tcp: add SACK compression
[linux-block.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
60e2a778 80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 83
1da177e4
LT
84#define FLAG_DATA 0x01 /* Incoming frame contained data. */
85#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89#define FLAG_DATA_SACKED 0x20 /* New SACK. */
90#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 91#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 92#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 93#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 94#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 95#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 96#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 97#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 98#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 99#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
eb36be0f 100#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
1da177e4
LT
101
102#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 104#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
105#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
106
1da177e4 107#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 108#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 109
e662ca40
YC
110#define REXMIT_NONE 0 /* no loss recovery to do */
111#define REXMIT_LOST 1 /* retransmit packets marked lost */
112#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
113
6dac1523
IL
114#if IS_ENABLED(CONFIG_TLS_DEVICE)
115static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
116
117void clean_acked_data_enable(struct inet_connection_sock *icsk,
118 void (*cad)(struct sock *sk, u32 ack_seq))
119{
120 icsk->icsk_clean_acked = cad;
121 static_branch_inc(&clean_acked_data_enabled);
122}
123EXPORT_SYMBOL_GPL(clean_acked_data_enable);
124
125void clean_acked_data_disable(struct inet_connection_sock *icsk)
126{
127 static_branch_dec(&clean_acked_data_enabled);
128 icsk->icsk_clean_acked = NULL;
129}
130EXPORT_SYMBOL_GPL(clean_acked_data_disable);
131#endif
132
0b9aefea
MRL
133static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
134 unsigned int len)
dcb17d22
MRL
135{
136 static bool __once __read_mostly;
137
138 if (!__once) {
139 struct net_device *dev;
140
141 __once = true;
142
143 rcu_read_lock();
144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
145 if (!dev || len >= dev->mtu)
146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
147 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
148 rcu_read_unlock();
149 }
150}
151
e905a9ed 152/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 153 * real world.
e905a9ed 154 */
056834d9 155static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 156{
463c84b9 157 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 158 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 159 unsigned int len;
1da177e4 160
e905a9ed 161 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
162
163 /* skb->len may jitter because of SACKs, even if peer
164 * sends good full-sized frames.
165 */
056834d9 166 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 167 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
169 tcp_sk(sk)->advmss);
0b9aefea
MRL
170 /* Account for possibly-removed options */
171 if (unlikely(len > icsk->icsk_ack.rcv_mss +
172 MAX_TCP_OPTION_SPACE))
173 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
174 } else {
175 /* Otherwise, we make more careful check taking into account,
176 * that SACKs block is variable.
177 *
178 * "len" is invariant segment length, including TCP header.
179 */
9c70220b 180 len += skb->data - skb_transport_header(skb);
bee7ca9e 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
182 /* If PSH is not set, packet should be
183 * full sized, provided peer TCP is not badly broken.
184 * This observation (if it is correct 8)) allows
185 * to handle super-low mtu links fairly.
186 */
187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
189 /* Subtract also invariant (if peer is RFC compliant),
190 * tcp header plus fixed timestamp option length.
191 * Resulting "len" is MSS free of SACK jitter.
192 */
463c84b9
ACM
193 len -= tcp_sk(sk)->tcp_header_len;
194 icsk->icsk_ack.last_seg_size = len;
1da177e4 195 if (len == lss) {
463c84b9 196 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
197 return;
198 }
199 }
1ef9696c
AK
200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
203 }
204}
205
463c84b9 206static void tcp_incr_quickack(struct sock *sk)
1da177e4 207{
463c84b9 208 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 210
056834d9
IJ
211 if (quickacks == 0)
212 quickacks = 2;
463c84b9
ACM
213 if (quickacks > icsk->icsk_ack.quick)
214 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
215}
216
1b9f4092 217static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 218{
463c84b9
ACM
219 struct inet_connection_sock *icsk = inet_csk(sk);
220 tcp_incr_quickack(sk);
221 icsk->icsk_ack.pingpong = 0;
222 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
223}
224
225/* Send ACKs quickly, if "quick" count is not exhausted
226 * and the session is not interactive.
227 */
228
2251ae46 229static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 230{
463c84b9 231 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 232 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 233
2251ae46
JM
234 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
235 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
236}
237
735d3831 238static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 239{
056834d9 240 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
241 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
242}
243
735d3831 244static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
245{
246 if (tcp_hdr(skb)->cwr)
247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248}
249
735d3831 250static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
251{
252 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
253}
254
735d3831 255static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 256{
b82d1bb4 257 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 258 case INET_ECN_NOT_ECT:
bdf1ee5d 259 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
260 * and we already seen ECT on a previous segment,
261 * it is probably a retransmit.
262 */
263 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 264 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
265 break;
266 case INET_ECN_CE:
9890092e
FW
267 if (tcp_ca_needs_ecn((struct sock *)tp))
268 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
269
aae06bf5
ED
270 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
271 /* Better not delay acks, sender can have a very low cwnd */
272 tcp_enter_quickack_mode((struct sock *)tp);
273 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
274 }
9890092e
FW
275 tp->ecn_flags |= TCP_ECN_SEEN;
276 break;
7a269ffa 277 default:
9890092e
FW
278 if (tcp_ca_needs_ecn((struct sock *)tp))
279 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 280 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 281 break;
bdf1ee5d
IJ
282 }
283}
284
735d3831
FW
285static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
286{
287 if (tp->ecn_flags & TCP_ECN_OK)
288 __tcp_ecn_check_ce(tp, skb);
289}
290
291static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 292{
056834d9 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
294 tp->ecn_flags &= ~TCP_ECN_OK;
295}
296
735d3831 297static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 298{
056834d9 299 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
300 tp->ecn_flags &= ~TCP_ECN_OK;
301}
302
735d3831 303static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 304{
056834d9 305 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
306 return true;
307 return false;
bdf1ee5d
IJ
308}
309
1da177e4
LT
310/* Buffer size and advertised window tuning.
