icmp: remove duplicate code
[linux-2.6-block.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
494bc1d2 80#include <linux/jump_label_ratelimit.h>
c6345ce7 81#include <net/busy_poll.h>
1da177e4 82
ab32ea5d 83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 84
1da177e4
LT
85#define FLAG_DATA 0x01 /* Incoming frame contained data. */
86#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90#define FLAG_DATA_SACKED 0x20 /* New SACK. */
91#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 92#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 93#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 94#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 95#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 96#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 97#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 98#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 99#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 100#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
eb36be0f 101#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
1da177e4
LT
102
103#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 105#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
106#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
1da177e4 108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 110
e662ca40
YC
111#define REXMIT_NONE 0 /* no loss recovery to do */
112#define REXMIT_LOST 1 /* retransmit packets marked lost */
113#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114
6dac1523 115#if IS_ENABLED(CONFIG_TLS_DEVICE)
494bc1d2 116static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
6dac1523
IL
117
118void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 void (*cad)(struct sock *sk, u32 ack_seq))
120{
121 icsk->icsk_clean_acked = cad;
7b58139f 122 static_branch_deferred_inc(&clean_acked_data_enabled);
6dac1523
IL
123}
124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125
126void clean_acked_data_disable(struct inet_connection_sock *icsk)
127{
494bc1d2 128 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
6dac1523
IL
129 icsk->icsk_clean_acked = NULL;
130}
131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
494bc1d2
JK
132
133void clean_acked_data_flush(void)
134{
135 static_key_deferred_flush(&clean_acked_data_enabled);
136}
137EXPORT_SYMBOL_GPL(clean_acked_data_flush);
6dac1523
IL
138#endif
139
0b9aefea
MRL
140static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 unsigned int len)
dcb17d22
MRL
142{
143 static bool __once __read_mostly;
144
145 if (!__once) {
146 struct net_device *dev;
147
148 __once = true;
149
150 rcu_read_lock();
151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
152 if (!dev || len >= dev->mtu)
153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
155 rcu_read_unlock();
156 }
157}
158
e905a9ed 159/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 160 * real world.
e905a9ed 161 */
056834d9 162static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 163{
463c84b9 164 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 165 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 166 unsigned int len;
1da177e4 167
e905a9ed 168 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
169
170 /* skb->len may jitter because of SACKs, even if peer
171 * sends good full-sized frames.
172 */
056834d9 173 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 174 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 tcp_sk(sk)->advmss);
0b9aefea
MRL
177 /* Account for possibly-removed options */
178 if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 MAX_TCP_OPTION_SPACE))
180 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
181 } else {
182 /* Otherwise, we make more careful check taking into account,
183 * that SACKs block is variable.
184 *
185 * "len" is invariant segment length, including TCP header.
186 */
9c70220b 187 len += skb->data - skb_transport_header(skb);
bee7ca9e 188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
189 /* If PSH is not set, packet should be
190 * full sized, provided peer TCP is not badly broken.
191 * This observation (if it is correct 8)) allows
192 * to handle super-low mtu links fairly.
193 */
194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
196 /* Subtract also invariant (if peer is RFC compliant),
197 * tcp header plus fixed timestamp option length.
198 * Resulting "len" is MSS free of SACK jitter.
199 */
463c84b9
ACM
200 len -= tcp_sk(sk)->tcp_header_len;
201 icsk->icsk_ack.last_seg_size = len;
1da177e4 202 if (len == lss) {
463c84b9 203 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
204 return;
205 }
206 }
1ef9696c
AK
207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
210 }
211}
212
9a9c9b51 213static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
1da177e4 214{
463c84b9 215 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 217
056834d9
IJ
218 if (quickacks == 0)
219 quickacks = 2;
9a9c9b51 220 quickacks = min(quickacks, max_quickacks);
463c84b9 221 if (quickacks > icsk->icsk_ack.quick)
9a9c9b51 222 icsk->icsk_ack.quick = quickacks;
1da177e4
LT
223}
224
a0496ef2 225void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
1da177e4 226{
463c84b9 227 struct inet_connection_sock *icsk = inet_csk(sk);
9a9c9b51
ED
228
229 tcp_incr_quickack(sk, max_quickacks);
31954cd8 230 inet_csk_exit_pingpong_mode(sk);
463c84b9 231 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 232}
a0496ef2 233EXPORT_SYMBOL(tcp_enter_quickack_mode);
1da177e4
LT
234
235/* Send ACKs quickly, if "quick" count is not exhausted
236 * and the session is not interactive.
237 */
238
2251ae46 239static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 240{
463c84b9 241 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 242 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 243
2251ae46 244 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
31954cd8 245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
1da177e4
LT
246}
247
735d3831 248static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 249{
056834d9 250 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252}
253
fd2123a3 254static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 255{
9aee4000 256 if (tcp_hdr(skb)->cwr) {
fd2123a3 257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
9aee4000
LB
258
259 /* If the sender is telling us it has entered CWR, then its
260 * cwnd may be very low (even just 1 packet), so we should ACK
261 * immediately.
262 */
fd2123a3 263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
9aee4000 264 }
bdf1ee5d
IJ
265}
266
735d3831 267static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d 268{
af38d07e 269 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
bdf1ee5d
IJ
270}
271
f4c9f85f 272static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 273{
f4c9f85f
YS
274 struct tcp_sock *tp = tcp_sk(sk);
275
b82d1bb4 276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 277 case INET_ECN_NOT_ECT:
bdf1ee5d 278 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
279 * and we already seen ECT on a previous segment,
280 * it is probably a retransmit.
281 */
282 if (tp->ecn_flags & TCP_ECN_SEEN)
15ecbe94 283 tcp_enter_quickack_mode(sk, 2);
7a269ffa
ED
284 break;
285 case INET_ECN_CE:
f4c9f85f
YS
286 if (tcp_ca_needs_ecn(sk))
287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
9890092e 288
aae06bf5
ED
289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 /* Better not delay acks, sender can have a very low cwnd */
15ecbe94 291 tcp_enter_quickack_mode(sk, 2);
aae06bf5
ED
292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 }
9890092e
FW
294 tp->ecn_flags |= TCP_ECN_SEEN;
295 break;
7a269ffa 296 default:
f4c9f85f
YS
297 if (tcp_ca_needs_ecn(sk))
298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
7a269ffa 299 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 300 break;
bdf1ee5d
IJ
301 }
302}
303
f4c9f85f 304static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
735d3831 305{
f4c9f85f
YS
306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 __tcp_ecn_check_ce(sk, skb);
735d3831
FW
308}
309
310static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 311{
056834d9 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
313 tp->ecn_flags &= ~TCP_ECN_OK;
314}
315
735d3831 316static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 317{
056834d9 318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
319 tp->ecn_flags &= ~TCP_ECN_OK;
320}
321
735d3831 322static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 323{
056834d9 324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
325 return true;
326 return false;
bdf1ee5d
IJ
327}
328
1da177e4
LT
329/* Buffer size and advertised window tuning.
