ALSA: hda - Update descriptions about new position_fix values
[linux-2.6-block.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
494bc1d2 80#include <linux/jump_label_ratelimit.h>
c6345ce7 81#include <net/busy_poll.h>
1da177e4 82
ab32ea5d 83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 84
1da177e4
LT
85#define FLAG_DATA 0x01 /* Incoming frame contained data. */
86#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90#define FLAG_DATA_SACKED 0x20 /* New SACK. */
91#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 92#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 93#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 94#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 95#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 96#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 97#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 98#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 99#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 100#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
eb36be0f 101#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
1da177e4
LT
102
103#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 105#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
106#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
1da177e4 108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 110
e662ca40
YC
111#define REXMIT_NONE 0 /* no loss recovery to do */
112#define REXMIT_LOST 1 /* retransmit packets marked lost */
113#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
6dac1523 115#if IS_ENABLED(CONFIG_TLS_DEVICE)
494bc1d2 116static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
6dac1523
IL
117
118void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120{
121 icsk->icsk_clean_acked = cad;
7b58139f 122 static_branch_deferred_inc(&clean_acked_data_enabled);
6dac1523
IL
123}
124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
126void clean_acked_data_disable(struct inet_connection_sock *icsk)
127{
494bc1d2 128 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
6dac1523
IL
129 icsk->icsk_clean_acked = NULL;
130}
131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
494bc1d2
JK
132
133void clean_acked_data_flush(void)
134{
135 static_key_deferred_flush(&clean_acked_data_enabled);
136}
137EXPORT_SYMBOL_GPL(clean_acked_data_flush);
6dac1523
IL
138#endif
139
0b9aefea
MRL
140static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 unsigned int len)
dcb17d22
MRL
142{
143 static bool __once __read_mostly;
144
145 if (!__once) {
146 struct net_device *dev;
147
148 __once = true;
149
150 rcu_read_lock();
151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
152 if (!dev || len >= dev->mtu)
153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
155 rcu_read_unlock();
156 }
157}
158
e905a9ed 159/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 160 * real world.
e905a9ed 161 */
056834d9 162static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 163{
463c84b9 164 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 165 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 166 unsigned int len;
1da177e4 167
e905a9ed 168 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
169
170 /* skb->len may jitter because of SACKs, even if peer
171 * sends good full-sized frames.
172 */
056834d9 173 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 174 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 tcp_sk(sk)->advmss);
0b9aefea
MRL
177 /* Account for possibly-removed options */
178 if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 MAX_TCP_OPTION_SPACE))
180 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
181 } else {
182 /* Otherwise, we make more careful check taking into account,
183 * that SACKs block is variable.
184 *
185 * "len" is invariant segment length, including TCP header.
186 */
9c70220b 187 len += skb->data - skb_transport_header(skb);
bee7ca9e 188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
189 /* If PSH is not set, packet should be
190 * full sized, provided peer TCP is not badly broken.
191 * This observation (if it is correct 8)) allows
192 * to handle super-low mtu links fairly.
193 */
194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
196 /* Subtract also invariant (if peer is RFC compliant),
197 * tcp header plus fixed timestamp option length.
198 * Resulting "len" is MSS free of SACK jitter.
199 */
463c84b9
ACM
200 len -= tcp_sk(sk)->tcp_header_len;
201 icsk->icsk_ack.last_seg_size = len;
1da177e4 202 if (len == lss) {
463c84b9 203 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
204 return;
205 }
206 }
1ef9696c
AK
207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
210 }
211}
212
9a9c9b51 213static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
1da177e4 214{
463c84b9 215 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 217
056834d9
IJ
218 if (quickacks == 0)
219 quickacks = 2;
9a9c9b51 220 quickacks = min(quickacks, max_quickacks);
463c84b9 221 if (quickacks > icsk->icsk_ack.quick)
9a9c9b51 222 icsk->icsk_ack.quick = quickacks;
1da177e4
LT
223}
224
a0496ef2 225void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
1da177e4 226{
463c84b9 227 struct inet_connection_sock *icsk = inet_csk(sk);
9a9c9b51
ED
228
229 tcp_incr_quickack(sk, max_quickacks);
31954cd8 230 inet_csk_exit_pingpong_mode(sk);
463c84b9 231 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 232}
a0496ef2 233EXPORT_SYMBOL(tcp_enter_quickack_mode);
1da177e4
LT
234
235/* Send ACKs quickly, if "quick" count is not exhausted
236 * and the session is not interactive.
237 */
238
2251ae46 239static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 240{
463c84b9 241 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 242 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 243
2251ae46 244 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
31954cd8 245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
1da177e4
LT
246}
247
735d3831 248static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 249{
056834d9 250 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252}
253
fd2123a3 254static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 255{
9aee4000 256 if (tcp_hdr(skb)->cwr) {
fd2123a3 257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
9aee4000
LB
258
259 /* If the sender is telling us it has entered CWR, then its
260 * cwnd may be very low (even just 1 packet), so we should ACK
261 * immediately.
262 */
fd2123a3 263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
9aee4000 264 }
bdf1ee5d
IJ
265}
266
735d3831 267static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
268{
269 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
270}
271
f4c9f85f 272static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 273{
f4c9f85f
YS
274 struct tcp_sock *tp = tcp_sk(sk);
275
b82d1bb4 276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 277 case INET_ECN_NOT_ECT:
bdf1ee5d 278 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
279 * and we already seen ECT on a previous segment,
280 * it is probably a retransmit.
281 */
282 if (tp->ecn_flags & TCP_ECN_SEEN)
15ecbe94 283 tcp_enter_quickack_mode(sk, 2);
7a269ffa
ED
284 break;
285 case INET_ECN_CE:
f4c9f85f
YS
286 if (tcp_ca_needs_ecn(sk))
287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
9890092e 288
aae06bf5
ED
289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 /* Better not delay acks, sender can have a very low cwnd */
15ecbe94 291 tcp_enter_quickack_mode(sk, 2);
aae06bf5
ED
292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 }
9890092e
FW
294 tp->ecn_flags |= TCP_ECN_SEEN;
295 break;
7a269ffa 296 default:
f4c9f85f
YS
297 if (tcp_ca_needs_ecn(sk))
298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
7a269ffa 299 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 300 break;
bdf1ee5d
IJ
301 }
302}
303
f4c9f85f 304static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
735d3831 305{
f4c9f85f
YS
306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 __tcp_ecn_check_ce(sk, skb);
735d3831
FW
308}
309
310static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 311{
056834d9 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
313 tp->ecn_flags &= ~TCP_ECN_OK;
314}
315
735d3831 316static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 317{
056834d9 318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
319 tp->ecn_flags &= ~TCP_ECN_OK;
320}
321
735d3831 322static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 323{
056834d9 324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
325 return true;
326 return false;
bdf1ee5d
IJ
327}
328
1da177e4
LT
329/* Buffer size and advertised window tuning.
