net/rds: fix warn in rds_message_alloc_sgs
[linux-2.6-block.git] / net / rds / send.c
CommitLineData
5c115590 1/*
a43cced9 2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
5c115590
AG
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
d9b93842 34#include <linux/moduleparam.h>
5a0e3ad6 35#include <linux/gfp.h>
5c115590
AG
36#include <net/sock.h>
37#include <linux/in.h>
38#include <linux/list.h>
cb0a6056 39#include <linux/ratelimit.h>
bc3b2d7f 40#include <linux/export.h>
4bebdd7a 41#include <linux/sizes.h>
5c115590
AG
42
43#include "rds.h"
5c115590
AG
44
45/* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * will kick our shin.
48 * Also, it seems fairer to not let one busy connection stall all the
49 * others.
50 *
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
53 * drained the queue).
54 */
4bebdd7a 55static int send_batch_count = SZ_1K;
5c115590
AG
56module_param(send_batch_count, int, 0444);
57MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58
ff51bf84 59static void rds_send_remove_from_sock(struct list_head *messages, int status);
60
5c115590 61/*
0f4b1c7e
ZB
62 * Reset the send state. Callers must ensure that this doesn't race with
63 * rds_send_xmit().
5c115590 64 */
d769ef81 65void rds_send_path_reset(struct rds_conn_path *cp)
5c115590
AG
66{
67 struct rds_message *rm, *tmp;
68 unsigned long flags;
69
4e9b551c
SV
70 if (cp->cp_xmit_rm) {
71 rm = cp->cp_xmit_rm;
72 cp->cp_xmit_rm = NULL;
5c115590
AG
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
7e3f2952 77 rds_message_unmapped(rm);
7e3f2952 78 rds_message_put(rm);
5c115590 79 }
7e3f2952 80
4e9b551c
SV
81 cp->cp_xmit_sg = 0;
82 cp->cp_xmit_hdr_off = 0;
83 cp->cp_xmit_data_off = 0;
84 cp->cp_xmit_atomic_sent = 0;
85 cp->cp_xmit_rdma_sent = 0;
86 cp->cp_xmit_data_sent = 0;
5c115590 87
4e9b551c 88 cp->cp_conn->c_map_queued = 0;
5c115590 89
4e9b551c
SV
90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
5c115590
AG
92
93 /* Mark messages as retransmissions, and move them to the send q */
4e9b551c
SV
94 spin_lock_irqsave(&cp->cp_lock, flags);
95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
5c115590
AG
96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 }
4e9b551c
SV
99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 spin_unlock_irqrestore(&cp->cp_lock, flags);
101}
d769ef81 102EXPORT_SYMBOL_GPL(rds_send_path_reset);
5c115590 103
1f9ecd7e 104static int acquire_in_xmit(struct rds_conn_path *cp)
0f4b1c7e 105{
1f9ecd7e 106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
0f4b1c7e
ZB
107}
108
1f9ecd7e 109static void release_in_xmit(struct rds_conn_path *cp)
0f4b1c7e 110{
1f9ecd7e 111 clear_bit(RDS_IN_XMIT, &cp->cp_flags);
4e857c58 112 smp_mb__after_atomic();
0f4b1c7e
ZB
113 /*
114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 * hot path and finding waiters is very rare. We don't want to walk
116 * the system-wide hashed waitqueue buckets in the fast path only to
117 * almost never find waiters.
118 */
1f9ecd7e
SV
119 if (waitqueue_active(&cp->cp_waitq))
120 wake_up_all(&cp->cp_waitq);
0f4b1c7e
ZB
121}
122
5c115590 123/*
25985edc 124 * We're making the conscious trade-off here to only send one message
5c115590
AG
125 * down the connection at a time.
126 * Pro:
127 * - tx queueing is a simple fifo list
128 * - reassembly is optional and easily done by transports per conn
129 * - no per flow rx lookup at all, straight to the socket
130 * - less per-frag memory and wire overhead
131 * Con:
132 * - queued acks can be delayed behind large messages
133 * Depends:
134 * - small message latency is higher behind queued large messages
135 * - large message latency isn't starved by intervening small sends
136 */
1f9ecd7e 137int rds_send_xmit(struct rds_conn_path *cp)
5c115590 138{
1f9ecd7e 139 struct rds_connection *conn = cp->cp_conn;
5c115590
AG
140 struct rds_message *rm;
141 unsigned long flags;
142 unsigned int tmp;
5c115590
AG
143 struct scatterlist *sg;
144 int ret = 0;
5c115590 145 LIST_HEAD(to_be_dropped);
443be0e5
SV
146 int batch_count;
147 unsigned long send_gen = 0;
5c115590 148
fcc5450c 149restart:
443be0e5 150 batch_count = 0;
049ee3f5 151
5c115590
AG
152 /*
153 * sendmsg calls here after having queued its message on the send
154 * queue. We only have one task feeding the connection at a time. If
155 * another thread is already feeding the queue then we back off. This
156 * avoids blocking the caller and trading per-connection data between
157 * caches per message.
5c115590 158 */
1f9ecd7e 159 if (!acquire_in_xmit(cp)) {
049ee3f5 160 rds_stats_inc(s_send_lock_contention);
5c115590
AG
161 ret = -ENOMEM;
162 goto out;
163 }
0f4b1c7e 164
ebeeb1ad 165 if (rds_destroy_pending(cp->cp_conn)) {
3db6e0d1
SV
166 release_in_xmit(cp);
167 ret = -ENETUNREACH; /* dont requeue send work */
168 goto out;
169 }
170
443be0e5
SV
171 /*
172 * we record the send generation after doing the xmit acquire.
173 * if someone else manages to jump in and do some work, we'll use
174 * this to avoid a goto restart farther down.
175 *
176 * The acquire_in_xmit() check above ensures that only one
177 * caller can increment c_send_gen at any time.
178 */
e623a48e
HB
179 send_gen = READ_ONCE(cp->cp_send_gen) + 1;
180 WRITE_ONCE(cp->cp_send_gen, send_gen);
443be0e5 181
0f4b1c7e
ZB
182 /*
183 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184 * we do the opposite to avoid races.
185 */
1f9ecd7e
SV
186 if (!rds_conn_path_up(cp)) {
187 release_in_xmit(cp);
0f4b1c7e
ZB
188 ret = 0;
189 goto out;
190 }
5c115590 191
226f7a7d
SV
192 if (conn->c_trans->xmit_path_prepare)
193 conn->c_trans->xmit_path_prepare(cp);
5c115590
AG
194
195 /*
196 * spin trying to push headers and data down the connection until
5b2366bd 197 * the connection doesn't make forward progress.
5c115590 198 */
fcc5450c 199 while (1) {
5c115590 200
1f9ecd7e 201 rm = cp->cp_xmit_rm;
5c115590 202
5b2366bd
AG
203 /*
204 * If between sending messages, we can send a pending congestion
205 * map update.