330 *
331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332 */
333
6ae70532 334static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 335{
6ae70532 336 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
338 int sndmem, per_mss;
339 u32 nr_segs;
340
341 /* Worst case is non GSO/TSO : each frame consumes one skb
342 * and skb->head is kmalloced using power of two area of memory
343 */
344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 MAX_TCP_HEADER +
346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347
348 per_mss = roundup_pow_of_two(per_mss) +
349 SKB_DATA_ALIGN(sizeof(struct sk_buff));
350
351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353
354 /* Fast Recovery (RFC 5681 3.2) :
355 * Cubic needs 1.7 factor, rounded to 2 to include
a9a08845 356 * extra cushion (application might react slowly to EPOLLOUT)
6ae70532 357 */
77bfc174
YC
358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 sndmem *= nr_segs * per_mss;
1da177e4 360
06a59ecb 361 if (sk->sk_sndbuf < sndmem)
e292f05e
ED
362 WRITE_ONCE(sk->sk_sndbuf,
363 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
1da177e4
LT
364}
365
366/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367 *
368 * All tcp_full_space() is split to two parts: "network" buffer, allocated
369 * forward and advertised in receiver window (tp->rcv_wnd) and
370 * "application buffer", required to isolate scheduling/application
371 * latencies from network.
372 * window_clamp is maximal advertised window. It can be less than
373 * tcp_full_space(), in this case tcp_full_space() - window_clamp
374 * is reserved for "application" buffer. The less window_clamp is
375 * the smoother our behaviour from viewpoint of network, but the lower
376 * throughput and the higher sensitivity of the connection to losses. 8)
377 *
378 * rcv_ssthresh is more strict window_clamp used at "slow start"
379 * phase to predict further behaviour of this connection.
380 * It is used for two goals:
381 * - to enforce header prediction at sender, even when application
382 * requires some significant "application buffer". It is check #1.
383 * - to prevent pruning of receive queue because of misprediction
384 * of receiver window. Check #2.
385 *
386 * The scheme does not work when sender sends good segments opening
caa20d9a 387 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
388 * in common situations. Otherwise, we have to rely on queue collapsing.
389 */
390
391/* Slow part of check#2. */
9e412ba7 392static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 393{
9e412ba7 394 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 395 /* Optimize this! */
94f0893e 396 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 397 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
398
399 while (tp->rcv_ssthresh <= window) {
400 if (truesize <= skb->len)
463c84b9 401 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
402
403 truesize >>= 1;
404 window >>= 1;
405 }
406 return 0;
407}
408
cf533ea5 409static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 410{
9e412ba7 411 struct tcp_sock *tp = tcp_sk(sk);
50ce163a
ED
412 int room;
413
414 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
9e412ba7 415
1da177e4 416 /* Check #1 */
50ce163a 417 if (room > 0 && !tcp_under_memory_pressure(sk)) {
1da177e4
LT
418 int incr;
419
420 /* Check #2. Increase window, if skb with such overhead
421 * will fit to rcvbuf in future.
422 */
94f0893e 423 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 424 incr = 2 * tp->advmss;
1da177e4 425 else
9e412ba7 426 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
427
428 if (incr) {
4d846f02 429 incr = max_t(int, incr, 2 * skb->len);
50ce163a 430 tp->rcv_ssthresh += min(room, incr);
463c84b9 431 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
432 }
433 }
434}
435
a337531b 436/* 3. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
437 * established state.
438 */
10467163 439void tcp_init_buffer_space(struct sock *sk)
1da177e4 440{
0c12654a 441 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
442 struct tcp_sock *tp = tcp_sk(sk);
443 int maxwin;
444
1da177e4 445 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 446 tcp_sndbuf_expand(sk);
1da177e4 447
041a14d2 448 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
9a568de4 449 tcp_mstamp_refresh(tp);
645f4c6f 450 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 451 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
452
453 maxwin = tcp_full_space(sk);
454
455 if (tp->window_clamp >= maxwin) {
456 tp->window_clamp = maxwin;
457
0c12654a 458 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 459 tp->window_clamp = max(maxwin -
0c12654a 460 (maxwin >> tcp_app_win),
1da177e4
LT
461 4 * tp->advmss);
462 }
463
464 /* Force reservation of one segment. */
0c12654a 465 if (tcp_app_win &&
1da177e4
LT
466 tp->window_clamp > 2 * tp->advmss &&
467 tp->window_clamp + tp->advmss > maxwin)
468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469
470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 471 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
472}
473
a337531b 474/* 4. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 475static void tcp_clamp_window(struct sock *sk)
1da177e4 476{
9e412ba7 477 struct tcp_sock *tp = tcp_sk(sk);
6687e988 478 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 479 struct net *net = sock_net(sk);
1da177e4 480
6687e988 481 icsk->icsk_ack.quick = 0;
1da177e4 482
356d1833 483 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 484 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 485 !tcp_under_memory_pressure(sk) &&
180d8cd9 486 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
ebb3b78d
ED
487 WRITE_ONCE(sk->sk_rcvbuf,
488 min(atomic_read(&sk->sk_rmem_alloc),
489 net->ipv4.sysctl_tcp_rmem[2]));
1da177e4 490 }
326f36e9 491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
493}
494
40efc6fa
SH
495/* Initialize RCV_MSS value.
496 * RCV_MSS is an our guess about MSS used by the peer.
497 * We haven't any direct information about the MSS.
498 * It's better to underestimate the RCV_MSS rather than overestimate.
499 * Overestimations make us ACKing less frequently than needed.
500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501 */
502void tcp_initialize_rcv_mss(struct sock *sk)
503{
cf533ea5 504 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506
056834d9 507 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 508 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
509 hint = max(hint, TCP_MIN_MSS);
510
511 inet_csk(sk)->icsk_ack.rcv_mss = hint;
512}
4bc2f18b 513EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 514
1da177e4
LT
515/* Receiver "autotuning" code.