311 *
312 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
313 */
314
6ae70532 315static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 316{
6ae70532 317 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 318 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
319 int sndmem, per_mss;
320 u32 nr_segs;
321
322 /* Worst case is non GSO/TSO : each frame consumes one skb
323 * and skb->head is kmalloced using power of two area of memory
324 */
325 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
326 MAX_TCP_HEADER +
327 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
328
329 per_mss = roundup_pow_of_two(per_mss) +
330 SKB_DATA_ALIGN(sizeof(struct sk_buff));
331
332 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
333 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
334
335 /* Fast Recovery (RFC 5681 3.2) :
336 * Cubic needs 1.7 factor, rounded to 2 to include
a9a08845 337 * extra cushion (application might react slowly to EPOLLOUT)
6ae70532 338 */
77bfc174
YC
339 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
340 sndmem *= nr_segs * per_mss;
1da177e4 341
06a59ecb 342 if (sk->sk_sndbuf < sndmem)
356d1833 343 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
344}
345
346/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
347 *
348 * All tcp_full_space() is split to two parts: "network" buffer, allocated
349 * forward and advertised in receiver window (tp->rcv_wnd) and
350 * "application buffer", required to isolate scheduling/application
351 * latencies from network.
352 * window_clamp is maximal advertised window. It can be less than
353 * tcp_full_space(), in this case tcp_full_space() - window_clamp
354 * is reserved for "application" buffer. The less window_clamp is
355 * the smoother our behaviour from viewpoint of network, but the lower
356 * throughput and the higher sensitivity of the connection to losses. 8)
357 *
358 * rcv_ssthresh is more strict window_clamp used at "slow start"
359 * phase to predict further behaviour of this connection.
360 * It is used for two goals:
361 * - to enforce header prediction at sender, even when application
362 * requires some significant "application buffer". It is check #1.
363 * - to prevent pruning of receive queue because of misprediction
364 * of receiver window. Check #2.
365 *
366 * The scheme does not work when sender sends good segments opening
caa20d9a 367 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
368 * in common situations. Otherwise, we have to rely on queue collapsing.
369 */
370
371/* Slow part of check#2. */
9e412ba7 372static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 373{
9e412ba7 374 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 375 /* Optimize this! */
94f0893e 376 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 377 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
378
379 while (tp->rcv_ssthresh <= window) {
380 if (truesize <= skb->len)
463c84b9 381 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
382
383 truesize >>= 1;
384 window >>= 1;
385 }
386 return 0;
387}
388
cf533ea5 389static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 390{
9e412ba7
IJ
391 struct tcp_sock *tp = tcp_sk(sk);
392
1da177e4
LT
393 /* Check #1 */
394 if (tp->rcv_ssthresh < tp->window_clamp &&
395 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 396 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
397 int incr;
398
399 /* Check #2. Increase window, if skb with such overhead
400 * will fit to rcvbuf in future.
401 */
94f0893e 402 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 403 incr = 2 * tp->advmss;
1da177e4 404 else
9e412ba7 405 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
406
407 if (incr) {
4d846f02 408 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
409 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
410 tp->window_clamp);
463c84b9 411 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
412 }
413 }
414}
415
416/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
417static void tcp_fixup_rcvbuf(struct sock *sk)
418{
e9266a02 419 u32 mss = tcp_sk(sk)->advmss;
e9266a02 420 int rcvmem;
1da177e4 421
85f16525
YC
422 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
423 tcp_default_init_rwnd(mss);
e9266a02 424
b0983d3c
ED
425 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
426 * Allow enough cushion so that sender is not limited by our window
427 */
4540c0cf 428 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
b0983d3c
ED
429 rcvmem <<= 2;
430
e9266a02 431 if (sk->sk_rcvbuf < rcvmem)
356d1833 432 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1da177e4
LT
433}
434
caa20d9a 435/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
436 * established state.
437 */
10467163 438void tcp_init_buffer_space(struct sock *sk)
1da177e4 439{
0c12654a 440 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
441 struct tcp_sock *tp = tcp_sk(sk);
442 int maxwin;
443
444 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
445 tcp_fixup_rcvbuf(sk);
446 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 447 tcp_sndbuf_expand(sk);
1da177e4
LT
448
449 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 450 tcp_mstamp_refresh(tp);
645f4c6f 451 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 452 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
453
454 maxwin = tcp_full_space(sk);
455
456 if (tp->window_clamp >= maxwin) {
457 tp->window_clamp = maxwin;
458
0c12654a 459 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 460 tp->window_clamp = max(maxwin -
0c12654a 461 (maxwin >> tcp_app_win),
1da177e4
LT
462 4 * tp->advmss);
463 }
464
465 /* Force reservation of one segment. */
0c12654a 466 if (tcp_app_win &&
1da177e4
LT
467 tp->window_clamp > 2 * tp->advmss &&
468 tp->window_clamp + tp->advmss > maxwin)
469 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
470
471 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 472 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
473}
474
1da177e4 475/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 476static void tcp_clamp_window(struct sock *sk)
1da177e4 477{
9e412ba7 478 struct tcp_sock *tp = tcp_sk(sk);
6687e988 479 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 480 struct net *net = sock_net(sk);
1da177e4 481
6687e988 482 icsk->icsk_ack.quick = 0;
1da177e4 483
356d1833 484 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 485 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 486 !tcp_under_memory_pressure(sk) &&
180d8cd9 487 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 488 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 489 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 490 }
326f36e9 491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
493}
494
40efc6fa
SH
495/* Initialize RCV_MSS value.
496 * RCV_MSS is an our guess about MSS used by the peer.
497 * We haven't any direct information about the MSS.
498 * It's better to underestimate the RCV_MSS rather than overestimate.
499 * Overestimations make us ACKing less frequently than needed.
500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501 */
502void tcp_initialize_rcv_mss(struct sock *sk)
503{
cf533ea5 504 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506
056834d9 507 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 508 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
509 hint = max(hint, TCP_MIN_MSS);
510
511 inet_csk(sk)->icsk_ack.rcv_mss = hint;
512}
4bc2f18b 513EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 514
1da177e4
LT
515/* Receiver "autotuning" code.
516 *
517 * The algorithm for RTT estimation w/o timestamps is based on
518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 519 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
520 *
521 * More detail on this code can be found at
631dd1a8 522 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
523 * though this reference is out of date. A new paper
524 * is pending.
525 */
526static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527{
645f4c6f 528 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
529 long m = sample;
530
1da177e4
LT
531 if (new_sample != 0) {
532 /* If we sample in larger samples in the non-timestamp
533 * case, we could grossly overestimate the RTT especially
534 * with chatty applications or bulk transfer apps which
535 * are stalled on filesystem I/O.