5c115590 206 */
8690bfa1 207 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
77dd550e
AG
208 rm = rds_cong_update_alloc(conn);
209 if (IS_ERR(rm)) {
210 ret = PTR_ERR(rm);
211 break;
5b2366bd 212 }
77dd550e 213 rm->data.op_active = 1;
1f9ecd7e
SV
214 rm->m_inc.i_conn_path = cp;
215 rm->m_inc.i_conn = cp->cp_conn;
77dd550e 216
1f9ecd7e 217 cp->cp_xmit_rm = rm;
5c115590
AG
218 }
219
220 /*
5b2366bd 221 * If not already working on one, grab the next message.
5c115590 222 *
1f9ecd7e 223 * cp_xmit_rm holds a ref while we're sending this message down
5c115590
AG
224 * the connction. We can use this ref while holding the
225 * send_sem.. rds_send_reset() is serialized with it.
226 */
8690bfa1 227 if (!rm) {
5c115590
AG
228 unsigned int len;
229
443be0e5
SV
230 batch_count++;
231
232 /* we want to process as big a batch as we can, but
233 * we also want to avoid softlockups. If we've been
234 * through a lot of messages, lets back off and see
235 * if anyone else jumps in
236 */
4bebdd7a 237 if (batch_count >= send_batch_count)
443be0e5
SV
238 goto over_batch;
239
1f9ecd7e 240 spin_lock_irqsave(&cp->cp_lock, flags);
5c115590 241
1f9ecd7e
SV
242 if (!list_empty(&cp->cp_send_queue)) {
243 rm = list_entry(cp->cp_send_queue.next,
5c115590
AG
244 struct rds_message,
245 m_conn_item);
246 rds_message_addref(rm);
247
248 /*
249 * Move the message from the send queue to the retransmit
250 * list right away.
251 */
1f9ecd7e
SV
252 list_move_tail(&rm->m_conn_item,
253 &cp->cp_retrans);
5c115590
AG
254 }
255
1f9ecd7e 256 spin_unlock_irqrestore(&cp->cp_lock, flags);
5c115590 257
fcc5450c 258 if (!rm)
5c115590 259 break;
5c115590
AG
260
261 /* Unfortunately, the way Infiniband deals with
262 * RDMA to a bad MR key is by moving the entire
263 * queue pair to error state. We cold possibly
264 * recover from that, but right now we drop the
265 * connection.
266 * Therefore, we never retransmit messages with RDMA ops.
267 */
905dd418
SV
268 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
269 (rm->rdma.op_active &&
270 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
1f9ecd7e 271 spin_lock_irqsave(&cp->cp_lock, flags);
5c115590
AG
272 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
273 list_move(&rm->m_conn_item, &to_be_dropped);
1f9ecd7e 274 spin_unlock_irqrestore(&cp->cp_lock, flags);
5c115590
AG
275 continue;
276 }
277
278 /* Require an ACK every once in a while */
279 len = ntohl(rm->m_inc.i_hdr.h_len);
1f9ecd7e
SV
280 if (cp->cp_unacked_packets == 0 ||
281 cp->cp_unacked_bytes < len) {
f530f39f 282 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
5c115590 283
1f9ecd7e
SV
284 cp->cp_unacked_packets =
285 rds_sysctl_max_unacked_packets;
286 cp->cp_unacked_bytes =
287 rds_sysctl_max_unacked_bytes;
5c115590
AG
288 rds_stats_inc(s_send_ack_required);
289 } else {
1f9ecd7e
SV
290 cp->cp_unacked_bytes -= len;
291 cp->cp_unacked_packets--;
5c115590
AG
292 }
293
1f9ecd7e 294 cp->cp_xmit_rm = rm;
5c115590
AG
295 }
296
2c3a5f9a 297 /* The transport either sends the whole rdma or none of it */
1f9ecd7e 298 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
ff3d7d36 299 rm->m_final_op = &rm->rdma;
4f73113c 300 /* The transport owns the mapped memory for now.
301 * You can't unmap it while it's on the send queue
302 */
303 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
2c3a5f9a 304 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
4f73113c 305 if (ret) {
306 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
307 wake_up_interruptible(&rm->m_flush_wait);
15133f6e 308 break;
4f73113c 309 }
1f9ecd7e 310 cp->cp_xmit_rdma_sent = 1;
2c3a5f9a 311
15133f6e
AG
312 }
313
1f9ecd7e 314 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
ff3d7d36 315 rm->m_final_op = &rm->atomic;
4f73113c 316 /* The transport owns the mapped memory for now.
317 * You can't unmap it while it's on the send queue
318 */
319 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
ff3d7d36 320 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
4f73113c 321 if (ret) {
322 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
323 wake_up_interruptible(&rm->m_flush_wait);
5c115590 324 break;
4f73113c 325 }
1f9ecd7e 326 cp->cp_xmit_atomic_sent = 1;
ff3d7d36 327
5c115590
AG
328 }
329
2c3a5f9a
AG
330 /*
331 * A number of cases require an RDS header to be sent
332 * even if there is no data.
333 * We permit 0-byte sends; rds-ping depends on this.
334 * However, if there are exclusively attached silent ops,
335 * we skip the hdr/data send, to enable silent operation.
336 */
337 if (rm->data.op_nents == 0) {
338 int ops_present;
339 int all_ops_are_silent = 1;
340
341 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
342 if (rm->atomic.op_active && !rm->atomic.op_silent)
343 all_ops_are_silent = 0;
344 if (rm->rdma.op_active && !rm->rdma.op_silent)
345 all_ops_are_silent = 0;
346
347 if (ops_present && all_ops_are_silent
348 && !rm->m_rdma_cookie)
349 rm->data.op_active = 0;
350 }
351
1f9ecd7e 352 if (rm->data.op_active && !cp->cp_xmit_data_sent) {
ff3d7d36 353 rm->m_final_op = &rm->data;
1f9ecd7e 354
5c115590 355 ret = conn->c_trans->xmit(conn, rm,
1f9ecd7e
SV
356 cp->cp_xmit_hdr_off,
357 cp->cp_xmit_sg,
358 cp->cp_xmit_data_off);
5c115590
AG
359 if (ret <= 0)
360 break;
361
1f9ecd7e 362 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
5c115590
AG
363 tmp = min_t(int, ret,
364 sizeof(struct rds_header) -
1f9ecd7e
SV
365 cp->cp_xmit_hdr_off);
366 cp->cp_xmit_hdr_off += tmp;
5c115590
AG
367 ret -= tmp;
368 }
369
1f9ecd7e 370 sg = &rm->data.op_sg[cp->cp_xmit_sg];
5c115590
AG
371 while (ret) {
372 tmp = min_t(int, ret, sg->length -
1f9ecd7e
SV
373 cp->cp_xmit_data_off);
374 cp->cp_xmit_data_off += tmp;
5c115590 375 ret -= tmp;
1f9ecd7e
SV
376 if (cp->cp_xmit_data_off == sg->length) {
377 cp->cp_xmit_data_off = 0;
5c115590 378 sg++;
1f9ecd7e
SV
379 cp->cp_xmit_sg++;
380 BUG_ON(ret != 0 && cp->cp_xmit_sg ==
381 rm->data.op_nents);
5c115590
AG
382 }
383 }
5b2366bd 384
1f9ecd7e
SV
385 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
386 (cp->cp_xmit_sg == rm->data.op_nents))
387 cp->cp_xmit_data_sent = 1;
5b2366bd
AG
388 }
389
390 /*
391 * A rm will only take multiple times through this loop
392 * if there is a data op. Thus, if the data is sent (or there was
393 * none), then we're done with the rm.