516 *
517 * The algorithm for RTT estimation w/o timestamps is based on
518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 519 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
520 *
521 * More detail on this code can be found at
631dd1a8 522 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
523 * though this reference is out of date. A new paper
524 * is pending.
525 */
526static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527{
645f4c6f 528 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
529 long m = sample;
530
1da177e4
LT
531 if (new_sample != 0) {
532 /* If we sample in larger samples in the non-timestamp
533 * case, we could grossly overestimate the RTT especially
534 * with chatty applications or bulk transfer apps which
535 * are stalled on filesystem I/O.
536 *
537 * Also, since we are only going for a minimum in the
31f34269 538 * non-timestamp case, we do not smooth things out
caa20d9a 539 * else with timestamps disabled convergence takes too
1da177e4
LT
540 * long.
541 */
542 if (!win_dep) {
543 m -= (new_sample >> 3);
544 new_sample += m;
18a223e0
NC
545 } else {
546 m <<= 3;
547 if (m < new_sample)
548 new_sample = m;
549 }
1da177e4 550 } else {
caa20d9a 551 /* No previous measure. */
1da177e4
LT
552 new_sample = m << 3;
553 }
554
645f4c6f 555 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
556}
557
558static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559{
645f4c6f
ED
560 u32 delta_us;
561
9a568de4 562 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
563 goto new_measure;
564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 return;
9a568de4 566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
567 if (!delta_us)
568 delta_us = 1;
645f4c6f 569 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
570
571new_measure:
572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 573 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
574}
575
056834d9
IJ
576static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 const struct sk_buff *skb)
1da177e4 578{
463c84b9 579 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 580
3f6c65d6
WW
581 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
582 return;
583 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
584
585 if (TCP_SKB_CB(skb)->end_seq -
586 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
9a568de4 587 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 588 u32 delta_us;
9a568de4 589
9efdda4e
ED
590 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
591 if (!delta)
592 delta = 1;
593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 tcp_rcv_rtt_update(tp, delta_us, 0);
595 }
9a568de4 596 }
1da177e4
LT
597}
598
599/*
600 * This function should be called every time data is copied to user space.
601 * It calculates the appropriate TCP receive buffer space.
602 */
603void tcp_rcv_space_adjust(struct sock *sk)
604{
605 struct tcp_sock *tp = tcp_sk(sk);
607065ba 606 u32 copied;
1da177e4 607 int time;
e905a9ed 608
6163849d
YS
609 trace_tcp_rcv_space_adjust(sk);
610
86323850 611 tcp_mstamp_refresh(tp);
9a568de4 612 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 613 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 614 return;
e905a9ed 615
b0983d3c
ED
616 /* Number of bytes copied to user in last RTT */
617 copied = tp->copied_seq - tp->rcvq_space.seq;
618 if (copied <= tp->rcvq_space.space)
619 goto new_measure;
620
621 /* A bit of theory :
622 * copied = bytes received in previous RTT, our base window
623 * To cope with packet losses, we need a 2x factor
624 * To cope with slow start, and sender growing its cwin by 100 %
625 * every RTT, we need a 4x factor, because the ACK we are sending
626 * now is for the next RTT, not the current one :
627 * <prev RTT . ><current RTT .. ><next RTT .... >
628 */
629
4540c0cf 630 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c 631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
607065ba 632 int rcvmem, rcvbuf;
c3916ad9 633 u64 rcvwin, grow;
1da177e4 634
b0983d3c
ED
635 /* minimal window to cope with packet losses, assuming
636 * steady state. Add some cushion because of small variations.
637 */
607065ba 638 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 639
c3916ad9
ED
640 /* Accommodate for sender rate increase (eg. slow start) */
641 grow = rcvwin * (copied - tp->rcvq_space.space);
642 do_div(grow, tp->rcvq_space.space);
643 rcvwin += (grow << 1);
1da177e4 644
b0983d3c 645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 646 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 647 rcvmem += 128;
1da177e4 648
607065ba
ED
649 do_div(rcvwin, tp->advmss);
650 rcvbuf = min_t(u64, rcvwin * rcvmem,
651 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c 652 if (rcvbuf > sk->sk_rcvbuf) {
ebb3b78d 653 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1da177e4 654
b0983d3c 655 /* Make the window clamp follow along. */
02db5571 656 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
657 }
658 }
b0983d3c 659 tp->rcvq_space.space = copied;
e905a9ed 660
1da177e4
LT
661new_measure:
662 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 663 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
664}
665
666/* There is something which you must keep in mind when you analyze the
667 * behavior of the tp->ato delayed ack timeout interval. When a
668 * connection starts up, we want to ack as quickly as possible. The
669 * problem is that "good" TCP's do slow start at the beginning of data
670 * transmission. The means that until we send the first few ACK's the
671 * sender will sit on his end and only queue most of his data, because
672 * he can only send snd_cwnd unacked packets at any given time. For
673 * each ACK we send, he increments snd_cwnd and transmits more of his
674 * queue. -DaveM
675 */
9e412ba7 676static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 677{
9e412ba7 678 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 679 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
680 u32 now;
681
463c84b9 682 inet_csk_schedule_ack(sk);
1da177e4 683
463c84b9 684 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
685
686 tcp_rcv_rtt_measure(tp);
e905a9ed 687
70eabf0e 688 now = tcp_jiffies32;
1da177e4 689
463c84b9 690 if (!icsk->icsk_ack.ato) {
1da177e4
LT
691 /* The _first_ data packet received, initialize
692 * delayed ACK engine.
693 */
9a9c9b51 694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
463c84b9 695 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 696 } else {
463c84b9 697 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 698
056834d9 699 if (m <= TCP_ATO_MIN / 2) {
1da177e4 700 /* The fastest case is the first. */
463c84b9
ACM
701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 } else if (m < icsk->icsk_ack.ato) {
703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 icsk->icsk_ack.ato = icsk->icsk_rto;
706 } else if (m > icsk->icsk_rto) {
caa20d9a 707 /* Too long gap. Apparently sender failed to
1da177e4
LT
708 * restart window, so that we send ACKs quickly.
