tcp: fix reordering SNMP under-counting
[linux-block.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
94bdc978 82int sysctl_tcp_fack __read_mostly;
dca145ff 83int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
25429d7b 88EXPORT_SYMBOL(sysctl_tcp_timestamps);
1da177e4 89
282f23c6 90/* rfc5961 challenge ack rate limiting */
75ff39cc 91int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 92
ab32ea5d
BH
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 96int sysctl_tcp_frto __read_mostly = 2;
f6722583 97int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
ab32ea5d 98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 99int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 100int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 101
1da177e4
LT
102#define FLAG_DATA 0x01 /* Incoming frame contained data. */
103#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107#define FLAG_DATA_SACKED 0x20 /* New SACK. */
108#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 109#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 111#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 115#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
116
117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e662ca40
YC
125#define REXMIT_NONE 0 /* no loss recovery to do */
126#define REXMIT_LOST 1 /* retransmit packets marked lost */
127#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128
0b9aefea
MRL
129static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
130 unsigned int len)
dcb17d22
MRL
131{
132 static bool __once __read_mostly;
133
134 if (!__once) {
135 struct net_device *dev;
136
137 __once = true;
138
139 rcu_read_lock();
140 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
141 if (!dev || len >= dev->mtu)
142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
143 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
144 rcu_read_unlock();
145 }
146}
147
e905a9ed 148/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 149 * real world.
e905a9ed 150 */
056834d9 151static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 152{
463c84b9 153 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 154 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 155 unsigned int len;
1da177e4 156
e905a9ed 157 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
158
159 /* skb->len may jitter because of SACKs, even if peer
160 * sends good full-sized frames.
161 */
056834d9 162 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 163 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
164 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
165 tcp_sk(sk)->advmss);
0b9aefea
MRL
166 /* Account for possibly-removed options */
167 if (unlikely(len > icsk->icsk_ack.rcv_mss +
168 MAX_TCP_OPTION_SPACE))
169 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
170 } else {
171 /* Otherwise, we make more careful check taking into account,
172 * that SACKs block is variable.
173 *
174 * "len" is invariant segment length, including TCP header.
175 */
9c70220b 176 len += skb->data - skb_transport_header(skb);
bee7ca9e 177 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
178 /* If PSH is not set, packet should be
179 * full sized, provided peer TCP is not badly broken.
180 * This observation (if it is correct 8)) allows
181 * to handle super-low mtu links fairly.
182 */
183 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 184 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
185 /* Subtract also invariant (if peer is RFC compliant),
186 * tcp header plus fixed timestamp option length.
187 * Resulting "len" is MSS free of SACK jitter.
188 */
463c84b9
ACM
189 len -= tcp_sk(sk)->tcp_header_len;
190 icsk->icsk_ack.last_seg_size = len;
1da177e4 191 if (len == lss) {
463c84b9 192 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
193 return;
194 }
195 }
1ef9696c
AK
196 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
199 }
200}
201
463c84b9 202static void tcp_incr_quickack(struct sock *sk)
1da177e4 203{
463c84b9 204 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 205 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 206
056834d9
IJ
207 if (quickacks == 0)
208 quickacks = 2;
463c84b9
ACM
209 if (quickacks > icsk->icsk_ack.quick)
210 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
211}
212
1b9f4092 213static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 214{
463c84b9
ACM
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 tcp_incr_quickack(sk);
217 icsk->icsk_ack.pingpong = 0;
218 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
219}
220
221/* Send ACKs quickly, if "quick" count is not exhausted
222 * and the session is not interactive.
223 */
224
2251ae46 225static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 226{
463c84b9 227 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 228 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 229
2251ae46
JM
230 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
231 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
232}
233
735d3831 234static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 235{
056834d9 236 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
237 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
238}
239
735d3831 240static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
241{
242 if (tcp_hdr(skb)->cwr)
243 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
244}
245
735d3831 246static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
247{
248 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
249}
250
735d3831 251static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 252{
b82d1bb4 253 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 254 case INET_ECN_NOT_ECT:
bdf1ee5d 255 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
256 * and we already seen ECT on a previous segment,
257 * it is probably a retransmit.
258 */
259 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 260 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
261 break;
262 case INET_ECN_CE:
9890092e
FW
263 if (tcp_ca_needs_ecn((struct sock *)tp))
264 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
265
aae06bf5
ED
266 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
267 /* Better not delay acks, sender can have a very low cwnd */
268 tcp_enter_quickack_mode((struct sock *)tp);
269 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
270 }
9890092e
FW
271 tp->ecn_flags |= TCP_ECN_SEEN;
272 break;
7a269ffa 273 default:
9890092e
FW
274 if (tcp_ca_needs_ecn((struct sock *)tp))
275 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 276 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 277 break;
bdf1ee5d
IJ
278 }
279}
280
735d3831
FW
281static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
282{
283 if (tp->ecn_flags & TCP_ECN_OK)
284 __tcp_ecn_check_ce(tp, skb);
285}
286
287static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 288{
056834d9 289 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
290 tp->ecn_flags &= ~TCP_ECN_OK;
291}
292
735d3831 293static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 294{
056834d9 295 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
296 tp->ecn_flags &= ~TCP_ECN_OK;
297}
298
735d3831 299static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 300{
056834d9 301 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
302 return true;
303 return false;
bdf1ee5d
IJ
304}
305
1da177e4
LT
306/* Buffer size and advertised window tuning.
307 *
308 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
309 */
310
6ae70532 311static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 312{
6ae70532 313 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 314 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
315 int sndmem, per_mss;
316 u32 nr_segs;
317
318 /* Worst case is non GSO/TSO : each frame consumes one skb
319 * and skb->head is kmalloced using power of two area of memory
320 */
321 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
322 MAX_TCP_HEADER +
323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
324
325 per_mss = roundup_pow_of_two(per_mss) +
326 SKB_DATA_ALIGN(sizeof(struct sk_buff));
327
328 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
329 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
330
331 /* Fast Recovery (RFC 5681 3.2) :
332 * Cubic needs 1.7 factor, rounded to 2 to include
333 * extra cushion (application might react slowly to POLLOUT)
334 */
77bfc174
YC
335 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
336 sndmem *= nr_segs * per_mss;
1da177e4 337
06a59ecb
ED
338 if (sk->sk_sndbuf < sndmem)
339 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
340}
341
342/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343 *
344 * All tcp_full_space() is split to two parts: "network" buffer, allocated
345 * forward and advertised in receiver window (tp->rcv_wnd) and
346 * "application buffer", required to isolate scheduling/application
347 * latencies from network.