536 *
537 * Also, since we are only going for a minimum in the
31f34269 538 * non-timestamp case, we do not smooth things out
caa20d9a 539 * else with timestamps disabled convergence takes too
1da177e4
LT
540 * long.
541 */
542 if (!win_dep) {
543 m -= (new_sample >> 3);
544 new_sample += m;
18a223e0
NC
545 } else {
546 m <<= 3;
547 if (m < new_sample)
548 new_sample = m;
549 }
1da177e4 550 } else {
caa20d9a 551 /* No previous measure. */
1da177e4
LT
552 new_sample = m << 3;
553 }
554
645f4c6f 555 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
556}
557
558static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559{
645f4c6f
ED
560 u32 delta_us;
561
9a568de4 562 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
563 goto new_measure;
564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 return;
9a568de4 566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
567 if (!delta_us)
568 delta_us = 1;
645f4c6f 569 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
570
571new_measure:
572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 573 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
574}
575
056834d9
IJ
576static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 const struct sk_buff *skb)
1da177e4 578{
463c84b9 579 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 580
1da177e4
LT
581 if (tp->rx_opt.rcv_tsecr &&
582 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
583 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
584 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 585 u32 delta_us;
9a568de4 586
9ee11bd0
WW
587 if (!delta)
588 delta = 1;
589 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
9a568de4
ED
590 tcp_rcv_rtt_update(tp, delta_us, 0);
591 }
1da177e4
LT
592}
593
594/*
595 * This function should be called every time data is copied to user space.
596 * It calculates the appropriate TCP receive buffer space.
597 */
598void tcp_rcv_space_adjust(struct sock *sk)
599{
600 struct tcp_sock *tp = tcp_sk(sk);
607065ba 601 u32 copied;
1da177e4 602 int time;
e905a9ed 603
6163849d
YS
604 trace_tcp_rcv_space_adjust(sk);
605
86323850 606 tcp_mstamp_refresh(tp);
9a568de4 607 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 608 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 609 return;
e905a9ed 610
b0983d3c
ED
611 /* Number of bytes copied to user in last RTT */
612 copied = tp->copied_seq - tp->rcvq_space.seq;
613 if (copied <= tp->rcvq_space.space)
614 goto new_measure;
615
616 /* A bit of theory :
617 * copied = bytes received in previous RTT, our base window
618 * To cope with packet losses, we need a 2x factor
619 * To cope with slow start, and sender growing its cwin by 100 %
620 * every RTT, we need a 4x factor, because the ACK we are sending
621 * now is for the next RTT, not the current one :
622 * <prev RTT . ><current RTT .. ><next RTT .... >
623 */
624
4540c0cf 625 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c 626 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
607065ba 627 int rcvmem, rcvbuf;
c3916ad9 628 u64 rcvwin, grow;
1da177e4 629
b0983d3c
ED
630 /* minimal window to cope with packet losses, assuming
631 * steady state. Add some cushion because of small variations.
632 */
607065ba 633 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 634
c3916ad9
ED
635 /* Accommodate for sender rate increase (eg. slow start) */
636 grow = rcvwin * (copied - tp->rcvq_space.space);
637 do_div(grow, tp->rcvq_space.space);
638 rcvwin += (grow << 1);
1da177e4 639
b0983d3c 640 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 641 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 642 rcvmem += 128;
1da177e4 643
607065ba
ED
644 do_div(rcvwin, tp->advmss);
645 rcvbuf = min_t(u64, rcvwin * rcvmem,
646 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
647 if (rcvbuf > sk->sk_rcvbuf) {
648 sk->sk_rcvbuf = rcvbuf;
1da177e4 649
b0983d3c 650 /* Make the window clamp follow along. */
02db5571 651 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
652 }
653 }
b0983d3c 654 tp->rcvq_space.space = copied;
e905a9ed 655
1da177e4
LT
656new_measure:
657 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 658 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
659}
660
661/* There is something which you must keep in mind when you analyze the
662 * behavior of the tp->ato delayed ack timeout interval. When a
663 * connection starts up, we want to ack as quickly as possible. The
664 * problem is that "good" TCP's do slow start at the beginning of data
665 * transmission. The means that until we send the first few ACK's the
666 * sender will sit on his end and only queue most of his data, because
667 * he can only send snd_cwnd unacked packets at any given time. For
668 * each ACK we send, he increments snd_cwnd and transmits more of his
669 * queue. -DaveM
670 */
9e412ba7 671static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 672{
9e412ba7 673 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 674 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
675 u32 now;
676
463c84b9 677 inet_csk_schedule_ack(sk);
1da177e4 678
463c84b9 679 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
680
681 tcp_rcv_rtt_measure(tp);
e905a9ed 682
70eabf0e 683 now = tcp_jiffies32;
1da177e4 684
463c84b9 685 if (!icsk->icsk_ack.ato) {
1da177e4
LT
686 /* The _first_ data packet received, initialize
687 * delayed ACK engine.
688 */
463c84b9
ACM
689 tcp_incr_quickack(sk);
690 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 691 } else {
463c84b9 692 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 693
056834d9 694 if (m <= TCP_ATO_MIN / 2) {
1da177e4 695 /* The fastest case is the first. */
463c84b9
ACM
696 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
697 } else if (m < icsk->icsk_ack.ato) {
698 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
699 if (icsk->icsk_ack.ato > icsk->icsk_rto)
700 icsk->icsk_ack.ato = icsk->icsk_rto;
701 } else if (m > icsk->icsk_rto) {
caa20d9a 702 /* Too long gap. Apparently sender failed to
1da177e4
LT
703 * restart window, so that we send ACKs quickly.
704 */
463c84b9 705 tcp_incr_quickack(sk);
3ab224be 706 sk_mem_reclaim(sk);
1da177e4
LT
707 }
708 }
463c84b9 709 icsk->icsk_ack.lrcvtime = now;
1da177e4 710
735d3831 711 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
712
713 if (skb->len >= 128)
9e412ba7 714 tcp_grow_window(sk, skb);
1da177e4
LT
715}
716
1da177e4
LT
717/* Called to compute a smoothed rtt estimate. The data fed to this
718 * routine either comes from timestamps, or from segments that were
719 * known _not_ to have been retransmitted [see Karn/Partridge
720 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
721 * piece by Van Jacobson.
