tcp: Namespace-ify sysctl_tcp_dsack
[linux-block.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
5941521c 78#include <trace/events/tcp.h>
60e2a778
UB
79#include <linux/unaligned/access_ok.h>
80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 83int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 84EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 85
282f23c6 86/* rfc5961 challenge ack rate limiting */
75ff39cc 87int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 88
ab32ea5d 89int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 90int sysctl_tcp_frto __read_mostly = 2;
f6722583 91int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
ab32ea5d 92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
032ee423 93int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 102#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 104#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 107#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 108#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 109#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 110#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
111
112#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
113#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
114#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
115#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e662ca40
YC
120#define REXMIT_NONE 0 /* no loss recovery to do */
121#define REXMIT_LOST 1 /* retransmit packets marked lost */
122#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
123
0b9aefea
MRL
124static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
125 unsigned int len)
dcb17d22
MRL
126{
127 static bool __once __read_mostly;
128
129 if (!__once) {
130 struct net_device *dev;
131
132 __once = true;
133
134 rcu_read_lock();
135 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
136 if (!dev || len >= dev->mtu)
137 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
138 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
139 rcu_read_unlock();
140 }
141}
142
e905a9ed 143/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 144 * real world.
e905a9ed 145 */
056834d9 146static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 147{
463c84b9 148 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 149 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 150 unsigned int len;
1da177e4 151
e905a9ed 152 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
153
154 /* skb->len may jitter because of SACKs, even if peer
155 * sends good full-sized frames.
156 */
056834d9 157 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 158 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
159 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
160 tcp_sk(sk)->advmss);
0b9aefea
MRL
161 /* Account for possibly-removed options */
162 if (unlikely(len > icsk->icsk_ack.rcv_mss +
163 MAX_TCP_OPTION_SPACE))
164 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
165 } else {
166 /* Otherwise, we make more careful check taking into account,
167 * that SACKs block is variable.
168 *
169 * "len" is invariant segment length, including TCP header.
170 */
9c70220b 171 len += skb->data - skb_transport_header(skb);
bee7ca9e 172 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
173 /* If PSH is not set, packet should be
174 * full sized, provided peer TCP is not badly broken.
175 * This observation (if it is correct 8)) allows
176 * to handle super-low mtu links fairly.
177 */
178 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 179 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
180 /* Subtract also invariant (if peer is RFC compliant),
181 * tcp header plus fixed timestamp option length.
182 * Resulting "len" is MSS free of SACK jitter.
183 */
463c84b9
ACM
184 len -= tcp_sk(sk)->tcp_header_len;
185 icsk->icsk_ack.last_seg_size = len;
1da177e4 186 if (len == lss) {
463c84b9 187 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
188 return;
189 }
190 }
1ef9696c
AK
191 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
192 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 193 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
194 }
195}
196
463c84b9 197static void tcp_incr_quickack(struct sock *sk)
1da177e4 198{
463c84b9 199 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 200 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 201
056834d9
IJ
202 if (quickacks == 0)
203 quickacks = 2;
463c84b9
ACM
204 if (quickacks > icsk->icsk_ack.quick)
205 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
206}
207
1b9f4092 208static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 209{
463c84b9
ACM
210 struct inet_connection_sock *icsk = inet_csk(sk);
211 tcp_incr_quickack(sk);
212 icsk->icsk_ack.pingpong = 0;
213 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
214}
215
216/* Send ACKs quickly, if "quick" count is not exhausted
217 * and the session is not interactive.
218 */
219
2251ae46 220static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 221{
463c84b9 222 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 223 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 224
2251ae46
JM
225 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
226 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
227}
228
735d3831 229static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 230{
056834d9 231 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
232 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
233}
234
735d3831 235static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
236{
237 if (tcp_hdr(skb)->cwr)
238 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
239}
240
735d3831 241static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
242{
243 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
244}
245
735d3831 246static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 247{
b82d1bb4 248 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 249 case INET_ECN_NOT_ECT:
bdf1ee5d 250 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
251 * and we already seen ECT on a previous segment,
252 * it is probably a retransmit.
253 */
254 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 255 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
256 break;
257 case INET_ECN_CE:
9890092e
FW
258 if (tcp_ca_needs_ecn((struct sock *)tp))
259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
260
aae06bf5
ED
261 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
262 /* Better not delay acks, sender can have a very low cwnd */
263 tcp_enter_quickack_mode((struct sock *)tp);
264 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
265 }
9890092e
FW
266 tp->ecn_flags |= TCP_ECN_SEEN;
267 break;
7a269ffa 268 default:
9890092e
FW
269 if (tcp_ca_needs_ecn((struct sock *)tp))
270 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 271 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 272 break;
bdf1ee5d
IJ
273 }
274}
275
735d3831
FW
276static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
277{
278 if (tp->ecn_flags & TCP_ECN_OK)
279 __tcp_ecn_check_ce(tp, skb);
280}
281
282static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 283{
056834d9 284 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
285 tp->ecn_flags &= ~TCP_ECN_OK;
286}
287
735d3831 288static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 289{
056834d9 290 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
291 tp->ecn_flags &= ~TCP_ECN_OK;
292}
293
735d3831 294static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 295{
056834d9 296 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
297 return true;
298 return false;
bdf1ee5d
IJ
299}
300
1da177e4
LT
301/* Buffer size and advertised window tuning.
302 *
303 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
304 */
305
6ae70532 306static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 307{
6ae70532 308 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 309 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
310 int sndmem, per_mss;
311 u32 nr_segs;
312
313 /* Worst case is non GSO/TSO : each frame consumes one skb
314 * and skb->head is kmalloced using power of two area of memory
315 */
316 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
317 MAX_TCP_HEADER +
318 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
319
320 per_mss = roundup_pow_of_two(per_mss) +
321 SKB_DATA_ALIGN(sizeof(struct sk_buff));
322
323 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
324 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
325
326 /* Fast Recovery (RFC 5681 3.2) :
327 * Cubic needs 1.7 factor, rounded to 2 to include
328 * extra cushion (application might react slowly to POLLOUT)
329 */
77bfc174
YC
330 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
331 sndmem *= nr_segs * per_mss;
1da177e4 332
06a59ecb
ED
333 if (sk->sk_sndbuf < sndmem)
334 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
335}
336
337/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
338 *
339 * All tcp_full_space() is split to two parts: "network" buffer, allocated
340 * forward and advertised in receiver window (tp->rcv_wnd) and
341 * "application buffer", required to isolate scheduling/application
342 * latencies from network.