348 * window_clamp is maximal advertised window. It can be less than
349 * tcp_full_space(), in this case tcp_full_space() - window_clamp
350 * is reserved for "application" buffer. The less window_clamp is
351 * the smoother our behaviour from viewpoint of network, but the lower
352 * throughput and the higher sensitivity of the connection to losses. 8)
353 *
354 * rcv_ssthresh is more strict window_clamp used at "slow start"
355 * phase to predict further behaviour of this connection.
356 * It is used for two goals:
357 * - to enforce header prediction at sender, even when application
358 * requires some significant "application buffer". It is check #1.
359 * - to prevent pruning of receive queue because of misprediction
360 * of receiver window. Check #2.
361 *
362 * The scheme does not work when sender sends good segments opening
caa20d9a 363 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
364 * in common situations. Otherwise, we have to rely on queue collapsing.
365 */
366
367/* Slow part of check#2. */
9e412ba7 368static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 369{
9e412ba7 370 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 371 /* Optimize this! */
dfd4f0ae
ED
372 int truesize = tcp_win_from_space(skb->truesize) >> 1;
373 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
374
375 while (tp->rcv_ssthresh <= window) {
376 if (truesize <= skb->len)
463c84b9 377 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
378
379 truesize >>= 1;
380 window >>= 1;
381 }
382 return 0;
383}
384
cf533ea5 385static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 386{
9e412ba7
IJ
387 struct tcp_sock *tp = tcp_sk(sk);
388
1da177e4
LT
389 /* Check #1 */
390 if (tp->rcv_ssthresh < tp->window_clamp &&
391 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 392 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
393 int incr;
394
395 /* Check #2. Increase window, if skb with such overhead
396 * will fit to rcvbuf in future.
397 */
398 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 399 incr = 2 * tp->advmss;
1da177e4 400 else
9e412ba7 401 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
402
403 if (incr) {
4d846f02 404 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
406 tp->window_clamp);
463c84b9 407 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
408 }
409 }
410}
411
412/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
413static void tcp_fixup_rcvbuf(struct sock *sk)
414{
e9266a02 415 u32 mss = tcp_sk(sk)->advmss;
e9266a02 416 int rcvmem;
1da177e4 417
85f16525
YC
418 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
419 tcp_default_init_rwnd(mss);
e9266a02 420
b0983d3c
ED
421 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
422 * Allow enough cushion so that sender is not limited by our window
423 */
424 if (sysctl_tcp_moderate_rcvbuf)
425 rcvmem <<= 2;
426
e9266a02
ED
427 if (sk->sk_rcvbuf < rcvmem)
428 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
429}
430
caa20d9a 431/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
432 * established state.
433 */
10467163 434void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
435{
436 struct tcp_sock *tp = tcp_sk(sk);
437 int maxwin;
438
439 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
440 tcp_fixup_rcvbuf(sk);
441 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 442 tcp_sndbuf_expand(sk);
1da177e4
LT
443
444 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
445 tp->rcvq_space.time = tcp_time_stamp;
446 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
447
448 maxwin = tcp_full_space(sk);
449
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
452
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
456 4 * tp->advmss);
457 }
458
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 tp->snd_cwnd_stamp = tcp_time_stamp;
467}
468
1da177e4 469/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 470static void tcp_clamp_window(struct sock *sk)
1da177e4 471{
9e412ba7 472 struct tcp_sock *tp = tcp_sk(sk);
6687e988 473 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 474
6687e988 475 icsk->icsk_ack.quick = 0;
1da177e4 476
326f36e9
JH
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 479 !tcp_under_memory_pressure(sk) &&
180d8cd9 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 sysctl_tcp_rmem[2]);
1da177e4 483 }
326f36e9 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
486}
487
40efc6fa
SH
488/* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 */
495void tcp_initialize_rcv_mss(struct sock *sk)
496{
cf533ea5 497 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499
056834d9 500 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 501 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
502 hint = max(hint, TCP_MIN_MSS);
503
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505}
4bc2f18b 506EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 507
1da177e4
LT
508/* Receiver "autotuning" code.
509 *
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
513 *
514 * More detail on this code can be found at
631dd1a8 515 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
516 * though this reference is out of date. A new paper
517 * is pending.
518 */
519static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520{
521 u32 new_sample = tp->rcv_rtt_est.rtt;
522 long m = sample;
523
524 if (m == 0)
525 m = 1;
526
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
532 *
533 * Also, since we are only going for a minimum in the
31f34269 534 * non-timestamp case, we do not smooth things out
caa20d9a 535 * else with timestamps disabled convergence takes too
1da177e4
LT
536 * long.
537 */
538 if (!win_dep) {
539 m -= (new_sample >> 3);
540 new_sample += m;
18a223e0
NC
541 } else {
542 m <<= 3;
543 if (m < new_sample)
544 new_sample = m;
545 }
1da177e4 546 } else {
caa20d9a 547 /* No previous measure. */
1da177e4
LT
548 new_sample = m << 3;
549 }
550
551 if (tp->rcv_rtt_est.rtt != new_sample)
552 tp->rcv_rtt_est.rtt = new_sample;
553}
554
555static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
556{
557 if (tp->rcv_rtt_est.time == 0)
558 goto new_measure;
559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 return;
651913ce 561 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
562
563new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tcp_time_stamp;
566}
567
056834d9
IJ
568static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
1da177e4 570{
463c84b9 571 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
572 if (tp->rx_opt.rcv_tsecr &&
573 (TCP_SKB_CB(skb)->end_seq -
463c84b9 574 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
575 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
576}
577
578/*
579 * This function should be called every time data is copied to user space.