722 * NOTE: the next three routines used to be one big routine.
723 * To save cycles in the RFC 1323 implementation it was better to break
724 * it up into three procedures. -- erics
725 */
740b0f18 726static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 727{
6687e988 728 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
729 long m = mrtt_us; /* RTT */
730 u32 srtt = tp->srtt_us;
1da177e4 731
1da177e4
LT
732 /* The following amusing code comes from Jacobson's
733 * article in SIGCOMM '88. Note that rtt and mdev
734 * are scaled versions of rtt and mean deviation.
e905a9ed 735 * This is designed to be as fast as possible
1da177e4
LT
736 * m stands for "measurement".
737 *
738 * On a 1990 paper the rto value is changed to:
739 * RTO = rtt + 4 * mdev
740 *
741 * Funny. This algorithm seems to be very broken.
742 * These formulae increase RTO, when it should be decreased, increase
31f34269 743 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
744 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
745 * does not matter how to _calculate_ it. Seems, it was trap
746 * that VJ failed to avoid. 8)
747 */
4a5ab4e2
ED
748 if (srtt != 0) {
749 m -= (srtt >> 3); /* m is now error in rtt est */
750 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
751 if (m < 0) {
752 m = -m; /* m is now abs(error) */
740b0f18 753 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
754 /* This is similar to one of Eifel findings.
755 * Eifel blocks mdev updates when rtt decreases.
756 * This solution is a bit different: we use finer gain
757 * for mdev in this case (alpha*beta).
758 * Like Eifel it also prevents growth of rto,
759 * but also it limits too fast rto decreases,
760 * happening in pure Eifel.
761 */
762 if (m > 0)
763 m >>= 3;
764 } else {
740b0f18 765 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 766 }
740b0f18
ED
767 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
768 if (tp->mdev_us > tp->mdev_max_us) {
769 tp->mdev_max_us = tp->mdev_us;
770 if (tp->mdev_max_us > tp->rttvar_us)
771 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
772 }
773 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
774 if (tp->mdev_max_us < tp->rttvar_us)
775 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 776 tp->rtt_seq = tp->snd_nxt;
740b0f18 777 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
778 }
779 } else {
780 /* no previous measure. */
4a5ab4e2 781 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
782 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
783 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
784 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
785 tp->rtt_seq = tp->snd_nxt;
786 }
740b0f18 787 tp->srtt_us = max(1U, srtt);
1da177e4
LT
788}
789
95bd09eb
ED
790static void tcp_update_pacing_rate(struct sock *sk)
791{
792 const struct tcp_sock *tp = tcp_sk(sk);
793 u64 rate;
794
795 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
796 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
797
798 /* current rate is (cwnd * mss) / srtt
799 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
800 * In Congestion Avoidance phase, set it to 120 % the current rate.
801 *
802 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
803 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
804 * end of slow start and should slow down.
805 */
806 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 807 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 808 else
c26e91f8 809 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
810
811 rate *= max(tp->snd_cwnd, tp->packets_out);
812
740b0f18
ED
813 if (likely(tp->srtt_us))
814 do_div(rate, tp->srtt_us);
95bd09eb 815
a9da6f29 816 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
817 * without any lock. We want to make sure compiler wont store
818 * intermediate values in this location.
819 */
a9da6f29
MR
820 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
821 sk->sk_max_pacing_rate));
95bd09eb
ED
822}
823
1da177e4
LT
824/* Calculate rto without backoff. This is the second half of Van Jacobson's
825 * routine referred to above.
826 */
f7e56a76 827static void tcp_set_rto(struct sock *sk)
1da177e4 828{
463c84b9 829 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
830 /* Old crap is replaced with new one. 8)
831 *
832 * More seriously:
833 * 1. If rtt variance happened to be less 50msec, it is hallucination.
834 * It cannot be less due to utterly erratic ACK generation made
835 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
836 * to do with delayed acks, because at cwnd>2 true delack timeout
837 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 838 * ACKs in some circumstances.
1da177e4 839 */
f1ecd5d9 840 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
841
842 /* 2. Fixups made earlier cannot be right.
843 * If we do not estimate RTO correctly without them,
844 * all the algo is pure shit and should be replaced
caa20d9a 845 * with correct one. It is exactly, which we pretend to do.
1da177e4 846 */
1da177e4 847
ee6aac59
IJ
848 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
849 * guarantees that rto is higher.
850 */
f1ecd5d9 851 tcp_bound_rto(sk);
1da177e4
LT
852}
853
cf533ea5 854__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
855{
856 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
857
22b71c8f 858 if (!cwnd)
442b9635 859 cwnd = TCP_INIT_CWND;
1da177e4
LT
860 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
861}
862
564262c1 863/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
864static void tcp_dsack_seen(struct tcp_sock *tp)
865{
ab56222a 866 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 867 tp->rack.dsack_seen = 1;
e60402d0
IJ
868}
869
737ff314
YC
870/* It's reordering when higher sequence was delivered (i.e. sacked) before
871 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
872 * distance is approximated in full-mss packet distance ("reordering").
873 */
874static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
875 const int ts)
1da177e4 876{
6687e988 877 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
878 const u32 mss = tp->mss_cache;
879 u32 fack, metric;
40b215e5 880
737ff314
YC
881 fack = tcp_highest_sack_seq(tp);
882 if (!before(low_seq, fack))
6f5b24ee
SHY
883 return;
884
737ff314
YC
885 metric = fack - low_seq;
886 if ((metric > tp->reordering * mss) && mss) {
1da177e4 887#if FASTRETRANS_DEBUG > 1
91df42be
JP
888 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
889 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
890 tp->reordering,
737ff314 891 0,
91df42be
JP
892 tp->sacked_out,
893 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 894#endif
737ff314
YC
895 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
896 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 897 }
eed530b6 898
4f41b1c5 899 tp->rack.reord = 1;
2d2517ee 900 /* This exciting event is worth to be remembered. 8) */
737ff314
YC
901 NET_INC_STATS(sock_net(sk),
902 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
903}
904
006f582c 905/* This must be called before lost_out is incremented */
c8c213f2
IJ
906static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
907{
51456b29 908 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
909 before(TCP_SKB_CB(skb)->seq,
910 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 911 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
912}
913
0682e690
NC
914/* Sum the number of packets on the wire we have marked as lost.