343 * window_clamp is maximal advertised window. It can be less than
344 * tcp_full_space(), in this case tcp_full_space() - window_clamp
345 * is reserved for "application" buffer. The less window_clamp is
346 * the smoother our behaviour from viewpoint of network, but the lower
347 * throughput and the higher sensitivity of the connection to losses. 8)
348 *
349 * rcv_ssthresh is more strict window_clamp used at "slow start"
350 * phase to predict further behaviour of this connection.
351 * It is used for two goals:
352 * - to enforce header prediction at sender, even when application
353 * requires some significant "application buffer". It is check #1.
354 * - to prevent pruning of receive queue because of misprediction
355 * of receiver window. Check #2.
356 *
357 * The scheme does not work when sender sends good segments opening
caa20d9a 358 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
359 * in common situations. Otherwise, we have to rely on queue collapsing.
360 */
361
362/* Slow part of check#2. */
9e412ba7 363static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 364{
9e412ba7 365 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 366 /* Optimize this! */
dfd4f0ae
ED
367 int truesize = tcp_win_from_space(skb->truesize) >> 1;
368 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
369
370 while (tp->rcv_ssthresh <= window) {
371 if (truesize <= skb->len)
463c84b9 372 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
373
374 truesize >>= 1;
375 window >>= 1;
376 }
377 return 0;
378}
379
cf533ea5 380static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 381{
9e412ba7
IJ
382 struct tcp_sock *tp = tcp_sk(sk);
383
1da177e4
LT
384 /* Check #1 */
385 if (tp->rcv_ssthresh < tp->window_clamp &&
386 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 387 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
388 int incr;
389
390 /* Check #2. Increase window, if skb with such overhead
391 * will fit to rcvbuf in future.
392 */
393 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 394 incr = 2 * tp->advmss;
1da177e4 395 else
9e412ba7 396 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
397
398 if (incr) {
4d846f02 399 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
400 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
401 tp->window_clamp);
463c84b9 402 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
403 }
404 }
405}
406
407/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
408static void tcp_fixup_rcvbuf(struct sock *sk)
409{
e9266a02 410 u32 mss = tcp_sk(sk)->advmss;
e9266a02 411 int rcvmem;
1da177e4 412
85f16525
YC
413 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
414 tcp_default_init_rwnd(mss);
e9266a02 415
b0983d3c
ED
416 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
417 * Allow enough cushion so that sender is not limited by our window
418 */
419 if (sysctl_tcp_moderate_rcvbuf)
420 rcvmem <<= 2;
421
e9266a02
ED
422 if (sk->sk_rcvbuf < rcvmem)
423 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
424}
425
caa20d9a 426/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
427 * established state.
428 */
10467163 429void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
430{
431 struct tcp_sock *tp = tcp_sk(sk);
432 int maxwin;
433
434 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
435 tcp_fixup_rcvbuf(sk);
436 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 437 tcp_sndbuf_expand(sk);
1da177e4
LT
438
439 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 440 tcp_mstamp_refresh(tp);
645f4c6f 441 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 442 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
443
444 maxwin = tcp_full_space(sk);
445
446 if (tp->window_clamp >= maxwin) {
447 tp->window_clamp = maxwin;
448
449 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
450 tp->window_clamp = max(maxwin -
451 (maxwin >> sysctl_tcp_app_win),
452 4 * tp->advmss);
453 }
454
455 /* Force reservation of one segment. */
456 if (sysctl_tcp_app_win &&
457 tp->window_clamp > 2 * tp->advmss &&
458 tp->window_clamp + tp->advmss > maxwin)
459 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
460
461 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 462 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
463}
464
1da177e4 465/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 466static void tcp_clamp_window(struct sock *sk)
1da177e4 467{
9e412ba7 468 struct tcp_sock *tp = tcp_sk(sk);
6687e988 469 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 470
6687e988 471 icsk->icsk_ack.quick = 0;
1da177e4 472
326f36e9
JH
473 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
474 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 475 !tcp_under_memory_pressure(sk) &&
180d8cd9 476 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
477 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
478 sysctl_tcp_rmem[2]);
1da177e4 479 }
326f36e9 480 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 481 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
482}
483
40efc6fa
SH
484/* Initialize RCV_MSS value.
485 * RCV_MSS is an our guess about MSS used by the peer.
486 * We haven't any direct information about the MSS.
487 * It's better to underestimate the RCV_MSS rather than overestimate.
488 * Overestimations make us ACKing less frequently than needed.
489 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
490 */
491void tcp_initialize_rcv_mss(struct sock *sk)
492{
cf533ea5 493 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
494 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
495
056834d9 496 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 497 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
498 hint = max(hint, TCP_MIN_MSS);
499
500 inet_csk(sk)->icsk_ack.rcv_mss = hint;
501}
4bc2f18b 502EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 503
1da177e4
LT
504/* Receiver "autotuning" code.
505 *
506 * The algorithm for RTT estimation w/o timestamps is based on
507 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 508 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
509 *
510 * More detail on this code can be found at
631dd1a8 511 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
512 * though this reference is out of date. A new paper
513 * is pending.
514 */
515static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
516{
645f4c6f 517 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
518 long m = sample;
519
520 if (m == 0)
521 m = 1;
522
523 if (new_sample != 0) {
524 /* If we sample in larger samples in the non-timestamp
525 * case, we could grossly overestimate the RTT especially
526 * with chatty applications or bulk transfer apps which
527 * are stalled on filesystem I/O.
528 *
529 * Also, since we are only going for a minimum in the
31f34269 530 * non-timestamp case, we do not smooth things out
caa20d9a 531 * else with timestamps disabled convergence takes too
1da177e4
LT
532 * long.