580 * It calculates the appropriate TCP receive buffer space.
581 */
582void tcp_rcv_space_adjust(struct sock *sk)
583{
584 struct tcp_sock *tp = tcp_sk(sk);
585 int time;
b0983d3c 586 int copied;
e905a9ed 587
1da177e4 588 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 589 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 590 return;
e905a9ed 591
b0983d3c
ED
592 /* Number of bytes copied to user in last RTT */
593 copied = tp->copied_seq - tp->rcvq_space.seq;
594 if (copied <= tp->rcvq_space.space)
595 goto new_measure;
596
597 /* A bit of theory :
598 * copied = bytes received in previous RTT, our base window
599 * To cope with packet losses, we need a 2x factor
600 * To cope with slow start, and sender growing its cwin by 100 %
601 * every RTT, we need a 4x factor, because the ACK we are sending
602 * now is for the next RTT, not the current one :
603 * <prev RTT . ><current RTT .. ><next RTT .... >
604 */
605
606 if (sysctl_tcp_moderate_rcvbuf &&
607 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
608 int rcvwin, rcvmem, rcvbuf;
1da177e4 609
b0983d3c
ED
610 /* minimal window to cope with packet losses, assuming
611 * steady state. Add some cushion because of small variations.
612 */
613 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 614
b0983d3c
ED
615 /* If rate increased by 25%,
616 * assume slow start, rcvwin = 3 * copied
617 * If rate increased by 50%,
618 * assume sender can use 2x growth, rcvwin = 4 * copied
619 */
620 if (copied >=
621 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
622 if (copied >=
623 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
624 rcvwin <<= 1;
625 else
626 rcvwin += (rcvwin >> 1);
627 }
1da177e4 628
b0983d3c
ED
629 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
630 while (tcp_win_from_space(rcvmem) < tp->advmss)
631 rcvmem += 128;
1da177e4 632
b0983d3c
ED
633 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
634 if (rcvbuf > sk->sk_rcvbuf) {
635 sk->sk_rcvbuf = rcvbuf;
1da177e4 636
b0983d3c
ED
637 /* Make the window clamp follow along. */
638 tp->window_clamp = rcvwin;
1da177e4
LT
639 }
640 }
b0983d3c 641 tp->rcvq_space.space = copied;
e905a9ed 642
1da177e4
LT
643new_measure:
644 tp->rcvq_space.seq = tp->copied_seq;
645 tp->rcvq_space.time = tcp_time_stamp;
646}
647
648/* There is something which you must keep in mind when you analyze the
649 * behavior of the tp->ato delayed ack timeout interval. When a
650 * connection starts up, we want to ack as quickly as possible. The
651 * problem is that "good" TCP's do slow start at the beginning of data
652 * transmission. The means that until we send the first few ACK's the
653 * sender will sit on his end and only queue most of his data, because
654 * he can only send snd_cwnd unacked packets at any given time. For
655 * each ACK we send, he increments snd_cwnd and transmits more of his
656 * queue. -DaveM
657 */
9e412ba7 658static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 659{
9e412ba7 660 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 661 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
662 u32 now;
663
463c84b9 664 inet_csk_schedule_ack(sk);
1da177e4 665
463c84b9 666 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
667
668 tcp_rcv_rtt_measure(tp);
e905a9ed 669
1da177e4
LT
670 now = tcp_time_stamp;
671
463c84b9 672 if (!icsk->icsk_ack.ato) {
1da177e4
LT
673 /* The _first_ data packet received, initialize
674 * delayed ACK engine.
675 */
463c84b9
ACM
676 tcp_incr_quickack(sk);
677 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 678 } else {
463c84b9 679 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 680
056834d9 681 if (m <= TCP_ATO_MIN / 2) {
1da177e4 682 /* The fastest case is the first. */
463c84b9
ACM
683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
684 } else if (m < icsk->icsk_ack.ato) {
685 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
686 if (icsk->icsk_ack.ato > icsk->icsk_rto)
687 icsk->icsk_ack.ato = icsk->icsk_rto;
688 } else if (m > icsk->icsk_rto) {
caa20d9a 689 /* Too long gap. Apparently sender failed to
1da177e4
LT
690 * restart window, so that we send ACKs quickly.
691 */
463c84b9 692 tcp_incr_quickack(sk);
3ab224be 693 sk_mem_reclaim(sk);
1da177e4
LT
694 }
695 }
463c84b9 696 icsk->icsk_ack.lrcvtime = now;
1da177e4 697
735d3831 698 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
699
700 if (skb->len >= 128)
9e412ba7 701 tcp_grow_window(sk, skb);
1da177e4
LT
702}
703
1da177e4
LT
704/* Called to compute a smoothed rtt estimate. The data fed to this
705 * routine either comes from timestamps, or from segments that were
706 * known _not_ to have been retransmitted [see Karn/Partridge
707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708 * piece by Van Jacobson.
709 * NOTE: the next three routines used to be one big routine.
710 * To save cycles in the RFC 1323 implementation it was better to break
711 * it up into three procedures. -- erics
712 */
740b0f18 713static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 714{
6687e988 715 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
716 long m = mrtt_us; /* RTT */
717 u32 srtt = tp->srtt_us;
1da177e4 718
1da177e4
LT
719 /* The following amusing code comes from Jacobson's
720 * article in SIGCOMM '88. Note that rtt and mdev
721 * are scaled versions of rtt and mean deviation.
e905a9ed 722 * This is designed to be as fast as possible
1da177e4
LT
723 * m stands for "measurement".
724 *
725 * On a 1990 paper the rto value is changed to:
726 * RTO = rtt + 4 * mdev
727 *
728 * Funny. This algorithm seems to be very broken.