915 * There are two cases we care about here:
916 * a) Packet hasn't been marked lost (nor retransmitted),
917 * and this is the first loss.
918 * b) Packet has been marked both lost and retransmitted,
919 * and this means we think it was lost again.
920 */
921static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
922{
923 __u8 sacked = TCP_SKB_CB(skb)->sacked;
924
925 if (!(sacked & TCPCB_LOST) ||
926 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
927 tp->lost += tcp_skb_pcount(skb);
928}
929
41ea36e3
IJ
930static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
931{
932 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
933 tcp_verify_retransmit_hint(tp, skb);
934
935 tp->lost_out += tcp_skb_pcount(skb);
0682e690 936 tcp_sum_lost(tp, skb);
41ea36e3
IJ
937 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
938 }
939}
940
4f41b1c5 941void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
942{
943 tcp_verify_retransmit_hint(tp, skb);
944
0682e690 945 tcp_sum_lost(tp, skb);
006f582c
IJ
946 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
947 tp->lost_out += tcp_skb_pcount(skb);
948 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
949 }
950}
951
1da177e4
LT
952/* This procedure tags the retransmission queue when SACKs arrive.
953 *
954 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
955 * Packets in queue with these bits set are counted in variables
956 * sacked_out, retrans_out and lost_out, correspondingly.
957 *
958 * Valid combinations are:
959 * Tag InFlight Description
960 * 0 1 - orig segment is in flight.
961 * S 0 - nothing flies, orig reached receiver.
962 * L 0 - nothing flies, orig lost by net.
963 * R 2 - both orig and retransmit are in flight.
964 * L|R 1 - orig is lost, retransmit is in flight.
965 * S|R 1 - orig reached receiver, retrans is still in flight.
966 * (L|S|R is logically valid, it could occur when L|R is sacked,
967 * but it is equivalent to plain S and code short-curcuits it to S.
968 * L|S is logically invalid, it would mean -1 packet in flight 8))
969 *
970 * These 6 states form finite state machine, controlled by the following events:
971 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
972 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 973 * 3. Loss detection event of two flavors:
1da177e4
LT
974 * A. Scoreboard estimator decided the packet is lost.
975 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 976 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
977 * segment was retransmitted.
978 * 4. D-SACK added new rule: D-SACK changes any tag to S.
979 *
980 * It is pleasant to note, that state diagram turns out to be commutative,
981 * so that we are allowed not to be bothered by order of our actions,
982 * when multiple events arrive simultaneously. (see the function below).
983 *
984 * Reordering detection.
985 * --------------------
986 * Reordering metric is maximal distance, which a packet can be displaced
987 * in packet stream. With SACKs we can estimate it:
988 *
989 * 1. SACK fills old hole and the corresponding segment was not
990 * ever retransmitted -> reordering. Alas, we cannot use it
991 * when segment was retransmitted.
992 * 2. The last flaw is solved with D-SACK. D-SACK arrives
993 * for retransmitted and already SACKed segment -> reordering..
994 * Both of these heuristics are not used in Loss state, when we cannot
995 * account for retransmits accurately.
5b3c9882
IJ
996 *
997 * SACK block validation.
998 * ----------------------
999 *
1000 * SACK block range validation checks that the received SACK block fits to
1001 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1002 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1003 * it means that the receiver is rather inconsistent with itself reporting
1004 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1005 * perfectly valid, however, in light of RFC2018 which explicitly states
1006 * that "SACK block MUST reflect the newest segment. Even if the newest
1007 * segment is going to be discarded ...", not that it looks very clever
1008 * in case of head skb. Due to potentional receiver driven attacks, we
1009 * choose to avoid immediate execution of a walk in write queue due to
1010 * reneging and defer head skb's loss recovery to standard loss recovery
1011 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1012 *
1013 * Implements also blockage to start_seq wrap-around. Problem lies in the
1014 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1015 * there's no guarantee that it will be before snd_nxt (n). The problem
1016 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1017 * wrap (s_w):
1018 *
1019 * <- outs wnd -> <- wrapzone ->
1020 * u e n u_w e_w s n_w
1021 * | | | | | | |
1022 * |<------------+------+----- TCP seqno space --------------+---------->|
1023 * ...-- <2^31 ->| |<--------...
1024 * ...---- >2^31 ------>| |<--------...
1025 *
1026 * Current code wouldn't be vulnerable but it's better still to discard such
1027 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1028 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1029 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1030 * equal to the ideal case (infinite seqno space without wrap caused issues).
1031 *
1032 * With D-SACK the lower bound is extended to cover sequence space below
1033 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1034 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1035 * for the normal SACK blocks, explained above). But there all simplicity
1036 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1037 * fully below undo_marker they do not affect behavior in anyway and can
1038 * therefore be safely ignored. In rare cases (which are more or less
1039 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1040 * fragmentation and packet reordering past skb's retransmission. To consider
1041 * them correctly, the acceptable range must be extended even more though
1042 * the exact amount is rather hard to quantify. However, tp->max_window can
1043 * be used as an exaggerated estimate.
1da177e4 1044 */
a2a385d6
ED
1045static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1046 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1047{
1048 /* Too far in future, or reversed (interpretation is ambiguous) */
1049 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1050 return false;
5b3c9882
IJ
1051
1052 /* Nasty start_seq wrap-around check (see comments above) */
1053 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1054 return false;
5b3c9882 1055
564262c1 1056 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1057 * start_seq == snd_una is non-sensical (see comments above)
1058 */
1059 if (after(start_seq, tp->snd_una))
a2a385d6 1060 return true;
5b3c9882
IJ
1061
1062 if (!is_dsack || !tp->undo_marker)
a2a385d6 1063 return false;
5b3c9882
IJ
1064
1065 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1066 if (after(end_seq, tp->snd_una))
a2a385d6 1067 return false;
5b3c9882
IJ
1068
1069 if (!before(start_seq, tp->undo_marker))
a2a385d6 1070 return true;
5b3c9882
IJ
1071
1072 /* Too old */
1073 if (!after(end_seq, tp->undo_marker))
a2a385d6 1074 return false;
5b3c9882
IJ
1075
1076 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1077 * start_seq < undo_marker and end_seq >= undo_marker.