709 */
9a9c9b51 710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
3ab224be 711 sk_mem_reclaim(sk);
1da177e4
LT
712 }
713 }
463c84b9 714 icsk->icsk_ack.lrcvtime = now;
1da177e4 715
f4c9f85f 716 tcp_ecn_check_ce(sk, skb);
1da177e4
LT
717
718 if (skb->len >= 128)
9e412ba7 719 tcp_grow_window(sk, skb);
1da177e4
LT
720}
721
1da177e4
LT
722/* Called to compute a smoothed rtt estimate. The data fed to this
723 * routine either comes from timestamps, or from segments that were
724 * known _not_ to have been retransmitted [see Karn/Partridge
725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726 * piece by Van Jacobson.
727 * NOTE: the next three routines used to be one big routine.
728 * To save cycles in the RFC 1323 implementation it was better to break
729 * it up into three procedures. -- erics
730 */
740b0f18 731static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 732{
6687e988 733 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
734 long m = mrtt_us; /* RTT */
735 u32 srtt = tp->srtt_us;
1da177e4 736
1da177e4
LT
737 /* The following amusing code comes from Jacobson's
738 * article in SIGCOMM '88. Note that rtt and mdev
739 * are scaled versions of rtt and mean deviation.
e905a9ed 740 * This is designed to be as fast as possible
1da177e4
LT
741 * m stands for "measurement".
742 *
743 * On a 1990 paper the rto value is changed to:
744 * RTO = rtt + 4 * mdev
745 *
746 * Funny. This algorithm seems to be very broken.
747 * These formulae increase RTO, when it should be decreased, increase
31f34269 748 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 * does not matter how to _calculate_ it. Seems, it was trap
751 * that VJ failed to avoid. 8)
752 */
4a5ab4e2
ED
753 if (srtt != 0) {
754 m -= (srtt >> 3); /* m is now error in rtt est */
755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
756 if (m < 0) {
757 m = -m; /* m is now abs(error) */
740b0f18 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
759 /* This is similar to one of Eifel findings.
760 * Eifel blocks mdev updates when rtt decreases.
761 * This solution is a bit different: we use finer gain
762 * for mdev in this case (alpha*beta).
763 * Like Eifel it also prevents growth of rto,
764 * but also it limits too fast rto decreases,
765 * happening in pure Eifel.
766 */
767 if (m > 0)
768 m >>= 3;
769 } else {
740b0f18 770 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 771 }
740b0f18
ED
772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
773 if (tp->mdev_us > tp->mdev_max_us) {
774 tp->mdev_max_us = tp->mdev_us;
775 if (tp->mdev_max_us > tp->rttvar_us)
776 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
777 }
778 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
779 if (tp->mdev_max_us < tp->rttvar_us)
780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 781 tp->rtt_seq = tp->snd_nxt;
740b0f18 782 tp->mdev_max_us = tcp_rto_min_us(sk);
23729ff2
SF
783
784 tcp_bpf_rtt(sk);
1da177e4
LT
785 }
786 } else {
787 /* no previous measure. */
4a5ab4e2 788 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
789 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
790 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 tp->mdev_max_us = tp->rttvar_us;
1da177e4 792 tp->rtt_seq = tp->snd_nxt;
23729ff2
SF
793
794 tcp_bpf_rtt(sk);
1da177e4 795 }
740b0f18 796 tp->srtt_us = max(1U, srtt);
1da177e4
LT
797}
798
95bd09eb
ED
799static void tcp_update_pacing_rate(struct sock *sk)
800{
801 const struct tcp_sock *tp = tcp_sk(sk);
802 u64 rate;
803
804 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
805 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
806
807 /* current rate is (cwnd * mss) / srtt
808 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
809 * In Congestion Avoidance phase, set it to 120 % the current rate.
810 *
811 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
812 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
813 * end of slow start and should slow down.
814 */
815 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 817 else
c26e91f8 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
819
820 rate *= max(tp->snd_cwnd, tp->packets_out);
821
740b0f18
ED
822 if (likely(tp->srtt_us))
823 do_div(rate, tp->srtt_us);
95bd09eb 824
a9da6f29 825 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
826 * without any lock. We want to make sure compiler wont store
827 * intermediate values in this location.
828 */
a9da6f29
MR
829 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
830 sk->sk_max_pacing_rate));
95bd09eb
ED
831}
832
1da177e4
LT
833/* Calculate rto without backoff. This is the second half of Van Jacobson's
834 * routine referred to above.
835 */
f7e56a76 836static void tcp_set_rto(struct sock *sk)
1da177e4 837{
463c84b9 838 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
839 /* Old crap is replaced with new one. 8)
840 *
841 * More seriously:
842 * 1. If rtt variance happened to be less 50msec, it is hallucination.
843 * It cannot be less due to utterly erratic ACK generation made
844 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
845 * to do with delayed acks, because at cwnd>2 true delack timeout
846 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 847 * ACKs in some circumstances.
1da177e4 848 */
f1ecd5d9 849 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
850
851 /* 2. Fixups made earlier cannot be right.
852 * If we do not estimate RTO correctly without them,
853 * all the algo is pure shit and should be replaced
caa20d9a 854 * with correct one. It is exactly, which we pretend to do.
1da177e4 855 */
1da177e4 856
ee6aac59
IJ
857 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
858 * guarantees that rto is higher.
859 */
f1ecd5d9 860 tcp_bound_rto(sk);
1da177e4
LT
861}
862
cf533ea5 863__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
864{
865 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
866
22b71c8f 867 if (!cwnd)
442b9635 868 cwnd = TCP_INIT_CWND;
1da177e4
LT
869 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
870}
871
564262c1 872/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
873static void tcp_dsack_seen(struct tcp_sock *tp)
874{
ab56222a 875 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 876 tp->rack.dsack_seen = 1;
7e10b655 877 tp->dsack_dups++;
e60402d0
IJ
878}
879
737ff314
YC
880/* It's reordering when higher sequence was delivered (i.e. sacked) before
881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
882 * distance is approximated in full-mss packet distance ("reordering").