729 * These formulae increase RTO, when it should be decreased, increase
31f34269 730 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 * does not matter how to _calculate_ it. Seems, it was trap
733 * that VJ failed to avoid. 8)
734 */
4a5ab4e2
ED
735 if (srtt != 0) {
736 m -= (srtt >> 3); /* m is now error in rtt est */
737 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
738 if (m < 0) {
739 m = -m; /* m is now abs(error) */
740b0f18 740 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
741 /* This is similar to one of Eifel findings.
742 * Eifel blocks mdev updates when rtt decreases.
743 * This solution is a bit different: we use finer gain
744 * for mdev in this case (alpha*beta).
745 * Like Eifel it also prevents growth of rto,
746 * but also it limits too fast rto decreases,
747 * happening in pure Eifel.
748 */
749 if (m > 0)
750 m >>= 3;
751 } else {
740b0f18 752 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 753 }
740b0f18
ED
754 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
755 if (tp->mdev_us > tp->mdev_max_us) {
756 tp->mdev_max_us = tp->mdev_us;
757 if (tp->mdev_max_us > tp->rttvar_us)
758 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
759 }
760 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
761 if (tp->mdev_max_us < tp->rttvar_us)
762 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 763 tp->rtt_seq = tp->snd_nxt;
740b0f18 764 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
765 }
766 } else {
767 /* no previous measure. */
4a5ab4e2 768 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
769 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
770 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
771 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
772 tp->rtt_seq = tp->snd_nxt;
773 }
740b0f18 774 tp->srtt_us = max(1U, srtt);
1da177e4
LT
775}
776
95bd09eb
ED
777/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
778 * Note: TCP stack does not yet implement pacing.
779 * FQ packet scheduler can be used to implement cheap but effective
780 * TCP pacing, to smooth the burst on large writes when packets
781 * in flight is significantly lower than cwnd (or rwin)
782 */
43e122b0
ED
783int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
784int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
785
95bd09eb
ED
786static void tcp_update_pacing_rate(struct sock *sk)
787{
788 const struct tcp_sock *tp = tcp_sk(sk);
789 u64 rate;
790
791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
792 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
793
794 /* current rate is (cwnd * mss) / srtt
795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 *
798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 * end of slow start and should slow down.
801 */
802 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 rate *= sysctl_tcp_pacing_ss_ratio;
804 else
805 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
806
807 rate *= max(tp->snd_cwnd, tp->packets_out);
808
740b0f18
ED
809 if (likely(tp->srtt_us))
810 do_div(rate, tp->srtt_us);
95bd09eb 811
ba537427
ED
812 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 * without any lock. We want to make sure compiler wont store
814 * intermediate values in this location.
815 */
816 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
817 sk->sk_max_pacing_rate);
95bd09eb
ED
818}
819
1da177e4
LT
820/* Calculate rto without backoff. This is the second half of Van Jacobson's
821 * routine referred to above.
822 */
f7e56a76 823static void tcp_set_rto(struct sock *sk)
1da177e4 824{
463c84b9 825 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
826 /* Old crap is replaced with new one. 8)
827 *
828 * More seriously:
829 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 * It cannot be less due to utterly erratic ACK generation made
831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 * to do with delayed acks, because at cwnd>2 true delack timeout
833 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 834 * ACKs in some circumstances.
1da177e4 835 */
f1ecd5d9 836 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
837
838 /* 2. Fixups made earlier cannot be right.
839 * If we do not estimate RTO correctly without them,
840 * all the algo is pure shit and should be replaced
caa20d9a 841 * with correct one. It is exactly, which we pretend to do.
1da177e4 842 */
1da177e4 843
ee6aac59
IJ
844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 * guarantees that rto is higher.
846 */
f1ecd5d9 847 tcp_bound_rto(sk);
1da177e4
LT
848}
849
cf533ea5 850__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
851{
852 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
853
22b71c8f 854 if (!cwnd)
442b9635 855 cwnd = TCP_INIT_CWND;
1da177e4
LT
856 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
857}
858
e60402d0
IJ
859/*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
4aabd8ef 863void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 864{
85cc391c
IJ
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
ab56222a 868 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
869}
870
564262c1 871/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
872static void tcp_dsack_seen(struct tcp_sock *tp)
873{
ab56222a 874 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
875}
876
6687e988
ACM
877static void tcp_update_reordering(struct sock *sk, const int metric,
878 const int ts)
1da177e4 879{
6687e988 880 struct tcp_sock *tp = tcp_sk(sk);
2d2517ee 881 int mib_idx;
40b215e5 882
2d2517ee 883 if (metric > tp->reordering) {
dca145ff 884 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4 885
1da177e4 886#if FASTRETRANS_DEBUG > 1
91df42be
JP
887 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
888 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
889 tp->reordering,
890 tp->fackets_out,
891 tp->sacked_out,
892 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 893#endif
e60402d0 894 tcp_disable_fack(tp);
1da177e4 895 }
eed530b6 896
4f41b1c5 897 tp->rack.reord = 1;
2d2517ee
YC
898
899 /* This exciting event is worth to be remembered. 8) */
900 if (ts)
901 mib_idx = LINUX_MIB_TCPTSREORDER;
902 else if (tcp_is_reno(tp))
903 mib_idx = LINUX_MIB_TCPRENOREORDER;
904 else if (tcp_is_fack(tp))
905 mib_idx = LINUX_MIB_TCPFACKREORDER;
906 else
907 mib_idx = LINUX_MIB_TCPSACKREORDER;
908
909 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4
LT
910}
911
006f582c 912/* This must be called before lost_out is incremented */
c8c213f2
IJ
913static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
914{
51456b29 915 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
916 before(TCP_SKB_CB(skb)->seq,
917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 918 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
919}
920
0682e690
NC
921/* Sum the number of packets on the wire we have marked as lost.
922 * There are two cases we care about here:
923 * a) Packet hasn't been marked lost (nor retransmitted),
924 * and this is the first loss.
925 * b) Packet has been marked both lost and retransmitted,
926 * and this means we think it was lost again.
