
905 | if (cmsg->cmsg_level != SOL_RDS) | |
906 | continue; | |
907 | ||
908 | switch (cmsg->cmsg_type) { | |
909 | case RDS_CMSG_RDMA_ARGS: | |
ea010070 | 910 | if (vct->indx >= vct->len) { |
911 | vct->len += vct->incr; | |
912 | tmp_iov = | |
913 | krealloc(vct->vec, | |
914 | vct->len * | |
915 | sizeof(struct rds_iov_vector), | |
916 | GFP_KERNEL); | |
917 | if (!tmp_iov) { | |
918 | vct->len -= vct->incr; | |
919 | return -ENOMEM; | |
920 | } | |
921 | vct->vec = tmp_iov; | |
922 | } | |
923 | iov = &vct->vec[vct->indx]; | |
924 | memset(iov, 0, sizeof(struct rds_iov_vector)); | |
925 | vct->indx++; | |
aa0a4ef4 | 926 | cmsg_groups |= 1; |
ea010070 | 927 | retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov); |
ff87e97a AG |
928 | if (retval < 0) |
929 | return retval; | |
930 | size += retval; | |
aa0a4ef4 | 931 | |
ff87e97a AG |
932 | break; |
933 | ||
0cebacce SV |
934 | case RDS_CMSG_ZCOPY_COOKIE: |
935 | zcopy_cookie = true; | |
df561f66 | 936 | fallthrough; |
f9053113 | 937 | |
ff87e97a AG |
938 | case RDS_CMSG_RDMA_DEST: |
939 | case RDS_CMSG_RDMA_MAP: | |
aa0a4ef4 | 940 | cmsg_groups |= 2; |
ff87e97a AG |
941 | /* these are valid but do no add any size */ |
942 | break; | |
943 | ||
15133f6e AG |
944 | case RDS_CMSG_ATOMIC_CSWP: |
945 | case RDS_CMSG_ATOMIC_FADD: | |
20c72bd5 AG |
946 | case RDS_CMSG_MASKED_ATOMIC_CSWP: |
947 | case RDS_CMSG_MASKED_ATOMIC_FADD: | |
aa0a4ef4 | 948 | cmsg_groups |= 1; |
15133f6e AG |
949 | size += sizeof(struct scatterlist); |
950 | break; | |
951 | ||
ff87e97a AG |
952 | default: |
953 | return -EINVAL; | |
954 | } | |
955 | ||
956 | } | |
fc445084 | 957 | |
0cebacce SV |
958 | if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie) |
959 | return -EINVAL; | |
960 | ||
961 | size += num_sgs * sizeof(struct scatterlist); | |
fc445084 | 962 | |
aa0a4ef4 AG |
963 | /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ |
964 | if (cmsg_groups == 3) | |
965 | return -EINVAL; | |
966 | ||
fc445084 AG |
967 | return size; |
968 | } | |
969 | ||
0cebacce SV |
970 | static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm, |
971 | struct cmsghdr *cmsg) | |
972 | { | |
973 | u32 *cookie; | |
974 | ||
79a5b972 SV |
975 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) || |
976 | !rm->data.op_mmp_znotifier) | |
0cebacce SV |
977 | return -EINVAL; |
978 | cookie = CMSG_DATA(cmsg); | |
979 | rm->data.op_mmp_znotifier->z_cookie = *cookie; | |
980 | return 0; | |
981 | } | |
982 | ||
5c115590 | 983 | static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, |
ea010070 | 984 | struct msghdr *msg, int *allocated_mr, |
985 | struct rds_iov_vector_arr *vct) | |
5c115590 AG |
986 | { |
987 | struct cmsghdr *cmsg; | |
ea010070 | 988 | int ret = 0, ind = 0; |
5c115590 | 989 | |
f95b414e | 990 | for_each_cmsghdr(cmsg, msg) { |
5c115590 AG |
991 | if (!CMSG_OK(msg, cmsg)) |
992 | return -EINVAL; | |
993 | ||
994 | if (cmsg->cmsg_level != SOL_RDS) | |
995 | continue; | |
996 | ||
997 | /* As a side effect, RDMA_DEST and RDMA_MAP will set | |
15133f6e | 998 | * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. |
