tcp: Namespace-ify sysctl_tcp_invalid_ratelimit
[linux-block.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
5941521c 78#include <trace/events/tcp.h>
60e2a778
UB
79#include <linux/unaligned/access_ok.h>
80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 83
1da177e4
LT
84#define FLAG_DATA 0x01 /* Incoming frame contained data. */
85#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89#define FLAG_DATA_SACKED 0x20 /* New SACK. */
90#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 91#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 92#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 93#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 94#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 95#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 96#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 97#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 98#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 99#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
100
101#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
103#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
104#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
105
1da177e4 106#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 107#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 108
e662ca40
YC
109#define REXMIT_NONE 0 /* no loss recovery to do */
110#define REXMIT_LOST 1 /* retransmit packets marked lost */
111#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
112
0b9aefea
MRL
113static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 unsigned int len)
dcb17d22
MRL
115{
116 static bool __once __read_mostly;
117
118 if (!__once) {
119 struct net_device *dev;
120
121 __once = true;
122
123 rcu_read_lock();
124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
125 if (!dev || len >= dev->mtu)
126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
128 rcu_read_unlock();
129 }
130}
131
e905a9ed 132/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 133 * real world.
e905a9ed 134 */
056834d9 135static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 136{
463c84b9 137 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 138 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 139 unsigned int len;
1da177e4 140
e905a9ed 141 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
142
143 /* skb->len may jitter because of SACKs, even if peer
144 * sends good full-sized frames.
145 */
056834d9 146 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 147 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 tcp_sk(sk)->advmss);
0b9aefea
MRL
150 /* Account for possibly-removed options */
151 if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 MAX_TCP_OPTION_SPACE))
153 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
154 } else {
155 /* Otherwise, we make more careful check taking into account,
156 * that SACKs block is variable.
157 *
158 * "len" is invariant segment length, including TCP header.
159 */
9c70220b 160 len += skb->data - skb_transport_header(skb);
bee7ca9e 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
162 /* If PSH is not set, packet should be
163 * full sized, provided peer TCP is not badly broken.
164 * This observation (if it is correct 8)) allows
165 * to handle super-low mtu links fairly.
166 */
167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
169 /* Subtract also invariant (if peer is RFC compliant),
170 * tcp header plus fixed timestamp option length.
171 * Resulting "len" is MSS free of SACK jitter.
172 */
463c84b9
ACM
173 len -= tcp_sk(sk)->tcp_header_len;
174 icsk->icsk_ack.last_seg_size = len;
1da177e4 175 if (len == lss) {
463c84b9 176 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
177 return;
178 }
179 }
1ef9696c
AK
180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
183 }
184}
185
463c84b9 186static void tcp_incr_quickack(struct sock *sk)
1da177e4 187{
463c84b9 188 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 190
056834d9
IJ
191 if (quickacks == 0)
192 quickacks = 2;
463c84b9
ACM
193 if (quickacks > icsk->icsk_ack.quick)
194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
195}
196
1b9f4092 197static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 struct inet_connection_sock *icsk = inet_csk(sk);
200 tcp_incr_quickack(sk);
201 icsk->icsk_ack.pingpong = 0;
202 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
203}
204
205/* Send ACKs quickly, if "quick" count is not exhausted
206 * and the session is not interactive.
207 */
208
2251ae46 209static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 210{
463c84b9 211 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 212 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 213
2251ae46
JM
214 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
216}
217
735d3831 218static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 219{
056834d9 220 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
221 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222}
223
735d3831 224static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
225{
226 if (tcp_hdr(skb)->cwr)
227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228}
229
735d3831 230static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
231{
232 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233}
234
735d3831 235static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 236{
b82d1bb4 237 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 238 case INET_ECN_NOT_ECT:
bdf1ee5d 239 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
240 * and we already seen ECT on a previous segment,
241 * it is probably a retransmit.
242 */
243 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 244 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
245 break;
246 case INET_ECN_CE:
9890092e
FW
247 if (tcp_ca_needs_ecn((struct sock *)tp))
248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249
aae06bf5
ED
250 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 /* Better not delay acks, sender can have a very low cwnd */
252 tcp_enter_quickack_mode((struct sock *)tp);
253 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 }
9890092e
FW
255 tp->ecn_flags |= TCP_ECN_SEEN;
256 break;
7a269ffa 257 default:
9890092e
FW
258 if (tcp_ca_needs_ecn((struct sock *)tp))
259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 260 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 261 break;
bdf1ee5d
IJ
262 }
263}
264
735d3831
FW
265static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266{
267 if (tp->ecn_flags & TCP_ECN_OK)
268 __tcp_ecn_check_ce(tp, skb);
269}
270
271static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 272{
056834d9 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
274 tp->ecn_flags &= ~TCP_ECN_OK;
275}
276
735d3831 277static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 278{
056834d9 279 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
280 tp->ecn_flags &= ~TCP_ECN_OK;
281}
282
735d3831 283static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 284{
056834d9 285 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
286 return true;
287 return false;
bdf1ee5d
IJ
288}
289
1da177e4
LT
290/* Buffer size and advertised window tuning.
291 *
292 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293 */
294
6ae70532 295static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 296{
6ae70532 297 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 298 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
299 int sndmem, per_mss;
300 u32 nr_segs;
301
302 /* Worst case is non GSO/TSO : each frame consumes one skb
303 * and skb->head is kmalloced using power of two area of memory
304 */
305 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 MAX_TCP_HEADER +
307 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308
309 per_mss = roundup_pow_of_two(per_mss) +
310 SKB_DATA_ALIGN(sizeof(struct sk_buff));
311
312 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314
315 /* Fast Recovery (RFC 5681 3.2) :
316 * Cubic needs 1.7 factor, rounded to 2 to include
317 * extra cushion (application might react slowly to POLLOUT)
318 */
77bfc174
YC
319 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 sndmem *= nr_segs * per_mss;
1da177e4 321
06a59ecb
ED
322 if (sk->sk_sndbuf < sndmem)
323 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
324}
325
326/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327 *
328 * All tcp_full_space() is split to two parts: "network" buffer, allocated
329 * forward and advertised in receiver window (tp->rcv_wnd) and
330 * "application buffer", required to isolate scheduling/application
331 * latencies from network.