1078 */
1079 return !before(start_seq, end_seq - tp->max_window);
1080}
1081
a2a385d6
ED
1082static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1083 struct tcp_sack_block_wire *sp, int num_sacks,
1084 u32 prior_snd_una)
d06e021d 1085{
1ed83465 1086 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1087 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1088 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1089 bool dup_sack = false;
d06e021d
DM
1090
1091 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1092 dup_sack = true;
e60402d0 1093 tcp_dsack_seen(tp);
c10d9310 1094 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1095 } else if (num_sacks > 1) {
d3e2ce3b
HH
1096 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1097 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1098
1099 if (!after(end_seq_0, end_seq_1) &&
1100 !before(start_seq_0, start_seq_1)) {
a2a385d6 1101 dup_sack = true;
e60402d0 1102 tcp_dsack_seen(tp);
c10d9310 1103 NET_INC_STATS(sock_net(sk),
de0744af 1104 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1105 }
1106 }
1107
1108 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1109 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1110 !after(end_seq_0, prior_snd_una) &&
1111 after(end_seq_0, tp->undo_marker))
1112 tp->undo_retrans--;
1113
1114 return dup_sack;
1115}
1116
a1197f5a 1117struct tcp_sacktag_state {
737ff314 1118 u32 reord;
31231a8a
KKJ
1119 /* Timestamps for earliest and latest never-retransmitted segment
1120 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1121 * but congestion control should still get an accurate delay signal.
1122 */
9a568de4
ED
1123 u64 first_sackt;
1124 u64 last_sackt;
b9f64820 1125 struct rate_sample *rate;
740b0f18 1126 int flag;
75c119af 1127 unsigned int mss_now;
a1197f5a
IJ
1128};
1129
d1935942
IJ
1130/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1131 * the incoming SACK may not exactly match but we can find smaller MSS
1132 * aligned portion of it that matches. Therefore we might need to fragment
1133 * which may fail and creates some hassle (caller must handle error case
1134 * returns).
832d11c5
IJ
1135 *
1136 * FIXME: this could be merged to shift decision code
d1935942 1137 */
0f79efdc 1138static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1139 u32 start_seq, u32 end_seq)
d1935942 1140{
a2a385d6
ED
1141 int err;
1142 bool in_sack;
d1935942 1143 unsigned int pkt_len;
adb92db8 1144 unsigned int mss;
d1935942
IJ
1145
1146 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1147 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1148
1149 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1150 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1151 mss = tcp_skb_mss(skb);
d1935942
IJ
1152 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1153
adb92db8 1154 if (!in_sack) {
d1935942 1155 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1156 if (pkt_len < mss)
1157 pkt_len = mss;
1158 } else {
d1935942 1159 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1160 if (pkt_len < mss)
1161 return -EINVAL;
1162 }
1163
1164 /* Round if necessary so that SACKs cover only full MSSes
1165 * and/or the remaining small portion (if present)
1166 */
1167 if (pkt_len > mss) {
1168 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1169 if (!in_sack && new_len < pkt_len)
adb92db8 1170 new_len += mss;
adb92db8
IJ
1171 pkt_len = new_len;
1172 }
b451e5d2
YC
1173
1174 if (pkt_len >= skb->len && !in_sack)
1175 return 0;
1176
75c119af
ED
1177 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1178 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1179 if (err < 0)
1180 return err;
1181 }
1182
1183 return in_sack;
1184}
1185
cc9a672e
NC
1186/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1187static u8 tcp_sacktag_one(struct sock *sk,
1188 struct tcp_sacktag_state *state, u8 sacked,
1189 u32 start_seq, u32 end_seq,
740b0f18 1190 int dup_sack, int pcount,
9a568de4 1191 u64 xmit_time)
9e10c47c 1192{
6859d494 1193 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1194
1195 /* Account D-SACK for retransmitted packet. */
1196 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1197 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1198 after(end_seq, tp->undo_marker))
9e10c47c 1199 tp->undo_retrans--;
737ff314
YC
1200 if ((sacked & TCPCB_SACKED_ACKED) &&
1201 before(start_seq, state->reord))
1202 state->reord = start_seq;
9e10c47c
IJ
1203 }
1204
1205 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1206 if (!after(end_seq, tp->snd_una))
a1197f5a 1207 return sacked;
9e10c47c
IJ
1208
1209 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1210 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1211
9e10c47c
IJ
1212 if (sacked & TCPCB_SACKED_RETRANS) {
1213 /* If the segment is not tagged as lost,
1214 * we do not clear RETRANS, believing
1215 * that retransmission is still in flight.
1216 */
1217 if (sacked & TCPCB_LOST) {
a1197f5a 1218 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1219 tp->lost_out -= pcount;
1220 tp->retrans_out -= pcount;
9e10c47c
IJ
1221 }
1222 } else {
1223 if (!(sacked & TCPCB_RETRANS)) {
1224 /* New sack for not retransmitted frame,
1225 * which was in hole. It is reordering.
1226 */
cc9a672e 1227 if (before(start_seq,
737ff314
YC
1228 tcp_highest_sack_seq(tp)) &&
1229 before(start_seq, state->reord))
1230 state->reord = start_seq;
1231
e33099f9
YC
1232 if (!after(end_seq, tp->high_seq))
1233 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1234 if (state->first_sackt == 0)
1235 state->first_sackt = xmit_time;
1236 state->last_sackt = xmit_time;
9e10c47c
IJ
1237 }
1238
1239 if (sacked & TCPCB_LOST) {
a1197f5a 1240 sacked &= ~TCPCB_LOST;
f58b22fd 1241 tp->lost_out -= pcount;
9e10c47c
IJ
1242 }
1243 }
1244
a1197f5a
IJ
1245 sacked |= TCPCB_SACKED_ACKED;
1246 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1247 tp->sacked_out += pcount;
ddf1af6f 1248 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1249
9e10c47c 1250 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1251 if (tp->lost_skb_hint &&
cc9a672e 1252 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1253 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1254 }
1255
1256 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1257 * frames and clear it. undo_retrans is decreased above, L|R frames
1258 * are accounted above as well.