533 */
534 if (!win_dep) {
535 m -= (new_sample >> 3);
536 new_sample += m;
18a223e0
NC
537 } else {
538 m <<= 3;
539 if (m < new_sample)
540 new_sample = m;
541 }
1da177e4 542 } else {
caa20d9a 543 /* No previous measure. */
1da177e4
LT
544 new_sample = m << 3;
545 }
546
645f4c6f 547 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
548}
549
550static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
551{
645f4c6f
ED
552 u32 delta_us;
553
9a568de4 554 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
555 goto new_measure;
556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 return;
9a568de4 558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
645f4c6f 559 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
560
561new_measure:
562 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 563 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
564}
565
056834d9
IJ
566static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
567 const struct sk_buff *skb)
1da177e4 568{
463c84b9 569 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 570
1da177e4
LT
571 if (tp->rx_opt.rcv_tsecr &&
572 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
573 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
574 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
575 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
576
577 tcp_rcv_rtt_update(tp, delta_us, 0);
578 }
1da177e4
LT
579}
580
581/*
582 * This function should be called every time data is copied to user space.
583 * It calculates the appropriate TCP receive buffer space.
584 */
585void tcp_rcv_space_adjust(struct sock *sk)
586{
587 struct tcp_sock *tp = tcp_sk(sk);
588 int time;
b0983d3c 589 int copied;
e905a9ed 590
9a568de4 591 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 592 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 593 return;
e905a9ed 594
b0983d3c
ED
595 /* Number of bytes copied to user in last RTT */
596 copied = tp->copied_seq - tp->rcvq_space.seq;
597 if (copied <= tp->rcvq_space.space)
598 goto new_measure;
599
600 /* A bit of theory :
601 * copied = bytes received in previous RTT, our base window
602 * To cope with packet losses, we need a 2x factor
603 * To cope with slow start, and sender growing its cwin by 100 %
604 * every RTT, we need a 4x factor, because the ACK we are sending
605 * now is for the next RTT, not the current one :
606 * <prev RTT . ><current RTT .. ><next RTT .... >
607 */
608
609 if (sysctl_tcp_moderate_rcvbuf &&
610 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
611 int rcvwin, rcvmem, rcvbuf;
1da177e4 612
b0983d3c
ED
613 /* minimal window to cope with packet losses, assuming
614 * steady state. Add some cushion because of small variations.
615 */
616 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 617
b0983d3c
ED
618 /* If rate increased by 25%,
619 * assume slow start, rcvwin = 3 * copied
620 * If rate increased by 50%,
621 * assume sender can use 2x growth, rcvwin = 4 * copied
622 */
623 if (copied >=
624 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
625 if (copied >=
626 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
627 rcvwin <<= 1;
628 else
629 rcvwin += (rcvwin >> 1);
630 }
1da177e4 631
b0983d3c
ED
632 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
633 while (tcp_win_from_space(rcvmem) < tp->advmss)
634 rcvmem += 128;
1da177e4 635
b0983d3c
ED
636 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
637 if (rcvbuf > sk->sk_rcvbuf) {
638 sk->sk_rcvbuf = rcvbuf;
1da177e4 639
b0983d3c
ED
640 /* Make the window clamp follow along. */
641 tp->window_clamp = rcvwin;
1da177e4
LT
642 }
643 }
b0983d3c 644 tp->rcvq_space.space = copied;
e905a9ed 645
1da177e4
LT
646new_measure:
647 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 648 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
649}
650
651/* There is something which you must keep in mind when you analyze the
652 * behavior of the tp->ato delayed ack timeout interval. When a
653 * connection starts up, we want to ack as quickly as possible. The
654 * problem is that "good" TCP's do slow start at the beginning of data
655 * transmission. The means that until we send the first few ACK's the
656 * sender will sit on his end and only queue most of his data, because
657 * he can only send snd_cwnd unacked packets at any given time. For
658 * each ACK we send, he increments snd_cwnd and transmits more of his
659 * queue. -DaveM
660 */
9e412ba7 661static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 662{
9e412ba7 663 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 664 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
665 u32 now;
666
463c84b9 667 inet_csk_schedule_ack(sk);
1da177e4 668
463c84b9 669 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
670
671 tcp_rcv_rtt_measure(tp);
e905a9ed 672
70eabf0e 673 now = tcp_jiffies32;
1da177e4 674
463c84b9 675 if (!icsk->icsk_ack.ato) {
1da177e4
LT
676 /* The _first_ data packet received, initialize
677 * delayed ACK engine.
678 */
463c84b9
ACM
679 tcp_incr_quickack(sk);
680 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 681 } else {
463c84b9 682 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 683
056834d9 684 if (m <= TCP_ATO_MIN / 2) {
1da177e4 685 /* The fastest case is the first. */
463c84b9
ACM
686 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
687 } else if (m < icsk->icsk_ack.ato) {
688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
689 if (icsk->icsk_ack.ato > icsk->icsk_rto)
690 icsk->icsk_ack.ato = icsk->icsk_rto;
691 } else if (m > icsk->icsk_rto) {
caa20d9a 692 /* Too long gap. Apparently sender failed to
1da177e4
LT
693 * restart window, so that we send ACKs quickly.
694 */
463c84b9 695 tcp_incr_quickack(sk);
3ab224be 696 sk_mem_reclaim(sk);
1da177e4
LT
697 }
698 }
463c84b9 699 icsk->icsk_ack.lrcvtime = now;
1da177e4 700
735d3831 701 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
702
703 if (skb->len >= 128)
9e412ba7 704 tcp_grow_window(sk, skb);
1da177e4
LT
705}
706
1da177e4
LT
707/* Called to compute a smoothed rtt estimate. The data fed to this
708 * routine either comes from timestamps, or from segments that were
709 * known _not_ to have been retransmitted [see Karn/Partridge
710 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
711 * piece by Van Jacobson.
712 * NOTE: the next three routines used to be one big routine.
713 * To save cycles in the RFC 1323 implementation it was better to break
714 * it up into three procedures. -- erics
715 */
740b0f18 716static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 717{
6687e988 718 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
719 long m = mrtt_us; /* RTT */
720 u32 srtt = tp->srtt_us;
1da177e4 721
1da177e4
LT
722 /* The following amusing code comes from Jacobson's
723 * article in SIGCOMM '88. Note that rtt and mdev
724 * are scaled versions of rtt and mean deviation.
e905a9ed 725 * This is designed to be as fast as possible
1da177e4
LT
726 * m stands for "measurement".
727 *
728 * On a 1990 paper the rto value is changed to:
729 * RTO = rtt + 4 * mdev
730 *
731 * Funny. This algorithm seems to be very broken.