332 * window_clamp is maximal advertised window. It can be less than
333 * tcp_full_space(), in this case tcp_full_space() - window_clamp
334 * is reserved for "application" buffer. The less window_clamp is
335 * the smoother our behaviour from viewpoint of network, but the lower
336 * throughput and the higher sensitivity of the connection to losses. 8)
337 *
338 * rcv_ssthresh is more strict window_clamp used at "slow start"
339 * phase to predict further behaviour of this connection.
340 * It is used for two goals:
341 * - to enforce header prediction at sender, even when application
342 * requires some significant "application buffer". It is check #1.
343 * - to prevent pruning of receive queue because of misprediction
344 * of receiver window. Check #2.
345 *
346 * The scheme does not work when sender sends good segments opening
caa20d9a 347 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
348 * in common situations. Otherwise, we have to rely on queue collapsing.
349 */
350
351/* Slow part of check#2. */
9e412ba7 352static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 353{
9e412ba7 354 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 355 /* Optimize this! */
94f0893e
ED
356 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
357 int window = tcp_win_from_space(sk, sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
358
359 while (tp->rcv_ssthresh <= window) {
360 if (truesize <= skb->len)
463c84b9 361 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
362
363 truesize >>= 1;
364 window >>= 1;
365 }
366 return 0;
367}
368
cf533ea5 369static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 370{
9e412ba7
IJ
371 struct tcp_sock *tp = tcp_sk(sk);
372
1da177e4
LT
373 /* Check #1 */
374 if (tp->rcv_ssthresh < tp->window_clamp &&
375 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 376 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
377 int incr;
378
379 /* Check #2. Increase window, if skb with such overhead
380 * will fit to rcvbuf in future.
381 */
94f0893e 382 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 383 incr = 2 * tp->advmss;
1da177e4 384 else
9e412ba7 385 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
386
387 if (incr) {
4d846f02 388 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
389 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 tp->window_clamp);
463c84b9 391 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
392 }
393 }
394}
395
396/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
397static void tcp_fixup_rcvbuf(struct sock *sk)
398{
e9266a02 399 u32 mss = tcp_sk(sk)->advmss;
e9266a02 400 int rcvmem;
1da177e4 401
85f16525
YC
402 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 tcp_default_init_rwnd(mss);
e9266a02 404
b0983d3c
ED
405 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 * Allow enough cushion so that sender is not limited by our window
407 */
4540c0cf 408 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
b0983d3c
ED
409 rcvmem <<= 2;
410
e9266a02
ED
411 if (sk->sk_rcvbuf < rcvmem)
412 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
413}
414
caa20d9a 415/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
416 * established state.
417 */
10467163 418void tcp_init_buffer_space(struct sock *sk)
1da177e4 419{
0c12654a 420 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
421 struct tcp_sock *tp = tcp_sk(sk);
422 int maxwin;
423
424 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 tcp_fixup_rcvbuf(sk);
426 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 427 tcp_sndbuf_expand(sk);
1da177e4
LT
428
429 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 430 tcp_mstamp_refresh(tp);
645f4c6f 431 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 432 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
433
434 maxwin = tcp_full_space(sk);
435
436 if (tp->window_clamp >= maxwin) {
437 tp->window_clamp = maxwin;
438
0c12654a 439 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 440 tp->window_clamp = max(maxwin -
0c12654a 441 (maxwin >> tcp_app_win),
1da177e4
LT
442 4 * tp->advmss);
443 }
444
445 /* Force reservation of one segment. */
0c12654a 446 if (tcp_app_win &&
1da177e4
LT
447 tp->window_clamp > 2 * tp->advmss &&
448 tp->window_clamp + tp->advmss > maxwin)
449 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450
451 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 452 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
453}
454
1da177e4 455/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 456static void tcp_clamp_window(struct sock *sk)
1da177e4 457{
9e412ba7 458 struct tcp_sock *tp = tcp_sk(sk);
6687e988 459 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 460
6687e988 461 icsk->icsk_ack.quick = 0;
1da177e4 462
326f36e9
JH
463 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
464 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 465 !tcp_under_memory_pressure(sk) &&
180d8cd9 466 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
467 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
468 sysctl_tcp_rmem[2]);
1da177e4 469 }
326f36e9 470 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 471 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
472}
473
40efc6fa
SH
474/* Initialize RCV_MSS value.
475 * RCV_MSS is an our guess about MSS used by the peer.
476 * We haven't any direct information about the MSS.
477 * It's better to underestimate the RCV_MSS rather than overestimate.
478 * Overestimations make us ACKing less frequently than needed.
479 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
480 */
481void tcp_initialize_rcv_mss(struct sock *sk)
482{
cf533ea5 483 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
484 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
485
056834d9 486 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 487 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
488 hint = max(hint, TCP_MIN_MSS);
489
490 inet_csk(sk)->icsk_ack.rcv_mss = hint;
491}
4bc2f18b 492EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 493
1da177e4
LT
494/* Receiver "autotuning" code.
495 *
496 * The algorithm for RTT estimation w/o timestamps is based on
497 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 498 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
499 *
500 * More detail on this code can be found at
631dd1a8 501 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
502 * though this reference is out of date. A new paper
503 * is pending.
504 */
505static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
506{
645f4c6f 507 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
508 long m = sample;
509
510 if (m == 0)
511 m = 1;
512
513 if (new_sample != 0) {
514 /* If we sample in larger samples in the non-timestamp
515 * case, we could grossly overestimate the RTT especially
516 * with chatty applications or bulk transfer apps which
517 * are stalled on filesystem I/O.
518 *
519 * Also, since we are only going for a minimum in the
31f34269 520 * non-timestamp case, we do not smooth things out
caa20d9a 521 * else with timestamps disabled convergence takes too
1da177e4
LT
522 * long.
523 */
524 if (!win_dep) {
525 m -= (new_sample >> 3);
526 new_sample += m;
18a223e0
NC
527 } else {
528 m <<= 3;
529 if (m < new_sample)
530 new_sample = m;
531 }
1da177e4 532 } else {
caa20d9a 533 /* No previous measure. */
1da177e4
LT
534 new_sample = m << 3;
535 }
536
645f4c6f 537 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
538}
539
540static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
541{
645f4c6f
ED
542 u32 delta_us;
543
9a568de4 544 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
545 goto new_measure;
546 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
547 return;
9a568de4 548 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
645f4c6f 549 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
550
551new_measure:
552 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 553 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
554}
555
056834d9
IJ
556static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
557 const struct sk_buff *skb)
1da177e4 558{
463c84b9 559 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 560
1da177e4
LT
561 if (tp->rx_opt.rcv_tsecr &&
562 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
563 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
564 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
565 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
566
567 tcp_rcv_rtt_update(tp, delta_us, 0);
568 }
1da177e4
LT
569}
570
571/*
572 * This function should be called every time data is copied to user space.