394 */
1f9ecd7e
SV
395 if (!rm->data.op_active || cp->cp_xmit_data_sent) {
396 cp->cp_xmit_rm = NULL;
397 cp->cp_xmit_sg = 0;
398 cp->cp_xmit_hdr_off = 0;
399 cp->cp_xmit_data_off = 0;
400 cp->cp_xmit_rdma_sent = 0;
401 cp->cp_xmit_atomic_sent = 0;
402 cp->cp_xmit_data_sent = 0;
5b2366bd
AG
403
404 rds_message_put(rm);
5c115590
AG
405 }
406 }
407
443be0e5 408over_batch:
226f7a7d
SV
409 if (conn->c_trans->xmit_path_complete)
410 conn->c_trans->xmit_path_complete(cp);
1f9ecd7e 411 release_in_xmit(cp);
5c115590 412
2ad8099b
AG
413 /* Nuke any messages we decided not to retransmit. */
414 if (!list_empty(&to_be_dropped)) {
415 /* irqs on here, so we can put(), unlike above */
416 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
417 rds_message_put(rm);
418 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
419 }
420
fcc5450c 421 /*
0f4b1c7e
ZB
422 * Other senders can queue a message after we last test the send queue
423 * but before we clear RDS_IN_XMIT. In that case they'd back off and
424 * not try and send their newly queued message. We need to check the
425 * send queue after having cleared RDS_IN_XMIT so that their message
426 * doesn't get stuck on the send queue.
fcc5450c
AG
427 *
428 * If the transport cannot continue (i.e ret != 0), then it must
429 * call us when more room is available, such as from the tx
430 * completion handler.
443be0e5
SV
431 *
432 * We have an extra generation check here so that if someone manages
433 * to jump in after our release_in_xmit, we'll see that they have done
434 * some work and we will skip our goto
fcc5450c
AG
435 */
436 if (ret == 0) {
126f760c
HB
437 bool raced;
438
9e29db0e 439 smp_mb();
126f760c
HB
440 raced = send_gen != READ_ONCE(cp->cp_send_gen);
441
0c484240 442 if ((test_bit(0, &conn->c_map_queued) ||
126f760c 443 !list_empty(&cp->cp_send_queue)) && !raced) {
4bebdd7a
SS
444 if (batch_count < send_batch_count)
445 goto restart;
3db6e0d1 446 rcu_read_lock();
ebeeb1ad 447 if (rds_destroy_pending(cp->cp_conn))
3db6e0d1
SV
448 ret = -ENETUNREACH;
449 else
450 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
451 rcu_read_unlock();
126f760c
HB
452 } else if (raced) {
453 rds_stats_inc(s_send_lock_queue_raced);
5c115590 454 }
5c115590
AG
455 }
456out:
457 return ret;
458}
0c28c045 459EXPORT_SYMBOL_GPL(rds_send_xmit);
5c115590
AG
460
461static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
462{
463 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
464
465 assert_spin_locked(&rs->rs_lock);
466
467 BUG_ON(rs->rs_snd_bytes < len);
468 rs->rs_snd_bytes -= len;
469
470 if (rs->rs_snd_bytes == 0)
471 rds_stats_inc(s_send_queue_empty);
472}
473
474static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
475 is_acked_func is_acked)
476{
477 if (is_acked)
478 return is_acked(rm, ack);
479 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
480}
481
5c115590
AG
482/*
483 * This is pretty similar to what happens below in the ACK
484 * handling code - except that we call here as soon as we get
485 * the IB send completion on the RDMA op and the accompanying
486 * message.
487 */
488void rds_rdma_send_complete(struct rds_message *rm, int status)
489{
490 struct rds_sock *rs = NULL;
f8b3aaf2 491 struct rm_rdma_op *ro;
5c115590 492 struct rds_notifier *notifier;
9de0864c 493 unsigned long flags;
941f8d55 494 unsigned int notify = 0;
5c115590 495
9de0864c 496 spin_lock_irqsave(&rm->m_rs_lock, flags);
5c115590 497
941f8d55 498 notify = rm->rdma.op_notify | rm->data.op_notify;
f8b3aaf2 499 ro = &rm->rdma;
f64f9e71 500 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
941f8d55 501 ro->op_active && notify && ro->op_notifier) {
f8b3aaf2 502 notifier = ro->op_notifier;
5c115590
AG
503 rs = rm->m_rs;
504 sock_hold(rds_rs_to_sk(rs));
505
506 notifier->n_status = status;
507 spin_lock(&rs->rs_lock);
508 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
509 spin_unlock(&rs->rs_lock);
510
f8b3aaf2 511 ro->op_notifier = NULL;
5c115590
AG
512 }
513
9de0864c 514 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
5c115590
AG
515
516 if (rs) {
517 rds_wake_sk_sleep(rs);
518 sock_put(rds_rs_to_sk(rs));
519 }
520}
616b757a 521EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
5c115590 522
15133f6e
AG
523/*
524 * Just like above, except looks at atomic op
525 */
526void rds_atomic_send_complete(struct rds_message *rm, int status)
527{
528 struct rds_sock *rs = NULL;
529 struct rm_atomic_op *ao;
530 struct rds_notifier *notifier;
cf4b7389 531 unsigned long flags;
15133f6e 532
cf4b7389 533 spin_lock_irqsave(&rm->m_rs_lock, flags);
15133f6e
AG
534
535 ao = &rm->atomic;
536 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
537 && ao->op_active && ao->op_notify && ao->op_notifier) {
538 notifier = ao->op_notifier;
539 rs = rm->m_rs;
540 sock_hold(rds_rs_to_sk(rs));
541
542 notifier->n_status = status;
543 spin_lock(&rs->rs_lock);
544 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
545 spin_unlock(&rs->rs_lock);
546
547 ao->op_notifier = NULL;
548 }
549
cf4b7389 550 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
15133f6e
AG
551
552 if (rs) {
553 rds_wake_sk_sleep(rs);
554 sock_put(rds_rs_to_sk(rs));
555 }
556}
557EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
558
5c115590
AG
559/*
560 * This is the same as rds_rdma_send_complete except we
561 * don't do any locking - we have all the ingredients (message,
562 * socket, socket lock) and can just move the notifier.