1259 */
a1197f5a
IJ
1260 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1261 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1262 tp->retrans_out -= pcount;
9e10c47c
IJ
1263 }
1264
a1197f5a 1265 return sacked;
9e10c47c
IJ
1266}
1267
daef52ba
NC
1268/* Shift newly-SACKed bytes from this skb to the immediately previous
1269 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1270 */
f3319816
ED
1271static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1272 struct sk_buff *skb,
a2a385d6
ED
1273 struct tcp_sacktag_state *state,
1274 unsigned int pcount, int shifted, int mss,
1275 bool dup_sack)
832d11c5
IJ
1276{
1277 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1278 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1279 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1280
1281 BUG_ON(!pcount);
1282
4c90d3b3
NC
1283 /* Adjust counters and hints for the newly sacked sequence
1284 * range but discard the return value since prev is already
1285 * marked. We must tag the range first because the seq
1286 * advancement below implicitly advances
1287 * tcp_highest_sack_seq() when skb is highest_sack.
1288 */
1289 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1290 start_seq, end_seq, dup_sack, pcount,
9a568de4 1291 skb->skb_mstamp);
b9f64820 1292 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1293
1294 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1295 tp->lost_cnt_hint += pcount;
1296
832d11c5
IJ
1297 TCP_SKB_CB(prev)->end_seq += shifted;
1298 TCP_SKB_CB(skb)->seq += shifted;
1299
cd7d8498
ED
1300 tcp_skb_pcount_add(prev, pcount);
1301 BUG_ON(tcp_skb_pcount(skb) < pcount);
1302 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1303
1304 /* When we're adding to gso_segs == 1, gso_size will be zero,
1305 * in theory this shouldn't be necessary but as long as DSACK
1306 * code can come after this skb later on it's better to keep
1307 * setting gso_size to something.
1308 */
f69ad292
ED
1309 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1310 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1311
1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1313 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1314 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1315
832d11c5
IJ
1316 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1317 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1318
832d11c5
IJ
1319 if (skb->len > 0) {
1320 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1321 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1322 return false;
832d11c5
IJ
1323 }
1324
1325 /* Whole SKB was eaten :-) */
1326
92ee76b6
IJ
1327 if (skb == tp->retransmit_skb_hint)
1328 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1329 if (skb == tp->lost_skb_hint) {
1330 tp->lost_skb_hint = prev;
1331 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1332 }
1333
5e8a402f 1334 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1335 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1337 TCP_SKB_CB(prev)->end_seq++;
1338
832d11c5
IJ
1339 if (skb == tcp_highest_sack(sk))
1340 tcp_advance_highest_sack(sk, skb);
1341
cfea5a68 1342 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1343 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1344 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1345
75c119af 1346 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1347
c10d9310 1348 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1349
a2a385d6 1350 return true;
832d11c5
IJ
1351}
1352
1353/* I wish gso_size would have a bit more sane initialization than
1354 * something-or-zero which complicates things
1355 */
cf533ea5 1356static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1357{
775ffabf 1358 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1359}
1360
1361/* Shifting pages past head area doesn't work */
cf533ea5 1362static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1363{
1364 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1365}
1366
1367/* Try collapsing SACK blocks spanning across multiple skbs to a single
1368 * skb.
1369 */
1370static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1371 struct tcp_sacktag_state *state,
832d11c5 1372 u32 start_seq, u32 end_seq,
a2a385d6 1373 bool dup_sack)
832d11c5
IJ
1374{
1375 struct tcp_sock *tp = tcp_sk(sk);
1376 struct sk_buff *prev;
1377 int mss;
1378 int pcount = 0;
1379 int len;
1380 int in_sack;
1381
832d11c5
IJ
1382 /* Normally R but no L won't result in plain S */
1383 if (!dup_sack &&
9969ca5f 1384 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1385 goto fallback;
1386 if (!skb_can_shift(skb))
1387 goto fallback;
1388 /* This frame is about to be dropped (was ACKed). */
1389 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1390 goto fallback;
1391
1392 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1393 prev = skb_rb_prev(skb);
1394 if (!prev)
832d11c5 1395 goto fallback;
832d11c5
IJ
1396
1397 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1398 goto fallback;
1399
a643b5d4
MKL
1400 if (!tcp_skb_can_collapse_to(prev))
1401 goto fallback;
1402
832d11c5
IJ
1403 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1404 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1405
1406 if (in_sack) {
1407 len = skb->len;
1408 pcount = tcp_skb_pcount(skb);
775ffabf 1409 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1410
1411 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1412 * drop this restriction as unnecessary
1413 */
775ffabf 1414 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1415 goto fallback;
1416 } else {
1417 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1418 goto noop;
1419 /* CHECKME: This is non-MSS split case only?, this will
1420 * cause skipped skbs due to advancing loop btw, original
1421 * has that feature too
1422 */
1423 if (tcp_skb_pcount(skb) <= 1)
1424 goto noop;
1425
1426 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1427 if (!in_sack) {
1428 /* TODO: head merge to next could be attempted here
1429 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1430 * though it might not be worth of the additional hassle
1431 *
1432 * ...we can probably just fallback to what was done
1433 * previously. We could try merging non-SACKed ones
1434 * as well but it probably isn't going to buy off
1435 * because later SACKs might again split them, and
1436 * it would make skb timestamp tracking considerably
1437 * harder problem.
1438 */
1439 goto fallback;
1440 }
1441
1442 len = end_seq - TCP_SKB_CB(skb)->seq;
1443 BUG_ON(len < 0);
1444 BUG_ON(len > skb->len);
1445
1446 /* MSS boundaries should be honoured or else pcount will
1447 * severely break even though it makes things bit trickier.