927 */
928static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
929{
930 __u8 sacked = TCP_SKB_CB(skb)->sacked;
931
932 if (!(sacked & TCPCB_LOST) ||
933 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
934 tp->lost += tcp_skb_pcount(skb);
935}
936
41ea36e3
IJ
937static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
938{
939 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
940 tcp_verify_retransmit_hint(tp, skb);
941
942 tp->lost_out += tcp_skb_pcount(skb);
0682e690 943 tcp_sum_lost(tp, skb);
41ea36e3
IJ
944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
945 }
946}
947
4f41b1c5 948void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
949{
950 tcp_verify_retransmit_hint(tp, skb);
951
0682e690 952 tcp_sum_lost(tp, skb);
006f582c
IJ
953 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
954 tp->lost_out += tcp_skb_pcount(skb);
955 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
956 }
957}
958
1da177e4
LT
959/* This procedure tags the retransmission queue when SACKs arrive.
960 *
961 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
962 * Packets in queue with these bits set are counted in variables
963 * sacked_out, retrans_out and lost_out, correspondingly.
964 *
965 * Valid combinations are:
966 * Tag InFlight Description
967 * 0 1 - orig segment is in flight.
968 * S 0 - nothing flies, orig reached receiver.
969 * L 0 - nothing flies, orig lost by net.
970 * R 2 - both orig and retransmit are in flight.
971 * L|R 1 - orig is lost, retransmit is in flight.
972 * S|R 1 - orig reached receiver, retrans is still in flight.
973 * (L|S|R is logically valid, it could occur when L|R is sacked,
974 * but it is equivalent to plain S and code short-curcuits it to S.
975 * L|S is logically invalid, it would mean -1 packet in flight 8))
976 *
977 * These 6 states form finite state machine, controlled by the following events:
978 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
979 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 980 * 3. Loss detection event of two flavors:
1da177e4
LT
981 * A. Scoreboard estimator decided the packet is lost.
982 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
983 * A''. Its FACK modification, head until snd.fack is lost.
984 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
985 * segment was retransmitted.
986 * 4. D-SACK added new rule: D-SACK changes any tag to S.
987 *
988 * It is pleasant to note, that state diagram turns out to be commutative,
989 * so that we are allowed not to be bothered by order of our actions,
990 * when multiple events arrive simultaneously. (see the function below).
991 *
992 * Reordering detection.
993 * --------------------
994 * Reordering metric is maximal distance, which a packet can be displaced
995 * in packet stream. With SACKs we can estimate it:
996 *
997 * 1. SACK fills old hole and the corresponding segment was not
998 * ever retransmitted -> reordering. Alas, we cannot use it
999 * when segment was retransmitted.
1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001 * for retransmitted and already SACKed segment -> reordering..
1002 * Both of these heuristics are not used in Loss state, when we cannot
1003 * account for retransmits accurately.
5b3c9882
IJ
1004 *
1005 * SACK block validation.
1006 * ----------------------
1007 *
1008 * SACK block range validation checks that the received SACK block fits to
1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1011 * it means that the receiver is rather inconsistent with itself reporting
1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013 * perfectly valid, however, in light of RFC2018 which explicitly states
1014 * that "SACK block MUST reflect the newest segment. Even if the newest
1015 * segment is going to be discarded ...", not that it looks very clever
1016 * in case of head skb. Due to potentional receiver driven attacks, we
1017 * choose to avoid immediate execution of a walk in write queue due to
1018 * reneging and defer head skb's loss recovery to standard loss recovery
1019 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1020 *
1021 * Implements also blockage to start_seq wrap-around. Problem lies in the
1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023 * there's no guarantee that it will be before snd_nxt (n). The problem
1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025 * wrap (s_w):
1026 *
1027 * <- outs wnd -> <- wrapzone ->
1028 * u e n u_w e_w s n_w
1029 * | | | | | | |
1030 * |<------------+------+----- TCP seqno space --------------+---------->|
1031 * ...-- <2^31 ->| |<--------...
1032 * ...---- >2^31 ------>| |<--------...
1033 *
1034 * Current code wouldn't be vulnerable but it's better still to discard such
1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038 * equal to the ideal case (infinite seqno space without wrap caused issues).
1039 *
1040 * With D-SACK the lower bound is extended to cover sequence space below
1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1042 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1043 * for the normal SACK blocks, explained above). But there all simplicity
1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045 * fully below undo_marker they do not affect behavior in anyway and can
1046 * therefore be safely ignored. In rare cases (which are more or less
1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048 * fragmentation and packet reordering past skb's retransmission. To consider
1049 * them correctly, the acceptable range must be extended even more though
1050 * the exact amount is rather hard to quantify. However, tp->max_window can
1051 * be used as an exaggerated estimate.
1da177e4 1052 */
a2a385d6
ED
1053static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1055{
1056 /* Too far in future, or reversed (interpretation is ambiguous) */
1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1058 return false;
5b3c9882
IJ
1059
1060 /* Nasty start_seq wrap-around check (see comments above) */
1061 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1062 return false;
5b3c9882 1063
564262c1 1064 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1065 * start_seq == snd_una is non-sensical (see comments above)
1066 */
1067 if (after(start_seq, tp->snd_una))
a2a385d6 1068 return true;
5b3c9882
IJ
1069
1070 if (!is_dsack || !tp->undo_marker)
a2a385d6 1071 return false;
5b3c9882
IJ
1072
1073 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1074 if (after(end_seq, tp->snd_una))
a2a385d6 1075 return false;
5b3c9882
IJ
1076
1077 if (!before(start_seq, tp->undo_marker))
a2a385d6 1078 return true;
5b3c9882
IJ
1079
1080 /* Too old */
1081 if (!after(end_seq, tp->undo_marker))
a2a385d6 1082 return false;
5b3c9882
IJ
1083
1084 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 * start_seq < undo_marker and end_seq >= undo_marker.