563 */
564static inline void
940786eb 565__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
5c115590 566{
f8b3aaf2 567 struct rm_rdma_op *ro;
940786eb 568 struct rm_atomic_op *ao;
5c115590 569
f8b3aaf2
AG
570 ro = &rm->rdma;
571 if (ro->op_active && ro->op_notify && ro->op_notifier) {
572 ro->op_notifier->n_status = status;
573 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
574 ro->op_notifier = NULL;
5c115590
AG
575 }
576
940786eb
AG
577 ao = &rm->atomic;
578 if (ao->op_active && ao->op_notify && ao->op_notifier) {
579 ao->op_notifier->n_status = status;
580 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
581 ao->op_notifier = NULL;
582 }
583
5c115590
AG
584 /* No need to wake the app - caller does this */
585}
586
5c115590
AG
587/*
588 * This removes messages from the socket's list if they're on it. The list
589 * argument must be private to the caller, we must be able to modify it
590 * without locks. The messages must have a reference held for their
591 * position on the list. This function will drop that reference after
592 * removing the messages from the 'messages' list regardless of if it found
593 * the messages on the socket list or not.
594 */
ff51bf84 595static void rds_send_remove_from_sock(struct list_head *messages, int status)
5c115590 596{
561c7df6 597 unsigned long flags;
5c115590
AG
598 struct rds_sock *rs = NULL;
599 struct rds_message *rm;
600
5c115590 601 while (!list_empty(messages)) {
561c7df6
AG
602 int was_on_sock = 0;
603
5c115590
AG
604 rm = list_entry(messages->next, struct rds_message,
605 m_conn_item);
606 list_del_init(&rm->m_conn_item);
607
608 /*
609 * If we see this flag cleared then we're *sure* that someone
610 * else beat us to removing it from the sock. If we race
611 * with their flag update we'll get the lock and then really
612 * see that the flag has been cleared.
613 *
614 * The message spinlock makes sure nobody clears rm->m_rs
615 * while we're messing with it. It does not prevent the
616 * message from being removed from the socket, though.
617 */
561c7df6 618 spin_lock_irqsave(&rm->m_rs_lock, flags);
5c115590
AG
619 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
620 goto unlock_and_drop;
621
622 if (rs != rm->m_rs) {
623 if (rs) {
5c115590
AG
624 rds_wake_sk_sleep(rs);
625 sock_put(rds_rs_to_sk(rs));
626 }
627 rs = rm->m_rs;
593cbb3e
HK
628 if (rs)
629 sock_hold(rds_rs_to_sk(rs));
5c115590 630 }
593cbb3e
HK
631 if (!rs)
632 goto unlock_and_drop;
048c15e6 633 spin_lock(&rs->rs_lock);
5c115590
AG
634
635 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
f8b3aaf2 636 struct rm_rdma_op *ro = &rm->rdma;
5c115590
AG
637 struct rds_notifier *notifier;
638
639 list_del_init(&rm->m_sock_item);
640 rds_send_sndbuf_remove(rs, rm);
641
f8b3aaf2
AG
642 if (ro->op_active && ro->op_notifier &&
643 (ro->op_notify || (ro->op_recverr && status))) {
644 notifier = ro->op_notifier;
5c115590
AG
645 list_add_tail(&notifier->n_list,
646 &rs->rs_notify_queue);
647 if (!notifier->n_status)
648 notifier->n_status = status;
f8b3aaf2 649 rm->rdma.op_notifier = NULL;
5c115590 650 }
561c7df6 651 was_on_sock = 1;
5c115590 652 }
048c15e6 653 spin_unlock(&rs->rs_lock);
5c115590
AG
654
655unlock_and_drop:
561c7df6 656 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
5c115590 657 rds_message_put(rm);
561c7df6
AG
658 if (was_on_sock)
659 rds_message_put(rm);
5c115590
AG
660 }
661
662 if (rs) {
5c115590
AG
663 rds_wake_sk_sleep(rs);
664 sock_put(rds_rs_to_sk(rs));
665 }
5c115590
AG
666}
667
668/*
669 * Transports call here when they've determined that the receiver queued
670 * messages up to, and including, the given sequence number. Messages are
671 * moved to the retrans queue when rds_send_xmit picks them off the send
672 * queue. This means that in the TCP case, the message may not have been
673 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
674 * checks the RDS_MSG_HAS_ACK_SEQ bit.
5c115590 675 */
5c3d274c
SV
676void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
677 is_acked_func is_acked)
5c115590
AG
678{
679 struct rds_message *rm, *tmp;
680 unsigned long flags;
681 LIST_HEAD(list);
682
5c3d274c 683 spin_lock_irqsave(&cp->cp_lock, flags);
5c115590 684
5c3d274c 685 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
5c115590
AG
686 if (!rds_send_is_acked(rm, ack, is_acked))
687 break;
688
689 list_move(&rm->m_conn_item, &list);
690 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
691 }
692
693 /* order flag updates with spin locks */
694 if (!list_empty(&list))
4e857c58 695 smp_mb__after_atomic();
5c115590 696
5c3d274c 697 spin_unlock_irqrestore(&cp->cp_lock, flags);
5c115590
AG
698
699 /* now remove the messages from the sock list as needed */
700 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
701}
5c3d274c
SV
702EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
703
704void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
705 is_acked_func is_acked)
706{
707 WARN_ON(conn->c_trans->t_mp_capable);
708 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
709}
616b757a 710EXPORT_SYMBOL_GPL(rds_send_drop_acked);
5c115590 711
eee2fa6a 712void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
5c115590
AG
713{
714 struct rds_message *rm, *tmp;
715 struct rds_connection *conn;
01ff34ed 716 struct rds_conn_path *cp;
7c82eaf0 717 unsigned long flags;
5c115590 718 LIST_HEAD(list);
5c115590
AG
719
720 /* get all the messages we're dropping under the rs lock */
721 spin_lock_irqsave(&rs->rs_lock, flags);
722
723 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
eee2fa6a
KCP
724 if (dest &&
725 (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
726 dest->sin6_port != rm->m_inc.i_hdr.h_dport))
5c115590
AG
727 continue;
728
5c115590
AG
729 list_move(&rm->m_sock_item, &list);
730 rds_send_sndbuf_remove(rs, rm);
731 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
5c115590
AG
732 }
733
734 /* order flag updates with the rs lock */
4e857c58 735 smp_mb__after_atomic();
5c115590
AG
736
737 spin_unlock_irqrestore(&rs->rs_lock, flags);
738
7c82eaf0
AG
739 if (list_empty(&list))
740 return;
5c115590 741
7c82eaf0 742 /* Remove the messages from the conn */
5c115590 743 list_for_each_entry(rm, &list, m_sock_item) {
7c82eaf0
AG
744
745 conn = rm->m_inc.i_conn;
01ff34ed
SV
746 if (conn->c_trans->t_mp_capable)
747 cp = rm->m_inc.i_conn_path;
748 else
749 cp = &conn->c_path[0];
5c115590 750
01ff34ed 751 spin_lock_irqsave(&cp->cp_lock, flags);
5c115590 752 /*
7c82eaf0
AG
753 * Maybe someone else beat us to removing rm from the conn.