330 *
331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332 */
333
6ae70532 334static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 335{
6ae70532 336 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
338 int sndmem, per_mss;
339 u32 nr_segs;
340
341 /* Worst case is non GSO/TSO : each frame consumes one skb
342 * and skb->head is kmalloced using power of two area of memory
343 */
344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 MAX_TCP_HEADER +
346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347
348 per_mss = roundup_pow_of_two(per_mss) +
349 SKB_DATA_ALIGN(sizeof(struct sk_buff));
350
351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353
354 /* Fast Recovery (RFC 5681 3.2) :
355 * Cubic needs 1.7 factor, rounded to 2 to include
a9a08845 356 * extra cushion (application might react slowly to EPOLLOUT)
6ae70532 357 */
77bfc174
YC
358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 sndmem *= nr_segs * per_mss;
1da177e4 360
06a59ecb 361 if (sk->sk_sndbuf < sndmem)
356d1833 362 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
363}
364
365/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
366 *
367 * All tcp_full_space() is split to two parts: "network" buffer, allocated
368 * forward and advertised in receiver window (tp->rcv_wnd) and
369 * "application buffer", required to isolate scheduling/application
370 * latencies from network.
371 * window_clamp is maximal advertised window. It can be less than
372 * tcp_full_space(), in this case tcp_full_space() - window_clamp
373 * is reserved for "application" buffer. The less window_clamp is
374 * the smoother our behaviour from viewpoint of network, but the lower
375 * throughput and the higher sensitivity of the connection to losses. 8)
376 *
377 * rcv_ssthresh is more strict window_clamp used at "slow start"
378 * phase to predict further behaviour of this connection.
379 * It is used for two goals:
380 * - to enforce header prediction at sender, even when application
381 * requires some significant "application buffer". It is check #1.
382 * - to prevent pruning of receive queue because of misprediction
383 * of receiver window. Check #2.
384 *
385 * The scheme does not work when sender sends good segments opening
caa20d9a 386 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
387 * in common situations. Otherwise, we have to rely on queue collapsing.
388 */
389
390/* Slow part of check#2. */
9e412ba7 391static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 392{
9e412ba7 393 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 394 /* Optimize this! */
94f0893e 395 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 396 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
397
398 while (tp->rcv_ssthresh <= window) {
399 if (truesize <= skb->len)
463c84b9 400 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
401
402 truesize >>= 1;
403 window >>= 1;
404 }
405 return 0;
406}
407
cf533ea5 408static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 409{
9e412ba7 410 struct tcp_sock *tp = tcp_sk(sk);
50ce163a
ED
411 int room;
412
413 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
9e412ba7 414
1da177e4 415 /* Check #1 */
50ce163a 416 if (room > 0 && !tcp_under_memory_pressure(sk)) {
1da177e4
LT
417 int incr;
418
419 /* Check #2. Increase window, if skb with such overhead
420 * will fit to rcvbuf in future.
421 */
94f0893e 422 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 423 incr = 2 * tp->advmss;
1da177e4 424 else
9e412ba7 425 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
426
427 if (incr) {
4d846f02 428 incr = max_t(int, incr, 2 * skb->len);
50ce163a 429 tp->rcv_ssthresh += min(room, incr);
463c84b9 430 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
431 }
432 }
433}
434
a337531b 435/* 3. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
436 * established state.
437 */
10467163 438void tcp_init_buffer_space(struct sock *sk)
1da177e4 439{
0c12654a 440 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
441 struct tcp_sock *tp = tcp_sk(sk);
442 int maxwin;
443
1da177e4 444 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 445 tcp_sndbuf_expand(sk);
1da177e4 446
041a14d2 447 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
9a568de4 448 tcp_mstamp_refresh(tp);
645f4c6f 449 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 450 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
451
452 maxwin = tcp_full_space(sk);
453
454 if (tp->window_clamp >= maxwin) {
455 tp->window_clamp = maxwin;
456
0c12654a 457 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 458 tp->window_clamp = max(maxwin -
0c12654a 459 (maxwin >> tcp_app_win),
1da177e4
LT
460 4 * tp->advmss);
461 }
462
463 /* Force reservation of one segment. */
0c12654a 464 if (tcp_app_win &&
1da177e4
LT
465 tp->window_clamp > 2 * tp->advmss &&
466 tp->window_clamp + tp->advmss > maxwin)
467 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
468
469 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 470 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
471}
472
a337531b 473/* 4. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 474static void tcp_clamp_window(struct sock *sk)
1da177e4 475{
9e412ba7 476 struct tcp_sock *tp = tcp_sk(sk);
6687e988 477 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 478 struct net *net = sock_net(sk);
1da177e4 479
6687e988 480 icsk->icsk_ack.quick = 0;
1da177e4 481
356d1833 482 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 483 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 484 !tcp_under_memory_pressure(sk) &&
180d8cd9 485 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 486 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 487 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 488 }
326f36e9 489 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 490 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
491}
492
40efc6fa
SH
493/* Initialize RCV_MSS value.
494 * RCV_MSS is an our guess about MSS used by the peer.
495 * We haven't any direct information about the MSS.
496 * It's better to underestimate the RCV_MSS rather than overestimate.
497 * Overestimations make us ACKing less frequently than needed.
498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
499 */
500void tcp_initialize_rcv_mss(struct sock *sk)
501{
cf533ea5 502 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
503 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
504
056834d9 505 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 506 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
507 hint = max(hint, TCP_MIN_MSS);
508
509 inet_csk(sk)->icsk_ack.rcv_mss = hint;
510}
4bc2f18b 511EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 512
1da177e4
LT
513/* Receiver "autotuning" code.
514 *
515 * The algorithm for RTT estimation w/o timestamps is based on
516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 517 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
518 *
519 * More detail on this code can be found at
631dd1a8 520 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
521 * though this reference is out of date. A new paper
522 * is pending.