883 */
884static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
885 const int ts)
1da177e4 886{
6687e988 887 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
888 const u32 mss = tp->mss_cache;
889 u32 fack, metric;
40b215e5 890
737ff314
YC
891 fack = tcp_highest_sack_seq(tp);
892 if (!before(low_seq, fack))
6f5b24ee
SHY
893 return;
894
737ff314
YC
895 metric = fack - low_seq;
896 if ((metric > tp->reordering * mss) && mss) {
1da177e4 897#if FASTRETRANS_DEBUG > 1
91df42be
JP
898 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 tp->reordering,
737ff314 901 0,
91df42be
JP
902 tp->sacked_out,
903 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 904#endif
737ff314
YC
905 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
906 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 907 }
eed530b6 908
2d2517ee 909 /* This exciting event is worth to be remembered. 8) */
7ec65372 910 tp->reord_seen++;
737ff314
YC
911 NET_INC_STATS(sock_net(sk),
912 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
913}
914
006f582c 915/* This must be called before lost_out is incremented */
c8c213f2
IJ
916static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
917{
51456b29 918 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
919 before(TCP_SKB_CB(skb)->seq,
920 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 921 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
922}
923
0682e690
NC
924/* Sum the number of packets on the wire we have marked as lost.
925 * There are two cases we care about here:
926 * a) Packet hasn't been marked lost (nor retransmitted),
927 * and this is the first loss.
928 * b) Packet has been marked both lost and retransmitted,
929 * and this means we think it was lost again.
930 */
931static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
932{
933 __u8 sacked = TCP_SKB_CB(skb)->sacked;
934
935 if (!(sacked & TCPCB_LOST) ||
936 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
937 tp->lost += tcp_skb_pcount(skb);
938}
939
41ea36e3
IJ
940static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
941{
942 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
943 tcp_verify_retransmit_hint(tp, skb);
944
945 tp->lost_out += tcp_skb_pcount(skb);
0682e690 946 tcp_sum_lost(tp, skb);
41ea36e3
IJ
947 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
948 }
949}
950
4f41b1c5 951void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
952{
953 tcp_verify_retransmit_hint(tp, skb);
954
0682e690 955 tcp_sum_lost(tp, skb);
006f582c
IJ
956 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
957 tp->lost_out += tcp_skb_pcount(skb);
958 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
959 }
960}
961
1da177e4
LT
962/* This procedure tags the retransmission queue when SACKs arrive.
963 *
964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
965 * Packets in queue with these bits set are counted in variables
966 * sacked_out, retrans_out and lost_out, correspondingly.
967 *
968 * Valid combinations are:
969 * Tag InFlight Description
970 * 0 1 - orig segment is in flight.
971 * S 0 - nothing flies, orig reached receiver.
972 * L 0 - nothing flies, orig lost by net.
973 * R 2 - both orig and retransmit are in flight.
974 * L|R 1 - orig is lost, retransmit is in flight.
975 * S|R 1 - orig reached receiver, retrans is still in flight.
976 * (L|S|R is logically valid, it could occur when L|R is sacked,
977 * but it is equivalent to plain S and code short-curcuits it to S.
978 * L|S is logically invalid, it would mean -1 packet in flight 8))
979 *
980 * These 6 states form finite state machine, controlled by the following events:
981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 983 * 3. Loss detection event of two flavors:
1da177e4
LT
984 * A. Scoreboard estimator decided the packet is lost.
985 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 986 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
987 * segment was retransmitted.
988 * 4. D-SACK added new rule: D-SACK changes any tag to S.
989 *
990 * It is pleasant to note, that state diagram turns out to be commutative,
991 * so that we are allowed not to be bothered by order of our actions,
992 * when multiple events arrive simultaneously. (see the function below).
993 *
994 * Reordering detection.
995 * --------------------
996 * Reordering metric is maximal distance, which a packet can be displaced
997 * in packet stream. With SACKs we can estimate it:
998 *
999 * 1. SACK fills old hole and the corresponding segment was not
1000 * ever retransmitted -> reordering. Alas, we cannot use it
1001 * when segment was retransmitted.
1002 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1003 * for retransmitted and already SACKed segment -> reordering..
1004 * Both of these heuristics are not used in Loss state, when we cannot
1005 * account for retransmits accurately.
5b3c9882
IJ
1006 *
1007 * SACK block validation.
1008 * ----------------------
1009 *
1010 * SACK block range validation checks that the received SACK block fits to
1011 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1012 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1013 * it means that the receiver is rather inconsistent with itself reporting
1014 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1015 * perfectly valid, however, in light of RFC2018 which explicitly states
1016 * that "SACK block MUST reflect the newest segment. Even if the newest
1017 * segment is going to be discarded ...", not that it looks very clever
1018 * in case of head skb. Due to potentional receiver driven attacks, we
1019 * choose to avoid immediate execution of a walk in write queue due to
1020 * reneging and defer head skb's loss recovery to standard loss recovery
1021 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1022 *
1023 * Implements also blockage to start_seq wrap-around. Problem lies in the
1024 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1025 * there's no guarantee that it will be before snd_nxt (n). The problem
1026 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1027 * wrap (s_w):
1028 *
1029 * <- outs wnd -> <- wrapzone ->
1030 * u e n u_w e_w s n_w
1031 * | | | | | | |
1032 * |<------------+------+----- TCP seqno space --------------+---------->|
1033 * ...-- <2^31 ->| |<--------...
1034 * ...---- >2^31 ------>| |<--------...
1035 *
1036 * Current code wouldn't be vulnerable but it's better still to discard such
1037 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1038 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1039 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1040 * equal to the ideal case (infinite seqno space without wrap caused issues).
1041 *
1042 * With D-SACK the lower bound is extended to cover sequence space below
1043 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1044 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1045 * for the normal SACK blocks, explained above). But there all simplicity
1046 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1047 * fully below undo_marker they do not affect behavior in anyway and can
1048 * therefore be safely ignored. In rare cases (which are more or less
1049 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1050 * fragmentation and packet reordering past skb's retransmission. To consider
1051 * them correctly, the acceptable range must be extended even more though
1052 * the exact amount is rather hard to quantify. However, tp->max_window can
1053 * be used as an exaggerated estimate.
1da177e4 1054 */
a2a385d6
ED
1055static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1056 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1057{
1058 /* Too far in future, or reversed (interpretation is ambiguous) */
1059 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1060 return false;
5b3c9882
IJ
1061
1062 /* Nasty start_seq wrap-around check (see comments above) */
1063 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1064 return false;
5b3c9882 1065
564262c1 1066 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1067 * start_seq == snd_una is non-sensical (see comments above)
1068 */
1069 if (after(start_seq, tp->snd_una))
a2a385d6 1070 return true;
5b3c9882
IJ
1071
1072 if (!is_dsack || !tp->undo_marker)
a2a385d6 1073 return false;
5b3c9882
IJ
1074
1075 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1076 if (after(end_seq, tp->snd_una))
a2a385d6 1077 return false;
5b3c9882
IJ
1078
1079 if (!before(start_seq, tp->undo_marker))
a2a385d6 1080 return true;
5b3c9882
IJ
1081
1082 /* Too old */
1083 if (!after(end_seq, tp->undo_marker))
a2a385d6 1084 return false;
5b3c9882
IJ
1085
1086 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1087 * start_seq < undo_marker and end_seq >= undo_marker.