5c115590 AG |
999 | */ |
1000 | switch (cmsg->cmsg_type) { | |
1001 | case RDS_CMSG_RDMA_ARGS: | |
ea010070 | 1002 | if (ind >= vct->indx) |
1003 | return -ENOMEM; | |
1004 | ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]); | |
1005 | ind++; | |
5c115590 AG |
1006 | break; |
1007 | ||
1008 | case RDS_CMSG_RDMA_DEST: | |
1009 | ret = rds_cmsg_rdma_dest(rs, rm, cmsg); | |
1010 | break; | |
1011 | ||
1012 | case RDS_CMSG_RDMA_MAP: | |
1013 | ret = rds_cmsg_rdma_map(rs, rm, cmsg); | |
1014 | if (!ret) | |
1015 | *allocated_mr = 1; | |
584a8279 SS |
1016 | else if (ret == -ENODEV) |
1017 | /* Accommodate the get_mr() case which can fail | |
1018 | * if connection isn't established yet. | |
1019 | */ | |
1020 | ret = -EAGAIN; | |
5c115590 | 1021 | break; |
15133f6e AG |
1022 | case RDS_CMSG_ATOMIC_CSWP: |
1023 | case RDS_CMSG_ATOMIC_FADD: | |
20c72bd5 AG |
1024 | case RDS_CMSG_MASKED_ATOMIC_CSWP: |
1025 | case RDS_CMSG_MASKED_ATOMIC_FADD: | |
15133f6e AG |
1026 | ret = rds_cmsg_atomic(rs, rm, cmsg); |
1027 | break; | |
5c115590 | 1028 | |
0cebacce SV |
1029 | case RDS_CMSG_ZCOPY_COOKIE: |
1030 | ret = rds_cmsg_zcopy(rs, rm, cmsg); | |
1031 | break; | |
1032 | ||
5c115590 AG |
1033 | default: |
1034 | return -EINVAL; | |
1035 | } | |
1036 | ||
1037 | if (ret) | |
1038 | break; | |
1039 | } | |
1040 | ||
1041 | return ret; | |
1042 | } | |
1043 | ||
9a4890bd KCP |
1044 | static int rds_send_mprds_hash(struct rds_sock *rs, |
1045 | struct rds_connection *conn, int nonblock) | |
5916e2c1 SV |
1046 | { |
1047 | int hash; | |
1048 | ||
1049 | if (conn->c_npaths == 0) | |
1050 | hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS); | |
1051 | else | |
1052 | hash = RDS_MPATH_HASH(rs, conn->c_npaths); | |
1053 | if (conn->c_npaths == 0 && hash != 0) { | |
69b92b5b | 1054 | rds_send_ping(conn, 0); |
5916e2c1 | 1055 | |
a43cced9 KCP |
1056 | /* The underlying connection is not up yet. Need to wait |
1057 | * until it is up to be sure that the non-zero c_path can be | |
1058 | * used. But if we are interrupted, we have to use the zero | |
1059 | * c_path in case the connection ends up being non-MP capable. | |
1060 | */ | |
9a4890bd KCP |
1061 | if (conn->c_npaths == 0) { |
1062 | /* Cannot wait for the connection be made, so just use | |
1063 | * the base c_path. | |
1064 | */ | |
1065 | if (nonblock) | |
1066 | return 0; | |
a43cced9 KCP |
1067 | if (wait_event_interruptible(conn->c_hs_waitq, |
1068 | conn->c_npaths != 0)) | |
1069 | hash = 0; | |
9a4890bd | 1070 | } |
5916e2c1 SV |
1071 | if (conn->c_npaths == 1) |
1072 | hash = 0; | |
1073 | } | |
1074 | return hash; | |
1075 | } | |
1076 | ||
f9fb69ad AR |
1077 | static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes) |
1078 | { | |
1079 | struct rds_rdma_args *args; | |
1080 | struct cmsghdr *cmsg; | |
1081 | ||
1082 | for_each_cmsghdr(cmsg, msg) { | |
1083 | if (!CMSG_OK(msg, cmsg)) | |
1084 | return -EINVAL; | |
1085 | ||
1086 | if (cmsg->cmsg_level != SOL_RDS) | |
1087 | continue; | |
1088 | ||
1089 | if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) { | |