754 * If we race with their flag update we'll get the lock and
755 * then really see that the flag has been cleared.
5c115590 756 */
7c82eaf0 757 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
01ff34ed 758 spin_unlock_irqrestore(&cp->cp_lock, flags);
5c115590 759 continue;
5c115590 760 }
9de0864c 761 list_del_init(&rm->m_conn_item);
01ff34ed 762 spin_unlock_irqrestore(&cp->cp_lock, flags);
5c115590 763
7c82eaf0
AG
764 /*
765 * Couldn't grab m_rs_lock in top loop (lock ordering),
766 * but we can now.
767 */
9de0864c 768 spin_lock_irqsave(&rm->m_rs_lock, flags);
5c115590 769
7c82eaf0 770 spin_lock(&rs->rs_lock);
940786eb 771 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
7c82eaf0
AG
772 spin_unlock(&rs->rs_lock);
773
9de0864c 774 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
7c82eaf0 775
7c82eaf0 776 rds_message_put(rm);
7c82eaf0 777 }
5c115590 778
7c82eaf0 779 rds_wake_sk_sleep(rs);
550a8002 780
5c115590
AG
781 while (!list_empty(&list)) {
782 rm = list_entry(list.next, struct rds_message, m_sock_item);
783 list_del_init(&rm->m_sock_item);
5c115590 784 rds_message_wait(rm);
dfcec251 785
786 /* just in case the code above skipped this message
787 * because RDS_MSG_ON_CONN wasn't set, run it again here
788 * taking m_rs_lock is the only thing that keeps us
789 * from racing with ack processing.
790 */
791 spin_lock_irqsave(&rm->m_rs_lock, flags);
792
793 spin_lock(&rs->rs_lock);
794 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
795 spin_unlock(&rs->rs_lock);
796
dfcec251 797 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
798
5c115590
AG
799 rds_message_put(rm);
800 }
801}
802
803/*
804 * we only want this to fire once so we use the callers 'queued'. It's
805 * possible that another thread can race with us and remove the
806 * message from the flow with RDS_CANCEL_SENT_TO.
807 */
808static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
780a6d9e 809 struct rds_conn_path *cp,
5c115590
AG
810 struct rds_message *rm, __be16 sport,
811 __be16 dport, int *queued)
812{
813 unsigned long flags;
814 u32 len;
815
816 if (*queued)
817 goto out;
818
819 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
820
821 /* this is the only place which holds both the socket's rs_lock
822 * and the connection's c_lock */
823 spin_lock_irqsave(&rs->rs_lock, flags);
824
825 /*
826 * If there is a little space in sndbuf, we don't queue anything,
827 * and userspace gets -EAGAIN. But poll() indicates there's send
828 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
829 * freed up by incoming acks. So we check the *old* value of
830 * rs_snd_bytes here to allow the last msg to exceed the buffer,
831 * and poll() now knows no more data can be sent.
832 */
833 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
834 rs->rs_snd_bytes += len;
835
836 /* let recv side know we are close to send space exhaustion.
837 * This is probably not the optimal way to do it, as this
838 * means we set the flag on *all* messages as soon as our
839 * throughput hits a certain threshold.
840 */
841 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
f530f39f 842 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
5c115590
AG
843
844 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
845 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
846 rds_message_addref(rm);
ea8994cb 847 sock_hold(rds_rs_to_sk(rs));
5c115590
AG
848 rm->m_rs = rs;
849
850 /* The code ordering is a little weird, but we're
851 trying to minimize the time we hold c_lock */
852 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
853 rm->m_inc.i_conn = conn;
780a6d9e 854 rm->m_inc.i_conn_path = cp;
5c115590
AG
855 rds_message_addref(rm);
856
780a6d9e
SV
857 spin_lock(&cp->cp_lock);
858 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
859 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
5c115590 860 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
780a6d9e 861 spin_unlock(&cp->cp_lock);
5c115590
AG
862
863 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
864 rm, len, rs, rs->rs_snd_bytes,
865 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
866
867 *queued = 1;
868 }
869
870 spin_unlock_irqrestore(&rs->rs_lock, flags);
871out:
872 return *queued;
873}
874
fc445084
AG
875/*
876 * rds_message is getting to be quite complicated, and we'd like to allocate
877 * it all in one go. This figures out how big it needs to be up front.