732 * These formulae increase RTO, when it should be decreased, increase
31f34269 733 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
734 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
735 * does not matter how to _calculate_ it. Seems, it was trap
736 * that VJ failed to avoid. 8)
737 */
4a5ab4e2
ED
738 if (srtt != 0) {
739 m -= (srtt >> 3); /* m is now error in rtt est */
740 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
741 if (m < 0) {
742 m = -m; /* m is now abs(error) */
740b0f18 743 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
744 /* This is similar to one of Eifel findings.
745 * Eifel blocks mdev updates when rtt decreases.
746 * This solution is a bit different: we use finer gain
747 * for mdev in this case (alpha*beta).
748 * Like Eifel it also prevents growth of rto,
749 * but also it limits too fast rto decreases,
750 * happening in pure Eifel.
751 */
752 if (m > 0)
753 m >>= 3;
754 } else {
740b0f18 755 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 756 }
740b0f18
ED
757 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
758 if (tp->mdev_us > tp->mdev_max_us) {
759 tp->mdev_max_us = tp->mdev_us;
760 if (tp->mdev_max_us > tp->rttvar_us)
761 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
762 }
763 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
764 if (tp->mdev_max_us < tp->rttvar_us)
765 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 766 tp->rtt_seq = tp->snd_nxt;
740b0f18 767 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
768 }
769 } else {
770 /* no previous measure. */
4a5ab4e2 771 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
772 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
773 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
774 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
775 tp->rtt_seq = tp->snd_nxt;
776 }
740b0f18 777 tp->srtt_us = max(1U, srtt);
1da177e4
LT
778}
779
95bd09eb
ED
780/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
781 * Note: TCP stack does not yet implement pacing.
782 * FQ packet scheduler can be used to implement cheap but effective
783 * TCP pacing, to smooth the burst on large writes when packets
784 * in flight is significantly lower than cwnd (or rwin)
785 */
43e122b0
ED
786int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
787int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
788
95bd09eb
ED
789static void tcp_update_pacing_rate(struct sock *sk)
790{
791 const struct tcp_sock *tp = tcp_sk(sk);
792 u64 rate;
793
794 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
795 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
796
797 /* current rate is (cwnd * mss) / srtt
798 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
799 * In Congestion Avoidance phase, set it to 120 % the current rate.
800 *
801 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
802 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
803 * end of slow start and should slow down.
804 */
805 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
806 rate *= sysctl_tcp_pacing_ss_ratio;
807 else
808 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
809
810 rate *= max(tp->snd_cwnd, tp->packets_out);
811
740b0f18
ED
812 if (likely(tp->srtt_us))
813 do_div(rate, tp->srtt_us);
95bd09eb 814
ba537427
ED
815 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
816 * without any lock. We want to make sure compiler wont store
817 * intermediate values in this location.
818 */
819 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
820 sk->sk_max_pacing_rate);
95bd09eb
ED
821}
822
1da177e4
LT
823/* Calculate rto without backoff. This is the second half of Van Jacobson's
824 * routine referred to above.
825 */
f7e56a76 826static void tcp_set_rto(struct sock *sk)
1da177e4 827{
463c84b9 828 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
829 /* Old crap is replaced with new one. 8)
830 *
831 * More seriously:
832 * 1. If rtt variance happened to be less 50msec, it is hallucination.
833 * It cannot be less due to utterly erratic ACK generation made
834 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
835 * to do with delayed acks, because at cwnd>2 true delack timeout
836 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 837 * ACKs in some circumstances.
1da177e4 838 */
f1ecd5d9 839 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
840
841 /* 2. Fixups made earlier cannot be right.
842 * If we do not estimate RTO correctly without them,
843 * all the algo is pure shit and should be replaced
caa20d9a 844 * with correct one. It is exactly, which we pretend to do.
1da177e4 845 */
1da177e4 846
ee6aac59
IJ
847 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
848 * guarantees that rto is higher.
849 */
f1ecd5d9 850 tcp_bound_rto(sk);
1da177e4
LT
851}
852
cf533ea5 853__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
854{
855 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
856
22b71c8f 857 if (!cwnd)
442b9635 858 cwnd = TCP_INIT_CWND;
1da177e4
LT
859 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
860}
861
e60402d0
IJ
862/*
863 * Packet counting of FACK is based on in-order assumptions, therefore TCP
864 * disables it when reordering is detected
865 */
4aabd8ef 866void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 867{
85cc391c
IJ
868 /* RFC3517 uses different metric in lost marker => reset on change */
869 if (tcp_is_fack(tp))
870 tp->lost_skb_hint = NULL;
ab56222a 871 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
872}
873
564262c1 874/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
875static void tcp_dsack_seen(struct tcp_sock *tp)
876{
ab56222a 877 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
878}
879
6687e988
ACM
880static void tcp_update_reordering(struct sock *sk, const int metric,
881 const int ts)
1da177e4 882{
6687e988 883 struct tcp_sock *tp = tcp_sk(sk);
2d2517ee 884 int mib_idx;
40b215e5 885
6f5b24ee
SHY
886 if (WARN_ON_ONCE(metric < 0))
887 return;
888
2d2517ee 889 if (metric > tp->reordering) {
c6e21803 890 tp->reordering = min(sock_net(sk)->ipv4.sysctl_tcp_max_reordering, metric);
1da177e4 891
1da177e4 892#if FASTRETRANS_DEBUG > 1
91df42be
JP
893 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
894 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
895 tp->reordering,
896 tp->fackets_out,
897 tp->sacked_out,
898 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 899#endif
e60402d0 900 tcp_disable_fack(tp);
1da177e4 901 }
eed530b6 902
4f41b1c5 903 tp->rack.reord = 1;
2d2517ee
YC
904
905 /* This exciting event is worth to be remembered. 8) */
906 if (ts)
907 mib_idx = LINUX_MIB_TCPTSREORDER;
908 else if (tcp_is_reno(tp))
909 mib_idx = LINUX_MIB_TCPRENOREORDER;
910 else if (tcp_is_fack(tp))
911 mib_idx = LINUX_MIB_TCPFACKREORDER;
912 else
913 mib_idx = LINUX_MIB_TCPSACKREORDER;
914
915 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4
LT
916}
917
006f582c 918/* This must be called before lost_out is incremented */
c8c213f2
IJ
919static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
920{
51456b29 921 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
922 before(TCP_SKB_CB(skb)->seq,
923 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 924 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
925}
926
0682e690
NC
927/* Sum the number of packets on the wire we have marked as lost.