14e138a8 AR |
1090 | if (cmsg->cmsg_len < |
1091 | CMSG_LEN(sizeof(struct rds_rdma_args))) | |
1092 | return -EINVAL; | |
f9fb69ad AR |
1093 | args = CMSG_DATA(cmsg); |
1094 | *rdma_bytes += args->remote_vec.bytes; | |
1095 | } | |
1096 | } | |
1097 | return 0; | |
1098 | } | |
1099 | ||
1b784140 | 1100 | int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) |
5c115590 AG |
1101 | { |
1102 | struct sock *sk = sock->sk; | |
1103 | struct rds_sock *rs = rds_sk_to_rs(sk); | |
eee2fa6a | 1104 | DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); |
342dfc30 | 1105 | DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); |
5c115590 AG |
1106 | __be16 dport; |
1107 | struct rds_message *rm = NULL; | |
1108 | struct rds_connection *conn; | |
1109 | int ret = 0; | |
1110 | int queued = 0, allocated_mr = 0; | |
1111 | int nonblock = msg->msg_flags & MSG_DONTWAIT; | |
1123fd73 | 1112 | long timeo = sock_sndtimeo(sk, nonblock); |
780a6d9e | 1113 | struct rds_conn_path *cpath; |
eee2fa6a KCP |
1114 | struct in6_addr daddr; |
1115 | __u32 scope_id = 0; | |
d28c0e73 | 1116 | size_t rdma_payload_len = 0; |
0cebacce SV |
1117 | bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) && |
1118 | sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY)); | |
eeb2c4fb | 1119 | int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE); |
eee2fa6a | 1120 | int namelen; |
d84e7bc0 | 1121 | struct rds_iov_vector_arr vct; |
ea010070 | 1122 | int ind; |
1123 | ||
d84e7bc0 DM |
1124 | memset(&vct, 0, sizeof(vct)); |
1125 | ||
ea010070 | 1126 | /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */ |
1127 | vct.incr = 1; | |
5c115590 AG |
1128 | |
1129 | /* Mirror Linux UDP mirror of BSD error message compatibility */ | |
1130 | /* XXX: Perhaps MSG_MORE someday */ | |
0cebacce | 1131 | if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) { |
5c115590 AG |
1132 | ret = -EOPNOTSUPP; |
1133 | goto out; | |
1134 | } | |
1135 | ||
eee2fa6a KCP |
1136 | namelen = msg->msg_namelen; |
1137 | if (namelen != 0) { | |
1138 | if (namelen < sizeof(*usin)) { | |
1139 | ret = -EINVAL; | |
1140 | goto out; | |
1141 | } | |
1e2b44e7 KCP |
1142 | switch (usin->sin_family) { |
1143 | case AF_INET: | |
1144 | if (usin->sin_addr.s_addr == htonl(INADDR_ANY) || | |
eee2fa6a | 1145 | usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) || |
842841ec | 1146 | ipv4_is_multicast(usin->sin_addr.s_addr)) { |
eee2fa6a KCP |
1147 | ret = -EINVAL; |
1148 | goto out; | |
1149 | } | |
1150 | ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr); | |
1151 | dport = usin->sin_port; | |
1152 | break; | |
1153 | ||
e65d4d96 | 1154 | #if IS_ENABLED(CONFIG_IPV6) |
1e2b44e7 KCP |
1155 | case AF_INET6: { |
1156 | int addr_type; | |
1157 | ||
1158 | if (namelen < sizeof(*sin6)) { | |
1159 | ret = -EINVAL; | |
1160 | goto out; | |
1161 | } | |
1162 | addr_type = ipv6_addr_type(&sin6->sin6_addr); | |
1163 | if (!(addr_type & IPV6_ADDR_UNICAST)) { | |
1164 | __be32 addr4; | |
1165 | ||
1166 | if (!(addr_type & IPV6_ADDR_MAPPED)) { | |
1167 | ret = -EINVAL; | |