878 */
ea010070 879static int rds_rm_size(struct msghdr *msg, int num_sgs,
880 struct rds_iov_vector_arr *vct)
fc445084 881{
ff87e97a 882 struct cmsghdr *cmsg;
fc445084 883 int size = 0;
aa0a4ef4 884 int cmsg_groups = 0;
ff87e97a 885 int retval;
0cebacce 886 bool zcopy_cookie = false;
ea010070 887 struct rds_iov_vector *iov, *tmp_iov;
ff87e97a 888
f95b414e 889 for_each_cmsghdr(cmsg, msg) {
ff87e97a
AG
890 if (!CMSG_OK(msg, cmsg))
891 return -EINVAL;
892
893 if (cmsg->cmsg_level != SOL_RDS)
894 continue;
895
896 switch (cmsg->cmsg_type) {
897 case RDS_CMSG_RDMA_ARGS:
ea010070 898 if (vct->indx >= vct->len) {
899 vct->len += vct->incr;
900 tmp_iov =
901 krealloc(vct->vec,
902 vct->len *
903 sizeof(struct rds_iov_vector),
904 GFP_KERNEL);
905 if (!tmp_iov) {
906 vct->len -= vct->incr;
907 return -ENOMEM;
908 }
909 vct->vec = tmp_iov;
910 }
911 iov = &vct->vec[vct->indx];
912 memset(iov, 0, sizeof(struct rds_iov_vector));
913 vct->indx++;
aa0a4ef4 914 cmsg_groups |= 1;
ea010070 915 retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
ff87e97a
AG
916 if (retval < 0)
917 return retval;
918 size += retval;
aa0a4ef4 919
ff87e97a
AG
920 break;
921
0cebacce
SV
922 case RDS_CMSG_ZCOPY_COOKIE:
923 zcopy_cookie = true;
f9053113
GS
924 /* fall through */
925
ff87e97a
AG
926 case RDS_CMSG_RDMA_DEST:
927 case RDS_CMSG_RDMA_MAP:
aa0a4ef4 928 cmsg_groups |= 2;
ff87e97a
AG
929 /* these are valid but do no add any size */
930 break;
931
15133f6e
AG
932 case RDS_CMSG_ATOMIC_CSWP:
933 case RDS_CMSG_ATOMIC_FADD:
20c72bd5
AG
934 case RDS_CMSG_MASKED_ATOMIC_CSWP:
935 case RDS_CMSG_MASKED_ATOMIC_FADD:
aa0a4ef4 936 cmsg_groups |= 1;
15133f6e
AG
937 size += sizeof(struct scatterlist);
938 break;
939
ff87e97a
AG
940 default:
941 return -EINVAL;
942 }
943
944 }
fc445084 945
0cebacce
SV
946 if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
947 return -EINVAL;
948
949 size += num_sgs * sizeof(struct scatterlist);
fc445084 950
aa0a4ef4
AG
951 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
952 if (cmsg_groups == 3)
953 return -EINVAL;
954
fc445084
AG
955 return size;
956}
957
0cebacce
SV
958static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
959 struct cmsghdr *cmsg)
960{
961 u32 *cookie;
962
79a5b972
SV
963 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
964 !rm->data.op_mmp_znotifier)
0cebacce
SV
965 return -EINVAL;
966 cookie = CMSG_DATA(cmsg);
967 rm->data.op_mmp_znotifier->z_cookie = *cookie;
968 return 0;
969}
970
5c115590 971static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
ea010070 972 struct msghdr *msg, int *allocated_mr,
973 struct rds_iov_vector_arr *vct)
5c115590
AG
974{
975 struct cmsghdr *cmsg;
ea010070 976 int ret = 0, ind = 0;
5c115590 977
f95b414e 978 for_each_cmsghdr(cmsg, msg) {
5c115590
AG
979 if (!CMSG_OK(msg, cmsg))
980 return -EINVAL;
981
982 if (cmsg->cmsg_level != SOL_RDS)
983 continue;
984
985 /* As a side effect, RDMA_DEST and RDMA_MAP will set
15133f6e 986 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
5c115590
AG
987 */
988 switch (cmsg->cmsg_type) {
989 case RDS_CMSG_RDMA_ARGS:
ea010070 990 if (ind >= vct->indx)
991 return -ENOMEM;
992 ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
993 ind++;
5c115590
AG
994 break;
995
996 case RDS_CMSG_RDMA_DEST:
997 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
998 break;
999
1000 case RDS_CMSG_RDMA_MAP:
1001 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
1002 if (!ret)
1003 *allocated_mr = 1;
584a8279
SS
1004 else if (ret == -ENODEV)
1005 /* Accommodate the get_mr() case which can fail
1006 * if connection isn't established yet.
1007 */
1008 ret = -EAGAIN;
5c115590 1009 break;
15133f6e
AG
1010 case RDS_CMSG_ATOMIC_CSWP:
1011 case RDS_CMSG_ATOMIC_FADD:
20c72bd5
AG
1012 case RDS_CMSG_MASKED_ATOMIC_CSWP:
1013 case RDS_CMSG_MASKED_ATOMIC_FADD:
15133f6e
AG
1014 ret = rds_cmsg_atomic(rs, rm, cmsg);
1015 break;
5c115590 1016
0cebacce
SV
1017 case RDS_CMSG_ZCOPY_COOKIE:
1018 ret = rds_cmsg_zcopy(rs, rm, cmsg);
1019 break;
1020
5c115590
AG
1021 default:
1022 return -EINVAL;
1023 }
1024
1025 if (ret)
1026 break;
1027 }
1028
1029 return ret;
1030}
1031
9a4890bd
KCP
1032static int rds_send_mprds_hash(struct rds_sock *rs,
1033 struct rds_connection *conn, int nonblock)
5916e2c1
SV
1034{
1035 int hash;
1036
1037 if (conn->c_npaths == 0)
1038 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1039 else
1040 hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1041 if (conn->c_npaths == 0 && hash != 0) {
69b92b5b 1042 rds_send_ping(conn, 0);
5916e2c1 1043
a43cced9
KCP
1044 /* The underlying connection is not up yet. Need to wait
1045 * until it is up to be sure that the non-zero c_path can be
1046 * used. But if we are interrupted, we have to use the zero
1047 * c_path in case the connection ends up being non-MP capable.
1048 */
9a4890bd
KCP
1049 if (conn->c_npaths == 0) {
1050 /* Cannot wait for the connection be made, so just use
1051 * the base c_path.
1052 */
1053 if (nonblock)
1054 return 0;
a43cced9
KCP
1055 if (wait_event_interruptible(conn->c_hs_waitq,
1056 conn->c_npaths != 0))
1057 hash = 0;
9a4890bd 1058 }
5916e2c1
SV
1059 if (conn->c_npaths == 1)
1060 hash = 0;
1061 }
1062 return hash;
1063}
1064
f9fb69ad
AR
1065static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1066{
1067 struct rds_rdma_args *args;
1068 struct cmsghdr *cmsg;
1069
1070 for_each_cmsghdr(cmsg, msg) {
1071 if (!CMSG_OK(msg, cmsg))
1072 return -EINVAL;
1073
1074 if (cmsg->cmsg_level != SOL_RDS)
1075 continue;
1076
1077 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
14e138a8
AR
1078 if (cmsg->cmsg_len <
1079 CMSG_LEN(sizeof(struct rds_rdma_args)))
1080 return -EINVAL;
f9fb69ad
AR
1081 args = CMSG_DATA(cmsg);
1082 *rdma_bytes += args->remote_vec.bytes;
1083 }
1084 }
1085 return 0;
1086}
1087
1b784140 1088int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
5c115590
AG
1089{
1090 struct sock *sk = sock->sk;
1091 struct rds_sock *rs = rds_sk_to_rs(sk);
eee2fa6a 1092 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
342dfc30 1093 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
5c115590
AG
1094 __be16 dport;
1095 struct rds_message *rm = NULL;
1096 struct rds_connection *conn;
1097 int ret = 0;
1098 int queued = 0, allocated_mr = 0;
1099 int nonblock = msg->msg_flags & MSG_DONTWAIT;
1123fd73 1100 long timeo = sock_sndtimeo(sk, nonblock);
780a6d9e 1101 struct rds_conn_path *cpath;
eee2fa6a
KCP
1102 struct in6_addr daddr;
1103 __u32 scope_id = 0;
f9fb69ad 1104 size_t total_payload_len = payload_len, rdma_payload_len = 0;
0cebacce
SV
1105 bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1106 sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1107 int num_sgs = ceil(payload_len, PAGE_SIZE);
eee2fa6a 1108 int namelen;
ea010070 1109 struct rds_iov_vector_arr vct = {0};
1110 int ind;
1111
1112 /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1113 vct.incr = 1;
5c115590
AG
1114
1115 /* Mirror Linux UDP mirror of BSD error message compatibility */
1116 /* XXX: Perhaps MSG_MORE someday */
0cebacce 1117 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
5c115590
AG
1118 ret = -EOPNOTSUPP;
1119 goto out;
1120 }
1121
eee2fa6a
KCP
1122 namelen = msg->msg_namelen;
1123 if (namelen != 0) {
1124 if (namelen < sizeof(*usin)) {
1125 ret = -EINVAL;
1126 goto out;
1127 }
1e2b44e7
KCP
1128 switch (usin->sin_family) {
1129 case AF_INET:
1130 if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
eee2fa6a
KCP
1131 usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1132 IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) {
1133 ret = -EINVAL;
1134 goto out;
1135 }
1136 ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1137 dport = usin->sin_port;
1138 break;
1139
e65d4d96 1140#if IS_ENABLED(CONFIG_IPV6)
1e2b44e7
KCP
1141 case AF_INET6: {
1142 int addr_type;
1143
1144 if (namelen < sizeof(*sin6)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148 addr_type = ipv6_addr_type(&sin6->sin6_addr);
1149 if (!(addr_type & IPV6_ADDR_UNICAST)) {
1150 __be32 addr4;
1151
1152 if (!(addr_type & IPV6_ADDR_MAPPED)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 /* It is a mapped address. Need to do some
1158 * sanity checks.