1448 * Optimize common case to avoid most of the divides
1449 */
1450 mss = tcp_skb_mss(skb);
1451
1452 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1453 * drop this restriction as unnecessary
1454 */
775ffabf 1455 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1456 goto fallback;
1457
1458 if (len == mss) {
1459 pcount = 1;
1460 } else if (len < mss) {
1461 goto noop;
1462 } else {
1463 pcount = len / mss;
1464 len = pcount * mss;
1465 }
1466 }
1467
4648dc97
NC
1468 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1469 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1470 goto fallback;
1471
832d11c5
IJ
1472 if (!skb_shift(prev, skb, len))
1473 goto fallback;
f3319816 1474 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1475 goto out;
1476
1477 /* Hole filled allows collapsing with the next as well, this is very
1478 * useful when hole on every nth skb pattern happens
1479 */
75c119af
ED
1480 skb = skb_rb_next(prev);
1481 if (!skb)
832d11c5 1482 goto out;
832d11c5 1483
f0bc52f3 1484 if (!skb_can_shift(skb) ||
f0bc52f3 1485 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1486 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1487 goto out;
1488
1489 len = skb->len;
1490 if (skb_shift(prev, skb, len)) {
1491 pcount += tcp_skb_pcount(skb);
f3319816
ED
1492 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1493 len, mss, 0);
832d11c5
IJ
1494 }
1495
1496out:
832d11c5
IJ
1497 return prev;
1498
1499noop:
1500 return skb;
1501
1502fallback:
c10d9310 1503 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1504 return NULL;
1505}
1506
68f8353b
IJ
1507static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1508 struct tcp_sack_block *next_dup,
a1197f5a 1509 struct tcp_sacktag_state *state,
68f8353b 1510 u32 start_seq, u32 end_seq,
a2a385d6 1511 bool dup_sack_in)
68f8353b 1512{
832d11c5
IJ
1513 struct tcp_sock *tp = tcp_sk(sk);
1514 struct sk_buff *tmp;
1515
75c119af 1516 skb_rbtree_walk_from(skb) {
68f8353b 1517 int in_sack = 0;
a2a385d6 1518 bool dup_sack = dup_sack_in;
68f8353b 1519
68f8353b
IJ
1520 /* queue is in-order => we can short-circuit the walk early */
1521 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1522 break;
1523
00db4124 1524 if (next_dup &&
68f8353b
IJ
1525 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1526 in_sack = tcp_match_skb_to_sack(sk, skb,
1527 next_dup->start_seq,
1528 next_dup->end_seq);
1529 if (in_sack > 0)
a2a385d6 1530 dup_sack = true;
68f8353b
IJ
1531 }
1532
832d11c5
IJ
1533 /* skb reference here is a bit tricky to get right, since
1534 * shifting can eat and free both this skb and the next,
1535 * so not even _safe variant of the loop is enough.
1536 */
1537 if (in_sack <= 0) {
a1197f5a
IJ
1538 tmp = tcp_shift_skb_data(sk, skb, state,
1539 start_seq, end_seq, dup_sack);
00db4124 1540 if (tmp) {
832d11c5
IJ
1541 if (tmp != skb) {
1542 skb = tmp;
1543 continue;
1544 }
1545
1546 in_sack = 0;
1547 } else {
1548 in_sack = tcp_match_skb_to_sack(sk, skb,
1549 start_seq,
1550 end_seq);
1551 }
1552 }
1553
68f8353b
IJ
1554 if (unlikely(in_sack < 0))
1555 break;
1556
832d11c5 1557 if (in_sack) {
cc9a672e
NC
1558 TCP_SKB_CB(skb)->sacked =
1559 tcp_sacktag_one(sk,
1560 state,
1561 TCP_SKB_CB(skb)->sacked,
1562 TCP_SKB_CB(skb)->seq,
1563 TCP_SKB_CB(skb)->end_seq,
1564 dup_sack,
59c9af42 1565 tcp_skb_pcount(skb),
9a568de4 1566 skb->skb_mstamp);
b9f64820 1567 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1568 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1569 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1570
832d11c5
IJ
1571 if (!before(TCP_SKB_CB(skb)->seq,
1572 tcp_highest_sack_seq(tp)))
1573 tcp_advance_highest_sack(sk, skb);
1574 }
68f8353b
IJ
1575 }
1576 return skb;
1577}
1578
75c119af
ED
1579static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1580 struct tcp_sacktag_state *state,
1581 u32 seq)
1582{
1583 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1584 struct sk_buff *skb;
75c119af
ED
1585
1586 while (*p) {
1587 parent = *p;
1588 skb = rb_to_skb(parent);
1589 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1590 p = &parent->rb_left;
1591 continue;
1592 }
1593 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1594 p = &parent->rb_right;
1595 continue;
1596 }
75c119af
ED
1597 return skb;
1598 }
1599 return NULL;
1600}
1601
68f8353b 1602static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1603 struct tcp_sacktag_state *state,
1604 u32 skip_to_seq)
68f8353b 1605{
75c119af
ED
1606 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1607 return skb;
d152a7d8 1608
75c119af 1609 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1610}
1611
1612static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1613 struct sock *sk,
1614 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1615 struct tcp_sacktag_state *state,
1616 u32 skip_to_seq)
68f8353b 1617{
51456b29 1618 if (!next_dup)
68f8353b
IJ
1619 return skb;
1620
1621 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1622 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1623 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1624 next_dup->start_seq, next_dup->end_seq,
1625 1);
68f8353b
IJ
1626 }
1627
1628 return skb;
1629}
1630
cf533ea5 1631static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1632{
1633 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1634}
1635
1da177e4 1636static int
cf533ea5 1637tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1638 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1639{
1640 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1641 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1642 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1643 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1644 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1645 struct tcp_sack_block *cache;
1646 struct sk_buff *skb;
4389dded 1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1648 int used_sacks;
a2a385d6 1649 bool found_dup_sack = false;
68f8353b 1650 int i, j;
fda03fbb 1651 int first_sack_index;
1da177e4 1652
196da974 1653 state->flag = 0;
737ff314 1654 state->reord = tp->snd_nxt;
a1197f5a 1655
737ff314 1656 if (!tp->sacked_out)
6859d494 1657 tcp_highest_sack_reset(sk);
1da177e4 1658
1ed83465 1659 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1660 num_sacks, prior_snd_una);
b9f64820 1661 if (found_dup_sack) {
196da974 1662 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1663 tp->delivered++; /* A spurious retransmission is delivered */
1664 }
6f74651a
BE
1665
1666 /* Eliminate too old ACKs, but take into
1667 * account more or less fresh ones, they can
1668 * contain valid SACK info.
1669 */
1670 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1671 return 0;
1672