1088 */
1089 return !before(start_seq, end_seq - tp->max_window);
1090}
1091
a2a385d6
ED
1092static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1093 struct tcp_sack_block_wire *sp, int num_sacks,
1094 u32 prior_snd_una)
d06e021d 1095{
1ed83465 1096 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1097 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1098 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1099 bool dup_sack = false;
d06e021d
DM
1100
1101 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1102 dup_sack = true;
e60402d0 1103 tcp_dsack_seen(tp);
c10d9310 1104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1105 } else if (num_sacks > 1) {
d3e2ce3b
HH
1106 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1107 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1108
1109 if (!after(end_seq_0, end_seq_1) &&
1110 !before(start_seq_0, start_seq_1)) {
a2a385d6 1111 dup_sack = true;
e60402d0 1112 tcp_dsack_seen(tp);
c10d9310 1113 NET_INC_STATS(sock_net(sk),
de0744af 1114 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1115 }
1116 }
1117
1118 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1119 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1120 !after(end_seq_0, prior_snd_una) &&
1121 after(end_seq_0, tp->undo_marker))
1122 tp->undo_retrans--;
1123
1124 return dup_sack;
1125}
1126
a1197f5a 1127struct tcp_sacktag_state {
737ff314 1128 u32 reord;
31231a8a
KKJ
1129 /* Timestamps for earliest and latest never-retransmitted segment
1130 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1131 * but congestion control should still get an accurate delay signal.
1132 */
9a568de4
ED
1133 u64 first_sackt;
1134 u64 last_sackt;
b9f64820 1135 struct rate_sample *rate;
740b0f18 1136 int flag;
75c119af 1137 unsigned int mss_now;
a1197f5a
IJ
1138};
1139
d1935942
IJ
1140/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1141 * the incoming SACK may not exactly match but we can find smaller MSS
1142 * aligned portion of it that matches. Therefore we might need to fragment
1143 * which may fail and creates some hassle (caller must handle error case
1144 * returns).
832d11c5
IJ
1145 *
1146 * FIXME: this could be merged to shift decision code
d1935942 1147 */
0f79efdc 1148static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1149 u32 start_seq, u32 end_seq)
d1935942 1150{
a2a385d6
ED
1151 int err;
1152 bool in_sack;
d1935942 1153 unsigned int pkt_len;
adb92db8 1154 unsigned int mss;
d1935942
IJ
1155
1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1157 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1158
1159 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1160 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1161 mss = tcp_skb_mss(skb);
d1935942
IJ
1162 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1163
adb92db8 1164 if (!in_sack) {
d1935942 1165 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1166 if (pkt_len < mss)
1167 pkt_len = mss;
1168 } else {
d1935942 1169 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1170 if (pkt_len < mss)
1171 return -EINVAL;
1172 }
1173
1174 /* Round if necessary so that SACKs cover only full MSSes
1175 * and/or the remaining small portion (if present)
1176 */
1177 if (pkt_len > mss) {
1178 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1179 if (!in_sack && new_len < pkt_len)
adb92db8 1180 new_len += mss;
adb92db8
IJ
1181 pkt_len = new_len;
1182 }
b451e5d2
YC
1183
1184 if (pkt_len >= skb->len && !in_sack)
1185 return 0;
1186
75c119af
ED
1187 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1188 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1189 if (err < 0)
1190 return err;
1191 }
1192
1193 return in_sack;
1194}
1195
cc9a672e
NC
1196/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197static u8 tcp_sacktag_one(struct sock *sk,
1198 struct tcp_sacktag_state *state, u8 sacked,
1199 u32 start_seq, u32 end_seq,
740b0f18 1200 int dup_sack, int pcount,
9a568de4 1201 u64 xmit_time)
9e10c47c 1202{
6859d494 1203 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1204
1205 /* Account D-SACK for retransmitted packet. */
1206 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1207 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1208 after(end_seq, tp->undo_marker))
9e10c47c 1209 tp->undo_retrans--;
737ff314
YC
1210 if ((sacked & TCPCB_SACKED_ACKED) &&
1211 before(start_seq, state->reord))
1212 state->reord = start_seq;
9e10c47c
IJ
1213 }
1214
1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1216 if (!after(end_seq, tp->snd_una))
a1197f5a 1217 return sacked;
9e10c47c
IJ
1218
1219 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1220 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1221
9e10c47c
IJ
1222 if (sacked & TCPCB_SACKED_RETRANS) {
1223 /* If the segment is not tagged as lost,
1224 * we do not clear RETRANS, believing
1225 * that retransmission is still in flight.
1226 */
1227 if (sacked & TCPCB_LOST) {
a1197f5a 1228 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1229 tp->lost_out -= pcount;
1230 tp->retrans_out -= pcount;
9e10c47c
IJ
1231 }
1232 } else {
1233 if (!(sacked & TCPCB_RETRANS)) {
1234 /* New sack for not retransmitted frame,
1235 * which was in hole. It is reordering.
1236 */
cc9a672e 1237 if (before(start_seq,
737ff314
YC
1238 tcp_highest_sack_seq(tp)) &&
1239 before(start_seq, state->reord))
1240 state->reord = start_seq;
1241
e33099f9
YC
1242 if (!after(end_seq, tp->high_seq))
1243 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1244 if (state->first_sackt == 0)
1245 state->first_sackt = xmit_time;
1246 state->last_sackt = xmit_time;
9e10c47c
IJ
1247 }
1248
1249 if (sacked & TCPCB_LOST) {
a1197f5a 1250 sacked &= ~TCPCB_LOST;
f58b22fd 1251 tp->lost_out -= pcount;
9e10c47c
IJ
1252 }
1253 }
1254
a1197f5a
IJ
1255 sacked |= TCPCB_SACKED_ACKED;
1256 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1257 tp->sacked_out += pcount;
ddf1af6f 1258 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1259
9e10c47c 1260 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1261 if (tp->lost_skb_hint &&
cc9a672e 1262 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1263 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1264 }
1265
1266 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1267 * frames and clear it. undo_retrans is decreased above, L|R frames
1268 * are accounted above as well.