573 * It calculates the appropriate TCP receive buffer space.
574 */
575void tcp_rcv_space_adjust(struct sock *sk)
576{
577 struct tcp_sock *tp = tcp_sk(sk);
578 int time;
b0983d3c 579 int copied;
e905a9ed 580
9a568de4 581 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 582 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 583 return;
e905a9ed 584
b0983d3c
ED
585 /* Number of bytes copied to user in last RTT */
586 copied = tp->copied_seq - tp->rcvq_space.seq;
587 if (copied <= tp->rcvq_space.space)
588 goto new_measure;
589
590 /* A bit of theory :
591 * copied = bytes received in previous RTT, our base window
592 * To cope with packet losses, we need a 2x factor
593 * To cope with slow start, and sender growing its cwin by 100 %
594 * every RTT, we need a 4x factor, because the ACK we are sending
595 * now is for the next RTT, not the current one :
596 * <prev RTT . ><current RTT .. ><next RTT .... >
597 */
598
4540c0cf 599 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c
ED
600 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
601 int rcvwin, rcvmem, rcvbuf;
1da177e4 602
b0983d3c
ED
603 /* minimal window to cope with packet losses, assuming
604 * steady state. Add some cushion because of small variations.
605 */
606 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 607
b0983d3c
ED
608 /* If rate increased by 25%,
609 * assume slow start, rcvwin = 3 * copied
610 * If rate increased by 50%,
611 * assume sender can use 2x growth, rcvwin = 4 * copied
612 */
613 if (copied >=
614 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
615 if (copied >=
616 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
617 rcvwin <<= 1;
618 else
619 rcvwin += (rcvwin >> 1);
620 }
1da177e4 621
b0983d3c 622 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 623 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 624 rcvmem += 128;
1da177e4 625
b0983d3c
ED
626 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
627 if (rcvbuf > sk->sk_rcvbuf) {
628 sk->sk_rcvbuf = rcvbuf;
1da177e4 629
b0983d3c
ED
630 /* Make the window clamp follow along. */
631 tp->window_clamp = rcvwin;
1da177e4
LT
632 }
633 }
b0983d3c 634 tp->rcvq_space.space = copied;
e905a9ed 635
1da177e4
LT
636new_measure:
637 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 638 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
639}
640
641/* There is something which you must keep in mind when you analyze the
642 * behavior of the tp->ato delayed ack timeout interval. When a
643 * connection starts up, we want to ack as quickly as possible. The
644 * problem is that "good" TCP's do slow start at the beginning of data
645 * transmission. The means that until we send the first few ACK's the
646 * sender will sit on his end and only queue most of his data, because
647 * he can only send snd_cwnd unacked packets at any given time. For
648 * each ACK we send, he increments snd_cwnd and transmits more of his
649 * queue. -DaveM
650 */
9e412ba7 651static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 652{
9e412ba7 653 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 654 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
655 u32 now;
656
463c84b9 657 inet_csk_schedule_ack(sk);
1da177e4 658
463c84b9 659 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
660
661 tcp_rcv_rtt_measure(tp);
e905a9ed 662
70eabf0e 663 now = tcp_jiffies32;
1da177e4 664
463c84b9 665 if (!icsk->icsk_ack.ato) {
1da177e4
LT
666 /* The _first_ data packet received, initialize
667 * delayed ACK engine.
668 */
463c84b9
ACM
669 tcp_incr_quickack(sk);
670 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 671 } else {
463c84b9 672 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 673
056834d9 674 if (m <= TCP_ATO_MIN / 2) {
1da177e4 675 /* The fastest case is the first. */
463c84b9
ACM
676 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
677 } else if (m < icsk->icsk_ack.ato) {
678 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
679 if (icsk->icsk_ack.ato > icsk->icsk_rto)
680 icsk->icsk_ack.ato = icsk->icsk_rto;
681 } else if (m > icsk->icsk_rto) {
caa20d9a 682 /* Too long gap. Apparently sender failed to
1da177e4
LT
683 * restart window, so that we send ACKs quickly.
684 */
463c84b9 685 tcp_incr_quickack(sk);
3ab224be 686 sk_mem_reclaim(sk);
1da177e4
LT
687 }
688 }
463c84b9 689 icsk->icsk_ack.lrcvtime = now;
1da177e4 690
735d3831 691 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
692
693 if (skb->len >= 128)
9e412ba7 694 tcp_grow_window(sk, skb);
1da177e4
LT
695}
696
1da177e4
LT
697/* Called to compute a smoothed rtt estimate. The data fed to this
698 * routine either comes from timestamps, or from segments that were
699 * known _not_ to have been retransmitted [see Karn/Partridge
700 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
701 * piece by Van Jacobson.
702 * NOTE: the next three routines used to be one big routine.
703 * To save cycles in the RFC 1323 implementation it was better to break
704 * it up into three procedures. -- erics
705 */
740b0f18 706static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 707{
6687e988 708 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
709 long m = mrtt_us; /* RTT */
710 u32 srtt = tp->srtt_us;
1da177e4 711
1da177e4
LT
712 /* The following amusing code comes from Jacobson's
713 * article in SIGCOMM '88. Note that rtt and mdev
714 * are scaled versions of rtt and mean deviation.
e905a9ed 715 * This is designed to be as fast as possible
1da177e4
LT
716 * m stands for "measurement".
717 *
718 * On a 1990 paper the rto value is changed to:
719 * RTO = rtt + 4 * mdev
720 *
721 * Funny. This algorithm seems to be very broken.
722 * These formulae increase RTO, when it should be decreased, increase
31f34269 723 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
724 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
725 * does not matter how to _calculate_ it. Seems, it was trap
726 * that VJ failed to avoid. 8)
727 */
4a5ab4e2
ED
728 if (srtt != 0) {
729 m -= (srtt >> 3); /* m is now error in rtt est */
730 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
731 if (m < 0) {
732 m = -m; /* m is now abs(error) */
740b0f18 733 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
734 /* This is similar to one of Eifel findings.