1086 */
1087 return !before(start_seq, end_seq - tp->max_window);
1088}
1089
a2a385d6
ED
1090static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 struct tcp_sack_block_wire *sp, int num_sacks,
1092 u32 prior_snd_una)
d06e021d 1093{
1ed83465 1094 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1097 bool dup_sack = false;
d06e021d
DM
1098
1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1100 dup_sack = true;
e60402d0 1101 tcp_dsack_seen(tp);
c10d9310 1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1103 } else if (num_sacks > 1) {
d3e2ce3b
HH
1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1106
1107 if (!after(end_seq_0, end_seq_1) &&
1108 !before(start_seq_0, start_seq_1)) {
a2a385d6 1109 dup_sack = true;
e60402d0 1110 tcp_dsack_seen(tp);
c10d9310 1111 NET_INC_STATS(sock_net(sk),
de0744af 1112 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1113 }
1114 }
1115
1116 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1118 !after(end_seq_0, prior_snd_una) &&
1119 after(end_seq_0, tp->undo_marker))
1120 tp->undo_retrans--;
1121
1122 return dup_sack;
1123}
1124
a1197f5a 1125struct tcp_sacktag_state {
740b0f18
ED
1126 int reord;
1127 int fack_count;
31231a8a
KKJ
1128 /* Timestamps for earliest and latest never-retransmitted segment
1129 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1130 * but congestion control should still get an accurate delay signal.
1131 */
1132 struct skb_mstamp first_sackt;
1133 struct skb_mstamp last_sackt;
deed7be7 1134 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
b9f64820 1135 struct rate_sample *rate;
740b0f18 1136 int flag;
a1197f5a
IJ
1137};
1138
d1935942
IJ
1139/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1140 * the incoming SACK may not exactly match but we can find smaller MSS
1141 * aligned portion of it that matches. Therefore we might need to fragment
1142 * which may fail and creates some hassle (caller must handle error case
1143 * returns).
832d11c5
IJ
1144 *
1145 * FIXME: this could be merged to shift decision code
d1935942 1146 */
0f79efdc 1147static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1148 u32 start_seq, u32 end_seq)
d1935942 1149{
a2a385d6
ED
1150 int err;
1151 bool in_sack;
d1935942 1152 unsigned int pkt_len;
adb92db8 1153 unsigned int mss;
d1935942
IJ
1154
1155 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1156 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1157
1158 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1159 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1160 mss = tcp_skb_mss(skb);
d1935942
IJ
1161 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1162
adb92db8 1163 if (!in_sack) {
d1935942 1164 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1165 if (pkt_len < mss)
1166 pkt_len = mss;
1167 } else {
d1935942 1168 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1169 if (pkt_len < mss)
1170 return -EINVAL;
1171 }
1172
1173 /* Round if necessary so that SACKs cover only full MSSes
1174 * and/or the remaining small portion (if present)
1175 */
1176 if (pkt_len > mss) {
1177 unsigned int new_len = (pkt_len / mss) * mss;
1178 if (!in_sack && new_len < pkt_len) {
1179 new_len += mss;
2cd0d743 1180 if (new_len >= skb->len)
adb92db8
IJ
1181 return 0;
1182 }
1183 pkt_len = new_len;
1184 }
6cc55e09 1185 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1186 if (err < 0)
1187 return err;
1188 }
1189
1190 return in_sack;
1191}
1192
cc9a672e
NC
1193/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1194static u8 tcp_sacktag_one(struct sock *sk,
1195 struct tcp_sacktag_state *state, u8 sacked,
1196 u32 start_seq, u32 end_seq,
740b0f18
ED
1197 int dup_sack, int pcount,
1198 const struct skb_mstamp *xmit_time)
9e10c47c 1199{
6859d494 1200 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1201 int fack_count = state->fack_count;
9e10c47c
IJ
1202
1203 /* Account D-SACK for retransmitted packet. */
1204 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1205 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1206 after(end_seq, tp->undo_marker))
9e10c47c 1207 tp->undo_retrans--;
ede9f3b1 1208 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1209 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1210 }
1211
1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1213 if (!after(end_seq, tp->snd_una))
a1197f5a 1214 return sacked;
9e10c47c
IJ
1215
1216 if (!(sacked & TCPCB_SACKED_ACKED)) {
1d0833df
YC
1217 tcp_rack_advance(tp, sacked, end_seq,
1218 xmit_time, &state->ack_time);
659a8ad5 1219
9e10c47c
IJ
1220 if (sacked & TCPCB_SACKED_RETRANS) {
1221 /* If the segment is not tagged as lost,
1222 * we do not clear RETRANS, believing
1223 * that retransmission is still in flight.
1224 */
1225 if (sacked & TCPCB_LOST) {
a1197f5a 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1227 tp->lost_out -= pcount;
1228 tp->retrans_out -= pcount;
9e10c47c
IJ
1229 }
1230 } else {
1231 if (!(sacked & TCPCB_RETRANS)) {
1232 /* New sack for not retransmitted frame,
1233 * which was in hole. It is reordering.
1234 */
cc9a672e 1235 if (before(start_seq,
9e10c47c 1236 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1237 state->reord = min(fack_count,
1238 state->reord);
e33099f9
YC
1239 if (!after(end_seq, tp->high_seq))
1240 state->flag |= FLAG_ORIG_SACK_ACKED;
31231a8a
KKJ
1241 if (state->first_sackt.v64 == 0)
1242 state->first_sackt = *xmit_time;
1243 state->last_sackt = *xmit_time;
9e10c47c
IJ
1244 }
1245
1246 if (sacked & TCPCB_LOST) {
a1197f5a 1247 sacked &= ~TCPCB_LOST;
f58b22fd 1248 tp->lost_out -= pcount;
9e10c47c
IJ
1249 }
1250 }
1251
a1197f5a
IJ
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1254 tp->sacked_out += pcount;
ddf1af6f 1255 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1256
f58b22fd 1257 fack_count += pcount;
9e10c47c
IJ
1258
1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1260 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1261 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1262 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1263
1264 if (fack_count > tp->fackets_out)
1265 tp->fackets_out = fack_count;
9e10c47c
IJ
1266 }
1267
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1271 */
a1197f5a
IJ
1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1274 tp->retrans_out -= pcount;
9e10c47c
IJ
1275 }
1276
a1197f5a 1277 return sacked;
9e10c47c
IJ
1278}
1279
daef52ba
NC
1280/* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282 */
a2a385d6
ED
1283static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1284 struct tcp_sacktag_state *state,
1285 unsigned int pcount, int shifted, int mss,
1286 bool dup_sack)
832d11c5
IJ
1287{
1288 struct tcp_sock *tp = tcp_sk(sk);
50133161 1289 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1292
1293 BUG_ON(!pcount);
1294
4c90d3b3
NC
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1300 */
1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1302 start_seq, end_seq, dup_sack, pcount,
740b0f18 1303 &skb->skb_mstamp);
b9f64820 1304 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1305
1306 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1307 tp->lost_cnt_hint += pcount;
1308
832d11c5
IJ
1309 TCP_SKB_CB(prev)->end_seq += shifted;
1310 TCP_SKB_CB(skb)->seq += shifted;
1311
cd7d8498
ED
1312 tcp_skb_pcount_add(prev, pcount);
1313 BUG_ON(tcp_skb_pcount(skb) < pcount);
1314 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1315
1316 /* When we're adding to gso_segs == 1, gso_size will be zero,
1317 * in theory this shouldn't be necessary but as long as DSACK
1318 * code can come after this skb later on it's better to keep
1319 * setting gso_size to something.