1168 | goto out; | |
1169 | } | |
1170 | ||
1171 | /* It is a mapped address. Need to do some | |
1172 | * sanity checks. | |
1173 | */ | |
1174 | addr4 = sin6->sin6_addr.s6_addr32[3]; | |
1175 | if (addr4 == htonl(INADDR_ANY) || | |
1176 | addr4 == htonl(INADDR_BROADCAST) || | |
842841ec | 1177 | ipv4_is_multicast(addr4)) { |
dc66fe43 | 1178 | ret = -EINVAL; |
1e2b44e7 KCP |
1179 | goto out; |
1180 | } | |
1181 | } | |
1182 | if (addr_type & IPV6_ADDR_LINKLOCAL) { | |
1183 | if (sin6->sin6_scope_id == 0) { | |
1184 | ret = -EINVAL; | |
1185 | goto out; | |
1186 | } | |
1187 | scope_id = sin6->sin6_scope_id; | |
1188 | } | |
1189 | ||
1190 | daddr = sin6->sin6_addr; | |
1191 | dport = sin6->sin6_port; | |
1192 | break; | |
eee2fa6a | 1193 | } |
e65d4d96 | 1194 | #endif |
eee2fa6a KCP |
1195 | |
1196 | default: | |
5c115590 AG |
1197 | ret = -EINVAL; |
1198 | goto out; | |
1199 | } | |
5c115590 AG |
1200 | } else { |
1201 | /* We only care about consistency with ->connect() */ | |
1202 | lock_sock(sk); | |
1203 | daddr = rs->rs_conn_addr; | |
1204 | dport = rs->rs_conn_port; | |
eee2fa6a | 1205 | scope_id = rs->rs_bound_scope_id; |
5c115590 AG |
1206 | release_sock(sk); |
1207 | } | |
1208 | ||
8c7188b2 | 1209 | lock_sock(sk); |
eee2fa6a | 1210 | if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) { |
8c7188b2 | 1211 | release_sock(sk); |
eee2fa6a | 1212 | ret = -ENOTCONN; |
5c115590 | 1213 | goto out; |
eee2fa6a KCP |
1214 | } else if (namelen != 0) { |
1215 | /* Cannot send to an IPv4 address using an IPv6 source | |
1216 | * address and cannot send to an IPv6 address using an | |
1217 | * IPv4 source address. | |
1218 | */ | |
1219 | if (ipv6_addr_v4mapped(&daddr) ^ | |
1220 | ipv6_addr_v4mapped(&rs->rs_bound_addr)) { | |
1221 | release_sock(sk); | |
1222 | ret = -EOPNOTSUPP; | |
1223 | goto out; | |
1224 | } | |
1e2b44e7 KCP |
1225 | /* If the socket is already bound to a link local address, |
1226 | * it can only send to peers on the same link. But allow | |
ebf89395 | 1227 | * communicating between link local and non-link local address. |
1e2b44e7 KCP |
1228 | */ |
1229 | if (scope_id != rs->rs_bound_scope_id) { | |
1230 | if (!scope_id) { | |
1231 | scope_id = rs->rs_bound_scope_id; | |
1232 | } else if (rs->rs_bound_scope_id) { | |
1233 | release_sock(sk); | |
1234 | ret = -EINVAL; | |
1235 | goto out; | |
1236 | } | |
1237 | } | |
5c115590 | 1238 | } |
8c7188b2 | 1239 | release_sock(sk); |
5c115590 | 1240 | |
f9fb69ad AR |
1241 | ret = rds_rdma_bytes(msg, &rdma_payload_len); |
1242 | if (ret) | |
1243 | goto out; | |
1244 | ||
f9fb69ad AR |
1245 | if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) { |
1246 | ret = -EMSGSIZE; | |
1247 | goto out; | |
1248 | } | |
1249 | ||
06e8941e MK |
1250 | if (payload_len > rds_sk_sndbuf(rs)) { |
1251 | ret = -EMSGSIZE; | |
1252 | goto out; | |
1253 | } | |
1254 | ||
0cebacce SV |
1255 | if (zcopy) { |
1256 | if (rs->rs_transport->t_type != RDS_TRANS_TCP) { | |
1257 | ret = -EOPNOTSUPP; | |
1258 | goto out; | |
1259 | } | |
1260 | num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX); | |