1159 */
1160 addr4 = sin6->sin6_addr.s6_addr32[3];
1161 if (addr4 == htonl(INADDR_ANY) ||
1162 addr4 == htonl(INADDR_BROADCAST) ||
1163 IN_MULTICAST(ntohl(addr4))) {
dc66fe43 1164 ret = -EINVAL;
1e2b44e7
KCP
1165 goto out;
1166 }
1167 }
1168 if (addr_type & IPV6_ADDR_LINKLOCAL) {
1169 if (sin6->sin6_scope_id == 0) {
1170 ret = -EINVAL;
1171 goto out;
1172 }
1173 scope_id = sin6->sin6_scope_id;
1174 }
1175
1176 daddr = sin6->sin6_addr;
1177 dport = sin6->sin6_port;
1178 break;
eee2fa6a 1179 }
e65d4d96 1180#endif
eee2fa6a
KCP
1181
1182 default:
5c115590
AG
1183 ret = -EINVAL;
1184 goto out;
1185 }
5c115590
AG
1186 } else {
1187 /* We only care about consistency with ->connect() */
1188 lock_sock(sk);
1189 daddr = rs->rs_conn_addr;
1190 dport = rs->rs_conn_port;
eee2fa6a 1191 scope_id = rs->rs_bound_scope_id;
5c115590
AG
1192 release_sock(sk);
1193 }
1194
8c7188b2 1195 lock_sock(sk);
eee2fa6a 1196 if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
8c7188b2 1197 release_sock(sk);
eee2fa6a 1198 ret = -ENOTCONN;
5c115590 1199 goto out;
eee2fa6a
KCP
1200 } else if (namelen != 0) {
1201 /* Cannot send to an IPv4 address using an IPv6 source
1202 * address and cannot send to an IPv6 address using an
1203 * IPv4 source address.
1204 */
1205 if (ipv6_addr_v4mapped(&daddr) ^
1206 ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1207 release_sock(sk);
1208 ret = -EOPNOTSUPP;
1209 goto out;
1210 }
1e2b44e7
KCP
1211 /* If the socket is already bound to a link local address,
1212 * it can only send to peers on the same link. But allow
1213 * communicating beween link local and non-link local address.
1214 */
1215 if (scope_id != rs->rs_bound_scope_id) {
1216 if (!scope_id) {
1217 scope_id = rs->rs_bound_scope_id;
1218 } else if (rs->rs_bound_scope_id) {
1219 release_sock(sk);
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223 }
5c115590 1224 }
8c7188b2 1225 release_sock(sk);
5c115590 1226
f9fb69ad
AR
1227 ret = rds_rdma_bytes(msg, &rdma_payload_len);
1228 if (ret)
1229 goto out;
1230
1231 total_payload_len += rdma_payload_len;
1232 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1233 ret = -EMSGSIZE;
1234 goto out;
1235 }
1236
06e8941e
MK
1237 if (payload_len > rds_sk_sndbuf(rs)) {
1238 ret = -EMSGSIZE;
1239 goto out;
1240 }
1241
0cebacce
SV
1242 if (zcopy) {
1243 if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1244 ret = -EOPNOTSUPP;
1245 goto out;
1246 }
1247 num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1248 }
fc445084 1249 /* size of rm including all sgs */
ea010070 1250 ret = rds_rm_size(msg, num_sgs, &vct);
fc445084
AG
1251 if (ret < 0)
1252 goto out;
1253
1254 rm = rds_message_alloc(ret, GFP_KERNEL);
1255 if (!rm) {
1256 ret = -ENOMEM;
5c115590
AG
1257 goto out;
1258 }
1259
372cd7de
AG
1260 /* Attach data to the rm */
1261 if (payload_len) {
0cebacce 1262 rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
d139ff09
AG
1263 if (!rm->data.op_sg) {
1264 ret = -ENOMEM;
1265 goto out;
1266 }
0cebacce 1267 ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
372cd7de
AG
1268 if (ret)
1269 goto out;
1270 }
1271 rm->data.op_active = 1;
fc445084 1272
5c115590
AG
1273 rm->m_daddr = daddr;
1274
5c115590
AG
1275 /* rds_conn_create has a spinlock that runs with IRQ off.