1269 */
a1197f5a
IJ
1270 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1272 tp->retrans_out -= pcount;
9e10c47c
IJ
1273 }
1274
a1197f5a 1275 return sacked;
9e10c47c
IJ
1276}
1277
daef52ba
NC
1278/* Shift newly-SACKed bytes from this skb to the immediately previous
1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280 */
f3319816
ED
1281static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1282 struct sk_buff *skb,
a2a385d6
ED
1283 struct tcp_sacktag_state *state,
1284 unsigned int pcount, int shifted, int mss,
1285 bool dup_sack)
832d11c5
IJ
1286{
1287 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1288 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1289 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1290
1291 BUG_ON(!pcount);
1292
4c90d3b3
NC
1293 /* Adjust counters and hints for the newly sacked sequence
1294 * range but discard the return value since prev is already
1295 * marked. We must tag the range first because the seq
1296 * advancement below implicitly advances
1297 * tcp_highest_sack_seq() when skb is highest_sack.
1298 */
1299 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1300 start_seq, end_seq, dup_sack, pcount,
2fd66ffb 1301 tcp_skb_timestamp_us(skb));
b9f64820 1302 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1303
1304 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1305 tp->lost_cnt_hint += pcount;
1306
832d11c5
IJ
1307 TCP_SKB_CB(prev)->end_seq += shifted;
1308 TCP_SKB_CB(skb)->seq += shifted;
1309
cd7d8498 1310 tcp_skb_pcount_add(prev, pcount);
3b4929f6 1311 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
cd7d8498 1312 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1313
1314 /* When we're adding to gso_segs == 1, gso_size will be zero,
1315 * in theory this shouldn't be necessary but as long as DSACK
1316 * code can come after this skb later on it's better to keep
1317 * setting gso_size to something.
1318 */
f69ad292
ED
1319 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1321
1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1323 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1324 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1325
832d11c5
IJ
1326 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328
832d11c5
IJ
1329 if (skb->len > 0) {
1330 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1331 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1332 return false;
832d11c5
IJ
1333 }
1334
1335 /* Whole SKB was eaten :-) */
1336
92ee76b6
IJ
1337 if (skb == tp->retransmit_skb_hint)
1338 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1339 if (skb == tp->lost_skb_hint) {
1340 tp->lost_skb_hint = prev;
1341 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342 }
1343
5e8a402f 1344 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1345 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1346 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347 TCP_SKB_CB(prev)->end_seq++;
1348
832d11c5
IJ
1349 if (skb == tcp_highest_sack(sk))
1350 tcp_advance_highest_sack(sk, skb);
1351
cfea5a68 1352 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1353 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1354 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1355
75c119af 1356 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1357
c10d9310 1358 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1359
a2a385d6 1360 return true;
832d11c5
IJ
1361}
1362
1363/* I wish gso_size would have a bit more sane initialization than
1364 * something-or-zero which complicates things
1365 */
cf533ea5 1366static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1367{
775ffabf 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1369}
1370
1371/* Shifting pages past head area doesn't work */
cf533ea5 1372static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1373{
1374 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375}
1376
3b4929f6
ED
1377int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1378 int pcount, int shiftlen)
1379{
1380 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1381 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1382 * to make sure not storing more than 65535 * 8 bytes per skb,
1383 * even if current MSS is bigger.
1384 */
1385 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1386 return 0;
1387 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1388 return 0;
1389 return skb_shift(to, from, shiftlen);
1390}
1391
832d11c5
IJ
1392/* Try collapsing SACK blocks spanning across multiple skbs to a single
1393 * skb.
1394 */
1395static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1396 struct tcp_sacktag_state *state,
832d11c5 1397 u32 start_seq, u32 end_seq,
a2a385d6 1398 bool dup_sack)
832d11c5
IJ
1399{
1400 struct tcp_sock *tp = tcp_sk(sk);
1401 struct sk_buff *prev;
1402 int mss;
1403 int pcount = 0;
1404 int len;
1405 int in_sack;
1406
832d11c5
IJ
1407 /* Normally R but no L won't result in plain S */
1408 if (!dup_sack &&
9969ca5f 1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1410 goto fallback;
1411 if (!skb_can_shift(skb))
1412 goto fallback;
1413 /* This frame is about to be dropped (was ACKed). */
1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415 goto fallback;
1416
1417 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1418 prev = skb_rb_prev(skb);
1419 if (!prev)
832d11c5 1420 goto fallback;
832d11c5
IJ
1421
1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423 goto fallback;
1424
a643b5d4
MKL
1425 if (!tcp_skb_can_collapse_to(prev))
1426 goto fallback;
1427
832d11c5
IJ
1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430
1431 if (in_sack) {
1432 len = skb->len;
1433 pcount = tcp_skb_pcount(skb);
775ffabf 1434 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1435
1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 * drop this restriction as unnecessary
1438 */
775ffabf 1439 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1440 goto fallback;
1441 } else {
1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 goto noop;
1444 /* CHECKME: This is non-MSS split case only?, this will
1445 * cause skipped skbs due to advancing loop btw, original
1446 * has that feature too
1447 */
1448 if (tcp_skb_pcount(skb) <= 1)
1449 goto noop;
1450
1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 if (!in_sack) {
1453 /* TODO: head merge to next could be attempted here
1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 * though it might not be worth of the additional hassle
1456 *
1457 * ...we can probably just fallback to what was done
1458 * previously. We could try merging non-SACKed ones
1459 * as well but it probably isn't going to buy off
1460 * because later SACKs might again split them, and
1461 * it would make skb timestamp tracking considerably
1462 * harder problem.
1463 */
1464 goto fallback;
1465 }
1466
1467 len = end_seq - TCP_SKB_CB(skb)->seq;
1468 BUG_ON(len < 0);
1469 BUG_ON(len > skb->len);
1470
1471 /* MSS boundaries should be honoured or else pcount will
1472 * severely break even though it makes things bit trickier.