1320 */
f69ad292
ED
1321 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1322 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1323
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1325 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1326 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1327
832d11c5
IJ
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330
832d11c5
IJ
1331 if (skb->len > 0) {
1332 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1334 return false;
832d11c5
IJ
1335 }
1336
1337 /* Whole SKB was eaten :-) */
1338
92ee76b6
IJ
1339 if (skb == tp->retransmit_skb_hint)
1340 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1341 if (skb == tp->lost_skb_hint) {
1342 tp->lost_skb_hint = prev;
1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 }
1345
5e8a402f 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 TCP_SKB_CB(prev)->end_seq++;
1350
832d11c5
IJ
1351 if (skb == tcp_highest_sack(sk))
1352 tcp_advance_highest_sack(sk, skb);
1353
cfea5a68 1354 tcp_skb_collapse_tstamp(prev, skb);
b9f64820
YC
1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1356 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1357
832d11c5
IJ
1358 tcp_unlink_write_queue(skb, sk);
1359 sk_wmem_free_skb(sk, skb);
1360
c10d9310 1361 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1362
a2a385d6 1363 return true;
832d11c5
IJ
1364}
1365
1366/* I wish gso_size would have a bit more sane initialization than
1367 * something-or-zero which complicates things
1368 */
cf533ea5 1369static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1370{
775ffabf 1371 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1372}
1373
1374/* Shifting pages past head area doesn't work */
cf533ea5 1375static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1376{
1377 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1378}
1379
1380/* Try collapsing SACK blocks spanning across multiple skbs to a single
1381 * skb.
1382 */
1383static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1384 struct tcp_sacktag_state *state,
832d11c5 1385 u32 start_seq, u32 end_seq,
a2a385d6 1386 bool dup_sack)
832d11c5
IJ
1387{
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct sk_buff *prev;
1390 int mss;
1391 int pcount = 0;
1392 int len;
1393 int in_sack;
1394
1395 if (!sk_can_gso(sk))
1396 goto fallback;
1397
1398 /* Normally R but no L won't result in plain S */
1399 if (!dup_sack &&
9969ca5f 1400 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1401 goto fallback;
1402 if (!skb_can_shift(skb))
1403 goto fallback;
1404 /* This frame is about to be dropped (was ACKed). */
1405 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1406 goto fallback;
1407
1408 /* Can only happen with delayed DSACK + discard craziness */
1409 if (unlikely(skb == tcp_write_queue_head(sk)))
1410 goto fallback;
1411 prev = tcp_write_queue_prev(sk, skb);
1412
1413 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1414 goto fallback;
1415
a643b5d4
MKL
1416 if (!tcp_skb_can_collapse_to(prev))
1417 goto fallback;
1418
832d11c5
IJ
1419 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1420 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1421
1422 if (in_sack) {
1423 len = skb->len;
1424 pcount = tcp_skb_pcount(skb);
775ffabf 1425 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1426
1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1428 * drop this restriction as unnecessary
1429 */
775ffabf 1430 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1431 goto fallback;
1432 } else {
1433 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1434 goto noop;
1435 /* CHECKME: This is non-MSS split case only?, this will
1436 * cause skipped skbs due to advancing loop btw, original
1437 * has that feature too
1438 */
1439 if (tcp_skb_pcount(skb) <= 1)
1440 goto noop;
1441
1442 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1443 if (!in_sack) {
1444 /* TODO: head merge to next could be attempted here
1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1446 * though it might not be worth of the additional hassle
1447 *
1448 * ...we can probably just fallback to what was done
1449 * previously. We could try merging non-SACKed ones
1450 * as well but it probably isn't going to buy off
1451 * because later SACKs might again split them, and
1452 * it would make skb timestamp tracking considerably
1453 * harder problem.
1454 */
1455 goto fallback;
1456 }
1457
1458 len = end_seq - TCP_SKB_CB(skb)->seq;
1459 BUG_ON(len < 0);
1460 BUG_ON(len > skb->len);
1461
1462 /* MSS boundaries should be honoured or else pcount will
1463 * severely break even though it makes things bit trickier.