928 * There are two cases we care about here:
929 * a) Packet hasn't been marked lost (nor retransmitted),
930 * and this is the first loss.
931 * b) Packet has been marked both lost and retransmitted,
932 * and this means we think it was lost again.
933 */
934static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
935{
936 __u8 sacked = TCP_SKB_CB(skb)->sacked;
937
938 if (!(sacked & TCPCB_LOST) ||
939 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
940 tp->lost += tcp_skb_pcount(skb);
941}
942
41ea36e3
IJ
943static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
944{
945 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
946 tcp_verify_retransmit_hint(tp, skb);
947
948 tp->lost_out += tcp_skb_pcount(skb);
0682e690 949 tcp_sum_lost(tp, skb);
41ea36e3
IJ
950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 }
952}
953
4f41b1c5 954void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
955{
956 tcp_verify_retransmit_hint(tp, skb);
957
0682e690 958 tcp_sum_lost(tp, skb);
006f582c
IJ
959 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
960 tp->lost_out += tcp_skb_pcount(skb);
961 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
962 }
963}
964
1da177e4
LT
965/* This procedure tags the retransmission queue when SACKs arrive.
966 *
967 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
968 * Packets in queue with these bits set are counted in variables
969 * sacked_out, retrans_out and lost_out, correspondingly.
970 *
971 * Valid combinations are:
972 * Tag InFlight Description
973 * 0 1 - orig segment is in flight.
974 * S 0 - nothing flies, orig reached receiver.
975 * L 0 - nothing flies, orig lost by net.
976 * R 2 - both orig and retransmit are in flight.
977 * L|R 1 - orig is lost, retransmit is in flight.
978 * S|R 1 - orig reached receiver, retrans is still in flight.
979 * (L|S|R is logically valid, it could occur when L|R is sacked,
980 * but it is equivalent to plain S and code short-curcuits it to S.
981 * L|S is logically invalid, it would mean -1 packet in flight 8))
982 *
983 * These 6 states form finite state machine, controlled by the following events:
984 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
985 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 986 * 3. Loss detection event of two flavors:
1da177e4
LT
987 * A. Scoreboard estimator decided the packet is lost.
988 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
989 * A''. Its FACK modification, head until snd.fack is lost.
990 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
991 * segment was retransmitted.
992 * 4. D-SACK added new rule: D-SACK changes any tag to S.
993 *
994 * It is pleasant to note, that state diagram turns out to be commutative,
995 * so that we are allowed not to be bothered by order of our actions,
996 * when multiple events arrive simultaneously. (see the function below).
997 *
998 * Reordering detection.
999 * --------------------
1000 * Reordering metric is maximal distance, which a packet can be displaced
1001 * in packet stream. With SACKs we can estimate it:
1002 *
1003 * 1. SACK fills old hole and the corresponding segment was not
1004 * ever retransmitted -> reordering. Alas, we cannot use it
1005 * when segment was retransmitted.
1006 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1007 * for retransmitted and already SACKed segment -> reordering..
1008 * Both of these heuristics are not used in Loss state, when we cannot
1009 * account for retransmits accurately.
5b3c9882
IJ
1010 *
1011 * SACK block validation.
1012 * ----------------------
1013 *
1014 * SACK block range validation checks that the received SACK block fits to
1015 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1016 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1017 * it means that the receiver is rather inconsistent with itself reporting
1018 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1019 * perfectly valid, however, in light of RFC2018 which explicitly states
1020 * that "SACK block MUST reflect the newest segment. Even if the newest
1021 * segment is going to be discarded ...", not that it looks very clever
1022 * in case of head skb. Due to potentional receiver driven attacks, we
1023 * choose to avoid immediate execution of a walk in write queue due to
1024 * reneging and defer head skb's loss recovery to standard loss recovery
1025 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1026 *
1027 * Implements also blockage to start_seq wrap-around. Problem lies in the
1028 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1029 * there's no guarantee that it will be before snd_nxt (n). The problem
1030 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1031 * wrap (s_w):
1032 *
1033 * <- outs wnd -> <- wrapzone ->
1034 * u e n u_w e_w s n_w
1035 * | | | | | | |
1036 * |<------------+------+----- TCP seqno space --------------+---------->|
1037 * ...-- <2^31 ->| |<--------...
1038 * ...---- >2^31 ------>| |<--------...
1039 *
1040 * Current code wouldn't be vulnerable but it's better still to discard such
1041 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1042 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1043 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1044 * equal to the ideal case (infinite seqno space without wrap caused issues).
1045 *
1046 * With D-SACK the lower bound is extended to cover sequence space below
1047 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1048 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1049 * for the normal SACK blocks, explained above). But there all simplicity
1050 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1051 * fully below undo_marker they do not affect behavior in anyway and can
1052 * therefore be safely ignored. In rare cases (which are more or less
1053 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1054 * fragmentation and packet reordering past skb's retransmission. To consider
1055 * them correctly, the acceptable range must be extended even more though
1056 * the exact amount is rather hard to quantify. However, tp->max_window can
1057 * be used as an exaggerated estimate.
1da177e4 1058 */
a2a385d6
ED
1059static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1060 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1061{
1062 /* Too far in future, or reversed (interpretation is ambiguous) */
1063 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1064 return false;
5b3c9882
IJ
1065
1066 /* Nasty start_seq wrap-around check (see comments above) */
1067 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1068 return false;
5b3c9882 1069
564262c1 1070 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1071 * start_seq == snd_una is non-sensical (see comments above)
1072 */
1073 if (after(start_seq, tp->snd_una))
a2a385d6 1074 return true;
5b3c9882
IJ
1075
1076 if (!is_dsack || !tp->undo_marker)
a2a385d6 1077 return false;
5b3c9882
IJ
1078
1079 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1080 if (after(end_seq, tp->snd_una))
a2a385d6 1081 return false;
5b3c9882
IJ
1082
1083 if (!before(start_seq, tp->undo_marker))
a2a385d6 1084 return true;
5b3c9882
IJ
1085
1086 /* Too old */
1087 if (!after(end_seq, tp->undo_marker))
a2a385d6 1088 return false;
5b3c9882
IJ
1089
1090 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1091 * start_seq < undo_marker and end_seq >= undo_marker.