1261 | } | |
fc445084 | 1262 | /* size of rm including all sgs */ |
ea010070 | 1263 | ret = rds_rm_size(msg, num_sgs, &vct); |
fc445084 AG |
1264 | if (ret < 0) |
1265 | goto out; | |
1266 | ||
1267 | rm = rds_message_alloc(ret, GFP_KERNEL); | |
1268 | if (!rm) { | |
1269 | ret = -ENOMEM; | |
5c115590 AG |
1270 | goto out; |
1271 | } | |
1272 | ||
372cd7de AG |
1273 | /* Attach data to the rm */ |
1274 | if (payload_len) { | |
7dba9203 JG |
1275 | rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs); |
1276 | if (IS_ERR(rm->data.op_sg)) { | |
1277 | ret = PTR_ERR(rm->data.op_sg); | |
d139ff09 | 1278 | goto out; |
7dba9203 | 1279 | } |
0cebacce | 1280 | ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy); |
372cd7de AG |
1281 | if (ret) |
1282 | goto out; | |
1283 | } | |
1284 | rm->data.op_active = 1; | |
fc445084 | 1285 | |
5c115590 AG |
1286 | rm->m_daddr = daddr; |
1287 | ||
5c115590 AG |
1288 | /* rds_conn_create has a spinlock that runs with IRQ off. |
1289 | * Caching the conn in the socket helps a lot. */ | |
fd261ce6 SS |
1290 | if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) && |
1291 | rs->rs_tos == rs->rs_conn->c_tos) { | |
5c115590 | 1292 | conn = rs->rs_conn; |
3eb45036 | 1293 | } else { |
d5a8ac28 | 1294 | conn = rds_conn_create_outgoing(sock_net(sock->sk), |
eee2fa6a | 1295 | &rs->rs_bound_addr, &daddr, |
fd261ce6 | 1296 | rs->rs_transport, rs->rs_tos, |
eee2fa6a KCP |
1297 | sock->sk->sk_allocation, |
1298 | scope_id); | |
5c115590 AG |
1299 | if (IS_ERR(conn)) { |
1300 | ret = PTR_ERR(conn); | |
1301 | goto out; | |
1302 | } | |
1303 | rs->rs_conn = conn; | |
1304 | } | |
1305 | ||
9e630bcb | 1306 | if (conn->c_trans->t_mp_capable) |
9a4890bd | 1307 | cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)]; |
9e630bcb AR |
1308 | else |
1309 | cpath = &conn->c_path[0]; | |
1310 | ||
1311 | rm->m_conn_path = cpath; | |
1312 | ||
49f69691 | 1313 | /* Parse any control messages the user may have included. */ |
ea010070 | 1314 | ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct); |
c055fc00 | 1315 | if (ret) |
49f69691 AG |
1316 | goto out; |
1317 | ||
2c3a5f9a | 1318 | if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { |
cb0a6056 | 1319 | printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", |
f8b3aaf2 | 1320 | &rm->rdma, conn->c_trans->xmit_rdma); |
15133f6e AG |
1321 | ret = -EOPNOTSUPP; |
1322 | goto out; | |
1323 | } | |
1324 | ||
1325 | if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { | |
cb0a6056 | 1326 | printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", |
15133f6e | 1327 | &rm->atomic, conn->c_trans->xmit_atomic); |
5c115590 AG |
1328 | ret = -EOPNOTSUPP; |
1329 | goto out; | |
1330 | } | |
1331 | ||
ebeeb1ad | 1332 | if (rds_destroy_pending(conn)) { |
3db6e0d1 SV |
1333 | ret = -EAGAIN; |
1334 | goto out; | |
1335 | } | |
1336 | ||
9ef845f8 RS |
1337 | if (rds_conn_path_down(cpath)) |
1338 | rds_check_all_paths(conn); | |
5c115590 AG |
1339 | |
1340 | ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); | |
b98ba52f AG |
1341 | if (ret) { |