735 * Eifel blocks mdev updates when rtt decreases.
736 * This solution is a bit different: we use finer gain
737 * for mdev in this case (alpha*beta).
738 * Like Eifel it also prevents growth of rto,
739 * but also it limits too fast rto decreases,
740 * happening in pure Eifel.
741 */
742 if (m > 0)
743 m >>= 3;
744 } else {
740b0f18 745 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 746 }
740b0f18
ED
747 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
748 if (tp->mdev_us > tp->mdev_max_us) {
749 tp->mdev_max_us = tp->mdev_us;
750 if (tp->mdev_max_us > tp->rttvar_us)
751 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
752 }
753 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
754 if (tp->mdev_max_us < tp->rttvar_us)
755 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 756 tp->rtt_seq = tp->snd_nxt;
740b0f18 757 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
758 }
759 } else {
760 /* no previous measure. */
4a5ab4e2 761 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
762 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
763 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
764 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
765 tp->rtt_seq = tp->snd_nxt;
766 }
740b0f18 767 tp->srtt_us = max(1U, srtt);
1da177e4
LT
768}
769
95bd09eb
ED
770/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
771 * Note: TCP stack does not yet implement pacing.
772 * FQ packet scheduler can be used to implement cheap but effective
773 * TCP pacing, to smooth the burst on large writes when packets
774 * in flight is significantly lower than cwnd (or rwin)
775 */
43e122b0
ED
776int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
777int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
778
95bd09eb
ED
779static void tcp_update_pacing_rate(struct sock *sk)
780{
781 const struct tcp_sock *tp = tcp_sk(sk);
782 u64 rate;
783
784 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
785 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
786
787 /* current rate is (cwnd * mss) / srtt
788 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
789 * In Congestion Avoidance phase, set it to 120 % the current rate.
790 *
791 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
792 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
793 * end of slow start and should slow down.
794 */
795 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
796 rate *= sysctl_tcp_pacing_ss_ratio;
797 else
798 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
799
800 rate *= max(tp->snd_cwnd, tp->packets_out);
801
740b0f18
ED
802 if (likely(tp->srtt_us))
803 do_div(rate, tp->srtt_us);
95bd09eb 804
ba537427
ED
805 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
806 * without any lock. We want to make sure compiler wont store
807 * intermediate values in this location.
808 */
809 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
810 sk->sk_max_pacing_rate);
95bd09eb
ED
811}
812
1da177e4
LT
813/* Calculate rto without backoff. This is the second half of Van Jacobson's
814 * routine referred to above.
815 */
f7e56a76 816static void tcp_set_rto(struct sock *sk)
1da177e4 817{
463c84b9 818 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
819 /* Old crap is replaced with new one. 8)
820 *
821 * More seriously:
822 * 1. If rtt variance happened to be less 50msec, it is hallucination.
823 * It cannot be less due to utterly erratic ACK generation made
824 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
825 * to do with delayed acks, because at cwnd>2 true delack timeout
826 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 827 * ACKs in some circumstances.
1da177e4 828 */
f1ecd5d9 829 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
830
831 /* 2. Fixups made earlier cannot be right.
832 * If we do not estimate RTO correctly without them,
833 * all the algo is pure shit and should be replaced
caa20d9a 834 * with correct one. It is exactly, which we pretend to do.
1da177e4 835 */
1da177e4 836
ee6aac59
IJ
837 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
838 * guarantees that rto is higher.
839 */
f1ecd5d9 840 tcp_bound_rto(sk);
1da177e4
LT
841}
842
cf533ea5 843__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
844{
845 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
846
22b71c8f 847 if (!cwnd)
442b9635 848 cwnd = TCP_INIT_CWND;
1da177e4
LT
849 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
850}
851
e60402d0
IJ
852/*
853 * Packet counting of FACK is based on in-order assumptions, therefore TCP
854 * disables it when reordering is detected
855 */
4aabd8ef 856void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 857{
85cc391c
IJ
858 /* RFC3517 uses different metric in lost marker => reset on change */
859 if (tcp_is_fack(tp))
860 tp->lost_skb_hint = NULL;
ab56222a 861 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
862}
863
564262c1 864/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
865static void tcp_dsack_seen(struct tcp_sock *tp)
866{
ab56222a 867 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
868}
869
6687e988
ACM
870static void tcp_update_reordering(struct sock *sk, const int metric,
871 const int ts)
1da177e4 872{
6687e988 873 struct tcp_sock *tp = tcp_sk(sk);
2d2517ee 874 int mib_idx;
40b215e5 875
6f5b24ee
SHY
876 if (WARN_ON_ONCE(metric < 0))
877 return;
878
2d2517ee 879 if (metric > tp->reordering) {
c6e21803 880 tp->reordering = min(sock_net(sk)->ipv4.sysctl_tcp_max_reordering, metric);
1da177e4 881
1da177e4 882#if FASTRETRANS_DEBUG > 1
91df42be
JP
883 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
884 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
885 tp->reordering,
886 tp->fackets_out,
887 tp->sacked_out,
888 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 889#endif
e60402d0 890 tcp_disable_fack(tp);
1da177e4 891 }
eed530b6 892
4f41b1c5 893 tp->rack.reord = 1;
2d2517ee
YC
894
895 /* This exciting event is worth to be remembered. 8) */
896 if (ts)
897 mib_idx = LINUX_MIB_TCPTSREORDER;
898 else if (tcp_is_reno(tp))
899 mib_idx = LINUX_MIB_TCPRENOREORDER;
900 else if (tcp_is_fack(tp))
901 mib_idx = LINUX_MIB_TCPFACKREORDER;
902 else
903 mib_idx = LINUX_MIB_TCPSACKREORDER;
904
905 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4
LT
906}
907
006f582c 908/* This must be called before lost_out is incremented */
c8c213f2
IJ
909static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
910{
51456b29 911 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
912 before(TCP_SKB_CB(skb)->seq,
913 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 914 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
915}
916
0682e690
NC
917/* Sum the number of packets on the wire we have marked as lost.