1092 */
1093 return !before(start_seq, end_seq - tp->max_window);
1094}
1095
a2a385d6
ED
1096static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1097 struct tcp_sack_block_wire *sp, int num_sacks,
1098 u32 prior_snd_una)
d06e021d 1099{
1ed83465 1100 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1101 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1102 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1103 bool dup_sack = false;
d06e021d
DM
1104
1105 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1106 dup_sack = true;
e60402d0 1107 tcp_dsack_seen(tp);
c10d9310 1108 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1109 } else if (num_sacks > 1) {
d3e2ce3b
HH
1110 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1111 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1112
1113 if (!after(end_seq_0, end_seq_1) &&
1114 !before(start_seq_0, start_seq_1)) {
a2a385d6 1115 dup_sack = true;
e60402d0 1116 tcp_dsack_seen(tp);
c10d9310 1117 NET_INC_STATS(sock_net(sk),
de0744af 1118 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1119 }
1120 }
1121
1122 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1123 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1124 !after(end_seq_0, prior_snd_una) &&
1125 after(end_seq_0, tp->undo_marker))
1126 tp->undo_retrans--;
1127
1128 return dup_sack;
1129}
1130
a1197f5a 1131struct tcp_sacktag_state {
740b0f18
ED
1132 int reord;
1133 int fack_count;
31231a8a
KKJ
1134 /* Timestamps for earliest and latest never-retransmitted segment
1135 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1136 * but congestion control should still get an accurate delay signal.
1137 */
9a568de4
ED
1138 u64 first_sackt;
1139 u64 last_sackt;
b9f64820 1140 struct rate_sample *rate;
740b0f18 1141 int flag;
75c119af 1142 unsigned int mss_now;
a1197f5a
IJ
1143};
1144
d1935942
IJ
1145/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1146 * the incoming SACK may not exactly match but we can find smaller MSS
1147 * aligned portion of it that matches. Therefore we might need to fragment
1148 * which may fail and creates some hassle (caller must handle error case
1149 * returns).
832d11c5
IJ
1150 *
1151 * FIXME: this could be merged to shift decision code
d1935942 1152 */
0f79efdc 1153static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1154 u32 start_seq, u32 end_seq)
d1935942 1155{
a2a385d6
ED
1156 int err;
1157 bool in_sack;
d1935942 1158 unsigned int pkt_len;
adb92db8 1159 unsigned int mss;
d1935942
IJ
1160
1161 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1162 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1163
1164 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1165 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1166 mss = tcp_skb_mss(skb);
d1935942
IJ
1167 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1168
adb92db8 1169 if (!in_sack) {
d1935942 1170 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1171 if (pkt_len < mss)
1172 pkt_len = mss;
1173 } else {
d1935942 1174 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1175 if (pkt_len < mss)
1176 return -EINVAL;
1177 }
1178
1179 /* Round if necessary so that SACKs cover only full MSSes
1180 * and/or the remaining small portion (if present)
1181 */
1182 if (pkt_len > mss) {
1183 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1184 if (!in_sack && new_len < pkt_len)
adb92db8 1185 new_len += mss;
adb92db8
IJ
1186 pkt_len = new_len;
1187 }
b451e5d2
YC
1188
1189 if (pkt_len >= skb->len && !in_sack)
1190 return 0;
1191
75c119af
ED
1192 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1193 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1194 if (err < 0)
1195 return err;
1196 }
1197
1198 return in_sack;
1199}
1200
cc9a672e
NC
1201/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1202static u8 tcp_sacktag_one(struct sock *sk,
1203 struct tcp_sacktag_state *state, u8 sacked,
1204 u32 start_seq, u32 end_seq,
740b0f18 1205 int dup_sack, int pcount,
9a568de4 1206 u64 xmit_time)
9e10c47c 1207{
6859d494 1208 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1209 int fack_count = state->fack_count;
9e10c47c
IJ
1210
1211 /* Account D-SACK for retransmitted packet. */
1212 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1213 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1214 after(end_seq, tp->undo_marker))
9e10c47c 1215 tp->undo_retrans--;
ede9f3b1 1216 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1217 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1218 }
1219
1220 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1221 if (!after(end_seq, tp->snd_una))
a1197f5a 1222 return sacked;
9e10c47c
IJ
1223
1224 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1225 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1226
9e10c47c
IJ
1227 if (sacked & TCPCB_SACKED_RETRANS) {
1228 /* If the segment is not tagged as lost,
1229 * we do not clear RETRANS, believing
1230 * that retransmission is still in flight.
1231 */
1232 if (sacked & TCPCB_LOST) {
a1197f5a 1233 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1234 tp->lost_out -= pcount;
1235 tp->retrans_out -= pcount;
9e10c47c
IJ
1236 }
1237 } else {
1238 if (!(sacked & TCPCB_RETRANS)) {
1239 /* New sack for not retransmitted frame,
1240 * which was in hole. It is reordering.
1241 */
cc9a672e 1242 if (before(start_seq,
9e10c47c 1243 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1244 state->reord = min(fack_count,
1245 state->reord);
e33099f9
YC
1246 if (!after(end_seq, tp->high_seq))
1247 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1248 if (state->first_sackt == 0)
1249 state->first_sackt = xmit_time;
1250 state->last_sackt = xmit_time;
9e10c47c
IJ
1251 }
1252
1253 if (sacked & TCPCB_LOST) {
a1197f5a 1254 sacked &= ~TCPCB_LOST;
f58b22fd 1255 tp->lost_out -= pcount;
9e10c47c
IJ
1256 }
1257 }
1258
a1197f5a
IJ
1259 sacked |= TCPCB_SACKED_ACKED;
1260 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1261 tp->sacked_out += pcount;
ddf1af6f 1262 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1263
f58b22fd 1264 fack_count += pcount;
9e10c47c
IJ
1265
1266 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1267 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1268 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1269 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1270
1271 if (fack_count > tp->fackets_out)
1272 tp->fackets_out = fack_count;
9e10c47c
IJ
1273 }
1274
1275 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1276 * frames and clear it. undo_retrans is decreased above, L|R frames
1277 * are accounted above as well.