1276 * Caching the conn in the socket helps a lot. */
eee2fa6a 1277 if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr))
5c115590
AG
1278 conn = rs->rs_conn;
1279 else {
d5a8ac28 1280 conn = rds_conn_create_outgoing(sock_net(sock->sk),
eee2fa6a
KCP
1281 &rs->rs_bound_addr, &daddr,
1282 rs->rs_transport,
1283 sock->sk->sk_allocation,
1284 scope_id);
5c115590
AG
1285 if (IS_ERR(conn)) {
1286 ret = PTR_ERR(conn);
1287 goto out;
1288 }
1289 rs->rs_conn = conn;
1290 }
1291
9e630bcb 1292 if (conn->c_trans->t_mp_capable)
9a4890bd 1293 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
9e630bcb
AR
1294 else
1295 cpath = &conn->c_path[0];
1296
1297 rm->m_conn_path = cpath;
1298
49f69691 1299 /* Parse any control messages the user may have included. */
ea010070 1300 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
584a8279
SS
1301 if (ret) {
1302 /* Trigger connection so that its ready for the next retry */
1303 if (ret == -EAGAIN)
1304 rds_conn_connect_if_down(conn);
49f69691 1305 goto out;
584a8279 1306 }
49f69691 1307
2c3a5f9a 1308 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
cb0a6056 1309 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
f8b3aaf2 1310 &rm->rdma, conn->c_trans->xmit_rdma);
15133f6e
AG
1311 ret = -EOPNOTSUPP;
1312 goto out;
1313 }
1314
1315 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
cb0a6056 1316 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
15133f6e 1317 &rm->atomic, conn->c_trans->xmit_atomic);
5c115590
AG
1318 ret = -EOPNOTSUPP;
1319 goto out;
1320 }
1321
ebeeb1ad 1322 if (rds_destroy_pending(conn)) {
3db6e0d1
SV
1323 ret = -EAGAIN;
1324 goto out;
1325 }
1326
3c0a5900 1327 rds_conn_path_connect_if_down(cpath);
5c115590
AG
1328
1329 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
b98ba52f
AG
1330 if (ret) {
1331 rs->rs_seen_congestion = 1;
5c115590 1332 goto out;
b98ba52f 1333 }
780a6d9e 1334 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
5c115590
AG
1335 dport, &queued)) {
1336 rds_stats_inc(s_send_queue_full);
06e8941e 1337
5c115590
AG
1338 if (nonblock) {
1339 ret = -EAGAIN;
1340 goto out;
1341 }
1342
aa395145 1343 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
780a6d9e 1344 rds_send_queue_rm(rs, conn, cpath, rm,
5c115590
AG
1345 rs->rs_bound_port,
1346 dport,
1347 &queued),
1348 timeo);
1349 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1350 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1351 continue;
1352
1353 ret = timeo;
1354 if (ret == 0)
1355 ret = -ETIMEDOUT;
1356 goto out;
1357 }
1358
1359 /*
1360 * By now we've committed to the send. We reuse rds_send_worker()
1361 * to retry sends in the rds thread if the transport asks us to.
1362 */
1363 rds_stats_inc(s_send_queued);
1364
1f9ecd7e 1365 ret = rds_send_xmit(cpath);
3db6e0d1
SV
1366 if (ret == -ENOMEM || ret == -EAGAIN) {
1367 ret = 0;
1368 rcu_read_lock();
ebeeb1ad 1369 if (rds_destroy_pending(cpath->cp_conn))
3db6e0d1
SV
1370 ret = -ENETUNREACH;
1371 else
1372 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1373 rcu_read_unlock();
1374 }
1375 if (ret)
1376 goto out;
5c115590 1377 rds_message_put(rm);
ea010070 1378
1379 for (ind = 0; ind < vct.indx; ind++)
1380 kfree(vct.vec[ind].iov);
1381 kfree(vct.vec);
1382
5c115590
AG
1383 return payload_len;
1384
1385out:
ea010070 1386 for (ind = 0; ind < vct.indx; ind++)
1387 kfree(vct.vec[ind].iov);
1388 kfree(vct.vec);
1389
5c115590
AG
1390 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1391 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1392 * or in any other way, we need to destroy the MR again */
1393 if (allocated_mr)
1394 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1395
1396 if (rm)
1397 rds_message_put(rm);
1398 return ret;
1399}
1400
1401/*
5916e2c1
SV
1402 * send out a probe. Can be shared by rds_send_ping,
1403 * rds_send_pong, rds_send_hb.
1404 * rds_send_hb should use h_flags
1405 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1406 * or
1407 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
5c115590 1408 */
bb789763 1409static int
5916e2c1
SV
1410rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1411 __be16 dport, u8 h_flags)
5c115590
AG
1412{
1413 struct rds_message *rm;
1414 unsigned long flags;
1415 int ret = 0;
1416
1417 rm = rds_message_alloc(0, GFP_ATOMIC);
8690bfa1 1418 if (!rm) {
5c115590
AG
1419 ret = -ENOMEM;
1420 goto out;
1421 }
1422
45997e9e 1423 rm->m_daddr = cp->cp_conn->c_faddr;
acfcd4d4 1424 rm->data.op_active = 1;
5c115590 1425
3c0a5900 1426 rds_conn_path_connect_if_down(cp);
5c115590 1427
45997e9e 1428 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
5c115590
AG
1429 if (ret)
1430 goto out;
1431
45997e9e
SV
1432 spin_lock_irqsave(&cp->cp_lock, flags);
1433 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
5c115590
AG
1434 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1435 rds_message_addref(rm);
45997e9e
SV
1436 rm->m_inc.i_conn = cp->cp_conn;
1437 rm->m_inc.i_conn_path = cp;
5c115590 1438
5916e2c1 1439 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
45997e9e 1440 cp->cp_next_tx_seq);
5916e2c1 1441 rm->m_inc.i_hdr.h_flags |= h_flags;
45997e9e 1442 cp->cp_next_tx_seq++;
5916e2c1 1443
00354de5
SV
1444 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1445 cp->cp_conn->c_trans->t_mp_capable) {
1446 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1447 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
5916e2c1
SV
1448
1449 rds_message_add_extension(&rm->m_inc.i_hdr,
1450 RDS_EXTHDR_NPATHS, &npaths,
1451 sizeof(npaths));
905dd418
SV
1452 rds_message_add_extension(&rm->m_inc.i_hdr,
1453 RDS_EXTHDR_GEN_NUM,
00354de5 1454 &my_gen_num,
905dd418 1455 sizeof(u32));
5916e2c1 1456 }
45997e9e 1457 spin_unlock_irqrestore(&cp->cp_lock, flags);
5c115590
AG
1458
1459 rds_stats_inc(s_send_queued);
1460 rds_stats_inc(s_send_pong);
1461
7b4b0009 1462 /* schedule the send work on rds_wq */
3db6e0d1 1463 rcu_read_lock();
ebeeb1ad 1464 if (!rds_destroy_pending(cp->cp_conn))
3db6e0d1
SV
1465 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1466 rcu_read_unlock();
acfcd4d4 1467
5c115590
AG
1468 rds_message_put(rm);
1469 return 0;
1470
1471out:
1472 if (rm)
1473 rds_message_put(rm);
1474 return ret;
1475}
5916e2c1
SV
1476
1477int
1478rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1479{
1480 return rds_send_probe(cp, 0, dport, 0);
1481}
1482
69b92b5b
SV
1483void
1484rds_send_ping(struct rds_connection *conn, int cp_index)
5916e2c1
SV
1485{
1486 unsigned long flags;
69b92b5b 1487 struct rds_conn_path *cp = &conn->c_path[cp_index];
5916e2c1
SV
1488
1489 spin_lock_irqsave(&cp->cp_lock, flags);
1490 if (conn->c_ping_triggered) {
1491 spin_unlock_irqrestore(&cp->cp_lock, flags);
1492 return;
1493 }
1494 conn->c_ping_triggered = 1;
1495 spin_unlock_irqrestore(&cp->cp_lock, flags);
69b92b5b 1496 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
5916e2c1 1497}
69b92b5b 1498EXPORT_SYMBOL_GPL(rds_send_ping);