523 */
524static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
525{
645f4c6f 526 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
527 long m = sample;
528
1da177e4
LT
529 if (new_sample != 0) {
530 /* If we sample in larger samples in the non-timestamp
531 * case, we could grossly overestimate the RTT especially
532 * with chatty applications or bulk transfer apps which
533 * are stalled on filesystem I/O.
534 *
535 * Also, since we are only going for a minimum in the
31f34269 536 * non-timestamp case, we do not smooth things out
caa20d9a 537 * else with timestamps disabled convergence takes too
1da177e4
LT
538 * long.
539 */
540 if (!win_dep) {
541 m -= (new_sample >> 3);
542 new_sample += m;
18a223e0
NC
543 } else {
544 m <<= 3;
545 if (m < new_sample)
546 new_sample = m;
547 }
1da177e4 548 } else {
caa20d9a 549 /* No previous measure. */
1da177e4
LT
550 new_sample = m << 3;
551 }
552
645f4c6f 553 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
554}
555
556static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
557{
645f4c6f
ED
558 u32 delta_us;
559
9a568de4 560 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
561 goto new_measure;
562 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
563 return;
9a568de4 564 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
565 if (!delta_us)
566 delta_us = 1;
645f4c6f 567 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
568
569new_measure:
570 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 571 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
572}
573
056834d9
IJ
574static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
575 const struct sk_buff *skb)
1da177e4 576{
463c84b9 577 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 578
3f6c65d6
WW
579 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
580 return;
581 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
582
583 if (TCP_SKB_CB(skb)->end_seq -
584 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
9a568de4 585 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 586 u32 delta_us;
9a568de4 587
9efdda4e
ED
588 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
589 if (!delta)
590 delta = 1;
591 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
592 tcp_rcv_rtt_update(tp, delta_us, 0);
593 }
9a568de4 594 }
1da177e4
LT
595}
596
597/*
598 * This function should be called every time data is copied to user space.
599 * It calculates the appropriate TCP receive buffer space.
600 */
601void tcp_rcv_space_adjust(struct sock *sk)
602{
603 struct tcp_sock *tp = tcp_sk(sk);
607065ba 604 u32 copied;
1da177e4 605 int time;
e905a9ed 606
6163849d
YS
607 trace_tcp_rcv_space_adjust(sk);
608
86323850 609 tcp_mstamp_refresh(tp);
9a568de4 610 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 611 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 612 return;
e905a9ed 613
b0983d3c
ED
614 /* Number of bytes copied to user in last RTT */
615 copied = tp->copied_seq - tp->rcvq_space.seq;
616 if (copied <= tp->rcvq_space.space)
617 goto new_measure;
618
619 /* A bit of theory :
620 * copied = bytes received in previous RTT, our base window
621 * To cope with packet losses, we need a 2x factor
622 * To cope with slow start, and sender growing its cwin by 100 %
623 * every RTT, we need a 4x factor, because the ACK we are sending
624 * now is for the next RTT, not the current one :
625 * <prev RTT . ><current RTT .. ><next RTT .... >
626 */
627
4540c0cf 628 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c 629 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
607065ba 630 int rcvmem, rcvbuf;
c3916ad9 631 u64 rcvwin, grow;
1da177e4 632
b0983d3c
ED
633 /* minimal window to cope with packet losses, assuming
634 * steady state. Add some cushion because of small variations.
635 */
607065ba 636 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 637
c3916ad9
ED
638 /* Accommodate for sender rate increase (eg. slow start) */
639 grow = rcvwin * (copied - tp->rcvq_space.space);
640 do_div(grow, tp->rcvq_space.space);
641 rcvwin += (grow << 1);
1da177e4 642
b0983d3c 643 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 644 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 645 rcvmem += 128;
1da177e4 646
607065ba
ED
647 do_div(rcvwin, tp->advmss);
648 rcvbuf = min_t(u64, rcvwin * rcvmem,
649 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
650 if (rcvbuf > sk->sk_rcvbuf) {
651 sk->sk_rcvbuf = rcvbuf;
1da177e4 652
b0983d3c 653 /* Make the window clamp follow along. */
02db5571 654 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
655 }
656 }
b0983d3c 657 tp->rcvq_space.space = copied;
e905a9ed 658
1da177e4
LT
659new_measure:
660 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 661 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
662}
663
664/* There is something which you must keep in mind when you analyze the
665 * behavior of the tp->ato delayed ack timeout interval. When a
666 * connection starts up, we want to ack as quickly as possible. The
667 * problem is that "good" TCP's do slow start at the beginning of data
668 * transmission. The means that until we send the first few ACK's the
669 * sender will sit on his end and only queue most of his data, because
670 * he can only send snd_cwnd unacked packets at any given time. For
671 * each ACK we send, he increments snd_cwnd and transmits more of his
672 * queue. -DaveM
673 */
9e412ba7 674static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 675{
9e412ba7 676 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 677 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
678 u32 now;
679
463c84b9 680 inet_csk_schedule_ack(sk);
1da177e4 681
463c84b9 682 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
683
684 tcp_rcv_rtt_measure(tp);
e905a9ed 685
70eabf0e 686 now = tcp_jiffies32;
1da177e4 687
463c84b9 688 if (!icsk->icsk_ack.ato) {
1da177e4
LT
689 /* The _first_ data packet received, initialize
690 * delayed ACK engine.
691 */
9a9c9b51 692 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
463c84b9 693 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 694 } else {
463c84b9 695 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 696
056834d9 697 if (m <= TCP_ATO_MIN / 2) {
1da177e4 698 /* The fastest case is the first. */
463c84b9
ACM
699 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
700 } else if (m < icsk->icsk_ack.ato) {
701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
702 if (icsk->icsk_ack.ato > icsk->icsk_rto)
703 icsk->icsk_ack.ato = icsk->icsk_rto;
704 } else if (m > icsk->icsk_rto) {
caa20d9a 705 /* Too long gap. Apparently sender failed to
1da177e4
LT
706 * restart window, so that we send ACKs quickly.
707 */
9a9c9b51 708 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
3ab224be 709 sk_mem_reclaim(sk);
1da177e4
LT
710 }
711 }
463c84b9 712 icsk->icsk_ack.lrcvtime = now;
1da177e4 713
f4c9f85f 714 tcp_ecn_check_ce(sk, skb);
1da177e4
LT
715
716 if (skb->len >= 128)
9e412ba7 717 tcp_grow_window(sk, skb);
1da177e4
LT
718}
719
1da177e4
LT
720/* Called to compute a smoothed rtt estimate. The data fed to this
721 * routine either comes from timestamps, or from segments that were
722 * known _not_ to have been retransmitted [see Karn/Partridge
723 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
724 * piece by Van Jacobson.