918 * There are two cases we care about here:
919 * a) Packet hasn't been marked lost (nor retransmitted),
920 * and this is the first loss.
921 * b) Packet has been marked both lost and retransmitted,
922 * and this means we think it was lost again.
923 */
924static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
925{
926 __u8 sacked = TCP_SKB_CB(skb)->sacked;
927
928 if (!(sacked & TCPCB_LOST) ||
929 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
930 tp->lost += tcp_skb_pcount(skb);
931}
932
41ea36e3
IJ
933static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
934{
935 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
936 tcp_verify_retransmit_hint(tp, skb);
937
938 tp->lost_out += tcp_skb_pcount(skb);
0682e690 939 tcp_sum_lost(tp, skb);
41ea36e3
IJ
940 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
941 }
942}
943
4f41b1c5 944void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
945{
946 tcp_verify_retransmit_hint(tp, skb);
947
0682e690 948 tcp_sum_lost(tp, skb);
006f582c
IJ
949 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
950 tp->lost_out += tcp_skb_pcount(skb);
951 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
952 }
953}
954
1da177e4
LT
955/* This procedure tags the retransmission queue when SACKs arrive.
956 *
957 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
958 * Packets in queue with these bits set are counted in variables
959 * sacked_out, retrans_out and lost_out, correspondingly.
960 *
961 * Valid combinations are:
962 * Tag InFlight Description
963 * 0 1 - orig segment is in flight.
964 * S 0 - nothing flies, orig reached receiver.
965 * L 0 - nothing flies, orig lost by net.
966 * R 2 - both orig and retransmit are in flight.
967 * L|R 1 - orig is lost, retransmit is in flight.
968 * S|R 1 - orig reached receiver, retrans is still in flight.
969 * (L|S|R is logically valid, it could occur when L|R is sacked,
970 * but it is equivalent to plain S and code short-curcuits it to S.
971 * L|S is logically invalid, it would mean -1 packet in flight 8))
972 *
973 * These 6 states form finite state machine, controlled by the following events:
974 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
975 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 976 * 3. Loss detection event of two flavors:
1da177e4
LT
977 * A. Scoreboard estimator decided the packet is lost.
978 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
979 * A''. Its FACK modification, head until snd.fack is lost.
980 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
981 * segment was retransmitted.
982 * 4. D-SACK added new rule: D-SACK changes any tag to S.
983 *
984 * It is pleasant to note, that state diagram turns out to be commutative,
985 * so that we are allowed not to be bothered by order of our actions,
986 * when multiple events arrive simultaneously. (see the function below).
987 *
988 * Reordering detection.
989 * --------------------
990 * Reordering metric is maximal distance, which a packet can be displaced
991 * in packet stream. With SACKs we can estimate it:
992 *
993 * 1. SACK fills old hole and the corresponding segment was not
994 * ever retransmitted -> reordering. Alas, we cannot use it
995 * when segment was retransmitted.
996 * 2. The last flaw is solved with D-SACK. D-SACK arrives
997 * for retransmitted and already SACKed segment -> reordering..
998 * Both of these heuristics are not used in Loss state, when we cannot
999 * account for retransmits accurately.
5b3c9882
IJ
1000 *
1001 * SACK block validation.
1002 * ----------------------
1003 *
1004 * SACK block range validation checks that the received SACK block fits to
1005 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1006 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1007 * it means that the receiver is rather inconsistent with itself reporting
1008 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1009 * perfectly valid, however, in light of RFC2018 which explicitly states
1010 * that "SACK block MUST reflect the newest segment. Even if the newest
1011 * segment is going to be discarded ...", not that it looks very clever
1012 * in case of head skb. Due to potentional receiver driven attacks, we
1013 * choose to avoid immediate execution of a walk in write queue due to
1014 * reneging and defer head skb's loss recovery to standard loss recovery
1015 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1016 *
1017 * Implements also blockage to start_seq wrap-around. Problem lies in the
1018 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1019 * there's no guarantee that it will be before snd_nxt (n). The problem
1020 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1021 * wrap (s_w):
1022 *
1023 * <- outs wnd -> <- wrapzone ->
1024 * u e n u_w e_w s n_w
1025 * | | | | | | |
1026 * |<------------+------+----- TCP seqno space --------------+---------->|
1027 * ...-- <2^31 ->| |<--------...
1028 * ...---- >2^31 ------>| |<--------...
1029 *
1030 * Current code wouldn't be vulnerable but it's better still to discard such
1031 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1032 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1033 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1034 * equal to the ideal case (infinite seqno space without wrap caused issues).
1035 *
1036 * With D-SACK the lower bound is extended to cover sequence space below
1037 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1038 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1039 * for the normal SACK blocks, explained above). But there all simplicity
1040 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1041 * fully below undo_marker they do not affect behavior in anyway and can
1042 * therefore be safely ignored. In rare cases (which are more or less
1043 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1044 * fragmentation and packet reordering past skb's retransmission. To consider
1045 * them correctly, the acceptable range must be extended even more though
1046 * the exact amount is rather hard to quantify. However, tp->max_window can
1047 * be used as an exaggerated estimate.
1da177e4 1048 */
a2a385d6
ED
1049static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1050 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1051{
1052 /* Too far in future, or reversed (interpretation is ambiguous) */
1053 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1054 return false;
5b3c9882
IJ
1055
1056 /* Nasty start_seq wrap-around check (see comments above) */
1057 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1058 return false;
5b3c9882 1059
564262c1 1060 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1061 * start_seq == snd_una is non-sensical (see comments above)
1062 */
1063 if (after(start_seq, tp->snd_una))
a2a385d6 1064 return true;
5b3c9882
IJ
1065
1066 if (!is_dsack || !tp->undo_marker)
a2a385d6 1067 return false;
5b3c9882
IJ
1068
1069 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1070 if (after(end_seq, tp->snd_una))
a2a385d6 1071 return false;
5b3c9882
IJ
1072
1073 if (!before(start_seq, tp->undo_marker))
a2a385d6 1074 return true;
5b3c9882
IJ
1075
1076 /* Too old */
1077 if (!after(end_seq, tp->undo_marker))
a2a385d6 1078 return false;
5b3c9882
IJ
1079
1080 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1081 * start_seq < undo_marker and end_seq >= undo_marker.