1473 * Optimize common case to avoid most of the divides
1474 */
1475 mss = tcp_skb_mss(skb);
1476
1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 * drop this restriction as unnecessary
1479 */
775ffabf 1480 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1481 goto fallback;
1482
1483 if (len == mss) {
1484 pcount = 1;
1485 } else if (len < mss) {
1486 goto noop;
1487 } else {
1488 pcount = len / mss;
1489 len = pcount * mss;
1490 }
1491 }
1492
4648dc97
NC
1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 goto fallback;
1496
3b4929f6 1497 if (!tcp_skb_shift(prev, skb, pcount, len))
832d11c5 1498 goto fallback;
f3319816 1499 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1500 goto out;
1501
1502 /* Hole filled allows collapsing with the next as well, this is very
1503 * useful when hole on every nth skb pattern happens
1504 */
75c119af
ED
1505 skb = skb_rb_next(prev);
1506 if (!skb)
832d11c5 1507 goto out;
832d11c5 1508
f0bc52f3 1509 if (!skb_can_shift(skb) ||
f0bc52f3 1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1511 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1512 goto out;
1513
1514 len = skb->len;
3b4929f6
ED
1515 pcount = tcp_skb_pcount(skb);
1516 if (tcp_skb_shift(prev, skb, pcount, len))
1517 tcp_shifted_skb(sk, prev, skb, state, pcount,
f3319816 1518 len, mss, 0);
832d11c5
IJ
1519
1520out:
832d11c5
IJ
1521 return prev;
1522
1523noop:
1524 return skb;
1525
1526fallback:
c10d9310 1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1528 return NULL;
1529}
1530
68f8353b
IJ
1531static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1532 struct tcp_sack_block *next_dup,
a1197f5a 1533 struct tcp_sacktag_state *state,
68f8353b 1534 u32 start_seq, u32 end_seq,
a2a385d6 1535 bool dup_sack_in)
68f8353b 1536{
832d11c5
IJ
1537 struct tcp_sock *tp = tcp_sk(sk);
1538 struct sk_buff *tmp;
1539
75c119af 1540 skb_rbtree_walk_from(skb) {
68f8353b 1541 int in_sack = 0;
a2a385d6 1542 bool dup_sack = dup_sack_in;
68f8353b 1543
68f8353b
IJ
1544 /* queue is in-order => we can short-circuit the walk early */
1545 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 break;
1547
00db4124 1548 if (next_dup &&
68f8353b
IJ
1549 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 next_dup->start_seq,
1552 next_dup->end_seq);
1553 if (in_sack > 0)
a2a385d6 1554 dup_sack = true;
68f8353b
IJ
1555 }
1556
832d11c5
IJ
1557 /* skb reference here is a bit tricky to get right, since
1558 * shifting can eat and free both this skb and the next,
1559 * so not even _safe variant of the loop is enough.
1560 */
1561 if (in_sack <= 0) {
a1197f5a
IJ
1562 tmp = tcp_shift_skb_data(sk, skb, state,
1563 start_seq, end_seq, dup_sack);
00db4124 1564 if (tmp) {
832d11c5
IJ
1565 if (tmp != skb) {
1566 skb = tmp;
1567 continue;
1568 }
1569
1570 in_sack = 0;
1571 } else {
1572 in_sack = tcp_match_skb_to_sack(sk, skb,
1573 start_seq,
1574 end_seq);
1575 }
1576 }
1577
68f8353b
IJ
1578 if (unlikely(in_sack < 0))
1579 break;
1580
832d11c5 1581 if (in_sack) {
cc9a672e
NC
1582 TCP_SKB_CB(skb)->sacked =
1583 tcp_sacktag_one(sk,
1584 state,
1585 TCP_SKB_CB(skb)->sacked,
1586 TCP_SKB_CB(skb)->seq,
1587 TCP_SKB_CB(skb)->end_seq,
1588 dup_sack,
59c9af42 1589 tcp_skb_pcount(skb),
2fd66ffb 1590 tcp_skb_timestamp_us(skb));
b9f64820 1591 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1592 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1593 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1594
832d11c5
IJ
1595 if (!before(TCP_SKB_CB(skb)->seq,
1596 tcp_highest_sack_seq(tp)))
1597 tcp_advance_highest_sack(sk, skb);
1598 }
68f8353b
IJ
1599 }
1600 return skb;
1601}
1602
4bfabc46 1603static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
75c119af
ED
1604{
1605 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1606 struct sk_buff *skb;
75c119af
ED
1607
1608 while (*p) {
1609 parent = *p;
1610 skb = rb_to_skb(parent);
1611 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1612 p = &parent->rb_left;
1613 continue;
1614 }
1615 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1616 p = &parent->rb_right;
1617 continue;
1618 }
75c119af
ED
1619 return skb;
1620 }
1621 return NULL;
1622}
1623
68f8353b 1624static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a 1625 u32 skip_to_seq)
68f8353b 1626{
75c119af
ED
1627 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1628 return skb;
d152a7d8 1629
4bfabc46 1630 return tcp_sacktag_bsearch(sk, skip_to_seq);
68f8353b
IJ
1631}
1632
1633static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1634 struct sock *sk,
1635 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1636 struct tcp_sacktag_state *state,
1637 u32 skip_to_seq)
68f8353b 1638{
51456b29 1639 if (!next_dup)
68f8353b
IJ
1640 return skb;
1641
1642 if (before(next_dup->start_seq, skip_to_seq)) {
4bfabc46 1643 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
a1197f5a
IJ
1644 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1645 next_dup->start_seq, next_dup->end_seq,
1646 1);
68f8353b
IJ
1647 }
1648
1649 return skb;
1650}
1651
cf533ea5 1652static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1653{
1654 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1655}
1656
1da177e4 1657static int
cf533ea5 1658tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1659 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1660{
1661 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1662 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1663 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1664 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1665 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1666 struct tcp_sack_block *cache;
1667 struct sk_buff *skb;
4389dded 1668 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1669 int used_sacks;
a2a385d6 1670 bool found_dup_sack = false;
68f8353b 1671 int i, j;
fda03fbb 1672 int first_sack_index;
1da177e4 1673
196da974 1674 state->flag = 0;
737ff314 1675 state->reord = tp->snd_nxt;
a1197f5a 1676
737ff314 1677 if (!tp->sacked_out)
6859d494 1678 tcp_highest_sack_reset(sk);
1da177e4 1679
1ed83465 1680 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1681 num_sacks, prior_snd_una);
b9f64820 1682 if (found_dup_sack) {
196da974 1683 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1684 tp->delivered++; /* A spurious retransmission is delivered */
1685 }
6f74651a
BE
1686
1687 /* Eliminate too old ACKs, but take into
1688 * account more or less fresh ones, they can
1689 * contain valid SACK info.
1690 */
1691 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1692 return 0;
1693