725 * NOTE: the next three routines used to be one big routine.
726 * To save cycles in the RFC 1323 implementation it was better to break
727 * it up into three procedures. -- erics
728 */
740b0f18 729static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 730{
6687e988 731 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
732 long m = mrtt_us; /* RTT */
733 u32 srtt = tp->srtt_us;
1da177e4 734
1da177e4
LT
735 /* The following amusing code comes from Jacobson's
736 * article in SIGCOMM '88. Note that rtt and mdev
737 * are scaled versions of rtt and mean deviation.
e905a9ed 738 * This is designed to be as fast as possible
1da177e4
LT
739 * m stands for "measurement".
740 *
741 * On a 1990 paper the rto value is changed to:
742 * RTO = rtt + 4 * mdev
743 *
744 * Funny. This algorithm seems to be very broken.
745 * These formulae increase RTO, when it should be decreased, increase
31f34269 746 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
747 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
748 * does not matter how to _calculate_ it. Seems, it was trap
749 * that VJ failed to avoid. 8)
750 */
4a5ab4e2
ED
751 if (srtt != 0) {
752 m -= (srtt >> 3); /* m is now error in rtt est */
753 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
754 if (m < 0) {
755 m = -m; /* m is now abs(error) */
740b0f18 756 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
757 /* This is similar to one of Eifel findings.
758 * Eifel blocks mdev updates when rtt decreases.
759 * This solution is a bit different: we use finer gain
760 * for mdev in this case (alpha*beta).
761 * Like Eifel it also prevents growth of rto,
762 * but also it limits too fast rto decreases,
763 * happening in pure Eifel.
764 */
765 if (m > 0)
766 m >>= 3;
767 } else {
740b0f18 768 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 769 }
740b0f18
ED
770 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
771 if (tp->mdev_us > tp->mdev_max_us) {
772 tp->mdev_max_us = tp->mdev_us;
773 if (tp->mdev_max_us > tp->rttvar_us)
774 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
775 }
776 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
777 if (tp->mdev_max_us < tp->rttvar_us)
778 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 779 tp->rtt_seq = tp->snd_nxt;
740b0f18 780 tp->mdev_max_us = tcp_rto_min_us(sk);
23729ff2
SF
781
782 tcp_bpf_rtt(sk);
1da177e4
LT
783 }
784 } else {
785 /* no previous measure. */
4a5ab4e2 786 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
787 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
788 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
789 tp->mdev_max_us = tp->rttvar_us;
1da177e4 790 tp->rtt_seq = tp->snd_nxt;
23729ff2
SF
791
792 tcp_bpf_rtt(sk);
1da177e4 793 }
740b0f18 794 tp->srtt_us = max(1U, srtt);
1da177e4
LT
795}
796
95bd09eb
ED
797static void tcp_update_pacing_rate(struct sock *sk)
798{
799 const struct tcp_sock *tp = tcp_sk(sk);
800 u64 rate;
801
802 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
803 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
804
805 /* current rate is (cwnd * mss) / srtt
806 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
807 * In Congestion Avoidance phase, set it to 120 % the current rate.
808 *
809 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
810 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
811 * end of slow start and should slow down.
812 */
813 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 814 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 815 else
c26e91f8 816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
817
818 rate *= max(tp->snd_cwnd, tp->packets_out);
819
740b0f18
ED
820 if (likely(tp->srtt_us))
821 do_div(rate, tp->srtt_us);
95bd09eb 822
a9da6f29 823 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
824 * without any lock. We want to make sure compiler wont store
825 * intermediate values in this location.
826 */
a9da6f29
MR
827 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
828 sk->sk_max_pacing_rate));
95bd09eb
ED
829}
830
1da177e4
LT
831/* Calculate rto without backoff. This is the second half of Van Jacobson's
832 * routine referred to above.
833 */
f7e56a76 834static void tcp_set_rto(struct sock *sk)
1da177e4 835{
463c84b9 836 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
837 /* Old crap is replaced with new one. 8)
838 *
839 * More seriously:
840 * 1. If rtt variance happened to be less 50msec, it is hallucination.
841 * It cannot be less due to utterly erratic ACK generation made
842 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
843 * to do with delayed acks, because at cwnd>2 true delack timeout
844 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 845 * ACKs in some circumstances.
1da177e4 846 */
f1ecd5d9 847 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
848
849 /* 2. Fixups made earlier cannot be right.
850 * If we do not estimate RTO correctly without them,
851 * all the algo is pure shit and should be replaced
caa20d9a 852 * with correct one. It is exactly, which we pretend to do.
1da177e4 853 */
1da177e4 854
ee6aac59
IJ
855 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
856 * guarantees that rto is higher.
857 */
f1ecd5d9 858 tcp_bound_rto(sk);
1da177e4
LT
859}
860
cf533ea5 861__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
862{
863 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
864
22b71c8f 865 if (!cwnd)
442b9635 866 cwnd = TCP_INIT_CWND;
1da177e4
LT
867 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
868}
869
564262c1 870/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
871static void tcp_dsack_seen(struct tcp_sock *tp)
872{
ab56222a 873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 874 tp->rack.dsack_seen = 1;
7e10b655 875 tp->dsack_dups++;
e60402d0
IJ
876}
877
737ff314
YC
878/* It's reordering when higher sequence was delivered (i.e. sacked) before
879 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
880 * distance is approximated in full-mss packet distance ("reordering").
881 */
882static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
883 const int ts)
1da177e4 884{
6687e988 885 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
886 const u32 mss = tp->mss_cache;
887 u32 fack, metric;
40b215e5 888
737ff314
YC
889 fack = tcp_highest_sack_seq(tp);
890 if (!before(low_seq, fack))
6f5b24ee
SHY
891 return;
892
737ff314
YC
893 metric = fack - low_seq;
894 if ((metric > tp->reordering * mss) && mss) {
1da177e4 895#if FASTRETRANS_DEBUG > 1
91df42be
JP
896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
898 tp->reordering,
737ff314 899 0,
91df42be
JP
900 tp->sacked_out,
901 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 902#endif
737ff314
YC
903 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
904 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 905 }
eed530b6 906
2d2517ee 907 /* This exciting event is worth to be remembered. 8) */
7ec65372 908 tp->reord_seen++;
737ff314
YC
909 NET_INC_STATS(sock_net(sk),
910 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
911}
912
006f582c 913/* This must be called before lost_out is incremented */
c8c213f2
IJ
914static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
915{
51456b29 916 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
917 before(TCP_SKB_CB(skb)->seq,
918 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 919 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
920}
921
0682e690
NC
922/* Sum the number of packets on the wire we have marked as lost.