1464 * Optimize common case to avoid most of the divides
1465 */
1466 mss = tcp_skb_mss(skb);
1467
1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1469 * drop this restriction as unnecessary
1470 */
775ffabf 1471 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1472 goto fallback;
1473
1474 if (len == mss) {
1475 pcount = 1;
1476 } else if (len < mss) {
1477 goto noop;
1478 } else {
1479 pcount = len / mss;
1480 len = pcount * mss;
1481 }
1482 }
1483
4648dc97
NC
1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1485 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1486 goto fallback;
1487
832d11c5
IJ
1488 if (!skb_shift(prev, skb, len))
1489 goto fallback;
9ec06ff5 1490 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1491 goto out;
1492
1493 /* Hole filled allows collapsing with the next as well, this is very
1494 * useful when hole on every nth skb pattern happens
1495 */
1496 if (prev == tcp_write_queue_tail(sk))
1497 goto out;
1498 skb = tcp_write_queue_next(sk, prev);
1499
f0bc52f3
IJ
1500 if (!skb_can_shift(skb) ||
1501 (skb == tcp_send_head(sk)) ||
1502 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1503 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1504 goto out;
1505
1506 len = skb->len;
1507 if (skb_shift(prev, skb, len)) {
1508 pcount += tcp_skb_pcount(skb);
9ec06ff5 1509 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1510 }
1511
1512out:
a1197f5a 1513 state->fack_count += pcount;
832d11c5
IJ
1514 return prev;
1515
1516noop:
1517 return skb;
1518
1519fallback:
c10d9310 1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1521 return NULL;
1522}
1523
68f8353b
IJ
1524static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1525 struct tcp_sack_block *next_dup,
a1197f5a 1526 struct tcp_sacktag_state *state,
68f8353b 1527 u32 start_seq, u32 end_seq,
a2a385d6 1528 bool dup_sack_in)
68f8353b 1529{
832d11c5
IJ
1530 struct tcp_sock *tp = tcp_sk(sk);
1531 struct sk_buff *tmp;
1532
68f8353b
IJ
1533 tcp_for_write_queue_from(skb, sk) {
1534 int in_sack = 0;
a2a385d6 1535 bool dup_sack = dup_sack_in;
68f8353b
IJ
1536
1537 if (skb == tcp_send_head(sk))
1538 break;
1539
1540 /* queue is in-order => we can short-circuit the walk early */
1541 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1542 break;
1543
00db4124 1544 if (next_dup &&
68f8353b
IJ
1545 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1546 in_sack = tcp_match_skb_to_sack(sk, skb,
1547 next_dup->start_seq,
1548 next_dup->end_seq);
1549 if (in_sack > 0)
a2a385d6 1550 dup_sack = true;
68f8353b
IJ
1551 }
1552
832d11c5
IJ
1553 /* skb reference here is a bit tricky to get right, since
1554 * shifting can eat and free both this skb and the next,
1555 * so not even _safe variant of the loop is enough.
1556 */
1557 if (in_sack <= 0) {
a1197f5a
IJ
1558 tmp = tcp_shift_skb_data(sk, skb, state,
1559 start_seq, end_seq, dup_sack);
00db4124 1560 if (tmp) {
832d11c5
IJ
1561 if (tmp != skb) {
1562 skb = tmp;
1563 continue;
1564 }
1565
1566 in_sack = 0;
1567 } else {
1568 in_sack = tcp_match_skb_to_sack(sk, skb,
1569 start_seq,
1570 end_seq);
1571 }
1572 }
1573
68f8353b
IJ
1574 if (unlikely(in_sack < 0))
1575 break;
1576
832d11c5 1577 if (in_sack) {
cc9a672e
NC
1578 TCP_SKB_CB(skb)->sacked =
1579 tcp_sacktag_one(sk,
1580 state,
1581 TCP_SKB_CB(skb)->sacked,
1582 TCP_SKB_CB(skb)->seq,
1583 TCP_SKB_CB(skb)->end_seq,
1584 dup_sack,
59c9af42 1585 tcp_skb_pcount(skb),
740b0f18 1586 &skb->skb_mstamp);
b9f64820 1587 tcp_rate_skb_delivered(sk, skb, state->rate);
68f8353b 1588
832d11c5
IJ
1589 if (!before(TCP_SKB_CB(skb)->seq,
1590 tcp_highest_sack_seq(tp)))
1591 tcp_advance_highest_sack(sk, skb);
1592 }
1593
a1197f5a 1594 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1595 }
1596 return skb;
1597}
1598
1599/* Avoid all extra work that is being done by sacktag while walking in
1600 * a normal way
1601 */
1602static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1603 struct tcp_sacktag_state *state,
1604 u32 skip_to_seq)
68f8353b
IJ
1605{
1606 tcp_for_write_queue_from(skb, sk) {
1607 if (skb == tcp_send_head(sk))
1608 break;
1609
e8bae275 1610 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1611 break;
d152a7d8 1612
a1197f5a 1613 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1614 }
1615 return skb;
1616}
1617
1618static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1619 struct sock *sk,
1620 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1621 struct tcp_sacktag_state *state,
1622 u32 skip_to_seq)
68f8353b 1623{
51456b29 1624 if (!next_dup)
68f8353b
IJ
1625 return skb;
1626
1627 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1628 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1629 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1630 next_dup->start_seq, next_dup->end_seq,
1631 1);
68f8353b
IJ
1632 }
1633
1634 return skb;
1635}
1636
cf533ea5 1637static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1638{
1639 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1640}
1641
1da177e4 1642static int
cf533ea5 1643tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1644 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1645{
1646 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1647 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1648 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1649 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1650 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1651 struct tcp_sack_block *cache;
1652 struct sk_buff *skb;
4389dded 1653 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1654 int used_sacks;
a2a385d6 1655 bool found_dup_sack = false;
68f8353b 1656 int i, j;
fda03fbb 1657 int first_sack_index;
1da177e4 1658
196da974
KKJ
1659 state->flag = 0;
1660 state->reord = tp->packets_out;
a1197f5a 1661
d738cd8f 1662 if (!tp->sacked_out) {
de83c058
IJ
1663 if (WARN_ON(tp->fackets_out))
1664 tp->fackets_out = 0;
6859d494 1665 tcp_highest_sack_reset(sk);
d738cd8f 1666 }
1da177e4 1667
1ed83465 1668 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1669 num_sacks, prior_snd_una);
b9f64820 1670 if (found_dup_sack) {
196da974 1671 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1672 tp->delivered++; /* A spurious retransmission is delivered */
1673 }
6f74651a
BE
1674
1675 /* Eliminate too old ACKs, but take into
1676 * account more or less fresh ones, they can
1677 * contain valid SACK info.
1678 */
1679 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1680 return 0;
1681