1082 */
1083 return !before(start_seq, end_seq - tp->max_window);
1084}
1085
a2a385d6
ED
1086static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1087 struct tcp_sack_block_wire *sp, int num_sacks,
1088 u32 prior_snd_una)
d06e021d 1089{
1ed83465 1090 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1091 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1092 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1093 bool dup_sack = false;
d06e021d
DM
1094
1095 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1096 dup_sack = true;
e60402d0 1097 tcp_dsack_seen(tp);
c10d9310 1098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1099 } else if (num_sacks > 1) {
d3e2ce3b
HH
1100 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1101 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1102
1103 if (!after(end_seq_0, end_seq_1) &&
1104 !before(start_seq_0, start_seq_1)) {
a2a385d6 1105 dup_sack = true;
e60402d0 1106 tcp_dsack_seen(tp);
c10d9310 1107 NET_INC_STATS(sock_net(sk),
de0744af 1108 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1109 }
1110 }
1111
1112 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1113 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1114 !after(end_seq_0, prior_snd_una) &&
1115 after(end_seq_0, tp->undo_marker))
1116 tp->undo_retrans--;
1117
1118 return dup_sack;
1119}
1120
a1197f5a 1121struct tcp_sacktag_state {
740b0f18
ED
1122 int reord;
1123 int fack_count;
31231a8a
KKJ
1124 /* Timestamps for earliest and latest never-retransmitted segment
1125 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1126 * but congestion control should still get an accurate delay signal.
1127 */
9a568de4
ED
1128 u64 first_sackt;
1129 u64 last_sackt;
b9f64820 1130 struct rate_sample *rate;
740b0f18 1131 int flag;
75c119af 1132 unsigned int mss_now;
a1197f5a
IJ
1133};
1134
d1935942
IJ
1135/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1136 * the incoming SACK may not exactly match but we can find smaller MSS
1137 * aligned portion of it that matches. Therefore we might need to fragment
1138 * which may fail and creates some hassle (caller must handle error case
1139 * returns).
832d11c5
IJ
1140 *
1141 * FIXME: this could be merged to shift decision code
d1935942 1142 */
0f79efdc 1143static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1144 u32 start_seq, u32 end_seq)
d1935942 1145{
a2a385d6
ED
1146 int err;
1147 bool in_sack;
d1935942 1148 unsigned int pkt_len;
adb92db8 1149 unsigned int mss;
d1935942
IJ
1150
1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1152 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1153
1154 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1155 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1156 mss = tcp_skb_mss(skb);
d1935942
IJ
1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1158
adb92db8 1159 if (!in_sack) {
d1935942 1160 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1161 if (pkt_len < mss)
1162 pkt_len = mss;
1163 } else {
d1935942 1164 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1165 if (pkt_len < mss)
1166 return -EINVAL;
1167 }
1168
1169 /* Round if necessary so that SACKs cover only full MSSes
1170 * and/or the remaining small portion (if present)
1171 */
1172 if (pkt_len > mss) {
1173 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1174 if (!in_sack && new_len < pkt_len)
adb92db8 1175 new_len += mss;
adb92db8
IJ
1176 pkt_len = new_len;
1177 }
b451e5d2
YC
1178
1179 if (pkt_len >= skb->len && !in_sack)
1180 return 0;
1181
75c119af
ED
1182 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1183 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1184 if (err < 0)
1185 return err;
1186 }
1187
1188 return in_sack;
1189}
1190
cc9a672e
NC
1191/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192static u8 tcp_sacktag_one(struct sock *sk,
1193 struct tcp_sacktag_state *state, u8 sacked,
1194 u32 start_seq, u32 end_seq,
740b0f18 1195 int dup_sack, int pcount,
9a568de4 1196 u64 xmit_time)
9e10c47c 1197{
6859d494 1198 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1199 int fack_count = state->fack_count;
9e10c47c
IJ
1200
1201 /* Account D-SACK for retransmitted packet. */
1202 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1203 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1204 after(end_seq, tp->undo_marker))
9e10c47c 1205 tp->undo_retrans--;
ede9f3b1 1206 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1207 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1208 }
1209
1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1211 if (!after(end_seq, tp->snd_una))
a1197f5a 1212 return sacked;
9e10c47c
IJ
1213
1214 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1215 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1216
9e10c47c
IJ
1217 if (sacked & TCPCB_SACKED_RETRANS) {
1218 /* If the segment is not tagged as lost,
1219 * we do not clear RETRANS, believing
1220 * that retransmission is still in flight.
1221 */
1222 if (sacked & TCPCB_LOST) {
a1197f5a 1223 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1224 tp->lost_out -= pcount;
1225 tp->retrans_out -= pcount;
9e10c47c
IJ
1226 }
1227 } else {
1228 if (!(sacked & TCPCB_RETRANS)) {
1229 /* New sack for not retransmitted frame,
1230 * which was in hole. It is reordering.
1231 */
cc9a672e 1232 if (before(start_seq,
9e10c47c 1233 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1234 state->reord = min(fack_count,
1235 state->reord);
e33099f9
YC
1236 if (!after(end_seq, tp->high_seq))
1237 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1238 if (state->first_sackt == 0)
1239 state->first_sackt = xmit_time;
1240 state->last_sackt = xmit_time;
9e10c47c
IJ
1241 }
1242
1243 if (sacked & TCPCB_LOST) {
a1197f5a 1244 sacked &= ~TCPCB_LOST;
f58b22fd 1245 tp->lost_out -= pcount;
9e10c47c
IJ
1246 }
1247 }
1248
a1197f5a
IJ
1249 sacked |= TCPCB_SACKED_ACKED;
1250 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1251 tp->sacked_out += pcount;
ddf1af6f 1252 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1253
f58b22fd 1254 fack_count += pcount;
9e10c47c
IJ
1255
1256 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1257 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1258 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1259 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1260
1261 if (fack_count > tp->fackets_out)
1262 tp->fackets_out = fack_count;
9e10c47c
IJ
1263 }
1264
1265 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1266 * frames and clear it. undo_retrans is decreased above, L|R frames
1267 * are accounted above as well.