923 * There are two cases we care about here:
924 * a) Packet hasn't been marked lost (nor retransmitted),
925 * and this is the first loss.
926 * b) Packet has been marked both lost and retransmitted,
927 * and this means we think it was lost again.
928 */
929static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
930{
931 __u8 sacked = TCP_SKB_CB(skb)->sacked;
932
933 if (!(sacked & TCPCB_LOST) ||
934 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
935 tp->lost += tcp_skb_pcount(skb);
936}
937
41ea36e3
IJ
938static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
939{
940 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
941 tcp_verify_retransmit_hint(tp, skb);
942
943 tp->lost_out += tcp_skb_pcount(skb);
0682e690 944 tcp_sum_lost(tp, skb);
41ea36e3
IJ
945 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
946 }
947}
948
4f41b1c5 949void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
950{
951 tcp_verify_retransmit_hint(tp, skb);
952
0682e690 953 tcp_sum_lost(tp, skb);
006f582c
IJ
954 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
955 tp->lost_out += tcp_skb_pcount(skb);
956 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
957 }
958}
959
1da177e4
LT
960/* This procedure tags the retransmission queue when SACKs arrive.
961 *
962 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
963 * Packets in queue with these bits set are counted in variables
964 * sacked_out, retrans_out and lost_out, correspondingly.
965 *
966 * Valid combinations are:
967 * Tag InFlight Description
968 * 0 1 - orig segment is in flight.
969 * S 0 - nothing flies, orig reached receiver.
970 * L 0 - nothing flies, orig lost by net.
971 * R 2 - both orig and retransmit are in flight.
972 * L|R 1 - orig is lost, retransmit is in flight.
973 * S|R 1 - orig reached receiver, retrans is still in flight.
974 * (L|S|R is logically valid, it could occur when L|R is sacked,
975 * but it is equivalent to plain S and code short-curcuits it to S.
976 * L|S is logically invalid, it would mean -1 packet in flight 8))
977 *
978 * These 6 states form finite state machine, controlled by the following events:
979 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
980 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 981 * 3. Loss detection event of two flavors:
1da177e4
LT
982 * A. Scoreboard estimator decided the packet is lost.
983 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 984 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
985 * segment was retransmitted.
986 * 4. D-SACK added new rule: D-SACK changes any tag to S.
987 *
988 * It is pleasant to note, that state diagram turns out to be commutative,
989 * so that we are allowed not to be bothered by order of our actions,
990 * when multiple events arrive simultaneously. (see the function below).
991 *
992 * Reordering detection.
993 * --------------------
994 * Reordering metric is maximal distance, which a packet can be displaced
995 * in packet stream. With SACKs we can estimate it:
996 *
997 * 1. SACK fills old hole and the corresponding segment was not
998 * ever retransmitted -> reordering. Alas, we cannot use it
999 * when segment was retransmitted.
1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001 * for retransmitted and already SACKed segment -> reordering..
1002 * Both of these heuristics are not used in Loss state, when we cannot
1003 * account for retransmits accurately.
5b3c9882
IJ
1004 *
1005 * SACK block validation.
1006 * ----------------------
1007 *
1008 * SACK block range validation checks that the received SACK block fits to
1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1011 * it means that the receiver is rather inconsistent with itself reporting
1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013 * perfectly valid, however, in light of RFC2018 which explicitly states
1014 * that "SACK block MUST reflect the newest segment. Even if the newest
1015 * segment is going to be discarded ...", not that it looks very clever
1016 * in case of head skb. Due to potentional receiver driven attacks, we
1017 * choose to avoid immediate execution of a walk in write queue due to
1018 * reneging and defer head skb's loss recovery to standard loss recovery
1019 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1020 *
1021 * Implements also blockage to start_seq wrap-around. Problem lies in the
1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023 * there's no guarantee that it will be before snd_nxt (n). The problem
1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025 * wrap (s_w):
1026 *
1027 * <- outs wnd -> <- wrapzone ->
1028 * u e n u_w e_w s n_w
1029 * | | | | | | |
1030 * |<------------+------+----- TCP seqno space --------------+---------->|
1031 * ...-- <2^31 ->| |<--------...
1032 * ...---- >2^31 ------>| |<--------...
1033 *
1034 * Current code wouldn't be vulnerable but it's better still to discard such
1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038 * equal to the ideal case (infinite seqno space without wrap caused issues).
1039 *
1040 * With D-SACK the lower bound is extended to cover sequence space below
1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1042 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1043 * for the normal SACK blocks, explained above). But there all simplicity
1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045 * fully below undo_marker they do not affect behavior in anyway and can
1046 * therefore be safely ignored. In rare cases (which are more or less
1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048 * fragmentation and packet reordering past skb's retransmission. To consider
1049 * them correctly, the acceptable range must be extended even more though
1050 * the exact amount is rather hard to quantify. However, tp->max_window can
1051 * be used as an exaggerated estimate.
1da177e4 1052 */
a2a385d6
ED
1053static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1055{
1056 /* Too far in future, or reversed (interpretation is ambiguous) */
1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1058 return false;
5b3c9882
IJ
1059
1060 /* Nasty start_seq wrap-around check (see comments above) */
1061 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1062 return false;
5b3c9882 1063
564262c1 1064 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1065 * start_seq == snd_una is non-sensical (see comments above)
1066 */
1067 if (after(start_seq, tp->snd_una))
a2a385d6 1068 return true;
5b3c9882
IJ
1069
1070 if (!is_dsack || !tp->undo_marker)
a2a385d6 1071 return false;
5b3c9882
IJ
1072
1073 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1074 if (after(end_seq, tp->snd_una))
a2a385d6 1075 return false;
5b3c9882
IJ
1076
1077 if (!before(start_seq, tp->undo_marker))
a2a385d6 1078 return true;
5b3c9882
IJ
1079
1080 /* Too old */
1081 if (!after(end_seq, tp->undo_marker))
a2a385d6 1082 return false;
5b3c9882
IJ
1083
1084 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 * start_seq < undo_marker and end_seq >= undo_marker.