1342 | rs->rs_seen_congestion = 1; | |
5c115590 | 1343 | goto out; |
b98ba52f | 1344 | } |
780a6d9e | 1345 | while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, |
5c115590 AG |
1346 | dport, &queued)) { |
1347 | rds_stats_inc(s_send_queue_full); | |
06e8941e | 1348 | |
5c115590 AG |
1349 | if (nonblock) { |
1350 | ret = -EAGAIN; | |
1351 | goto out; | |
1352 | } | |
1353 | ||
aa395145 | 1354 | timeo = wait_event_interruptible_timeout(*sk_sleep(sk), |
780a6d9e | 1355 | rds_send_queue_rm(rs, conn, cpath, rm, |
5c115590 AG |
1356 | rs->rs_bound_port, |
1357 | dport, | |
1358 | &queued), | |
1359 | timeo); | |
1360 | rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); | |
1361 | if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) | |
1362 | continue; | |
1363 | ||
1364 | ret = timeo; | |
1365 | if (ret == 0) | |
1366 | ret = -ETIMEDOUT; | |
1367 | goto out; | |
1368 | } | |
1369 | ||
1370 | /* | |
1371 | * By now we've committed to the send. We reuse rds_send_worker() | |
1372 | * to retry sends in the rds thread if the transport asks us to. | |
1373 | */ | |
1374 | rds_stats_inc(s_send_queued); | |
1375 | ||
1f9ecd7e | 1376 | ret = rds_send_xmit(cpath); |
3db6e0d1 SV |
1377 | if (ret == -ENOMEM || ret == -EAGAIN) { |
1378 | ret = 0; | |
1379 | rcu_read_lock(); | |
ebeeb1ad | 1380 | if (rds_destroy_pending(cpath->cp_conn)) |
3db6e0d1 SV |
1381 | ret = -ENETUNREACH; |
1382 | else | |
1383 | queue_delayed_work(rds_wq, &cpath->cp_send_w, 1); | |
1384 | rcu_read_unlock(); | |
1385 | } | |
1386 | if (ret) | |
1387 | goto out; | |
5c115590 | 1388 | rds_message_put(rm); |
ea010070 | 1389 | |
1390 | for (ind = 0; ind < vct.indx; ind++) | |
1391 | kfree(vct.vec[ind].iov); | |
1392 | kfree(vct.vec); | |
1393 | ||
5c115590 AG |
1394 | return payload_len; |
1395 | ||
1396 | out: | |
ea010070 | 1397 | for (ind = 0; ind < vct.indx; ind++) |
1398 | kfree(vct.vec[ind].iov); | |
1399 | kfree(vct.vec); | |
1400 | ||
5c115590 AG |
1401 | /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. |
1402 | * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN | |
1403 | * or in any other way, we need to destroy the MR again */ | |
1404 | if (allocated_mr) | |
1405 | rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); | |
1406 | ||
1407 | if (rm) | |
1408 | rds_message_put(rm); | |
1409 | return ret; | |
1410 | } | |
1411 | ||
1412 | /* | |
5916e2c1 SV |
1413 | * send out a probe. Can be shared by rds_send_ping, |
1414 | * rds_send_pong, rds_send_hb. | |
1415 | * rds_send_hb should use h_flags | |
1416 | * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED | |
1417 | * or | |
1418 | * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED | |
5c115590 | 1419 | */ |
bb789763 | 1420 | static int |
5916e2c1 SV |
1421 | rds_send_probe(struct rds_conn_path *cp, __be16 sport, |
1422 | __be16 dport, u8 h_flags) | |
5c115590 AG |
1423 | { |
1424 | struct rds_message *rm; | |
1425 | unsigned long flags; | |
1426 | int ret = 0; | |
1427 | ||
1428 | rm = rds_message_alloc(0, GFP_ATOMIC); | |
8690bfa1 | 1429 | if (!rm) { |
5c115590 AG |
1430 | ret = -ENOMEM; |