1268 */
a1197f5a
IJ
1269 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1270 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1271 tp->retrans_out -= pcount;
9e10c47c
IJ
1272 }
1273
a1197f5a 1274 return sacked;
9e10c47c
IJ
1275}
1276
daef52ba
NC
1277/* Shift newly-SACKed bytes from this skb to the immediately previous
1278 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1279 */
f3319816
ED
1280static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1281 struct sk_buff *skb,
a2a385d6
ED
1282 struct tcp_sacktag_state *state,
1283 unsigned int pcount, int shifted, int mss,
1284 bool dup_sack)
832d11c5
IJ
1285{
1286 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1287 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1288 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1289
1290 BUG_ON(!pcount);
1291
4c90d3b3
NC
1292 /* Adjust counters and hints for the newly sacked sequence
1293 * range but discard the return value since prev is already
1294 * marked. We must tag the range first because the seq
1295 * advancement below implicitly advances
1296 * tcp_highest_sack_seq() when skb is highest_sack.
1297 */
1298 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1299 start_seq, end_seq, dup_sack, pcount,
9a568de4 1300 skb->skb_mstamp);
b9f64820 1301 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1302
1303 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1304 tp->lost_cnt_hint += pcount;
1305
832d11c5
IJ
1306 TCP_SKB_CB(prev)->end_seq += shifted;
1307 TCP_SKB_CB(skb)->seq += shifted;
1308
cd7d8498
ED
1309 tcp_skb_pcount_add(prev, pcount);
1310 BUG_ON(tcp_skb_pcount(skb) < pcount);
1311 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1312
1313 /* When we're adding to gso_segs == 1, gso_size will be zero,
1314 * in theory this shouldn't be necessary but as long as DSACK
1315 * code can come after this skb later on it's better to keep
1316 * setting gso_size to something.
1317 */
f69ad292
ED
1318 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1319 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1320
1321 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1322 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1323 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1324
832d11c5
IJ
1325 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1326 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1327
832d11c5
IJ
1328 if (skb->len > 0) {
1329 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1330 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1331 return false;
832d11c5
IJ
1332 }
1333
1334 /* Whole SKB was eaten :-) */
1335
92ee76b6
IJ
1336 if (skb == tp->retransmit_skb_hint)
1337 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1338 if (skb == tp->lost_skb_hint) {
1339 tp->lost_skb_hint = prev;
1340 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1341 }
1342
5e8a402f 1343 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1344 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1345 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1346 TCP_SKB_CB(prev)->end_seq++;
1347
832d11c5
IJ
1348 if (skb == tcp_highest_sack(sk))
1349 tcp_advance_highest_sack(sk, skb);
1350
cfea5a68 1351 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1352 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1353 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1354
75c119af 1355 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1356
c10d9310 1357 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1358
a2a385d6 1359 return true;
832d11c5
IJ
1360}
1361
1362/* I wish gso_size would have a bit more sane initialization than
1363 * something-or-zero which complicates things
1364 */
cf533ea5 1365static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1366{
775ffabf 1367 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1368}
1369
1370/* Shifting pages past head area doesn't work */
cf533ea5 1371static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1372{
1373 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1374}
1375
1376/* Try collapsing SACK blocks spanning across multiple skbs to a single
1377 * skb.
1378 */
1379static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1380 struct tcp_sacktag_state *state,
832d11c5 1381 u32 start_seq, u32 end_seq,
a2a385d6 1382 bool dup_sack)
832d11c5
IJ
1383{
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 struct sk_buff *prev;
1386 int mss;
1387 int pcount = 0;
1388 int len;
1389 int in_sack;
1390
1391 if (!sk_can_gso(sk))
1392 goto fallback;
1393
1394 /* Normally R but no L won't result in plain S */
1395 if (!dup_sack &&
9969ca5f 1396 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1397 goto fallback;
1398 if (!skb_can_shift(skb))
1399 goto fallback;
1400 /* This frame is about to be dropped (was ACKed). */
1401 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1402 goto fallback;
1403
1404 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1405 prev = skb_rb_prev(skb);
1406 if (!prev)
832d11c5 1407 goto fallback;
832d11c5
IJ
1408
1409 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1410 goto fallback;
1411
a643b5d4
MKL
1412 if (!tcp_skb_can_collapse_to(prev))
1413 goto fallback;
1414
832d11c5
IJ
1415 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1416 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1417
1418 if (in_sack) {
1419 len = skb->len;
1420 pcount = tcp_skb_pcount(skb);
775ffabf 1421 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1422
1423 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1424 * drop this restriction as unnecessary
1425 */
775ffabf 1426 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1427 goto fallback;
1428 } else {
1429 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1430 goto noop;
1431 /* CHECKME: This is non-MSS split case only?, this will
1432 * cause skipped skbs due to advancing loop btw, original
1433 * has that feature too
1434 */
1435 if (tcp_skb_pcount(skb) <= 1)
1436 goto noop;
1437
1438 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1439 if (!in_sack) {
1440 /* TODO: head merge to next could be attempted here
1441 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1442 * though it might not be worth of the additional hassle
1443 *
1444 * ...we can probably just fallback to what was done
1445 * previously. We could try merging non-SACKed ones
1446 * as well but it probably isn't going to buy off
1447 * because later SACKs might again split them, and
1448 * it would make skb timestamp tracking considerably
1449 * harder problem.
1450 */
1451 goto fallback;
1452 }
1453
1454 len = end_seq - TCP_SKB_CB(skb)->seq;
1455 BUG_ON(len < 0);
1456 BUG_ON(len > skb->len);
1457
1458 /* MSS boundaries should be honoured or else pcount will
1459 * severely break even though it makes things bit trickier.