1086 */
1087 return !before(start_seq, end_seq - tp->max_window);
1088}
1089
a2a385d6
ED
1090static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 struct tcp_sack_block_wire *sp, int num_sacks,
1092 u32 prior_snd_una)
d06e021d 1093{
1ed83465 1094 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1097 bool dup_sack = false;
d06e021d
DM
1098
1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1100 dup_sack = true;
e60402d0 1101 tcp_dsack_seen(tp);
c10d9310 1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1103 } else if (num_sacks > 1) {
d3e2ce3b
HH
1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1106
1107 if (!after(end_seq_0, end_seq_1) &&
1108 !before(start_seq_0, start_seq_1)) {
a2a385d6 1109 dup_sack = true;
e60402d0 1110 tcp_dsack_seen(tp);
c10d9310 1111 NET_INC_STATS(sock_net(sk),
de0744af 1112 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1113 }
1114 }
1115
1116 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1118 !after(end_seq_0, prior_snd_una) &&
1119 after(end_seq_0, tp->undo_marker))
1120 tp->undo_retrans--;
1121
1122 return dup_sack;
1123}
1124
a1197f5a 1125struct tcp_sacktag_state {
737ff314 1126 u32 reord;
31231a8a
KKJ
1127 /* Timestamps for earliest and latest never-retransmitted segment
1128 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1129 * but congestion control should still get an accurate delay signal.
1130 */
9a568de4
ED
1131 u64 first_sackt;
1132 u64 last_sackt;
b9f64820 1133 struct rate_sample *rate;
740b0f18 1134 int flag;
75c119af 1135 unsigned int mss_now;
a1197f5a
IJ
1136};
1137
d1935942
IJ
1138/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1139 * the incoming SACK may not exactly match but we can find smaller MSS
1140 * aligned portion of it that matches. Therefore we might need to fragment
1141 * which may fail and creates some hassle (caller must handle error case
1142 * returns).
832d11c5
IJ
1143 *
1144 * FIXME: this could be merged to shift decision code
d1935942 1145 */
0f79efdc 1146static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1147 u32 start_seq, u32 end_seq)
d1935942 1148{
a2a385d6
ED
1149 int err;
1150 bool in_sack;
d1935942 1151 unsigned int pkt_len;
adb92db8 1152 unsigned int mss;
d1935942
IJ
1153
1154 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1155 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1156
1157 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1158 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1159 mss = tcp_skb_mss(skb);
d1935942
IJ
1160 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1161
adb92db8 1162 if (!in_sack) {
d1935942 1163 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1164 if (pkt_len < mss)
1165 pkt_len = mss;
1166 } else {
d1935942 1167 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1168 if (pkt_len < mss)
1169 return -EINVAL;
1170 }
1171
1172 /* Round if necessary so that SACKs cover only full MSSes
1173 * and/or the remaining small portion (if present)
1174 */
1175 if (pkt_len > mss) {
1176 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1177 if (!in_sack && new_len < pkt_len)
adb92db8 1178 new_len += mss;
adb92db8
IJ
1179 pkt_len = new_len;
1180 }
b451e5d2
YC
1181
1182 if (pkt_len >= skb->len && !in_sack)
1183 return 0;
1184
75c119af
ED
1185 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1186 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1187 if (err < 0)
1188 return err;
1189 }
1190
1191 return in_sack;
1192}
1193
cc9a672e
NC
1194/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1195static u8 tcp_sacktag_one(struct sock *sk,
1196 struct tcp_sacktag_state *state, u8 sacked,
1197 u32 start_seq, u32 end_seq,
740b0f18 1198 int dup_sack, int pcount,
9a568de4 1199 u64 xmit_time)
9e10c47c 1200{
6859d494 1201 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1202
1203 /* Account D-SACK for retransmitted packet. */
1204 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1205 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1206 after(end_seq, tp->undo_marker))
9e10c47c 1207 tp->undo_retrans--;
737ff314
YC
1208 if ((sacked & TCPCB_SACKED_ACKED) &&
1209 before(start_seq, state->reord))
1210 state->reord = start_seq;
9e10c47c
IJ
1211 }
1212
1213 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1214 if (!after(end_seq, tp->snd_una))
a1197f5a 1215 return sacked;
9e10c47c
IJ
1216
1217 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1218 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1219
9e10c47c
IJ
1220 if (sacked & TCPCB_SACKED_RETRANS) {
1221 /* If the segment is not tagged as lost,
1222 * we do not clear RETRANS, believing
1223 * that retransmission is still in flight.
1224 */
1225 if (sacked & TCPCB_LOST) {
a1197f5a 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1227 tp->lost_out -= pcount;
1228 tp->retrans_out -= pcount;
9e10c47c
IJ
1229 }
1230 } else {
1231 if (!(sacked & TCPCB_RETRANS)) {
1232 /* New sack for not retransmitted frame,
1233 * which was in hole. It is reordering.
1234 */
cc9a672e 1235 if (before(start_seq,
737ff314
YC
1236 tcp_highest_sack_seq(tp)) &&
1237 before(start_seq, state->reord))
1238 state->reord = start_seq;
1239
e33099f9
YC
1240 if (!after(end_seq, tp->high_seq))
1241 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1242 if (state->first_sackt == 0)
1243 state->first_sackt = xmit_time;
1244 state->last_sackt = xmit_time;
9e10c47c
IJ
1245 }
1246
1247 if (sacked & TCPCB_LOST) {
a1197f5a 1248 sacked &= ~TCPCB_LOST;
f58b22fd 1249 tp->lost_out -= pcount;
9e10c47c
IJ
1250 }
1251 }
1252
a1197f5a
IJ
1253 sacked |= TCPCB_SACKED_ACKED;
1254 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1255 tp->sacked_out += pcount;
ddf1af6f 1256 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1257
9e10c47c 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1259 if (tp->lost_skb_hint &&
cc9a672e 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1261 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1262 }
1263
1264 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1265 * frames and clear it. undo_retrans is decreased above, L|R frames
1266 * are accounted above as well.