1431 | goto out; | |
1432 | } | |
1433 | ||
45997e9e | 1434 | rm->m_daddr = cp->cp_conn->c_faddr; |
acfcd4d4 | 1435 | rm->data.op_active = 1; |
5c115590 | 1436 | |
3c0a5900 | 1437 | rds_conn_path_connect_if_down(cp); |
5c115590 | 1438 | |
45997e9e | 1439 | ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL); |
5c115590 AG |
1440 | if (ret) |
1441 | goto out; | |
1442 | ||
45997e9e SV |
1443 | spin_lock_irqsave(&cp->cp_lock, flags); |
1444 | list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); | |
5c115590 AG |
1445 | set_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
1446 | rds_message_addref(rm); | |
45997e9e SV |
1447 | rm->m_inc.i_conn = cp->cp_conn; |
1448 | rm->m_inc.i_conn_path = cp; | |
5c115590 | 1449 | |
5916e2c1 | 1450 | rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, |
45997e9e | 1451 | cp->cp_next_tx_seq); |
5916e2c1 | 1452 | rm->m_inc.i_hdr.h_flags |= h_flags; |
45997e9e | 1453 | cp->cp_next_tx_seq++; |
5916e2c1 | 1454 | |
00354de5 SV |
1455 | if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) && |
1456 | cp->cp_conn->c_trans->t_mp_capable) { | |
1457 | u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS); | |
1458 | u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num); | |
5916e2c1 SV |
1459 | |
1460 | rds_message_add_extension(&rm->m_inc.i_hdr, | |
1461 | RDS_EXTHDR_NPATHS, &npaths, | |
1462 | sizeof(npaths)); | |
905dd418 SV |
1463 | rds_message_add_extension(&rm->m_inc.i_hdr, |
1464 | RDS_EXTHDR_GEN_NUM, | |
00354de5 | 1465 | &my_gen_num, |
905dd418 | 1466 | sizeof(u32)); |
5916e2c1 | 1467 | } |
45997e9e | 1468 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
5c115590 AG |
1469 | |
1470 | rds_stats_inc(s_send_queued); | |
1471 | rds_stats_inc(s_send_pong); | |
1472 | ||
7b4b0009 | 1473 | /* schedule the send work on rds_wq */ |
3db6e0d1 | 1474 | rcu_read_lock(); |
ebeeb1ad | 1475 | if (!rds_destroy_pending(cp->cp_conn)) |
3db6e0d1 SV |
1476 | queue_delayed_work(rds_wq, &cp->cp_send_w, 1); |
1477 | rcu_read_unlock(); | |
acfcd4d4 | 1478 | |
5c115590 AG |
1479 | rds_message_put(rm); |
1480 | return 0; | |
1481 | ||
1482 | out: | |
1483 | if (rm) | |
1484 | rds_message_put(rm); | |
1485 | return ret; | |
1486 | } | |
5916e2c1 SV |
1487 | |
1488 | int | |
1489 | rds_send_pong(struct rds_conn_path *cp, __be16 dport) | |
1490 | { | |
1491 | return rds_send_probe(cp, 0, dport, 0); | |
1492 | } | |
1493 | ||
69b92b5b SV |
1494 | void |
1495 | rds_send_ping(struct rds_connection *conn, int cp_index) | |
5916e2c1 SV |
1496 | { |
1497 | unsigned long flags; | |
69b92b5b | 1498 | struct rds_conn_path *cp = &conn->c_path[cp_index]; |
5916e2c1 SV |
1499 | |
1500 | spin_lock_irqsave(&cp->cp_lock, flags); | |
1501 | if (conn->c_ping_triggered) { | |
1502 | spin_unlock_irqrestore(&cp->cp_lock, flags); | |
1503 | return; | |
1504 | } | |
1505 | conn->c_ping_triggered = 1; | |
1506 | spin_unlock_irqrestore(&cp->cp_lock, flags); | |
69b92b5b | 1507 | rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0); |
5916e2c1 | 1508 | } |
69b92b5b | 1509 | EXPORT_SYMBOL_GPL(rds_send_ping); |