1460 * Optimize common case to avoid most of the divides
1461 */
1462 mss = tcp_skb_mss(skb);
1463
1464 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1465 * drop this restriction as unnecessary
1466 */
775ffabf 1467 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1468 goto fallback;
1469
1470 if (len == mss) {
1471 pcount = 1;
1472 } else if (len < mss) {
1473 goto noop;
1474 } else {
1475 pcount = len / mss;
1476 len = pcount * mss;
1477 }
1478 }
1479
4648dc97
NC
1480 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1481 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1482 goto fallback;
1483
832d11c5
IJ
1484 if (!skb_shift(prev, skb, len))
1485 goto fallback;
f3319816 1486 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1487 goto out;
1488
1489 /* Hole filled allows collapsing with the next as well, this is very
1490 * useful when hole on every nth skb pattern happens
1491 */
75c119af
ED
1492 skb = skb_rb_next(prev);
1493 if (!skb)
832d11c5 1494 goto out;
832d11c5 1495
f0bc52f3 1496 if (!skb_can_shift(skb) ||
f0bc52f3 1497 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1498 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1499 goto out;
1500
1501 len = skb->len;
1502 if (skb_shift(prev, skb, len)) {
1503 pcount += tcp_skb_pcount(skb);
f3319816
ED
1504 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1505 len, mss, 0);
832d11c5
IJ
1506 }
1507
1508out:
a1197f5a 1509 state->fack_count += pcount;
832d11c5
IJ
1510 return prev;
1511
1512noop:
1513 return skb;
1514
1515fallback:
c10d9310 1516 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1517 return NULL;
1518}
1519
68f8353b
IJ
1520static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1521 struct tcp_sack_block *next_dup,
a1197f5a 1522 struct tcp_sacktag_state *state,
68f8353b 1523 u32 start_seq, u32 end_seq,
a2a385d6 1524 bool dup_sack_in)
68f8353b 1525{
832d11c5
IJ
1526 struct tcp_sock *tp = tcp_sk(sk);
1527 struct sk_buff *tmp;
1528
75c119af 1529 skb_rbtree_walk_from(skb) {
68f8353b 1530 int in_sack = 0;
a2a385d6 1531 bool dup_sack = dup_sack_in;
68f8353b 1532
68f8353b
IJ
1533 /* queue is in-order => we can short-circuit the walk early */
1534 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1535 break;
1536
00db4124 1537 if (next_dup &&
68f8353b
IJ
1538 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1539 in_sack = tcp_match_skb_to_sack(sk, skb,
1540 next_dup->start_seq,
1541 next_dup->end_seq);
1542 if (in_sack > 0)
a2a385d6 1543 dup_sack = true;
68f8353b
IJ
1544 }
1545
832d11c5
IJ
1546 /* skb reference here is a bit tricky to get right, since
1547 * shifting can eat and free both this skb and the next,
1548 * so not even _safe variant of the loop is enough.
1549 */
1550 if (in_sack <= 0) {
a1197f5a
IJ
1551 tmp = tcp_shift_skb_data(sk, skb, state,
1552 start_seq, end_seq, dup_sack);
00db4124 1553 if (tmp) {
832d11c5
IJ
1554 if (tmp != skb) {
1555 skb = tmp;
1556 continue;
1557 }
1558
1559 in_sack = 0;
1560 } else {
1561 in_sack = tcp_match_skb_to_sack(sk, skb,
1562 start_seq,
1563 end_seq);
1564 }
1565 }
1566
68f8353b
IJ
1567 if (unlikely(in_sack < 0))
1568 break;
1569
832d11c5 1570 if (in_sack) {
cc9a672e
NC
1571 TCP_SKB_CB(skb)->sacked =
1572 tcp_sacktag_one(sk,
1573 state,
1574 TCP_SKB_CB(skb)->sacked,
1575 TCP_SKB_CB(skb)->seq,
1576 TCP_SKB_CB(skb)->end_seq,
1577 dup_sack,
59c9af42 1578 tcp_skb_pcount(skb),
9a568de4 1579 skb->skb_mstamp);
b9f64820 1580 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1581 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1582 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1583
832d11c5
IJ
1584 if (!before(TCP_SKB_CB(skb)->seq,
1585 tcp_highest_sack_seq(tp)))
1586 tcp_advance_highest_sack(sk, skb);
1587 }
1588
a1197f5a 1589 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1590 }
1591 return skb;
1592}
1593
75c119af
ED
1594static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1595 struct tcp_sacktag_state *state,
1596 u32 seq)
1597{
1598 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1599 struct sk_buff *skb;
1600 int unack_bytes;
1601
1602 while (*p) {
1603 parent = *p;
1604 skb = rb_to_skb(parent);
1605 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1606 p = &parent->rb_left;
1607 continue;
1608 }
1609 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1610 p = &parent->rb_right;
1611 continue;
1612 }
1613
1614 state->fack_count = 0;
1615 unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una;
1616 if (state->mss_now && unack_bytes > 0)
1617 state->fack_count = unack_bytes / state->mss_now;
1618
1619 return skb;
1620 }
1621 return NULL;
1622}
1623
68f8353b 1624static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1625 struct tcp_sacktag_state *state,
1626 u32 skip_to_seq)
68f8353b 1627{
75c119af
ED
1628 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1629 return skb;
d152a7d8 1630
75c119af 1631 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1632}
1633
1634static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1635 struct sock *sk,
1636 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1637 struct tcp_sacktag_state *state,
1638 u32 skip_to_seq)
68f8353b 1639{
51456b29 1640 if (!next_dup)
68f8353b
IJ
1641 return skb;
1642
1643 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1644 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1645 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1646 next_dup->start_seq, next_dup->end_seq,
1647 1);
68f8353b
IJ
1648 }
1649
1650 return skb;
1651}
1652
cf533ea5 1653static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1654{
1655 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1656}
1657
1da177e4 1658static int
cf533ea5 1659tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1660 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1661{
1662 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1663 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1664 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1665 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1666 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1667 struct tcp_sack_block *cache;
1668 struct sk_buff *skb;
4389dded 1669 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1670 int used_sacks;
a2a385d6 1671 bool found_dup_sack = false;
68f8353b 1672 int i, j;
fda03fbb 1673 int first_sack_index;
1da177e4 1674
196da974
KKJ
1675 state->flag = 0;
1676 state->reord = tp->packets_out;
a1197f5a 1677
d738cd8f 1678 if (!tp->sacked_out) {
de83c058
IJ
1679 if (WARN_ON(tp->fackets_out))
1680 tp->fackets_out = 0;
6859d494 1681 tcp_highest_sack_reset(sk);
d738cd8f 1682 }
1da177e4 1683
1ed83465 1684 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1685 num_sacks, prior_snd_una);
b9f64820 1686 if (found_dup_sack) {
196da974 1687 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1688 tp->delivered++; /* A spurious retransmission is delivered */
1689 }
6f74651a
BE
1690
1691 /* Eliminate too old ACKs, but take into
1692 * account more or less fresh ones, they can
1693 * contain valid SACK info.
1694 */
1695 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1696 return 0;
1697