1267 */
a1197f5a
IJ
1268 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1269 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1270 tp->retrans_out -= pcount;
9e10c47c
IJ
1271 }
1272
a1197f5a 1273 return sacked;
9e10c47c
IJ
1274}
1275
daef52ba
NC
1276/* Shift newly-SACKed bytes from this skb to the immediately previous
1277 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1278 */
f3319816
ED
1279static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1280 struct sk_buff *skb,
a2a385d6
ED
1281 struct tcp_sacktag_state *state,
1282 unsigned int pcount, int shifted, int mss,
1283 bool dup_sack)
832d11c5
IJ
1284{
1285 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1286 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1287 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1288
1289 BUG_ON(!pcount);
1290
4c90d3b3
NC
1291 /* Adjust counters and hints for the newly sacked sequence
1292 * range but discard the return value since prev is already
1293 * marked. We must tag the range first because the seq
1294 * advancement below implicitly advances
1295 * tcp_highest_sack_seq() when skb is highest_sack.
1296 */
1297 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1298 start_seq, end_seq, dup_sack, pcount,
2fd66ffb 1299 tcp_skb_timestamp_us(skb));
b9f64820 1300 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1301
1302 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1303 tp->lost_cnt_hint += pcount;
1304
832d11c5
IJ
1305 TCP_SKB_CB(prev)->end_seq += shifted;
1306 TCP_SKB_CB(skb)->seq += shifted;
1307
cd7d8498 1308 tcp_skb_pcount_add(prev, pcount);
3b4929f6 1309 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
cd7d8498 1310 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1311
1312 /* When we're adding to gso_segs == 1, gso_size will be zero,
1313 * in theory this shouldn't be necessary but as long as DSACK
1314 * code can come after this skb later on it's better to keep
1315 * setting gso_size to something.
1316 */
f69ad292
ED
1317 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1318 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1319
1320 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1321 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1322 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1323
832d11c5
IJ
1324 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1325 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1326
832d11c5
IJ
1327 if (skb->len > 0) {
1328 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1329 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1330 return false;
832d11c5
IJ
1331 }
1332
1333 /* Whole SKB was eaten :-) */
1334
92ee76b6
IJ
1335 if (skb == tp->retransmit_skb_hint)
1336 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1337 if (skb == tp->lost_skb_hint) {
1338 tp->lost_skb_hint = prev;
1339 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1340 }
1341
5e8a402f 1342 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1343 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1344 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1345 TCP_SKB_CB(prev)->end_seq++;
1346
832d11c5
IJ
1347 if (skb == tcp_highest_sack(sk))
1348 tcp_advance_highest_sack(sk, skb);
1349
cfea5a68 1350 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1351 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1352 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1353
75c119af 1354 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1355
c10d9310 1356 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1357
a2a385d6 1358 return true;
832d11c5
IJ
1359}
1360
1361/* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1363 */
cf533ea5 1364static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1365{
775ffabf 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1367}
1368
1369/* Shifting pages past head area doesn't work */
cf533ea5 1370static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1371{
1372 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373}
1374
3b4929f6
ED
1375int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1376 int pcount, int shiftlen)
1377{
1378 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1379 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1380 * to make sure not storing more than 65535 * 8 bytes per skb,
1381 * even if current MSS is bigger.
1382 */
1383 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1384 return 0;
1385 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1386 return 0;
1387 return skb_shift(to, from, shiftlen);
1388}
1389
832d11c5
IJ
1390/* Try collapsing SACK blocks spanning across multiple skbs to a single
1391 * skb.
1392 */
1393static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1394 struct tcp_sacktag_state *state,
832d11c5 1395 u32 start_seq, u32 end_seq,
a2a385d6 1396 bool dup_sack)
832d11c5
IJ
1397{
1398 struct tcp_sock *tp = tcp_sk(sk);
1399 struct sk_buff *prev;
1400 int mss;
1401 int pcount = 0;
1402 int len;
1403 int in_sack;
1404
832d11c5
IJ
1405 /* Normally R but no L won't result in plain S */
1406 if (!dup_sack &&
9969ca5f 1407 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1408 goto fallback;
1409 if (!skb_can_shift(skb))
1410 goto fallback;
1411 /* This frame is about to be dropped (was ACKed). */
1412 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1413 goto fallback;
1414
1415 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1416 prev = skb_rb_prev(skb);
1417 if (!prev)
832d11c5 1418 goto fallback;
832d11c5
IJ
1419
1420 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1421 goto fallback;
1422
a643b5d4
MKL
1423 if (!tcp_skb_can_collapse_to(prev))
1424 goto fallback;
1425
832d11c5
IJ
1426 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1427 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1428
1429 if (in_sack) {
1430 len = skb->len;
1431 pcount = tcp_skb_pcount(skb);
775ffabf 1432 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1433
1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1435 * drop this restriction as unnecessary
1436 */
775ffabf 1437 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1438 goto fallback;
1439 } else {
1440 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1441 goto noop;
1442 /* CHECKME: This is non-MSS split case only?, this will
1443 * cause skipped skbs due to advancing loop btw, original
1444 * has that feature too
1445 */
1446 if (tcp_skb_pcount(skb) <= 1)
1447 goto noop;
1448
1449 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1450 if (!in_sack) {
1451 /* TODO: head merge to next could be attempted here
1452 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1453 * though it might not be worth of the additional hassle
1454 *
1455 * ...we can probably just fallback to what was done
1456 * previously. We could try merging non-SACKed ones
1457 * as well but it probably isn't going to buy off
1458 * because later SACKs might again split them, and
1459 * it would make skb timestamp tracking considerably
1460 * harder problem.
1461 */
1462 goto fallback;
1463 }
1464
1465 len = end_seq - TCP_SKB_CB(skb)->seq;
1466 BUG_ON(len < 0);
1467 BUG_ON(len > skb->len);
1468
1469 /* MSS boundaries should be honoured or else pcount will
1470 * severely break even though it makes things bit trickier.