1278 */
a1197f5a
IJ
1279 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1280 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1281 tp->retrans_out -= pcount;
9e10c47c
IJ
1282 }
1283
a1197f5a 1284 return sacked;
9e10c47c
IJ
1285}
1286
daef52ba
NC
1287/* Shift newly-SACKed bytes from this skb to the immediately previous
1288 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1289 */
f3319816
ED
1290static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1291 struct sk_buff *skb,
a2a385d6
ED
1292 struct tcp_sacktag_state *state,
1293 unsigned int pcount, int shifted, int mss,
1294 bool dup_sack)
832d11c5
IJ
1295{
1296 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1297 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1298 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1299
1300 BUG_ON(!pcount);
1301
4c90d3b3
NC
1302 /* Adjust counters and hints for the newly sacked sequence
1303 * range but discard the return value since prev is already
1304 * marked. We must tag the range first because the seq
1305 * advancement below implicitly advances
1306 * tcp_highest_sack_seq() when skb is highest_sack.
1307 */
1308 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1309 start_seq, end_seq, dup_sack, pcount,
9a568de4 1310 skb->skb_mstamp);
b9f64820 1311 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1312
1313 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1314 tp->lost_cnt_hint += pcount;
1315
832d11c5
IJ
1316 TCP_SKB_CB(prev)->end_seq += shifted;
1317 TCP_SKB_CB(skb)->seq += shifted;
1318
cd7d8498
ED
1319 tcp_skb_pcount_add(prev, pcount);
1320 BUG_ON(tcp_skb_pcount(skb) < pcount);
1321 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1322
1323 /* When we're adding to gso_segs == 1, gso_size will be zero,
1324 * in theory this shouldn't be necessary but as long as DSACK
1325 * code can come after this skb later on it's better to keep
1326 * setting gso_size to something.
1327 */
f69ad292
ED
1328 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1329 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1330
1331 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1332 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1333 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1334
832d11c5
IJ
1335 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1336 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1337
832d11c5
IJ
1338 if (skb->len > 0) {
1339 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1340 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1341 return false;
832d11c5
IJ
1342 }
1343
1344 /* Whole SKB was eaten :-) */
1345
92ee76b6
IJ
1346 if (skb == tp->retransmit_skb_hint)
1347 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1348 if (skb == tp->lost_skb_hint) {
1349 tp->lost_skb_hint = prev;
1350 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1351 }
1352
5e8a402f 1353 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1354 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1355 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1356 TCP_SKB_CB(prev)->end_seq++;
1357
832d11c5
IJ
1358 if (skb == tcp_highest_sack(sk))
1359 tcp_advance_highest_sack(sk, skb);
1360
cfea5a68 1361 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1362 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1363 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1364
75c119af 1365 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1366
c10d9310 1367 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1368
a2a385d6 1369 return true;
832d11c5
IJ
1370}
1371
1372/* I wish gso_size would have a bit more sane initialization than
1373 * something-or-zero which complicates things
1374 */
cf533ea5 1375static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1376{
775ffabf 1377 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1378}
1379
1380/* Shifting pages past head area doesn't work */
cf533ea5 1381static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1382{
1383 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1384}
1385
1386/* Try collapsing SACK blocks spanning across multiple skbs to a single
1387 * skb.
1388 */
1389static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1390 struct tcp_sacktag_state *state,
832d11c5 1391 u32 start_seq, u32 end_seq,
a2a385d6 1392 bool dup_sack)
832d11c5
IJ
1393{
1394 struct tcp_sock *tp = tcp_sk(sk);
1395 struct sk_buff *prev;
1396 int mss;
1397 int pcount = 0;
1398 int len;
1399 int in_sack;
1400
1401 if (!sk_can_gso(sk))
1402 goto fallback;
1403
1404 /* Normally R but no L won't result in plain S */
1405 if (!dup_sack &&
9969ca5f 1406 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1407 goto fallback;
1408 if (!skb_can_shift(skb))
1409 goto fallback;
1410 /* This frame is about to be dropped (was ACKed). */
1411 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1412 goto fallback;
1413
1414 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1415 prev = skb_rb_prev(skb);
1416 if (!prev)
832d11c5 1417 goto fallback;
832d11c5
IJ
1418
1419 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1420 goto fallback;
1421
a643b5d4
MKL
1422 if (!tcp_skb_can_collapse_to(prev))
1423 goto fallback;
1424
832d11c5
IJ
1425 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1426 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1427
1428 if (in_sack) {
1429 len = skb->len;
1430 pcount = tcp_skb_pcount(skb);
775ffabf 1431 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1432
1433 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1434 * drop this restriction as unnecessary
1435 */
775ffabf 1436 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1437 goto fallback;
1438 } else {
1439 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1440 goto noop;
1441 /* CHECKME: This is non-MSS split case only?, this will
1442 * cause skipped skbs due to advancing loop btw, original
1443 * has that feature too
1444 */
1445 if (tcp_skb_pcount(skb) <= 1)
1446 goto noop;
1447
1448 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1449 if (!in_sack) {
1450 /* TODO: head merge to next could be attempted here
1451 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1452 * though it might not be worth of the additional hassle
1453 *
1454 * ...we can probably just fallback to what was done
1455 * previously. We could try merging non-SACKed ones
1456 * as well but it probably isn't going to buy off
1457 * because later SACKs might again split them, and
1458 * it would make skb timestamp tracking considerably
1459 * harder problem.
1460 */
1461 goto fallback;
1462 }
1463
1464 len = end_seq - TCP_SKB_CB(skb)->seq;
1465 BUG_ON(len < 0);
1466 BUG_ON(len > skb->len);
1467
1468 /* MSS boundaries should be honoured or else pcount will
1469 * severely break even though it makes things bit trickier.
1470 * Optimize common case to avoid most of the divides
1471 */
1472 mss = tcp_skb_mss(skb);
1473
1474 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1475 * drop this restriction as unnecessary
1476 */
775ffabf 1477 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1478 goto fallback;
1479
1480 if (len == mss) {
1481 pcount = 1;
1482 } else if (len < mss) {
1483 goto noop;
1484 } else {
1485 pcount = len / mss;
1486 len = pcount * mss;
1487 }
1488 }
1489
4648dc97
NC
1490 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1491 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1492 goto fallback;
1493
832d11c5
IJ
1494 if (!skb_shift(prev, skb, len))
1495 goto fallback;
f3319816 1496 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1497 goto out;
1498
1499 /* Hole filled allows collapsing with the next as well, this is very
1500 * useful when hole on every nth skb pattern happens
1501 */
75c119af
ED
1502 skb = skb_rb_next(prev);
1503 if (!skb)
832d11c5 1504 goto out;
832d11c5 1505
f0bc52f3 1506 if (!skb_can_shift(skb) ||
f0bc52f3 1507 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1508 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1509 goto out;
1510
1511 len = skb->len;
1512 if (skb_shift(prev, skb, len)) {
1513 pcount += tcp_skb_pcount(skb);
f3319816
ED
1514 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1515 len, mss, 0);
832d11c5
IJ
1516 }
1517
1518out:
a1197f5a 1519 state->fack_count += pcount;
832d11c5
IJ
1520 return prev;
1521
1522noop:
1523 return skb;
1524
1525fallback:
c10d9310 1526 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1527 return NULL;
1528}
1529
68f8353b
IJ
1530static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1531 struct tcp_sack_block *next_dup,
a1197f5a 1532 struct tcp_sacktag_state *state,
68f8353b 1533 u32 start_seq, u32 end_seq,
a2a385d6 1534 bool dup_sack_in)
68f8353b 1535{
832d11c5
IJ
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 struct sk_buff *tmp;
1538
75c119af 1539 skb_rbtree_walk_from(skb) {
68f8353b 1540 int in_sack = 0;
a2a385d6 1541 bool dup_sack = dup_sack_in;
68f8353b 1542
68f8353b
IJ
1543 /* queue is in-order => we can short-circuit the walk early */
1544 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1545 break;
1546
00db4124 1547 if (next_dup &&
68f8353b
IJ
1548 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1549 in_sack = tcp_match_skb_to_sack(sk, skb,
1550 next_dup->start_seq,
1551 next_dup->end_seq);
1552 if (in_sack > 0)
a2a385d6 1553 dup_sack = true;
68f8353b
IJ
1554 }
1555
832d11c5
IJ
1556 /* skb reference here is a bit tricky to get right, since
1557 * shifting can eat and free both this skb and the next,
1558 * so not even _safe variant of the loop is enough.
1559 */
1560 if (in_sack <= 0) {
a1197f5a
IJ
1561 tmp = tcp_shift_skb_data(sk, skb, state,
1562 start_seq, end_seq, dup_sack);
00db4124 1563 if (tmp) {
832d11c5
IJ
1564 if (tmp != skb) {
1565 skb = tmp;
1566 continue;
1567 }
1568
1569 in_sack = 0;
1570 } else {
1571 in_sack = tcp_match_skb_to_sack(sk, skb,
1572 start_seq,
1573 end_seq);
1574 }
1575 }
1576
68f8353b
IJ
1577 if (unlikely(in_sack < 0))
1578 break;
1579
832d11c5 1580 if (in_sack) {
cc9a672e
NC
1581 TCP_SKB_CB(skb)->sacked =
1582 tcp_sacktag_one(sk,
1583 state,
1584 TCP_SKB_CB(skb)->sacked,
1585 TCP_SKB_CB(skb)->seq,
1586 TCP_SKB_CB(skb)->end_seq,
1587 dup_sack,
59c9af42 1588 tcp_skb_pcount(skb),
9a568de4 1589 skb->skb_mstamp);
b9f64820 1590 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1591 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1592 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1593
832d11c5
IJ
1594 if (!before(TCP_SKB_CB(skb)->seq,
1595 tcp_highest_sack_seq(tp)))
1596 tcp_advance_highest_sack(sk, skb);
1597 }
1598
a1197f5a 1599 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1600 }
1601 return skb;
1602}
1603
75c119af
ED
1604static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1605 struct tcp_sacktag_state *state,
1606 u32 seq)
1607{
1608 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1609 struct sk_buff *skb;
1610 int unack_bytes;
1611
1612 while (*p) {
1613 parent = *p;
1614 skb = rb_to_skb(parent);
1615 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1616 p = &parent->rb_left;
1617 continue;
1618 }
1619 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1620 p = &parent->rb_right;
1621 continue;
1622 }
1623
1624 state->fack_count = 0;
1625 unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una;
1626 if (state->mss_now && unack_bytes > 0)
1627 state->fack_count = unack_bytes / state->mss_now;
1628
1629 return skb;
1630 }
1631 return NULL;
1632}
1633
68f8353b 1634static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1635 struct tcp_sacktag_state *state,
1636 u32 skip_to_seq)
68f8353b 1637{
75c119af
ED
1638 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1639 return skb;
d152a7d8 1640
75c119af 1641 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1642}
1643
1644static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1645 struct sock *sk,
1646 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1647 struct tcp_sacktag_state *state,
1648 u32 skip_to_seq)
68f8353b 1649{
51456b29 1650 if (!next_dup)
68f8353b
IJ
1651 return skb;
1652
1653 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1654 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1655 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1656 next_dup->start_seq, next_dup->end_seq,
1657 1);
68f8353b
IJ
1658 }
1659
1660 return skb;
1661}
1662
cf533ea5 1663static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1664{
1665 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1666}
1667
1da177e4 1668static int
cf533ea5 1669tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1670 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1671{
1672 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1673 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1674 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1675 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1676 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1677 struct tcp_sack_block *cache;
1678 struct sk_buff *skb;
4389dded 1679 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1680 int used_sacks;
a2a385d6 1681 bool found_dup_sack = false;
68f8353b 1682 int i, j;
fda03fbb 1683 int first_sack_index;
1da177e4 1684
196da974
KKJ
1685 state->flag = 0;
1686 state->reord = tp->packets_out;
a1197f5a 1687
d738cd8f 1688 if (!tp->sacked_out) {
de83c058
IJ
1689 if (WARN_ON(tp->fackets_out))
1690 tp->fackets_out = 0;
6859d494 1691 tcp_highest_sack_reset(sk);
d738cd8f 1692 }
1da177e4 1693
1ed83465 1694 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1695 num_sacks, prior_snd_una);
b9f64820 1696 if (found_dup_sack) {
196da974 1697 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1698 tp->delivered++; /* A spurious retransmission is delivered */
1699 }
6f74651a
BE
1700
1701 /* Eliminate too old ACKs, but take into
1702 * account more or less fresh ones, they can
1703 * contain valid SACK info.
1704 */
1705 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1706 return 0;
1707