1471 * Optimize common case to avoid most of the divides
1472 */
1473 mss = tcp_skb_mss(skb);
1474
1475 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1476 * drop this restriction as unnecessary
1477 */
775ffabf 1478 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1479 goto fallback;
1480
1481 if (len == mss) {
1482 pcount = 1;
1483 } else if (len < mss) {
1484 goto noop;
1485 } else {
1486 pcount = len / mss;
1487 len = pcount * mss;
1488 }
1489 }
1490
4648dc97
NC
1491 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1492 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1493 goto fallback;
1494
3b4929f6 1495 if (!tcp_skb_shift(prev, skb, pcount, len))
832d11c5 1496 goto fallback;
f3319816 1497 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1498 goto out;
1499
1500 /* Hole filled allows collapsing with the next as well, this is very
1501 * useful when hole on every nth skb pattern happens
1502 */
75c119af
ED
1503 skb = skb_rb_next(prev);
1504 if (!skb)
832d11c5 1505 goto out;
832d11c5 1506
f0bc52f3 1507 if (!skb_can_shift(skb) ||
f0bc52f3 1508 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1509 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1510 goto out;
1511
1512 len = skb->len;
3b4929f6
ED
1513 pcount = tcp_skb_pcount(skb);
1514 if (tcp_skb_shift(prev, skb, pcount, len))
1515 tcp_shifted_skb(sk, prev, skb, state, pcount,
f3319816 1516 len, mss, 0);
832d11c5
IJ
1517
1518out:
832d11c5
IJ
1519 return prev;
1520
1521noop:
1522 return skb;
1523
1524fallback:
c10d9310 1525 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1526 return NULL;
1527}
1528
68f8353b
IJ
1529static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1530 struct tcp_sack_block *next_dup,
a1197f5a 1531 struct tcp_sacktag_state *state,
68f8353b 1532 u32 start_seq, u32 end_seq,
a2a385d6 1533 bool dup_sack_in)
68f8353b 1534{
832d11c5
IJ
1535 struct tcp_sock *tp = tcp_sk(sk);
1536 struct sk_buff *tmp;
1537
75c119af 1538 skb_rbtree_walk_from(skb) {
68f8353b 1539 int in_sack = 0;
a2a385d6 1540 bool dup_sack = dup_sack_in;
68f8353b 1541
68f8353b
IJ
1542 /* queue is in-order => we can short-circuit the walk early */
1543 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1544 break;
1545
00db4124 1546 if (next_dup &&
68f8353b
IJ
1547 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1548 in_sack = tcp_match_skb_to_sack(sk, skb,
1549 next_dup->start_seq,
1550 next_dup->end_seq);
1551 if (in_sack > 0)
a2a385d6 1552 dup_sack = true;
68f8353b
IJ
1553 }
1554
832d11c5
IJ
1555 /* skb reference here is a bit tricky to get right, since
1556 * shifting can eat and free both this skb and the next,
1557 * so not even _safe variant of the loop is enough.
1558 */
1559 if (in_sack <= 0) {
a1197f5a
IJ
1560 tmp = tcp_shift_skb_data(sk, skb, state,
1561 start_seq, end_seq, dup_sack);
00db4124 1562 if (tmp) {
832d11c5
IJ
1563 if (tmp != skb) {
1564 skb = tmp;
1565 continue;
1566 }
1567
1568 in_sack = 0;
1569 } else {
1570 in_sack = tcp_match_skb_to_sack(sk, skb,
1571 start_seq,
1572 end_seq);
1573 }
1574 }
1575
68f8353b
IJ
1576 if (unlikely(in_sack < 0))
1577 break;
1578
832d11c5 1579 if (in_sack) {
cc9a672e
NC
1580 TCP_SKB_CB(skb)->sacked =
1581 tcp_sacktag_one(sk,
1582 state,
1583 TCP_SKB_CB(skb)->sacked,
1584 TCP_SKB_CB(skb)->seq,
1585 TCP_SKB_CB(skb)->end_seq,
1586 dup_sack,
59c9af42 1587 tcp_skb_pcount(skb),
2fd66ffb 1588 tcp_skb_timestamp_us(skb));
b9f64820 1589 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1590 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1591 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1592
832d11c5
IJ
1593 if (!before(TCP_SKB_CB(skb)->seq,
1594 tcp_highest_sack_seq(tp)))
1595 tcp_advance_highest_sack(sk, skb);
1596 }
68f8353b
IJ
1597 }
1598 return skb;
1599}
1600
4bfabc46 1601static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
75c119af
ED
1602{
1603 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1604 struct sk_buff *skb;
75c119af
ED
1605
1606 while (*p) {
1607 parent = *p;
1608 skb = rb_to_skb(parent);
1609 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1610 p = &parent->rb_left;
1611 continue;
1612 }
1613 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1614 p = &parent->rb_right;
1615 continue;
1616 }
75c119af
ED
1617 return skb;
1618 }
1619 return NULL;
1620}
1621
68f8353b 1622static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a 1623 u32 skip_to_seq)
68f8353b 1624{
75c119af
ED
1625 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1626 return skb;
d152a7d8 1627
4bfabc46 1628 return tcp_sacktag_bsearch(sk, skip_to_seq);
68f8353b
IJ
1629}
1630
1631static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1632 struct sock *sk,
1633 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1634 struct tcp_sacktag_state *state,
1635 u32 skip_to_seq)
68f8353b 1636{
51456b29 1637 if (!next_dup)
68f8353b
IJ
1638 return skb;
1639
1640 if (before(next_dup->start_seq, skip_to_seq)) {
4bfabc46 1641 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
a1197f5a
IJ
1642 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1643 next_dup->start_seq, next_dup->end_seq,
1644 1);
68f8353b
IJ
1645 }
1646
1647 return skb;
1648}
1649
cf533ea5 1650static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1651{
1652 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1653}
1654
1da177e4 1655static int
cf533ea5 1656tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1657 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1658{
1659 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1660 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1661 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1662 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1663 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1664 struct tcp_sack_block *cache;
1665 struct sk_buff *skb;
4389dded 1666 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1667 int used_sacks;
a2a385d6 1668 bool found_dup_sack = false;
68f8353b 1669 int i, j;
fda03fbb 1670 int first_sack_index;
1da177e4 1671
196da974 1672 state->flag = 0;
737ff314 1673 state->reord = tp->snd_nxt;
a1197f5a 1674
737ff314 1675 if (!tp->sacked_out)
6859d494 1676 tcp_highest_sack_reset(sk);
1da177e4 1677
1ed83465 1678 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1679 num_sacks, prior_snd_una);
b9f64820 1680 if (found_dup_sack) {
196da974 1681 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1682 tp->delivered++; /* A spurious retransmission is delivered */
1683 }
6f74651a
BE
1684
1685 /* Eliminate too old ACKs, but take into
1686 * account more or less fresh ones, they can
1687 * contain valid SACK info.
1688 */
1689 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1690 return 0;
1691